JP2001137613A - Fine chemical device having extraction structure - Google Patents

Fine chemical device having extraction structure

Info

Publication number
JP2001137613A
JP2001137613A JP32040699A JP32040699A JP2001137613A JP 2001137613 A JP2001137613 A JP 2001137613A JP 32040699 A JP32040699 A JP 32040699A JP 32040699 A JP32040699 A JP 32040699A JP 2001137613 A JP2001137613 A JP 2001137613A
Authority
JP
Japan
Prior art keywords
contact angle
water
channel
flow path
outflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32040699A
Other languages
Japanese (ja)
Inventor
Takanori Anazawa
孝典 穴澤
Atsushi Teramae
敦司 寺前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP32040699A priority Critical patent/JP2001137613A/en
Publication of JP2001137613A publication Critical patent/JP2001137613A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fine chemical device capable of performing liquid-liquid material transfer by letting a small quantity of liquids immiscible to each other stably flow while being in contact with each other in layer and then continuously separating and recovering the liquids in contact with each other. SOLUTION: The fine chemical device has a capillary flow passage having 1×10-12 to 1×10-6 m2 cross-sectional area, the inside surface of the flow passage has a low contact angle part having <=25 deg. contact angle with water and a high contact angle part having >=10 deg. higher contact angle with water than that of the low contact angle part and the low contact angle part and the high contact angle part continue respectively from the upstream end to the down stream end of the flow passage without a break.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、微小なデバイス内
で、相互に混和しない液体同士を接触させて、液体−液
体間で物質移動を行わせる、いわゆる、微小な液−液抽
出デバイスに関し、更に詳しくは、相互に混和しない液
体が毛細管状の流路中を層状に接触つつ流れ、それぞれ
の液体に分離されて流出する機構を有する微小ケミカル
デバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called minute liquid-liquid extraction device in which liquids that are immiscible with each other are brought into contact in a minute device to perform mass transfer between the liquid and the liquid. More specifically, the present invention relates to a microchemical device having a mechanism in which immiscible liquids flow in a capillary channel in a layered manner, and are separated into respective liquids and flow out.

【0002】本発明の微小ケミカルデバイスは、物理化
学や化学工学の分野における液−液抽出用微小デバイ
ス;合成化学、生化学などの分野における、液体−液体
間の物質移動を伴う微小合成デバイス;集積型DNA分
析,微小電気泳動,微小クロマトグラフィーなどの微小
分析デバイスと組み合わせることができる試料調製用微
小デバイス;質量スペクトルや液体クロマトグラフィー
などの分析試料調製用微小デバイス、などとして使用で
きる。
[0002] The microchemical device of the present invention is a microdevice for liquid-liquid extraction in the fields of physical chemistry and chemical engineering; a microsynthetic device with liquid-liquid mass transfer in the fields of synthetic chemistry and biochemistry; It can be used as a sample preparation microdevice that can be combined with a microanalysis device such as integrated DNA analysis, microelectrophoresis, and microchromatography; and a microdevice for analysis sample preparation such as mass spectrum and liquid chromatography.

【0003】[0003]

【従来の技術】微小透析デバイスとして、「アナリティ
カル・ケミストリー」第70巻第3553頁(1998
年)には、それぞれに溝が掘られた2枚の平面状の基材
の間に透析膜を狭持した微小透析デバイスが報告されて
いる。
2. Description of the Related Art As a microdialysis device, "Analytical Chemistry", Vol. 70, p. 3553 (1998).
) Reported a microdialysis device in which a dialysis membrane was sandwiched between two planar substrates each having a groove formed therein.

【0004】また、「マイクロチャンネル内での高速分
子輸送」[99−1 セパレーションズ サイエンス&
テクノロジー(SST)研究会講演会、高分子学会主
催、予稿集9頁(1999年)]には、石英に掘られた
幅250μm 、深さ100μmのマイクロチャンネル内
でのキシレン/水系の液−液抽出について報告されてい
る。
Also, "High-speed molecular transport in microchannels" [99-1 Separations Science &
Technology (SST) Seminar Lecture, sponsored by the Society of Polymer Science, 9 pages (1999)], a xylene / water-based liquid-liquid in a 250 μm wide, 100 μm deep microchannel dug in quartz. Extraction has been reported.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、透析膜
は、使用時には膨潤して体積が大きく変化するものであ
るが、そのような透析膜を組み込んだ微小ケミカルデバ
イスを製造することは相当に困難である上、液体同士を
直接接触させる方法と比較して、従来技術のデバイスに
おける物質交換速度は遅いものであった。
However, the dialysis membrane swells and changes its volume when used, but it is considerably difficult to manufacture a microchemical device incorporating such a dialysis membrane. In addition, the mass exchange rate in prior art devices has been slower than in direct contact between liquids.

【0006】一方、互いに混合しない2液を流路に流し
て液体同士を直接接触させても、ミクロスケールで2液
を安定して層状に接触させることは難しく、それぞれが
凝集して塊状となりがちであり、従って、物質交換効率
が低下しがちであった。さらに、液体同士を直接接触さ
せた後、それらを再びミクロスケールで分離することは
相当に困難であった。
On the other hand, even if two liquids that do not mix with each other are caused to flow through a flow path to bring the liquids into direct contact with each other, it is difficult to stably bring the two liquids into contact with each other in a layered manner on a micro scale. Therefore, the mass exchange efficiency tends to decrease. Furthermore, it is quite difficult to separate the liquids again on a microscale after direct contact between the liquids.

【0007】本発明が解決しようとする課題は、液体同
士をミクロスケールで直接接触させ、層状に接触させた
状態で安定して流すことによって抽出効率を高める微小
ケミカルデバイスを提供することにあり、さらに、接触
させた液体を再び分離することができる微小ケミカルデ
バイスを提供することにある。
[0007] The problem to be solved by the present invention is to provide a microchemical device in which liquids are brought into direct contact with each other on a micro-scale and stably flow in a state of being in a layered state, thereby improving the extraction efficiency. Another object of the present invention is to provide a microchemical device capable of separating the contacted liquid again.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上記課題
を解決する方法について鋭意検討した結果、直径1〜1
000μm 程度の毛細管状の流路の内面に、水との接触
角が低い部分と高い部分を設け、かつその両者を流路の
流入端から流出端まで連続した形状に設けることによ
り、相互に混和しない液体を層状に接触させた状態で安
定して流路中を流すことが可能であること、及び、流路
内面の水との接触角が低い部分と高い部分からそれぞれ
流出路を形成することで、流出端で相互に混和しない液
体を再び分離することが可能であることを見出し、本発
明を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies on a method for solving the above-mentioned problems, and as a result, have found that the diameter is 1 to 1.
By providing a portion having a low contact angle with water and a portion having a high contact angle with water on the inner surface of a capillary channel of about 000 μm, and providing both portions in a continuous shape from the inflow end to the outflow end of the flow channel, they are mixed with each other. That the liquid not flowing into the flow path can be stably flowed in a state of being in contact with the layer, and that the outflow paths are formed from the low and high contact angles of the inner surface of the flow path with water. Thus, the present inventors have found that liquids that are immiscible with each other at the outflow end can be separated again, and have completed the present invention.

【0009】即ち、本発明は上記課題を解決するため
に、(I)断面積が1×10-12m2 〜1×10-6m2の範
囲にある毛細管状の流路を有する微小ケミカルデバイス
であって、流路の内面が、水との接触角が25゜以下の
低接触角部分と、水との接触角が低接触角部分のそれよ
り10゜以上高い高接触角部分を有し、かつ、低接触角
部分と高接触角部分がそれぞれ流路の上流端から下流端
にわたって途切れずに連続していること、を特徴とする
抽出機構を有する微小ケミカルデバイス(以下、「抽出
機構を有する微小ケミカルデバイス」を単に「デバイ
ス」と称する。)を提供する。
That is, in order to solve the above problems, the present invention provides (I) a microchemical having a capillary channel having a cross-sectional area in the range of 1 × 10 −12 m 2 to 1 × 10 −6 m 2. The device, wherein the inner surface of the flow path has a low contact angle portion having a contact angle with water of 25 ° or less and a high contact angle portion having a contact angle with water at least 10 ° higher than that of the low contact angle portion. And the low contact angle portion and the high contact angle portion are continuous without interruption from the upstream end to the downstream end of the flow path, respectively. Are referred to simply as “devices”).

【0010】また、本発明は上記課題を解決するため
に、(II)微小ケミカルデバイスが、流路の下流端にお
いて、流路の低接触角部分と高接触角部分からそれぞれ
流出路が形成されている上記(I)項に記載の微小ケミ
カルデバイスを提供する。
According to another aspect of the present invention, there is provided a microchemical device in which an outflow path is formed at a downstream end of a flow channel from a low contact angle portion and a high contact angle portion of the flow channel. The microchemical device according to the above (I) is provided.

【0011】また、本発明は上記課題を解決するため
に、(III)流路の高接触角部分に接続された流出路の
接続部における内面の水との接触角δH が、流路の低接
触角部分に接続された流出路の接続部における内面の水
との接触角δL より10°以上高い上記(II)項に記載
の微小ケミカルデバイスを提供する。
In order to solve the above-mentioned problems, the present invention provides: (III) a contact angle δ H of water on the inner surface of a connection portion of an outflow passage connected to a high contact angle portion of a flow passage; providing a micro chemical device according to high above (II) in claim 10 ° or more than the contact angle [delta] L of water in the inner surface at the connecting portion of the outlet channel connected to the low contact angle portion.

【0012】また、本発明は上記課題を解決するため
に、(IV)流路の低接触角部分に接続された流出路の接
続部における内面の水との接触角δL と、流路の高接触
角部分に接続された流出路接続部における内面のの水と
の接触角δH が、(イ)δL≦25°であり、かつ35
°≦δH、(ロ)δL≦90°であり、かつ90°<
δH、の少なくともいずれかの条件を満足する上記(II
I) 項に記載の微小ケミカルデバイスを提供する。
In order to solve the above-mentioned problems, the present invention provides (IV) a contact angle δ L with water on the inner surface of an inner surface at a connection portion of an outflow passage connected to a low contact angle portion of a flow passage; The contact angle δ H of the inner surface with water at the outflow path connection portion connected to the high contact angle portion is (a) δ L ≦ 25 °, and 35
° ≦ δ H , (b) δ L ≦ 90 °, and 90 ° <
δ H , which satisfies at least one of the conditions (II
(I) A microchemical device according to the item (1) is provided.

【0013】また、本発明は上記課題を解決するため
に、(V)流路の高接触角部分に接続された流出路が、
流路に接続されたチューブである上記(I)〜(VI)項
のいずれか1項に記載の微小ケミカルデバイスを提供す
る。
In order to solve the above-mentioned problems, the present invention provides (V) an outflow passage connected to a high contact angle portion of a flow passage,
The microchemical device according to any one of the above (I) to (VI), which is a tube connected to a flow path.

【0014】また、本発明は上記課題を解決するため
に、(VI)微小ケミカルデバイスが、流路の上流端にお
いて、流路の低接触角部分と高接触角部分にそれぞれ接
続して流入路が形成されている上記(I)〜(V)項の
いずれか1項に記載の微小ケミカルデバイスを提供す
る。
According to another aspect of the present invention, there is provided a liquid crystal display comprising: (VI) a microchemical device connected to a low contact angle portion and a high contact angle portion of a flow path at an upstream end of the flow path, respectively; The microchemical device according to any one of the above (I) to (V), in which is formed.

【0015】また、本発明は上記課題を解決するため
に、(VII)流路が、部材(A)と部材(B)の間に流
路となる部分を除いて固体状物質が充填された形状の、
もしくは表面に溝を有する部材(A)の溝形成面に他の
部材(B)が密着された形状の、部材(A)と部材
(B)との間に形成されたものであり、流路内面の低接
触各部分が、流路の部材(A)側底面、部材(A)側底
面及び少なくとも一方の側面、部材(B)面、部材
(B)面及び少なくとも一方の側面なる群から選ばれる
いずれかである上記(I)〜(VI)項のいずれか1項に
記載の微小ケミカルデバイスを提供する。
According to the present invention, in order to solve the above-mentioned problem, (VII) the flow path is filled with a solid substance except for a portion serving as a flow path between the member (A) and the member (B). Of shape,
Alternatively, the member (A) having a groove on the surface is formed between the member (A) and the member (B) in a shape in which another member (B) is in close contact with a groove forming surface of the member (A). Each low contact portion of the inner surface is selected from the group consisting of a member (A) side bottom surface, a member (A) side bottom surface and at least one side surface, a member (B) surface, a member (B) surface and at least one side surface of the flow path. The microchemical device according to any one of the above items (I) to (VI) is provided.

【0016】また、本発明は上記課題を解決するため
に、(VIII)部材(A)及び部材(B)が有機高分子重
合体からなる上記(VII) 項に記載の微小ケミカルデバ
イスを提供する。
In order to solve the above problems, the present invention provides (VIII) the microchemical device according to the above (VII), wherein the member (A) and the member (B) are made of an organic high molecular polymer. .

【0017】さらに、本発明は上記課題を解決するため
に、(IX)部材(A)及び部材(B)がそれぞれ、ポリ
カーボネート系重合体、塩化ビニル系重合体、ポリアミ
ド系重合体、ポリエステル系重合体、(メタ)アクリル
系架橋重合体及びマレイミド系架橋重合体からなる群か
ら選ばれた重合体からなる上記(VII) 項に記載の微小
ケミカルデバイスを提供する。
Further, in order to solve the above problems, the present invention provides (IX) a member (A) and a member (B) each comprising a polycarbonate polymer, a vinyl chloride polymer, a polyamide polymer, and a polyester polymer. The microchemical device according to the above (VII), comprising a polymer selected from the group consisting of a coalesced polymer, a (meth) acrylic crosslinked polymer and a maleimide crosslinked polymer.

【0018】[0018]

【発明の実施の形態】本発明のデバイスの基材の形状
は、特に限定する必要はなく、用途目的に応じた形状を
採りうる。例えば、シート状(フィルム、リボンなどを
含む。以下、同様。)、板状、塗膜状、棒状、管状、そ
の他複雑な形状の成型物などであり得るが、シート状、
板状、又は棒状であることが特に好ましい。基材は、そ
の内部に毛細管状の流路(以下、「毛細管状の流路」を
単に「流路」と称する。)が形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The shape of the substrate of the device of the present invention does not need to be particularly limited, and can take a shape according to the purpose of use. For example, it may be in the form of a sheet (including a film, a ribbon, and the like; the same applies hereinafter), a plate, a coating, a rod, a tube, and a molded article having other complicated shapes.
It is particularly preferred that it is plate-like or rod-like. A capillary channel (hereinafter, the “capillary channel” is simply referred to as a “channel”) is formed inside the substrate.

【0019】基材は、密着した部材(A)と部材(B)
から成り、互いに密着した部材(A)と部材(B)との
間に流路が形成されたものであることが好ましい。本発
明で言う密着とは、気密あるいは液密に接触しているこ
とを言い、非接着の接触、接着、粘着を含む。勿論、接
着や粘着は、接着剤や粘着剤を介する接触であって良
い。
The base material is a member (A) and a member (B)
It is preferable that a flow path is formed between the member (A) and the member (B) which are in close contact with each other. The close contact referred to in the present invention refers to air-tight or liquid-tight contact, and includes non-adhesive contact, adhesion, and adhesion. Needless to say, the adhesion or the adhesion may be a contact through an adhesive or a pressure-sensitive adhesive.

【0020】基材の構造は、例えば、部材(A)と部材
(B)の間の、流路以外の部分に固体状物質が充填され
た構造であっても良いし、また、例えば、表面に溝を有
する部材(A)の溝を有する面に、他の部材(B)が密
着して形成された構造であっても良い。
The structure of the substrate may be, for example, a structure in which a portion other than the flow path between the member (A) and the member (B) is filled with a solid substance. The structure may be such that another member (B) is formed in close contact with the grooved surface of the member (A) having a groove.

【0021】部材(A)の形状は、上記の基材の場合と
同様である。部材(A)は更に別の部材、例えば支持
体、と一体化された形態であってもよい。部材(A)が
塗膜状である場合には、支持体と一体化された状態で使
用される。支持体の素材、形状も任意であり、例えば、
部材(A)の場合に示した素材や形状であって良い。複
数の微小ケミカルデバイスを1つの部材(A)上に形成
することも可能であるし、製造後、これらを切断して複
数の微小ケミカルデバイスとすることも可能である。
The shape of the member (A) is the same as that of the above-mentioned substrate. The member (A) may be in a form integrated with another member, for example, a support. When the member (A) is in the form of a coating film, it is used in a state of being integrated with the support. The material and shape of the support are also arbitrary, for example,
The material and shape shown in the case of the member (A) may be used. It is possible to form a plurality of microchemical devices on one member (A), or it is also possible to cut them after manufacturing to form a plurality of microchemical devices.

【0022】部材(B)の形状は、部材(A)と直接あ
るいは接着剤や粘着剤を介して密着させることが可能な
ものであれば、その形状、構造、表面状態などは任意で
ある。部材(B)の採りうる形状や好ましい形状につい
ては、部材(A)の場合と同様である。部材(B)は、
その表面に溝が形成されている必要はないが、溝や溝以
外の構造が形成されていても良い。例えば、部材(B)
は、表面に溝が形成された部材(A)の鏡像体であるこ
とも好ましい。エネルギー線硬化性化合物を接着剤とし
て使用し、溝が形成された部材(A)上に部材(B)を
接着する場合であって、部材(A)が使用するエネルギ
ー線を透過させない場合には、部材(B)は、使用する
エネルギー線を透過させるものである必要がある。
The shape of the member (B) is arbitrary, as long as it can be brought into close contact with the member (A) directly or via an adhesive or a pressure-sensitive adhesive. The shape and preferable shape of the member (B) are the same as those of the member (A). The member (B)
It is not necessary that a groove be formed on the surface, but a groove or a structure other than the groove may be formed. For example, member (B)
Is preferably a mirror image of the member (A) having a groove formed on the surface. When the member (B) is bonded on the member (A) having the groove formed thereon using the energy ray-curable compound as an adhesive, and the energy beam used by the member (A) is not transmitted. The member (B) needs to transmit the energy beam to be used.

【0023】本発明のデバイスの素材は任意であり、有
機高分子重合体(以下、単に「重合体」と称する)、ガ
ラス、石英などの結晶、セラミック、炭素、金属、シリ
コンなどの半導体等であってよいが、成形しやすさの面
から、重合体であることが好ましい。
The material of the device of the present invention is arbitrary, and may be an organic polymer (hereinafter simply referred to as "polymer"), a crystal such as glass or quartz, or a semiconductor such as ceramic, carbon, metal or silicon. Although it may be present, it is preferably a polymer from the viewpoint of ease of molding.

【0024】本発明のケミカルデバイスの素材、例え
ば、部材(A)や部材(B)の素材として用いられる重
合体は、熱可塑性重合体であっても、熱硬化性重合体で
あっても良いが、成形性の良い点で熱可塑性重合体が好
ましく、また、表面に溝を形成する場合に、溝の形成が
容易で、硬化速度が高い、表面親水化が容易などの点で
エネルギー線硬化性の架橋重合体が好ましい。本発明の
ケミカルデバイスの素材は、ポリマーブレンドやポリマ
ーアロイで構成されていても良いし、複合体や積層体で
あっても良い。
The polymer used as the material of the chemical device of the present invention, for example, the material of the member (A) or the member (B) may be a thermoplastic polymer or a thermosetting polymer. However, a thermoplastic polymer is preferable in terms of good moldability, and when grooves are formed on the surface, energy beam curing is easy in forming grooves, high curing speed, and easy surface hydrophilicity. Crosslinkable polymers are preferred. The material of the chemical device of the present invention may be composed of a polymer blend or a polymer alloy, or may be a composite or a laminate.

【0025】本発明のケミカルデバイスの素材として好
ましく使用できる重合体としては、例えば、ポリスチレ
ン、ハイインパクトポリスチレン、ポリ−α−メチルス
チレン、ポリスチレン/マレイン酸共重合体、ポリスチ
レン/アクリロニトリル共重合体の如きスチレン系重合
体;ポルスルホン、ポリエーテルスルホンの如きポリス
ルホン系重合体;ポリメチルメタクリレート、ポリアク
リロニトリルの如きポリ(メタ)アクリル系重合体;ポ
リマレイミド系重合体;ポリカーボネート系重合体;酢
酸セルロース、メチルセルロースの如きセルロース系重
合体;ポリウレタン系重合体;ポリ塩化ビニル、ポリ塩
化ビニリデンの如き塩素系重合体;ナイロン、芳香族ポ
リアミドの如きポリアミド系重合体;芳香族ポリイミ
ド、芳香族ポリエーテルイミドの如きポリイミド系重合
体;ポリエチレン、ポリプロピレンの如きポリオレフィ
ン系重合体;ポリフェニレンオキサイド、ポリフェニレ
ンスルフィドの如きポリエーテル系やポリチオエーテル
系重合体;ポリエチレンテレフタレート、ポリアリレー
トの如きポリエステル系重合体、ポリ四フッ化エチレ
ン、パーフロロアルコキシパーフロロエチレン−四フッ
化エチレン共重合体(PFA)などのフッ素系重合体な
どが挙げられる。また、エネルギー線硬化性の架橋重合
体としては、(メタ)アクリロイル基を有するエネルギ
ー線硬化性化合物の硬化物や、マレイミド基を有するエ
ネルギー線硬化性化合物の硬化物が好ましい。勿論、重
合体は、単独重合体の他、共重合体であっても良い。
Examples of the polymer which can be preferably used as a material of the chemical device of the present invention include polystyrene, high-impact polystyrene, poly-α-methylstyrene, polystyrene / maleic acid copolymer, and polystyrene / acrylonitrile copolymer. Styrene polymers; polysulfone polymers such as porsulfone and polyethersulfone; poly (meth) acrylic polymers such as polymethyl methacrylate and polyacrylonitrile; polymaleimide polymers; polycarbonate polymers; Cellulose polymers such as polyurethane polymers; Chlorine polymers such as polyvinyl chloride and polyvinylidene chloride; Polyamide polymers such as nylon and aromatic polyamide; Aromatic polyimides and aromatic polyethers Polyimide polymers such as polyethylene and polypropylene; Polyether polymers and polythioether polymers such as polyphenylene oxide and polyphenylene sulfide; Polyester polymers such as polyethylene terephthalate and polyarylate; And fluorine-based polymers such as perfluoroalkoxyperfluoroethylene-tetrafluoroethylene copolymer (PFA). Further, as the energy ray-curable crosslinked polymer, a cured product of an energy ray-curable compound having a (meth) acryloyl group or a cured product of an energy ray-curable compound having a maleimide group is preferable. Of course, the polymer may be a homopolymer or a copolymer.

【0026】これらの中で、耐溶剤性に優れ、使用可能
な溶剤の範囲が広い上、接着性にも優れる重合体とし
て、ポリカーボネート、ポリ塩化ビニル、ナイロン、芳
香族ポリアミド、ポリイミド、ポリエーテルイミド、ポ
リエチレンテレフタレート、ポリアリレートが好まし
く、中でも、成形性や価格などから、ポリカーボネー
ト、ポリ塩化ビニル、ナイロン、ポリアリレートが特に
好ましい。また、ポリ(メタ)アクリル系架橋重合体、
ポリマレイミド橋架橋重合体などのエネルギー線硬化性
の架橋重合体もまた好ましい。
Among these, polycarbonates, polyvinyl chloride, nylon, aromatic polyamides, polyimides, polyetherimides which are excellent in solvent resistance, have a wide range of usable solvents and are excellent in adhesiveness. , Polyethylene terephthalate and polyarylate are preferable, and among them, polycarbonate, polyvinyl chloride, nylon and polyarylate are particularly preferable from the viewpoint of moldability and price. Also, a poly (meth) acrylic cross-linked polymer,
Energy beam curable crosslinked polymers such as polymaleimide bridge crosslinked polymers are also preferred.

【0027】本発明のデバイスが部材(A)と部材
(B)を主要な部材として構成されている場合には、こ
れらの素材として、上記本発明のケミカルデバイスに使
用できる素材として示したものが使用できる。部材
(B)の素材は部材(A)と同じであっても良いし、異
なっていても良い。
In the case where the device of the present invention comprises the member (A) and the member (B) as main members, those materials which can be used in the above-described chemical device of the present invention can be used. Can be used. The material of the member (B) may be the same as or different from that of the member (A).

【0028】本発明のデバイスの流路は、断面積が1×
10-12m2 以上であり、好ましくは1×10-10m2 以上
であり、また1×10-6m2以下であり、好ましくは1×
10 -7m2以下である毛細管状の流路である。この流路
に、互いに混和しない複数の液体を流すことによって、
例えば、流通中に液体間で物質交換を行わせることがで
きる。流路がこの寸法より小さい場合、製造や使用が困
難となり、流路がこの寸法より大きい場合、本発明の効
果が小さくなる傾向にあるので好ましくない。流路の断
面形状は任意であり、例えば、矩形(角が丸められた矩
形を含む。以下同じ)、台形、円、楕円、スリット状な
どであり得る。流路断面の最大径/それに直角な方向の
径の比は、用途、目的に応じて任意に設定できるが、一
般には0.1〜10が好ましく、0.25〜4がさらに
好ましく、0.3〜3が最も好ましい。これらの形状、
寸法は流路全体にわたって一定である必要はない。
The channel of the device of the present invention has a cross section of 1 ×.
10-12mTwo Or more, preferably 1 × 10-TenmTwo that's all
And 1 × 10-6mTwoOr less, preferably 1 ×
10 -7mTwoThe following is a capillary channel. This channel
By flowing a plurality of liquids that are immiscible with each other,
For example, material exchange between liquids during distribution is possible.
Wear. If the flow path is smaller than this size, manufacturing and use are difficult.
If the flow path is larger than this size, the effect of the present invention
This is not preferable because the fruit tends to be small. Disconnection of flow path
The surface shape is arbitrary, for example, a rectangle (rectangular with rounded corners)
Including shape. The same applies below), trapezoid, circle, ellipse, slit
Which can be. Maximum diameter of the flow path cross section /
The diameter ratio can be set arbitrarily according to the application and purpose.
Generally, 0.1 to 10 is preferable, and 0.25 to 4 is more preferable.
Preferably, 0.3 to 3 is most preferable. These shapes,
The dimensions need not be constant throughout the flow path.

【0029】流路が部材(A)と部材(B)の間に形成
されている場合、流路は、例えば、(イ)部材(A)と
部材(B)の間の、流路以外の部分に固体状物質が充填
されて形成されていても良いし、また、例えば、(ロ)
表面に溝を有する部材(A)の溝を有する面に、他の部
材(B)が密着されて形成されていても良い。上記
(イ)における流路は、部材(B)を上にした時の底面
が部材(A)、側面が充填された固体状物質、上面が部
材(B)で構成されており、上記(ロ)における流路
は、底面と側面が部材(A)、上面が部材(B)又は部
材(B)に塗布された接着剤もしくは粘着剤で構成され
ている。
When the flow path is formed between the member (A) and the member (B), the flow path may be, for example, (a) other than the flow path between the member (A) and the member (B). The portion may be formed by filling a solid substance, or for example, (b)
Another member (B) may be formed in close contact with the grooved surface of the member (A) having the groove on the surface. The flow path in (a) is composed of the member (A) on the bottom surface when the member (B) is turned up, a solid substance filled on the side surface, and the member (B) on the top surface. The channel in () has a bottom surface and side surfaces formed of the member (A), and a top surface formed of the member (B) or an adhesive or a pressure-sensitive adhesive applied to the member (B).

【0030】流路が部材(A)と部材(B)との間に形
成されている場合、流路の部材(A)と部材(B)の密
着面に水平な方向の寸法/垂直な方向の寸法比は、0.
3〜10が好ましく、0.5〜5がさらに好ましい。
When the flow path is formed between the member (A) and the member (B), the dimension in the horizontal direction / vertical direction on the contact surface between the member (A) and the member (B) in the flow path The dimensional ratio of.
3-10 are preferable, and 0.5-5 are more preferable.

【0031】流路の流線方向の形状、例えば、流路が部
材(A)と部材(B)の間に形成されている場合には、
部材(A)と部材(B)の密着面に垂直な方向から見た
形状は、用途目的に応じて直線、曲線、渦巻き、ジグザ
グ、その他任意の形状であってよい。
When the shape of the flow path in the streamline direction, for example, the flow path is formed between the member (A) and the member (B),
The shape viewed from the direction perpendicular to the contact surface between the member (A) and the member (B) may be a straight line, a curve, a spiral, a zigzag, or any other shape depending on the purpose of use.

【0032】流路が部材(A)と部材(B)の間の流路
以外の部分に固体状物質が充填されて形成されている構
造の場合、固体状物質の厚みは必ずしも均一である必要
はないが、均一であることが好ましい。
In the case where the flow path has a structure in which a portion other than the flow path between the member (A) and the member (B) is formed by filling the solid material, the thickness of the solid material is not necessarily uniform. Although it is not, it is preferable that it is uniform.

【0033】流路が部材(A)と部材(B)の間の流路
以外の部分に固体状物質が充填されて形成された構造を
形成する方法としては、例えば、(1) 部材(A)と部材
(B)の間にエネルギー線硬化性組成物を挟持し、部材
(A)及び/又は部材(B)の外部から、流路となる部
分を除いてエネルギー線を照射し、未硬化のエネルギー
線硬化性組成物を除去する方法、(2) 流路となるべき部
分を切り抜いた密着性のシート状部材を部材(A)と部
材(B)間に挟んで互いに密着する方法、(3)流路とな
るべき部分に保護物質、例えば、四フッ化エチレン製の
棒状物を置き、重合性物質や溶融樹脂を充填・固化した
後、保護物質を除去する方法、などが挙げられる。これ
らの方法は、工程数は少ないが、流路径が小さくなる
と、未硬化のエネルギー線硬化性組成物や保護物質の除
去が困難となるため、比較的寸法の大きな流路を形成す
る方法として好適である。
As a method of forming a structure in which the flow path is formed by filling a portion other than the flow path between the member (A) and the member (B) with a solid substance, for example, (1) the member (A) ) And the member (B) are sandwiched with an energy ray-curable composition, and energy rays are irradiated from the outside of the member (A) and / or the member (B) except for a portion serving as a flow path, and the material is uncured. (2) a method of removing an energy-ray-curable composition, (2) a method of sandwiching an adhesive sheet-like member cut out from a portion to be a flow path between the member (A) and the member (B), and 3) A method in which a protective substance, for example, a rod made of ethylene tetrafluoride is placed in a portion to be a flow path, and after a polymerizable substance or a molten resin is filled and solidified, the protective substance is removed. These methods have a small number of steps, but when the flow path diameter is small, it is difficult to remove the uncured energy ray-curable composition and the protective substance, and thus it is suitable as a method for forming a flow path having relatively large dimensions. It is.

【0034】流路が、表面に溝を有する部材(A)の溝
を有する面に他の部材(B)を密着させて形成される場
合、部材(A)に設けられた溝はその周辺部より低い、
いわゆる溝として形成されていても良いし、部材(A)
表面に立つ壁の間として形成されていても良い。部材
(A)の表面に溝を設ける方法は任意であり、例えば、
射出成型、溶剤キャスト法、溶融レプリカ法、切削、エ
ッチング、フォトリソグラフィー(エネルギー線リソグ
ラフィーを含む)、エッチング法、蒸着法、気相重合
法、溝となるべき部分を切り抜いたシート状部材と板状
部材との密着などの方法を利用できる。部材(A)は複
数の素材で構成されていてもよく、例えば、溝の底と側
面が異なる素材で形成されていても良い。部材(A)に
は、溝以外の構造部分、例えば、貯液槽、反応槽、分析
機構などとなる構造を設けることができる。
When the flow path is formed by bringing another member (B) into close contact with the grooved surface of the member (A) having a groove on the surface, the groove provided on the member (A) has a peripheral portion. Lower,
It may be formed as a so-called groove, or the member (A)
It may be formed between walls standing on the surface. The method of providing a groove on the surface of the member (A) is arbitrary, for example,
Injection molding, solvent casting, melt replica method, cutting, etching, photolithography (including energy beam lithography), etching method, vapor deposition method, gas phase polymerization method, sheet-like members and plate-like parts with grooves to be cut out A method such as close contact with a member can be used. The member (A) may be made of a plurality of materials, and for example, may be made of a material whose bottom and side surfaces are different from each other. The member (A) may be provided with a structural portion other than the groove, for example, a structure serving as a liquid storage tank, a reaction tank, an analysis mechanism, or the like.

【0035】部材(A)が表面に溝を有するものである
場合、部材(A)と部材(B)の密着方法は、部材
(A)表面の溝が流路として形成される方法であれば任
意であり、溶剤型接着剤の使用、無溶剤型接着剤の使
用、溶融型接着剤の使用、部材(A)及び/又は部材
(B)表面への溶剤塗布による接着、熱や超音波による
融着、などの方法を使用しうるが、無溶剤型の接着剤の
使用が好ましく、無溶剤型接着剤としてエネルギー線硬
化性樹脂を用い、エネルギー線照射により硬化させて接
着する方法が、微小なデバイスの精密な接着が可能であ
り、生産性も高いことから、好ましい。また、溝に保護
材を充填した状態で接着し、その後保護材を除去する方
法を採ることも可能である。部材(B)は接着剤の硬化
物そのものであってもよい。
When the member (A) has a groove on the surface, the member (A) and the member (B) can be adhered to each other by a method in which the groove on the surface of the member (A) is formed as a flow path. Optional, use of solvent type adhesive, use of solventless type adhesive, use of melt type adhesive, adhesion by applying solvent to the surface of member (A) and / or member (B), heat or ultrasonic Although a method such as fusion can be used, it is preferable to use a non-solvent type adhesive, and a method of bonding by curing with an energy ray irradiation using an energy ray curable resin as the solventless type adhesive is a very small method. It is preferable because it enables precise bonding of various devices and has high productivity. Further, it is also possible to adopt a method in which the groove is filled with a protective material and then bonded, and then the protective material is removed. The member (B) may be a cured product of the adhesive itself.

【0036】部材(A)と部材(B)の非接着の接触方
法は、例えば、クランプ、ネジ、リベットなどにより固
定された状態であり得る。
The non-adhesive contact method between the member (A) and the member (B) may be, for example, a state in which the member (A) is fixed by a clamp, a screw, a rivet, or the like.

【0037】本発明のデバイスは、流路の内面が、水と
の接触角が25°以下、好ましくは15°以下、さらに
好ましくは10°以下、最も好ましくは5°以下である
低接触角部分と、水との接触角が低接触各部分の水との
接触角より10°以上高い高接触角部分を有し、かつ、
低接触角部分と高接触角部分がそれぞれ流路の上流端か
ら下流端にわたって途切れずに連続していることを特徴
とする。高接触各部分の水との接触角は、好ましくは3
5°以上であり、さらに好ましくは45°以上、さらに
好ましくは70°以上、最も好ましくは90°以上であ
る。
In the device of the present invention, the inner surface of the flow path has a low contact angle portion where the contact angle with water is 25 ° or less, preferably 15 ° or less, more preferably 10 ° or less, and most preferably 5 ° or less. And having a high contact angle portion where the contact angle with water is at least 10 ° higher than the contact angle with water of each low contact portion, and
The low contact angle portion and the high contact angle portion are characterized by being continuous without interruption from the upstream end to the downstream end of the flow path. The contact angle of each part with high contact with water is preferably 3
It is 5 ° or more, more preferably 45 ° or more, further preferably 70 ° or more, and most preferably 90 ° or more.

【0038】低接触角部分の水との接触角がこの値より
高いと、特に、流路断面積が小さい場合や、流路断面を
低接触角部分と高接触角部分に分割したとき該分割され
たそれぞれの流路の深さが幅に比べて浅い場合や、液体
の流速が高い場合や、親水性液体の流量が疎水性液体の
流量より少ない場合や、相互に混和しない液体の粘度差
が大きい場合、等において、相互に混和しない液体が層
状で流れることができず、塊状となって移動し、抽出効
率が下がると共に流出路での分液が困難となりがちであ
る。高接触角部分の水との接触角がこの値より低い場合
も同様である。また、低接触角部分の水との接触角が低
いほど、高接触角部分の水との接触角が比較的低くても
上記の不都合が生じにくい。
If the contact angle of the low contact angle portion with water is higher than this value, especially when the cross-sectional area of the flow passage is small or when the cross-section of the flow passage is divided into the low contact angle portion and the high contact angle portion, When the depth of each flow path is shallower than the width, when the flow rate of the liquid is high, when the flow rate of the hydrophilic liquid is smaller than the flow rate of the hydrophobic liquid, or when the viscosity difference of the immiscible liquids Is large, liquids that are immiscible with each other cannot flow in a layered manner, move in a lump, and the extraction efficiency is reduced, and liquid separation in the outflow channel tends to be difficult. The same applies when the contact angle of the high contact angle portion with water is lower than this value. Further, the lower the contact angle of the low contact angle portion with water, the less the above-mentioned inconvenience occurs even if the contact angle of the high contact angle portion with water is relatively low.

【0039】なお、本発明で言う「水との接触角」と
は、液滴法による静止角を言う。測定に先立って、試料
を温度24±1℃、湿度65±5%の雰囲気に1時間以
上静置し、温度24±1℃、湿度65±5%で測定す
る。測定は、置液後3分の安定化時間の後に行なう。試
料の乾燥条件などによって接触角が変化する場合には、
最も低い値を採る。
The term "contact angle with water" used in the present invention refers to a static angle determined by a droplet method. Prior to the measurement, the sample is allowed to stand in an atmosphere at a temperature of 24 ± 1 ° C. and a humidity of 65 ± 5% for 1 hour or more, and the measurement is performed at a temperature of 24 ± 1 ° C. and a humidity of 65 ± 5%. The measurement is performed after a stabilization time of 3 minutes after the placement. If the contact angle changes depending on the sample drying conditions,
Take the lowest value.

【0040】低接触角部分に接触して流す親水性液体と
高接触各部分に接して流す疎水性液体の体積流量比が
1:1に近い場合には、低接触角部分が流路断面の周囲
長に占める割合は、1/5以上であることが好ましく、
1/2以上であることがさらに好ましく、4/5以下で
あることが好ましい。この値は、流路全体にわたって一
定である必要はない。高接触角部分が流路断面の周囲長
に占める割合は、1/5以上であることが好ましく、1
/3以上であることがさらに好ましく、1/2以下であ
ることが好ましい。この値は、流路全体にわたって一定
である必要はない。高接触角部分は低接触角部分以外の
部分として形成することができるが、流路内面には高接
触角部分、低接触角部分以外の第3の部分を有していて
も良い。低接触角部分に接触して流す親水性液体と高接
触各部分に接して流す疎水性液体の体積流量比が1:1
からのずれが大きい場合には、体積流量比に応じて低接
触各部分と高接触各部分の占める割合を変えることが好
ましい。
When the volumetric flow ratio of the hydrophilic liquid flowing in contact with the low contact angle portion and the hydrophobic liquid flowing in contact with each of the high contact portions is close to 1: 1, the low contact angle portion corresponds to the cross section of the flow path. Preferably, the ratio to the perimeter is 1/5 or more,
It is more preferably 1/2 or more, and more preferably 4/5 or less. This value need not be constant throughout the flow path. The ratio of the high contact angle portion to the peripheral length of the cross section of the flow passage is preferably 1/5 or more,
It is more preferably at least / 3, more preferably at most 1 /. This value need not be constant throughout the flow path. The high contact angle portion can be formed as a portion other than the low contact angle portion, but the flow path inner surface may have a third portion other than the high contact angle portion and the low contact angle portion. The volume flow ratio of the hydrophilic liquid flowing in contact with the low contact angle portion and the hydrophobic liquid flowing in contact with each of the high contact portions is 1: 1.
In the case where the deviation is large, it is preferable to change the proportion of the low contact portions and the high contact portions in accordance with the volume flow ratio.

【0041】流路断面形状の異方性が大きい場合、即
ち、長径と短径の比が大きい場合、高接触角部分と低接
触角部分は、流路断面を低接触角部分と高接触角部分に
分割したとき、該分割されたそれぞれの流路の深さ/幅
の比が0.3〜3の範囲、さらに好ましくは、0.5〜
2の範囲に成るよう設定することが好ましい。即ち、親
水性液体と疎水性液体は、それぞれ断面が等方性に近い
形状で流れることが好ましい。分割されたそれぞれの流
路の深さ/幅の比が小さい場合には、2液が層状に流れ
ず塊状となって流れがちとなったり、低接触角部分と高
接触角部分からはずれて流れがちとなる。逆に、この値
よりも大きいときは、物質交換効率が低下しがちにある
ので好ましくない。
When the anisotropy of the cross section of the flow path is large, that is, when the ratio of the major axis to the minor axis is large, the high contact angle portion and the low contact angle portion correspond to the low contact angle portion and the high contact angle. When divided into parts, the depth / width ratio of each of the divided flow paths is in the range of 0.3 to 3, more preferably 0.5 to 3.
It is preferable to set the value in the range of 2. That is, it is preferable that the hydrophilic liquid and the hydrophobic liquid each flow in a shape that is nearly isotropic in cross section. When the ratio of the depth / width of each of the divided flow paths is small, the two liquids tend to flow as a lump instead of flowing in a layered form, or flow out of the low contact angle portion and the high contact angle portion. Tends to be. Conversely, a value larger than this value is not preferable because the material exchange efficiency tends to decrease.

【0042】流路が部材(A)と部材(B)の間に設け
られたものである場合には、低接触角部分、高接触角部
分のいずれか一方は、部材(A)側の面又は部材(B)
側の面であることが、製造が容易となるので好ましい。
例えば、流路が部材(A)と部材(B)の間の、流路以
外の部分に固体状物質が充填されて形成されている場合
には、低接触角部分は、部材(A)面、充填された固体
状物質面、部材(B)面なる群から選ばれた1以上の、
かつ全部でない面であって良い。充填された固体状物質
面は、向かい合う2つの面がそれぞれ異なった固定状物
質で構成されていても良い。また例えば、流路が表面に
溝を有する部材(A)の溝を有する面に他の部材(B)
が密着して形成されていている場合には、低接触角部分
は、底面と側面である部材(A)側、又は、部材(B)
もしくは部材(B)に塗布された接着剤面であってよ
い。
When the flow path is provided between the member (A) and the member (B), one of the low contact angle portion and the high contact angle portion is provided on the surface on the member (A) side. Or member (B)
The surface on the side is preferable because the production becomes easy.
For example, when the flow path is formed by filling a portion other than the flow path between the member (A) and the member (B) with a solid substance, the low contact angle portion is formed on the surface of the member (A). , One or more selected from the group consisting of a filled solid substance surface and a member (B) surface;
And not all surfaces may be used. The filled solid material surface may be configured such that two opposing surfaces are respectively made of different fixed material. Further, for example, another member (B) may be provided on the surface of the channel (A) having the groove on the surface of the channel.
Are formed in close contact with each other, the low contact angle portion is formed on the member (A) side, which is the bottom and side surfaces, or the member (B)
Alternatively, the surface may be an adhesive applied to the member (B).

【0043】流路内面の低接触角部分及び/又は高接触
角部分は、部材(A)、部材(B)、充填された固体状
物質などの、流路壁面を構成する素材としてしかるべき
接触角を示す素材を使用することにより形成されていて
も良いし、流路内面の表面処理によって形成されていて
も良い。表面処理は、流路を形成する素材に施した後、
流路を形成しても良いし、流路形成後に施しても良い。
The low contact angle portion and / or the high contact angle portion on the inner surface of the flow path is formed by a material such as the member (A), the member (B), or the filled solid substance, which is suitable for a material constituting the flow path wall surface. It may be formed by using a material exhibiting a corner, or may be formed by surface treatment of the inner surface of the flow channel. After applying the surface treatment to the material forming the flow path,
The flow path may be formed, or may be formed after the flow path is formed.

【0044】表面処理による流路内表面の親水化方法は
任意であり、例えば、プラズマ処理、プラズマ重合、コ
ロナ放電処理、表面の化学修飾、表面への親水性化合物
のグラフト重合、親水性ポリマーのコーティング等が挙
げられる。プラズマ処理やプラズマ重合は、酸素;アセ
トン、有機酸その他の分子中に酸素原子を有する化合
物;アミン等の分子中に窒素原子を有する化合物の存在
下での処理が好適である。また、常圧プラズマ処理も可
能である。親水性ポリマーのコーティングは、可溶性ポ
リマーの溶液を印刷などにより任意のパターンで基板上
に塗布する方法である。使用できる可溶性ポリマーとし
ては、例えば、ポリヒドロキシメチルメタクリレート、
ポリビニルアルコール、スルホン化セルロース、スルホ
ン化ポリスルホンなどがを挙げられる。
The method of hydrophilizing the inner surface of the flow channel by the surface treatment is optional. For example, plasma treatment, plasma polymerization, corona discharge treatment, chemical modification of the surface, graft polymerization of a hydrophilic compound on the surface, and hydrophilic polymer Coating and the like. The plasma treatment or the plasma polymerization is preferably performed in the presence of oxygen; a compound having an oxygen atom in a molecule such as acetone, an organic acid or the like; or a compound having a nitrogen atom in a molecule such as an amine. Also, normal pressure plasma processing is possible. The coating of a hydrophilic polymer is a method of applying a solution of a soluble polymer on a substrate in an arbitrary pattern by printing or the like. Examples of soluble polymers that can be used include, for example, polyhydroxymethyl methacrylate,
Examples thereof include polyvinyl alcohol, sulfonated cellulose, and sulfonated polysulfone.

【0045】コーティング法のように、親水性ポリマー
が基材に化学結合していない場合には、親水性ポリマー
が使用中に溶出する可能性があり、これを防止するため
に、親水性ポリマーとして架橋ポリマーを用いることが
好ましい。親水性の架橋ポリマーからなる層は、コーテ
ィング後に架橋させる方法、あるいは、親水性の架橋重
合性化合物のコーティングと架橋重合により容易に形成
することができる。親水性ポリマーのコーティングは、
親水化の程度が高いものが得られるので、好ましい。親
水性ポリマーのコーティングを、親水性の重合性化合物
のオンサイト重合で行う場合、親水性の重合性化合物と
して、炭素−炭素不飽和二重結合を有する重合性化合物
を用いることが、重合速度が高くなるので、好ましい。
In the case where the hydrophilic polymer is not chemically bonded to the substrate as in the coating method, the hydrophilic polymer may elute during use. It is preferable to use a crosslinked polymer. The layer made of a hydrophilic cross-linked polymer can be easily formed by a method of cross-linking after coating, or a coating of a hydrophilic cross-linkable polymerizable compound and cross-linking polymerization. The hydrophilic polymer coating is
This is preferable because a substance having a high degree of hydrophilicity can be obtained. When the coating of the hydrophilic polymer is performed by on-site polymerization of a hydrophilic polymerizable compound, the polymerization rate can be increased by using a polymerizable compound having a carbon-carbon unsaturated double bond as the hydrophilic polymerizable compound. It is preferable because it becomes higher.

【0046】表面の化学修飾の方法としては、例えば、
ハロゲン化とその置換反応やエポキシ基の導入とそれへ
の付加反応などによる水酸基、カルボキシル基、アミノ
基、アミド基等の導入;濃硫酸、発煙硫酸、過硫酸塩と
の接触によるスルホン化;濃硝酸、発煙硝酸などとの接
触によるニトロ化、及びその置換や還元による水酸基や
アミノ基の導入;アジド等を用いた光化学反応、などが
挙げられる。
As a method of chemical modification of the surface, for example,
Introduction of hydroxyl group, carboxyl group, amino group, amide group, etc. by halogenation and its substitution reaction, introduction of epoxy group and addition reaction thereto; sulfonation by contact with concentrated sulfuric acid, fuming sulfuric acid, persulfate; Nitration by contact with nitric acid or fuming nitric acid, and introduction of a hydroxyl group or amino group by substitution or reduction thereof; photochemical reaction using azide or the like.

【0047】親水性の重合性化合物のグラフト重合の方
法としては、例えば、基材のコロナ処理、プラズマ処
理、放射線処理などの後、親水性の付加重合性化合物と
接触させる方法や、光重合を利用した方法、などが挙げ
られる。
Examples of the method of graft polymerization of a hydrophilic polymerizable compound include, for example, a method of subjecting a base material to a corona treatment, a plasma treatment, a radiation treatment, etc., and then contacting with a hydrophilic addition polymerizable compound, or a method of photopolymerization. Methods used, and the like.

【0048】これらの中でも、親水性の重合性化合物の
グラフト重合は、親水性ポリマーからなる層が、基材を
構成する疎水性重合体に親水性重合体の層が共有結合し
ているため、親水性層が剥離したり、親水性層の構成成
分が溶出したりする危険性がないので、好ましい。ま
た、親水性の重合性化合物としては、炭素−炭素不飽和
二重結合を有する重合性化合物を用いることが、重合速
度が高くなるので、好ましい。
Among these, the graft polymerization of a hydrophilic polymerizable compound is performed because the layer composed of the hydrophilic polymer is covalently bonded to the hydrophobic polymer constituting the base material. This is preferable because there is no danger of the hydrophilic layer peeling off or elution of the constituent components of the hydrophilic layer. Further, as the hydrophilic polymerizable compound, it is preferable to use a polymerizable compound having a carbon-carbon unsaturated double bond because the polymerization rate is increased.

【0049】表面処理による疎水化方法は任意であり、
例えば、フッ素処理、プラズマ処理、プラズマ重合、表
面の化学修飾、表面への疎水性化合物のグラフト重合、
疎水性ポリマーのコーティング、などが挙げられる。
The method of hydrophobization by surface treatment is optional.
For example, fluorine treatment, plasma treatment, plasma polymerization, chemical modification of the surface, graft polymerization of a hydrophobic compound on the surface,
Coating of a hydrophobic polymer.

【0050】プラズマ処理やプラズマ重合は、例えば、
四フッ化炭素などのフッ化物、テトラクロロエタンなど
の塩化物、メタンやベンゼンなどの炭化水素の存在下
で、プラズマ処理やプラズマ重合を行なうことにより、
疎水化することができる。
The plasma treatment and the plasma polymerization are, for example,
By performing plasma treatment or plasma polymerization in the presence of fluorides such as carbon tetrafluoride, chlorides such as tetrachloroethane, and hydrocarbons such as methane and benzene,
Can be hydrophobized.

【0051】表面の化学修飾としては、例えば、フッ素
化、塩素化、ブロム化、などのハロゲン化、及びこれら
の置換反応によるアルキル化;アジド化合物などを用い
た光化学反応、などが挙げられる。
Examples of the chemical modification of the surface include halogenation such as fluorination, chlorination, bromination, and the like, and alkylation by a substitution reaction thereof; photochemical reaction using an azide compound and the like.

【0052】疎水性ポリマーのコーティングは、溶剤可
溶性ポリマーの溶液を塗布する方法である。
The coating of a hydrophobic polymer is a method of applying a solution of a solvent-soluble polymer.

【0053】表面への疎水性化合物のグラフト重合とし
ては、例えば、部材をコロナ処理、プラズマ処理、放射
線処理などの表面処理を施した後、疎水性の付加重合性
化合物と接触させる方法;光重合を利用した表面グラフ
ト法、などが挙げられる。
The graft polymerization of a hydrophobic compound onto the surface may be performed, for example, by subjecting a member to a surface treatment such as corona treatment, plasma treatment, or radiation treatment, and then contacting the member with a hydrophobic addition-polymerizable compound; And a surface grafting method utilizing the same.

【0054】これらの親水化あるいは疎水化のための表
面処理は、目的部位のみを処理することもできるし、目
的部位を保護した状態で全体を処理し、その後、保護を
はずすこともできる。処理方法により好適な方法を採用
できる。
The surface treatment for hydrophilization or hydrophobization may be performed only on the target portion, or may be performed on the whole while the target portion is protected, and then the protection may be removed. A suitable method can be adopted depending on the processing method.

【0055】本発明のデバイスは、流路の上流端におい
て、流入路が、流路の低接触角部分と高接触角部分にそ
れぞれ接続して形成されていることが好ましい。即ち、
一方の流入路から流入した液体は流路の低接触角部分に
接触して流れ、他方の流入路から流入した液体は流路の
高接触角部分に接触して流れることができるように構成
されていることが好ましい。低接触角部分と高接触角部
分にそれぞれ接続して形成された流入路は、それぞれ複
数であっても良い。流入路の寸法、形状、内面の水との
接触角は任意である。例えば、流路が部材(A)と部材
(B)の間に設けられたものである場合には、流入路は
流路と同様に部材(A)と部材(B)との間に設けられ
ても良いし、部材(A)又は部材(B)に穿たれた孔と
して形成されてもよい。
In the device of the present invention, it is preferable that the inflow path is formed at the upstream end of the flow path so as to be connected to the low contact angle part and the high contact angle part of the flow path, respectively. That is,
The liquid flowing from one of the inflow paths is configured to flow in contact with the low contact angle portion of the flow path, and the liquid flowing from the other inflow path is configured to flow in contact with the high contact angle part of the flow path. Is preferred. The plurality of inflow channels formed by connecting to the low contact angle portion and the high contact angle portion, respectively, may be provided. The size, shape, and contact angle of the inner surface with water are arbitrary. For example, when the flow path is provided between the member (A) and the member (B), the inflow path is provided between the member (A) and the member (B) similarly to the flow path. It may be formed as a hole formed in the member (A) or the member (B).

【0056】本発明のデバイスは流路の下流端におい
て、流出路が、流路の低接触角部分と高接触角部分にそ
れぞれ接続して形成されていることが好ましい。即ち、
流路の低接触角部分に接触して流れた液体と、流路の高
接触角部分に接触して流れた液体はそれぞれ異なる流出
路から流出することができるように構成されていること
が好ましい。低接触角部分と高接触角部分にそれぞれ接
続して形成された流出路は、それぞれ複数であっても良
い。
In the device of the present invention, it is preferable that the outflow path is formed at the downstream end of the flow path so as to be connected to the low contact angle portion and the high contact angle portion of the flow path, respectively. That is,
It is preferable that the liquid flowing in contact with the low contact angle portion of the flow channel and the liquid flowing in contact with the high contact angle portion of the flow channel can flow out of different outflow paths. . There may be a plurality of outflow channels formed by connecting to the low contact angle portion and the high contact angle portion, respectively.

【0057】流出路内面の水との接触角は任意である
が、流路の高接触角部分に接続された流出路の接続部に
おける内面の水との接触角δH が、流路の低接触角部分
に接続された流出路の接続部における内面の水との接触
角δL より10度以上高いことが好ましい。水との接触
角の差がこれ未満であると、相互に混和しない液体の分
液が不安定になりがちであるので、好ましくない。ま
た、δL が低いほど、δHが比較的低くても上記の不都
合が生じにくく、δH が高いほど、δL が比較的高くて
も上記の不都合が生じにくい。
The contact angle of the inner surface of the outflow passage with water is arbitrary, but the contact angle δ H of the inner surface of the flow passage at the connection portion of the outflow passage connected to the high contact angle portion of the flow passage is low. It is preferred that the contact angle δ L with water on the inner surface at the connection portion of the outflow passage connected to the contact angle portion be at least 10 degrees. If the difference in the contact angle with water is less than this, it is not preferable because the separation of immiscible liquids tends to be unstable. Further, as the [delta] L is low, [delta] H is above disadvantages hardly occurs even relatively low, [delta] as H is high, [delta] L is relatively high above disadvantages even hardly occurs.

【0058】δL とδH との関係は、 (イ)δL ≦25°であり、かつ、35°≦δH である
ことが好ましく、δL ≦10°であり、かつ、35°≦
δH であることがさらに好ましく、δL とδH の差が大
きいほど好ましい。 (ロ)δL ≦90°であり、かつ、90°<δH である
ことが好ましく、δL とδH の差が大きいほど好まし
い。 (ハ)25°<δL ≦90°であり、かつ、(δL +4
0°)≦δH ≦90°であることが好ましく、δL とδ
H の差が大きいほど好ましい。
The relationship between δ L and δ H is as follows: (a) δ L ≤ 25 ° and preferably 35 ° ≤ δ H , δ L ≤ 10 °, and 35 ° ≤
more preferably from [delta] H, as the difference between the [delta] L and [delta] H greater preferred. (Ii) a [delta] L ≦ 90 °, and preferably larger the difference of preferably from 90 ° <δ H, δ L and [delta] H. (C) 25 ° <δ L ≦ 90 ° and (δ L +4
0 °) ≦ δ H ≦ 90 °, and δ L and δ
The larger the difference in H, the better.

【0059】また、上記の(イ)と(ロ)を同時に満足
すること、即ち、 (ニ)δL ≦25°であり、かつ、90°<δH である
ことがより好ましく、δ L ≦10°であり、かつ、90
°<δH であることが最も好ましい。
Further, the above (a) and (b) are simultaneously satisfied.
That is, (d) δL ≦ 25 ° and 90 ° <δH Is
More preferably, δ L ≦ 10 ° and 90
° <δH Is most preferred.

【0060】δL とδH がこれらの関係を満足すること
で、流路内の親水性液体と疎水性液体が独立にそれぞれ
異なる流出路に入ることが容易になる。流路の高接触角
部分に接続された流出路の接続部における内面の、使用
する疎水性液体との接触角は、90°以下であることが
好ましい。
When δ L and δ H satisfy these relationships, it becomes easy for the hydrophilic liquid and the hydrophobic liquid in the flow path to independently enter different outflow paths. The contact angle between the inner surface of the connection part of the outflow passage connected to the high contact angle part of the flow path and the hydrophobic liquid to be used is preferably 90 ° or less.

【0061】このとき、流出路内面の水との接触角は、
液体が流路から流入路に入る接続部における値が問題と
なる。流出路内面が複数の水接触角部分で構成されてい
る場合には、流出路内面の水との接触角δL 、δH はそ
れら占める面積の重み付き平均とする。しかしながら、
流出路内面は、δL 、δH が上記範囲の値を示す部分で
のみ構成されていることが好ましい。流出路の水との接
触角の調節方法は、本発明における流路の低接触各部分
や高接触各部分の水との接触角の調節方法と同様の方法
が利用できる。
At this time, the contact angle between the inner surface of the outflow passage and water is
The value at the connection where the liquid enters the inflow channel from the flow channel is of concern. When the outflow channel inner surface is composed of a plurality of water contact angle portions, the contact angles δ L and δ H of the outflow channel inner surface with water are weighted averages of the areas occupied. However,
Outlet passage inner surface is preferably [delta] L, [delta] H is formed only in the portion indicating the value of the range. The method of adjusting the contact angle with water of the outflow path may be the same as the method of adjusting the contact angle with water of each low contact portion and each high contact portion of the flow channel in the present invention.

【0062】流出路の形状も任意であるが、流路の高接
触角部分に接続された流出路が、流路に接続されたチュ
ーブであることが、製造が容易である上、チューブの長
さを調節して背圧を調製することにより、液体の分離を
完全にし易く好ましい。流路が部材(A)と部材(B)
の間に設けられたものである場合には、流出路は流路と
同様に部材(A)と部材(B)との間に設けられても良
いし、部材(A)又は部材(B)に穿たれた孔として形
成されてもよい。低接触角部分に接続される流出路が部
材(A)と部材(B)との間に設けられており、高接触
角部分に接続される流出路が部材(A)又は部材(B)
に穿たれた孔もしくは部材(A)又は部材(B)に挿入
されたチューブであることが好ましい。高接触角部分に
接続される流出路であるチューブはフッ素系重合体で形
成されたものが好ましい。
Although the shape of the outflow channel is not limited, the outflow channel connected to the high contact angle portion of the flow path may be a tube connected to the flow path. Adjusting the back pressure by adjusting the pressure is preferable because it is easy to completely separate the liquid. Channel (A) and member (B)
In the case where the outlet channel is provided between the member (A) and the member (B), the outlet channel may be provided between the member (A) and the member (B) as in the case of the channel. It may be formed as a hole formed in a hole. The outflow path connected to the low contact angle portion is provided between the member (A) and the member (B), and the outflow path connected to the high contact angle portion is the member (A) or the member (B).
It is preferable that the tube is a hole inserted into the member or a tube inserted into the member (A) or the member (B). The tube, which is the outflow channel connected to the high contact angle portion, is preferably formed of a fluoropolymer.

【0063】本発明の微小ケミカルデバイスには、流
路、流入路、流出路の他に、これら以外の構造、例え
ば、貯液槽、反応槽、膜分離機構、流量調節機構、デバ
イス外へ接続口、その他の流入路、分岐したその他の流
出路などが形成されていても良い。
In the microchemical device of the present invention, in addition to the flow path, the inflow path, and the outflow path, other structures such as a storage tank, a reaction tank, a membrane separation mechanism, a flow control mechanism, and a connection outside the device are provided. A mouth, another inflow path, another branched outflow path, and the like may be formed.

【0064】本発明の微小ケミカルデバイスの使用に当
たっては、低接触角部分に接続された流入路には、親水
性液体、通常は水溶液を導入し、高接触角部分に接続さ
れた流入路には、該親水性液体と混和しない疎水性液体
を導入する。親水性液体は低接触角部分を伝って、また
疎水性液体は高接触角部分を伝って、流路中を層状にな
って流れ、この間に液体間で物質移動が行われる。流速
を小さくするほど接触時間が長くなり物質交換効率が上
昇するが、過度に長時間接触させても飽和するため無意
味である。流路径が小さいほど物質交換速度は速く、飽
和に達する時間が短い。流量比は任意であり、一方の液
体をデバイス内に流入させた後、該液体の流速をゼロの
状態にして使用することも可能であるが、体積流量が
1:1に近いことが好ましい。
In using the microchemical device of the present invention, a hydrophilic liquid, usually an aqueous solution, is introduced into the inflow passage connected to the low contact angle portion, and the inflow passage connected to the high contact angle portion is introduced into the inflow passage connected to the low contact angle portion. Introduce a hydrophobic liquid that is immiscible with the hydrophilic liquid. The hydrophilic liquid travels through the low contact angle portion and the hydrophobic liquid travels through the high contact angle portion in a layered manner in the channel, during which mass transfer occurs between the liquids. The lower the flow rate, the longer the contact time and the higher the mass exchange efficiency. However, even if the contact is performed for an excessively long time, it is meaningless because the contact is saturated. The smaller the channel diameter, the faster the mass exchange rate and the shorter the time to reach saturation. The flow rate ratio is arbitrary, and it is possible to use one of the liquids after flowing into the device and then set the flow velocity of the liquid to zero, but it is preferable that the volume flow rate is close to 1: 1.

【0065】親水性液体と疎水性液体の組み合わせ、流
量比、流路の寸法や形状によっては、2液が完全な2層
とならず、2液がそれぞれ塊状になって流路中を移動す
る場合がある。このような状態が生じると、物質交換速
度が低下すると共に、流出口での液体の分離が不完全と
なるため好ましくない。このような状態は、流路内面の
親水性部分/疎水性部分の接触角のバランスを調節する
こと、多くの場合、親水性部分の水との接触角を小さく
することで防ぐことができる。
Depending on the combination of the hydrophilic liquid and the hydrophobic liquid, the flow rate ratio, and the size and shape of the flow path, the two liquids do not form a complete two-layer structure, and the two liquids move in a lump in the flow path. There are cases. Such a state is not preferable because the mass exchange rate is reduced and the liquid separation at the outlet is incomplete. Such a state can be prevented by adjusting the contact angle balance between the hydrophilic portion / hydrophobic portion on the inner surface of the flow channel and, in many cases, reducing the contact angle of the hydrophilic portion with water.

【0066】流路を流れた液体は、流路の下流端におい
て、親水性液体は低接触角部分に接続された流出路に入
り、疎水性液体は高接触角部分に接続された流出路に入
り、2液は分離されて流出する。2液を完全に分離する
ためには、流出路の接続口付近の親水性/疎水性のバラ
ンスを調節すること、及び流量比や粘度に応じて流出路
径や流出路長を調節することにより目的を達することが
できる。流出路の接続口付近の親水性/疎水性の差が大
きいほど、流量比や粘度などに関わらず、2液を完全に
分離することが容易になる。
At the downstream end of the flow path, the liquid that has flowed through the flow path has the hydrophilic liquid flowing into the flow path connected to the low contact angle portion, and the hydrophobic liquid has flowed into the flow path connected to the high contact angle section. The two liquids are separated and flow out. In order to completely separate the two liquids, adjust the balance of hydrophilicity / hydrophobicity near the connection port of the outflow channel, and adjust the outflow channel diameter and outflow channel length according to the flow rate ratio and viscosity. Can be reached. The greater the difference in hydrophilicity / hydrophobicity near the connection port of the outflow channel, the easier it is to completely separate the two liquids regardless of the flow rate ratio, viscosity, and the like.

【0067】それにもかかわらず、流通開始時に、互い
に混合しない液体が一方の流出路のみからあるいは各流
出路から分離されずに流出する場合がある。このような
ときには、いずれかの流出路の出口を一時的に絞って正
常な液体流通状態にすると、その後は安定してその状態
を保つことができる。
Nevertheless, at the start of distribution, liquids that do not mix with each other may flow out of only one of the outflow channels or without being separated from each of the outflow channels. In such a case, if the outlet of any one of the outflow paths is temporarily squeezed to bring the liquid flow into a normal state, the state can be stably maintained thereafter.

【0068】本発明の微小ケミカルデバイスに導入する
液体は、互いに混和しない3液であっても良い。また、
異なる3つの水との接触角を示す道筋を流路中に設ける
ことにより、互いに混和しない3液を流路中を層状で流
した後、3液に又は1液と2液に分離することができ
る。
The liquids to be introduced into the microchemical device of the present invention may be three liquids that are immiscible with each other. Also,
By providing a path showing the contact angles with three different waters in the flow path, it is possible to flow three immiscible liquids in layers in the flow path and then separate them into three liquids or one and two liquids. it can.

【0069】[0069]

【実施例】以下、実施例を用いて、本発明を更に詳細に
説明するが、本発明はこれらの実施例の範囲に限定され
るものではない。なお、以下の実施例において、「部」
は「重量部」を表わす。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the scope of these examples. In the following examples, "part"
Represents "parts by weight".

【0070】<エネルギー線硬化性組成物の調製>以下
に、実施例で使用するエネルギー線硬化性組成物の調製
方法を示した。
<Preparation of Energy Radiation-Curable Composition> The preparation method of the energy radiation-curable composition used in the examples is shown below.

【0071】[エネルギー線硬化性組成物[e1]の調
製]1分子中に平均3個のアクリル基を有するウレタン
アクリレートオリゴマー(大日本インキ化学工業社製の
「ユニディックV−4263」)40部、ノニルフェノ
キシポリエチレングリコール(n=8)アクリレート
(東亜合成化学社製の「M−114」)60部、紫外線
重合開始剤1−ヒドロキシシクロヘキシルフェニルケト
ン(チバガイギー社製の「イルガキュアー184」)5
部及び重合遅延剤2,4−ジフェニル−4−メチル−1
−ペンテン(関東化学社製)0.1部を混合してエネル
ギー線硬化性組成物[e1]を調製した。この組成物
[e1]の硬化物の水との接触角を表1に示した。
[Preparation of energy ray-curable composition [e1]] 40 parts of a urethane acrylate oligomer having an average of three acrylic groups per molecule (“Unidick V-4263” manufactured by Dainippon Ink and Chemicals, Inc.) , 60 parts of nonylphenoxy polyethylene glycol (n = 8) acrylate (“M-114” manufactured by Toa Gosei Chemical Co., Ltd.), 1-hydroxycyclohexylphenyl ketone (“Irgacure 184” manufactured by Ciba Geigy) 5
Part and polymerization retarder 2,4-diphenyl-4-methyl-1
-0.1 parts of pentene (manufactured by Kanto Chemical Co., Ltd.) was mixed to prepare an energy ray-curable composition [e1]. Table 1 shows the contact angle of the cured product of this composition [e1] with water.

【0072】[エネルギー線硬化性組成物[e2]の調
製]ウレタンアクリレートオリゴマー(大日本インキ化
学工業社製の「ユニディックV−4263」)40部、
ジシクロペンタニルジアクリレート(日本化薬社製の
「R−684」)60部、紫外線重合開始剤1−ヒドロ
キシシクロヘキシルフェニルケトン(チバガイギー社製
の「イルガキュアー184」)5部及び重合遅延剤2,
4−ジフェニル−4−メチル−1−ペンテン(関東化学
社製)0.1部を混合してエネルギー線硬化性組成物
[e2]を調製した。この組成物[e2]の硬化物の水
との接触角を表1に示した。
[Preparation of energy ray-curable composition [e2]] 40 parts of a urethane acrylate oligomer (“Unidick V-4263” manufactured by Dainippon Ink and Chemicals, Inc.)
60 parts of dicyclopentanyl diacrylate (“R-684” manufactured by Nippon Kayaku Co., Ltd.), 5 parts of ultraviolet polymerization initiator 1-hydroxycyclohexyl phenyl ketone (“Irgacure 184” manufactured by Ciba Geigy) and polymerization retarder 2 ,
0.1 part of 4-diphenyl-4-methyl-1-pentene (manufactured by Kanto Kagaku) was mixed to prepare an energy ray-curable composition [e2]. Table 1 shows the contact angle of the cured product of this composition [e2] with water.

【0073】[エネルギー線硬化性組成物[e3]の調
製]ウレタンアクリレートオリゴマー(「ユニディック
V−4263」)70部、ノニルフェノキシポリエチレ
ングリコール(n=17)アクリレート(第一工業製薬
化学社製の「N−177E」)30部、紫外線重合開始
剤1−ヒドロキシシクロヘキシルフェニルケトン(「イ
ルガキュアー184」)5部及び重合遅延剤2,4−ジ
フェニル−4−メチル−1−ペンテン(関東化学社製)
0.1部を混合してエネルギー線硬化性組成物[e3]
を調製した。この組成物[e3]の硬化物の水との接触
角を表1に示した。
[Preparation of energy ray-curable composition [e3]] 70 parts of urethane acrylate oligomer ("Unidick V-4263"), nonylphenoxy polyethylene glycol (n = 17) acrylate (manufactured by Daiichi Kogyo Seiyaku Chemical Co., Ltd.) 30 parts of "N-177E"), 5 parts of an ultraviolet polymerization initiator 1-hydroxycyclohexyl phenyl ketone ("Irgacure 184") and a polymerization retarder 2,4-diphenyl-4-methyl-1-pentene (manufactured by Kanto Chemical Co., Ltd.) )
0.1 part is mixed and energy ray-curable composition [e3]
Was prepared. Table 1 shows the contact angle of the cured product of this composition [e3] with water.

【0074】[エネルギー線硬化性組成物[e4]の調
製]ポリテトラメチレングリコール(平均分子量25
0)マレイミドカプリエート(特開平11−12440
3号の合成例13に記載の方法によって合成した。)7
0部及びノニルフェノキシポリエチレングリコール(n
=17)アクリレート(「N−177E」)30部を混
合してエネルギー線硬化性組成物[e4]を調製した。
この組成物[e4]の硬化物の水との接触角を表1に示
した。
[Preparation of energy ray-curable composition [e4]] Polytetramethylene glycol (average molecular weight 25
0) Maleimide capriate (JP-A-11-12440)
No. 3 by the method described in Synthesis Example 13. ) 7
0 parts and nonylphenoxy polyethylene glycol (n
= 17) 30 parts of acrylate (“N-177E”) were mixed to prepare an energy ray-curable composition [e4].
Table 1 shows the contact angle of the cured product of this composition [e4] with water.

【0075】[エネルギー線硬化性組成物[e5]の調
製]ウレタンアクリレートオリゴマー(「ユニディック
V−4263」)100部に紫外線重合開始剤1−ヒド
ロキシシクロヘキシルフェニルケトン(「イルガキュア
ー184」)5部及び重合遅延剤2,4−ジフェニル−
4−メチル−1−ペンテン(関東化学社製)0.1部を
混合してエネルギー線硬化性組成物[e5]を調製し
た。この組成物[e5]の硬化物の水との接触角を表1
に示した。
[Preparation of energy ray-curable composition [e5]] 100 parts of a urethane acrylate oligomer ("Unidick V-4263") and 5 parts of an ultraviolet polymerization initiator 1-hydroxycyclohexylphenyl ketone ("Irgacure 184") And a polymerization retarder 2,4-diphenyl-
0.1 part of 4-methyl-1-pentene (manufactured by Kanto Chemical Co., Ltd.) was mixed to prepare an energy ray-curable composition [e5]. Table 1 shows the contact angle of the cured product of this composition [e5] with water.
It was shown to.

【0076】[実施例1] 〔部材(A)の作製〕透明硬質ポリ塩化ビニル(積水成
型社製)[p1]製の10cm×10cm×2mmの板の中心
部5cm×2.5cmの範囲(1)を含む範囲に、エネルギ
ー線硬化性組成物[e1]を127μm のバーコーター
を用いて塗布した後、ポリ塩化ビニル板(1)の図1で
示した図面の紙面内上半分の部分をフォトマスクで被
い、ウシオ電機社製のマルチライト200型露光装置用
光源ユニットを用いて窒素雰囲気中で50mW/cm2 の紫
外線を20秒間照射した。紫外線照射後、水流にて未硬
化物を洗浄除去することにより、図1で示した図面の紙
面内下半分の部分に、厚み102μm のエネルギー線硬
化性組成物[e1]硬化物層1(2)を形成した。
[Example 1] [Preparation of member (A)] The center of a 10 cm x 10 cm x 2 mm plate made of transparent rigid polyvinyl chloride (manufactured by Sekisui Molding Co., Ltd.) [p1] in the range of 5 cm x 2.5 cm After applying the energy ray-curable composition [e1] to the area including 1) using a 127 μm bar coater, the upper half of the polyvinyl chloride plate (1) in the drawing of FIG. It was covered with a photomask, and irradiated with ultraviolet rays of 50 mW / cm 2 for 20 seconds in a nitrogen atmosphere using a light source unit for a multilight 200 type exposure apparatus manufactured by Ushio Inc. After the ultraviolet irradiation, the uncured material is washed and removed with a water stream, so that the energy ray-curable composition [e1] cured product layer 1 (2) having a thickness of 102 μm is formed on the lower half in the drawing of FIG. ) Formed.

【0077】次に、硬化物層1(2)を形成したポリ塩
化ビニル板(1)の図1で示した図面の紙面内上半分の
部分にエネルギー線硬化性組成物[e2]を127μm
のバーコーターを用いて塗布し、図1で示した図面の下
半分をフォトマスクで被って窒素雰囲気中で上記と同じ
紫外線を照射した。紫外線照射後、水流にて未硬化物を
洗浄除去することにより、ポリ塩化ビニル板(1)の図
1で示した図面の紙面内上半分の部分に厚み102μm
のエネルギー線硬化性組成物[e2]硬化物層1
(2’)を形成した。
Next, the energy ray-curable composition [e2] was applied to the polyvinyl chloride plate (1) on which the cured product layer 1 (2) was formed in an upper half portion in the drawing of FIG.
Was applied using a bar coater, and the lower half of the drawing shown in FIG. 1 was covered with a photomask and irradiated with the same ultraviolet rays as described above in a nitrogen atmosphere. After the ultraviolet irradiation, the uncured material is washed and removed with a water stream, so that the thickness of the polyvinyl chloride plate (1) is 102 μm on the upper half in the drawing of FIG.
Ray curable composition [e2] cured product layer 1
(2 ′) was formed.

【0078】更に、硬化物層1を形成した面に、エネル
ギー線硬化性組成物[e1]を127μm のバーコータ
ーを用いて塗布し、図1で示した形状の流路(4)、流
入路(5)、流出路(6)となる部分及び図1で示した
図面の紙面内上半分をフォトマスクで被い、窒素雰囲気
中で上記と同じ紫外線を30秒間照射した。紫外線照射
後、水流にて未硬化物を洗浄除去することにより、エネ
ルギー線硬化性組成物[e1]硬化物層2(3)を形成
した。
Further, the energy ray-curable composition [e1] was applied to the surface on which the cured product layer 1 was formed using a 127 μm bar coater, and the flow path (4) having the shape shown in FIG. (5) The portion to be the outflow channel (6) and the upper half in the drawing of the drawing shown in FIG. 1 were covered with a photomask, and the same ultraviolet rays as above were irradiated for 30 seconds in a nitrogen atmosphere. After the ultraviolet irradiation, the uncured material was washed and removed with a stream of water to form a cured material layer 2 (3) of the energy ray-curable composition [e1].

【0079】更にまた、該ポリ塩化ビニル板(1)の図
1で示した図面の紙面内上半分の部分にエネルギー線硬
化性組成物[e2]を127μm のバーコーターを用い
て塗布し、図1に示した形状の流路(4)、流入路
(5’)、流出路(6’)となる部分及び図1で示した
図面の紙面内下半分ををフォトマスクで被い、窒素雰囲
気中で上記と同じ紫外線を30秒間照射した。紫外線照
射後、水流にて未硬化物を洗浄除去することにより、エ
ネルギー線硬化性組成物[e2]硬化物層2(3’)を
形成し、エネルギー線硬化性組成物[e1]硬化物層2
(3)及びエネルギー線硬化性組成物[e2]硬化物層
2(3’)の欠損部として幅240μm 、深さ102μ
m 、長さ3cmの溝(4)、それぞれ幅120μm 、深さ
102μm の流入路(5、5’)、及びそれぞれ幅12
0μm 、深さ102μm の流出路(6、6’)を形成し
た。その後、流入路(5、5’)及び流出路(6、
6’)の端部に直径0.5mmのキリ穴を穿ってデバイス
外からの流入口(7、7’)及びデバイス外への流出口
(8、8’)を形成して、部材(A)[A1]を得た。
Further, the energy ray-curable composition [e2] was applied to the upper half portion of the sheet of the drawing shown in FIG. 1 of the polyvinyl chloride plate (1) using a 127 μm bar coater. The flow path (4), the inflow path (5 ′), the outflow path (6 ′), and the lower half in the drawing of FIG. 1 are covered with a photomask, and a nitrogen atmosphere is formed. Inside, the same ultraviolet rays as above were irradiated for 30 seconds. After irradiation with ultraviolet rays, the uncured material is washed and removed with a stream of water to form an energy ray-curable composition [e2] cured product layer 2 (3 ′), and an energy ray-curable composition [e1] cured product layer 2
(3) and energy beam curable composition [e2] 240 μm in width and 102 μ in depth as a defect in cured product layer 2 (3 ′)
m, 3 cm long grooves (4), inflow channels (5, 5 '), each 120 μm wide and 102 μm deep, and each 12 cm wide
Outflow channels (6, 6 ′) having a depth of 0 μm and a depth of 102 μm were formed. Then, the inflow channel (5, 5 ') and the outflow channel (6,
At the end of 6 ′), a hole having a diameter of 0.5 mm is formed to form an inflow port (7, 7 ′) from the outside of the device and an outflow port (8, 8 ′) outside the device, and the member (A) is formed. ) [A1] was obtained.

【0080】〔部材(B)の接着〕ポリプロピレン二軸
延伸フィルム(二村化学社製の「FOR」、厚さ30μ
m)(図示せず)のコロナ処理面に、127μm のバー
コーターを用いてエネルギー線硬化性組成物[e1]を
塗布し、次いで、窒素雰囲気中で、上記と同じ紫外線を
1秒間照射して、塗膜を流動性は喪失したものの不完全
硬化の状態とし、この塗膜面を部材(A)[A1]の溝
が形成された面に貼り合わせた後、ポリプロピレン二軸
延伸フィルム側から同じ紫外線をさらに60秒間照射し
て塗膜を完全硬化させることによって、エネルギー線硬
化性組成物[e1]硬化物(9)で構成された厚さ10
3μm のシート状の部材(B)[B1]を形成すると同
時に部材(A)[A1]の表面に接着し、それらの間に
毛細管状の流路(4)、流入路(5、5’)、流出路
(6、6’)を形成した。その後、ポリプロピレン二軸
延伸フィルムを剥離し、図1に示された5cm×2.5cm
の範囲を切り出して、微小ケミカルデバイス[D1]を
得た。
[Adhesion of member (B)] Polypropylene biaxially stretched film (“FOR” manufactured by Nimura Chemical Co., Ltd., thickness 30 μm)
m) The energy ray-curable composition [e1] is applied to the corona-treated surface (not shown) using a 127 μm bar coater, and then irradiated with the same ultraviolet rays as described above for 1 second in a nitrogen atmosphere. Although the coating film lost its fluidity but was in an incompletely cured state, and the coated surface was bonded to the grooved surface of the member (A) [A1], the same was applied from the polypropylene biaxially stretched film side. Ultraviolet rays are further irradiated for 60 seconds to completely cure the coating film, whereby the energy ray-curable composition [e1] has a thickness of 10 comprising the cured product (9).
At the same time as forming a 3 μm sheet-shaped member (B) [B1], it is adhered to the surface of the member (A) [A1], and a capillary channel (4) and an inflow channel (5, 5 ′) are interposed therebetween. And outflow channels (6, 6 '). Thereafter, the polypropylene biaxially stretched film was peeled off, and 5 cm × 2.5 cm shown in FIG.
Was cut out to obtain a microchemical device [D1].

【0081】〔各部の水との接触角〕用いた素材の水と
の接触角を表1にまとめて示した。微小ケミカルデバイ
ス[D1]は、流路(4)の部材(A)側の面の図1で
示した図面の紙面内下半分の部分及び流路(4)の図1
で示した図面の紙面内下側の側面が、水との接触角が2
2°の低接触角部分であった。一方、流路(4)の部材
(A)側の面の図1で示した図面の紙面内上半分の部分
及び流路(4)の図1で示した図面の紙面内上側の側面
が、水との接触角が91°の高接触角部分であった。ま
た、流路(4)の部材(B)面は全面が水との接触角が
22°の低接触角部分であった。さらに、流入路(5)
及び流出路(6)の流路(4)との接続部分における内
面の水との接触角δL が22°、流入路(5’)及び流
出路(6’)の流路(4)との接続部分における部材
(A)側の面と両側面の水との接触角が91°、部材
(B)面の水との接触角が22°であり、重み付き平均
の接触角δH は67°であった。
[Contact Angle of Each Part with Water] The contact angles of the materials used with water are shown in Table 1. The microchemical device [D1] includes a lower half portion of the surface of the flow path (4) on the member (A) side in the drawing of FIG. 1 and the flow path (4) in FIG.
The lower side surface in the drawing of the drawing shown in FIG.
This was a low contact angle portion of 2 °. On the other hand, the upper half of the surface of the flow path (4) on the member (A) side in the drawing of FIG. 1 and the upper side surface of the flow path (4) in the drawing of FIG. The contact angle with water was a high contact angle portion of 91 °. Further, the entire surface of the member (B) of the flow path (4) was a low contact angle portion having a contact angle with water of 22 °. Furthermore, the inflow channel (5)
And a contact angle δ L with the water on the inner surface at the connection portion of the outflow path (6) with the flow path (4) is 22 °, and the flow path (4) of the inflow path (5 ′) and the outflow path (6 ′). The contact angle between the surface on the member (A) side and the water on both side surfaces at the connection portion is 91 °, the contact angle with water on the member (B) surface is 22 °, and the weighted average contact angle δ H is 67 °.

【0082】〔液−液接触試験〕このようにして得た微
小ケミカルデバイス[D1]を、部材(B)が上側にな
るように設置し、流入路(7、7’)にそれぞれマイク
ロシリンジを接続して、流入口(7)から水、流入口
(7’)からn−ヘキサンをそれぞれ流量0.01mm3
/秒で注入すると、水は流路(4)の低接触角部分を、
n−ヘキサンは高接触角部分をそれぞれ伝って層状で流
れ、水は流出路(6)に入って流出口(8)から流出
し、一方、n−ヘキサンは流出路(6’)に入って流出
口(8’)から流出した。また、n−ヘキサンの流量を
一定とし、水の流量を0.7〜1.5倍に変化させて
も、水とn−ヘキサンは分離されて流出した。
[Liquid-Liquid Contact Test] The microchemical device [D1] obtained in this way was placed with the member (B) facing upward, and micro-syringes were respectively placed in the inflow channels (7, 7 '). After connection, water was supplied from the inlet (7) and n-hexane was supplied from the inlet (7 ′) at a flow rate of 0.01 mm 3.
Per second, water impinges on the low contact angle portion of channel (4),
The n-hexane flows in layers in each of the high contact angle sections, water enters the outlet channel (6) and flows out of the outlet (8), while n-hexane enters the outlet channel (6 '). It flowed out of the outlet (8 '). Further, even when the flow rate of n-hexane was kept constant and the flow rate of water was changed to 0.7 to 1.5 times, water and n-hexane were separated and flowed out.

【0083】また、n−ヘキサンの代わりにシクロヘキ
サン、キシレン、酢酸エチルをそれそれ用いた試験で
も、ほぼ同様の結果であった。
In addition, almost the same results were obtained in tests using cyclohexane, xylene and ethyl acetate instead of n-hexane.

【0084】〔抽出試験〕微小ケミカルデバイス[D
1]を、部材(B)が上側になるように設置し、流入路
(7、7’)にそれぞれマイクロシリンジを接続して、
流入口(7)から0.1N水酸化ナトリウム水溶液、流
入口(7’)からフェノールフタレンを飽和まで溶解さ
せたキシレン溶液をそれぞれ流量0.01mm3 /秒で注
入すると、水溶液は流路(4)の低接触角部分を、キシ
レン溶液は高接触角部分をそれぞれ伝って層状で流れ、
水溶液は流出路(6)に入って流出口(8)から流出
し、一方、キシレン溶液は流出路(6’)に入って流出
口(8’)から流出した。このとき、注入した0.1N
水酸化ナトリウム水溶液およびキシレン溶液、流出する
キシレン溶液は共に無色透明であったが、流出する0.
1N水酸化ナトリウム水溶液は薄い赤色を呈していた。
即ち、フェノールフタレンがキシレン相から水相へ抽出
された。
[Extraction Test] Microchemical device [D
1] is installed such that the member (B) is on the upper side, and micro-syringes are connected to the inflow channels (7, 7 ′), respectively.
When a 0.1N aqueous sodium hydroxide solution is injected from the inlet (7) and a xylene solution in which phenolphthalene is dissolved to saturation is injected from the inlet (7 ') at a flow rate of 0.01 mm 3 / sec, the aqueous solution flows through the flow path ( 4) The xylene solution flows in layers in the low contact angle portion and the high contact angle portion, respectively.
The aqueous solution entered the outflow channel (6) and flowed out of the outlet (8), while the xylene solution entered the outflow channel (6 ') and flowed out of the outlet (8'). At this time, the injected 0.1N
The aqueous sodium hydroxide solution, the xylene solution, and the outflowing xylene solution were both colorless and transparent, but the 0.1.
The 1N aqueous sodium hydroxide solution was pale red.
That is, phenolphthalene was extracted from the xylene phase to the aqueous phase.

【0085】また、フェノールフタレンの飽和キシレン
溶液の代わりに、フェノールフタレンの0.01重量%
酢酸エチル溶液を用いても同様の結果を得た。
Instead of a saturated xylene solution of phenolphthalene, 0.01% by weight of phenolphthalene was used.
Similar results were obtained using an ethyl acetate solution.

【0086】<比較例1>本比較例においては、流路内
面の低接触角部分の水との接触角が36°である微小ケ
ミカルデバイスについて述べる。
Comparative Example 1 In this comparative example, a microchemical device in which the contact angle with water at the low contact angle portion of the inner surface of the flow channel is 36 ° will be described.

【0087】〔微小ケミカルデバイスの作製〕実施例1
において、エネルギー線硬化性組成物[e1]に代え
て、エネルギー線硬化性組成物[e3]を使用した以外
は、実施例1と同様にして、微小ケミカルデバイス[C
D1]を作製した。
[Preparation of Microchemical Device] Example 1
In the same manner as in Example 1 except that the energy ray-curable composition [e3] was used instead of the energy ray-curable composition [e1], the fine chemical device [C] was used.
D1].

【0088】〔各部の水との接触角〕このようにして得
た微小ケミカルデバイス[CD1]は、流路(4)の低
接触角部分の水との接触角が36°であること、及び流
出路(6)の流路(14)との接続部における内面の水
との接触角δL(重み付き平均)が31°であること以
外は微小ケミカルデバイス[D1]と同様であった。
[Contact Angle of Each Part with Water] The microchemical device [CD1] thus obtained has a contact angle with water of 36 ° in the low contact angle portion of the flow path (4); It was the same as the microchemical device [D1] except that the contact angle δ L (weighted average) with the inner surface of water at the connection of the outflow channel (6) with the flow channel (14) was 31 °.

【0089】〔液−液接触試験〕微小ケミカルデバイス
[CD1]について、n−ヘキサン/水系について実施
例1と同様の試験を行ったところ、水とn−ヘキサンが
それぞれ凝集し、塊状となって流路を流れ、流出路
(6)、流出路(6’)の双方から、水とn−ヘキサン
の両者が流出した。即ち、流路の低接触各部分の水との
接触角が十分に低くないと、互いに混和しない2液は流
路中を層状に流れないことがわかる。また、流路中を層
状に流れない2液は分離されずに流出することがわか
る。
[Liquid-Liquid Contact Test] With respect to the microchemical device [CD1], the same test as in Example 1 was performed for the n-hexane / water system. As a result, water and n-hexane respectively aggregated to form a lump. The water flowed through the flow path, and both water and n-hexane flowed out from both the outflow channel (6) and the outflow channel (6 ′). In other words, it is understood that the two liquids that are immiscible with each other do not flow in a layered manner in the flow channel unless the contact angle of each low contact portion of the flow channel with water is sufficiently low. Also, it can be seen that the two liquids that do not flow in a layered manner in the channel flow out without being separated.

【0090】<実施例2> 〔微小ケミカルデバイスの作製〕実施例1において、エ
ネルギー線硬化性組成物[e2]に代えて、エネルギー
線硬化性組成物[e4]を使用した以外は、実施例1と
同様にして、微小ケミカルデバイス[D2]を作製し
た。
<Example 2> [Preparation of microchemical device] The procedure of Example 1 was repeated, except that the energy ray-curable composition [e4] was used instead of the energy ray-curable composition [e2]. In the same manner as in No. 1, a microchemical device [D2] was produced.

【0091】〔各部の水との接触角〕このようにして得
た微小ケミカルデバイス[D2]は、流出路(6)の流
路(4)との接続部における内面の水との接触角δL
22°、流出路(6’)の流路(4)との接続部におけ
る内面の水との接触角δH が重み付き平均にして36°
であること以外は、微小ケミカルデバイス[D1]と同
様であった。
[Contact Angle of Each Part with Water] The microchemical device [D2] obtained as described above has a contact angle δ with the water on the inner surface at the connection part of the outflow path (6) with the flow path (4). L is 22 °, and the contact angle δ H with the water on the inner surface at the connection point of the outflow channel (6 ′) with the flow channel (4) is 36 ° as a weighted average.
It was the same as the microchemical device [D1] except that

【0092】〔液−液接触試験〕微小ケミカルデバイス
[D2]について、実施例1と同様の試験を行ったとこ
ろ、水とn−ヘキサンの体積流量比が1の時は実施例1
と同様に、水とn−ヘキサンは流路(4)中を層状に流
れ、流出路(6)と流出路(6’)に分離されて入り、
流出口(8)と流出口(8’)からそれぞれ流出した。
しかし、n−ヘキサンの流量を一定とし、水の流量を
1.5倍にしたところ、流出口(8’)から、n−ヘキ
サンと同時に水が流出した。即ち、流出路(6)の流路
との接続口付近の水との接触角δL と、流出路(6’)
の流路との接続口付近の水との接触角δH の差が10°
以上であると水とn−ヘキサンを分離流出させることが
可能であるが、差が小さいと、分離可能な条件範囲が狭
くなることがわかる。
[Liquid-Liquid Contact Test] The same test as in Example 1 was conducted on the microchemical device [D2]. When the volume flow ratio between water and n-hexane was 1, the example 1 was used.
In the same manner as described above, water and n-hexane flow in a layered manner in the channel (4), and are separated into the outflow channel (6) and the outflow channel (6 ′).
It flowed out from the outlet (8) and the outlet (8 '), respectively.
However, when the flow rate of n-hexane was kept constant and the flow rate of water was increased 1.5 times, water flowed out of the outlet (8 ') simultaneously with n-hexane. That is, the contact angle δ L of the outflow path (6) with water near the connection port with the flow path and the outflow path (6 ′)
10 ° difference in contact angle δ H with water near the connection port with the flow path
With the above, water and n-hexane can be separated and flown out, but it can be seen that if the difference is small, the range of conditions that can be separated becomes narrow.

【0093】[実施例3] 〔部材(A)の作製〕ポリカーボネート(三菱エンジニ
アリングプラスチックス社製の「ユーピロンS−200
0」)[p2]製の10cm×10cm×2mmの板(図示せ
ず)の中心部5cm×2.5cmの範囲(11)を含む範囲
にエネルギー線硬化性組成物[e1]を127μm のバ
ーコーターを用いて塗布し、ウシオ電機製のマルチライ
ト200型露光装置用光源ユニットを用いて窒素雰囲気
中で50mW/cm2 の紫外線を20秒間照射して、ポリカ
ーボネート板(11)の全面に厚み102μm のエネル
ギー線硬化性組成物[e1]硬化物層1(12)を形成
した。硬化物層1(12)上にエネルギー線硬化性組成
物[e1]を127μm のバーコーターを用いて塗布
し、図2の(イ)に示した形状の、流路(14)となる
べき部分をフォトマスクで被って窒素雰囲気中で同じ紫
外線を照射した。紫外線照射後、水流にて未硬化物を洗
浄除去することにより、図2に示された形状の、流路
(14)となるべき幅210μm 、深さ102μm の溝
を有する、厚み102μm のエネルギー線硬化性組成物
[e1]硬化物層2(13)を形成し、部材(A)[A
3]とした。
[Example 3] [Production of member (A)] Polycarbonate ("Iupilon S-200" manufactured by Mitsubishi Engineering-Plastics Corporation)
0 ") The energy-ray-curable composition [e1] was placed in a 127-μm bar in a range including a center (5 cm × 2.5 cm) range (11) of a 10 cm × 10 cm × 2 mm plate (not shown) made of [p2]. The solution was applied using a coater, and irradiated with ultraviolet light of 50 mW / cm 2 for 20 seconds in a nitrogen atmosphere using a light source unit for a Multilight 200 type exposure apparatus manufactured by Ushio Inc., so that the entire surface of the polycarbonate plate (11) was 102 μm thick. The energy ray-curable composition [e1] cured product layer 1 (12) was formed. An energy ray-curable composition [e1] is applied on the cured product layer 1 (12) using a 127 μm bar coater, and a portion to be a flow path (14) having a shape shown in FIG. Was covered with a photomask and irradiated with the same ultraviolet rays in a nitrogen atmosphere. After irradiating the ultraviolet rays, the uncured material is washed and removed with a water flow to form an energy beam having a width of 210 μm and a depth of 102 μm, which is to be a flow path (14), and a thickness of 102 μm, as shown in FIG. Forming the curable composition [e1] cured product layer 2 (13), the member (A) [A
3].

【0094】〔部材(B)の接着〕部材(A)で用いた
ものと同じポリカーボネート[p2]板(図示せず)の
中心部5cm×2.5cmの範囲(17)を含む範囲に12
7μm のバーコーターを用いてエネルギー線硬化性組成
物[e2]を塗布し、部材(A)[A3]作製時に用い
たものの鏡像体のパターンのフォトマスクで被って窒素
雰囲気中で上記と同じ紫外線を1秒間照射して、塗膜を
流動性は喪失したものの不完全硬化の状態とし、水流に
て未硬化物を洗浄除去した。この不完全硬化の状態の塗
膜面を部材(A)[A3]の溝が形成された面に、パタ
ーンが重なるように貼り合わせ、上記と同じ紫外線をさ
らに30秒間照射して塗膜を完全硬化させることことに
より、部材(A)[A3]の鏡像体のパターンの溝を有
する、幅210μm 、厚み98μm のエネルギー線硬化
性組成物[e1]硬化物層(18)とポリカーボネート
板(17)からなる部材(B)[B3]を形成すると同
時に、部材(A)[A3]の表面に接着し、それらの間
に幅210μm 、高さ200μm の毛細管状の流路(1
4)を形成した。
[Adhesion of member (B)] The same polycarbonate [p2] plate (not shown) as that used in member (A) was added to the area including the area (17) of 5 cm × 2.5 cm at the center (17).
The energy ray-curable composition [e2] is applied using a 7 μm bar coater, and is covered with a photomask having a mirror image pattern of the member (A) [A3] used in the preparation of the member (A) [A3]. Was irradiated for 1 second to make the coating film incompletely cured, although the fluidity was lost, and the uncured material was washed away with a water stream. The incompletely cured coating film surface is bonded to the grooved surface of the member (A) [A3] so that the pattern overlaps, and the same ultraviolet light is irradiated for another 30 seconds to complete the coating film. By curing, the energy ray-curable composition [e1] cured product layer (18) having a width of 210 μm and a thickness of 98 μm, having a groove of a mirror image pattern of the member (A) [A3] and a polycarbonate plate (17) At the same time as forming the member (B) [B3] made of the material, the member (A) is adhered to the surface of the member (A3), and a capillary channel (1) having a width of 210 μm and a height of 200 μm is formed between them.
4) was formed.

【0095】次いで、流路(14)の両端部に、部材
(A)[A3]、部材(B)[B3]を貫通する、直径
0.5mmのキリ孔を穿ち、流入路(15、15’)、流
出路(16、16’)を形成した後、図2に示した5cm
×2.5cmの範囲を切り出して微小ケミカルデバイス
[D3]を作製した。
Next, a drill hole having a diameter of 0.5 mm penetrating the members (A) [A3] and (B) [B3] was formed at both ends of the flow path (14). '), After forming the outflow channels (16, 16'), 5 cm shown in FIG.
An area of × 2.5 cm was cut out to produce a microchemical device [D3].

【0096】〔各部の水との接触角〕用いた素材の水と
の接触角を表1に示した。微小ケミカルデバイス[D
3]は、流路(14)の部材(A)側の面及び流路(1
4)の両側面の部材(A)側1/2が水との接触角が2
2°の低接触角部分、流路(14)の部材(B)面が水
との接触角が88°の高接触角部分、及び流路(14)
の両側面の部材(B)側1/2が水との接触角が91°
の高接触角部分であった。また、流出路(16)の流路
(14)との接続部における内面の水との接触角δL
22°、流出路(16’)の流路(14)との接続部に
おける内面の水との接触角δH は88°であった。
[Contact Angles of Each Part with Water] The contact angles of the raw materials used with water are shown in Table 1. Micro chemical device [D
3] is the surface of the flow path (14) on the member (A) side and the flow path (1).
4) Both sides of the member (A) on both sides have a contact angle with water of 1/2.
A low contact angle portion of 2 °, a high contact angle portion where the member (B) surface of the channel (14) has a contact angle of 88 ° with water, and a channel (14)
The contact angle with water on the member (B) side 両 側 on both sides is 91 °
Was a high contact angle portion. The contact angle δ L of the inner surface of the outflow passage (16) with the flow path (14) is 22 °, and the inner surface of the outflow passage (16 ′) in the connection portion with the flow path (14) has a contact angle δ L of 22 °. The contact angle δ H with water was 88 °.

【0097】〔液−液接触試験〕微小ケミカルデバイス
[D3]を、流入路(15、15’)と流出路(16、
16’)がデバイスの側面となる向きに設置し、流入路
(15、15’)にそれぞれマイクロシリンジを接続し
て、流入路(15)から水、流入路(15’)からn−
ヘキサンをそれぞれ流量0.02mm3 /秒で注入する
と、水は流路(14)の低接触角部分、n−ヘキサンは
高接触各部分を伝って層状で流れ、流出路(16)から
水、流出路(16’)からn−ヘキサンが流出した。ま
た、n−ヘキサンの流量を一定とし、水の流量を0.7
〜1.5倍に変化させても水とn−ヘキサンは分離され
て流出した。
[Liquid-liquid contact test] The microchemical device [D3] was connected to the inflow path (15, 15 ') and the outflow path (16, 15').
16 ′) is installed so as to face the side of the device, micro-syringes are respectively connected to the inflow channels (15, 15 ′), and water is supplied from the inflow channel (15) and n− is supplied from the inflow channel (15 ′).
When hexane is injected at a flow rate of 0.02 mm 3 / sec, water flows in layers at a low contact angle portion of the flow channel (14) and n-hexane flows in layers at a high contact portion, and water flows out of the outflow channel (16). N-Hexane flowed out from the outflow channel (16 '). Further, the flow rate of n-hexane was constant, and the flow rate of water was 0.7
Water and n-hexane were separated and flowed out even when changed to 1.5 times.

【0098】[実施例4] 〔親水性層形成材料の調製〕ポリエチレングリコールモ
ノ−4−ノニルフェニルエーテル(n’=10)(東京
化成工業社製の「PMNE10」)5部、2−メタクリ
ロイルオキシエチルアシッドホスフェート(大八化学工
業社製の「MR200」)5部及び水90部からなる溶
液を調製し、親水性層形成材料とした。
[Example 4] [Preparation of material for forming hydrophilic layer] 5 parts of polyethylene glycol mono-4-nonylphenyl ether (n '= 10) ("PMNE10" manufactured by Tokyo Chemical Industry Co., Ltd.), 2-methacryloyloxy A solution composed of 5 parts of ethyl acid phosphate (“MR200” manufactured by Daihachi Chemical Industry Co., Ltd.) and 90 parts of water was prepared as a material for forming a hydrophilic layer.

【0099】〔部材(A)の作製〕ポリカーボネート
(三菱エンジニアリングプラスチックス製の「ユーピロ
ンS−2000」)[p2]製の10cm×10cm×2mm
の板(図示せず)の中心部5cm×2.5cmの範囲(1
1)を含む範囲に、エネルギー線硬化性組成物[e1]
を127μm のバーコーターを用いて塗布した後、ウシ
オ電機製のマルチライト200型露光装置用光源ユニッ
トを用いて窒素雰囲気中で50mW/cm2 の紫外線を3秒
間照射して、完全に硬化していない半硬化状態の塗膜と
した。次に、該塗膜を親水性層形成材料中に投入し、上
記と同じ紫外線を40秒間照射して、塗膜を完全に硬化
させると同時に、表面に、実質的に無視できる厚みに親
水性化合物がグラフト重合した、厚み102μm のエネ
ルギー線硬化性組成物[e1]硬化物層1(12)を形
成した。このようにして得た塗膜の水との接触角は5°
であった。
[Production of member (A)] 10 cm × 10 cm × 2 mm made of polycarbonate (“Iupilon S-2000” manufactured by Mitsubishi Engineering-Plastics) [p2]
5 cm x 2.5 cm area (1
In the range including 1), the energy ray-curable composition [e1]
Was applied using a 127 μm bar coater, and then irradiated with 50 mW / cm 2 ultraviolet light for 3 seconds in a nitrogen atmosphere using a light source unit for a Multilight 200 type exposure apparatus manufactured by Ushio Inc. to completely cure the product. No semi-cured coating film was obtained. Next, the coating film is put into a hydrophilic layer-forming material, and irradiated with the same ultraviolet rays as above for 40 seconds to completely cure the coating film and, at the same time, impart hydrophilicity to the surface to a substantially negligible thickness. An energy ray-curable composition [e1] cured product layer 1 (12) having a thickness of 102 μm, on which the compound was graft-polymerized, was formed. The contact angle of the coating film thus obtained with water is 5 °.
Met.

【0100】次いで、その上にエネルギー線硬化性組成
物[e1]を127μm のバーコーターを用いて塗布し
た後、図2に示した形状の、流路(14)となるべき部
分フォトマスクで被って窒素雰囲気中で同じ紫外線を3
秒間照射して、半硬化状態の塗膜とした。半硬化状態の
塗膜から未硬化物を水流にて洗浄除去した後、該塗膜を
親水性層形成材料中に投入し、上記と同じ紫外線を40
秒間照射して塗膜を完全に硬化させことにより、図2に
示した形状の、流路(14)となるべき溝を有する、厚
み102μm のエネルギー線硬化性組成物[e1]硬化
物層2(13)を形成し、部材(A)[A1]とした。
なお、硬化物層2(13)の流路(14)となる溝の水
接触角は装置的理由で測定不能であったが、硬化物層2
(13)の溝以外の表面の水との接触角は5°であっ
た。流路(14)となるべき溝の側面の接触角も、硬化
物層2(13)表面の水との接触角と同じと考えられ
る。
Next, the energy ray-curable composition [e1] was applied thereon using a 127 μm bar coater, and then covered with a partial photomask having the shape shown in FIG. UV light in nitrogen atmosphere
Irradiated for 2 seconds to obtain a coating film in a semi-cured state. After the uncured material is washed and removed from the semi-cured coating film with a stream of water, the coating film is poured into a hydrophilic layer forming material, and the same ultraviolet light as above is applied to the material.
By irradiating for 2 seconds to completely cure the coating film, an energy-ray-curable composition [e1] cured product layer 2 having a shape shown in FIG. (13) was formed to obtain the member (A) [A1].
Although the water contact angle of the groove serving as the flow path (14) of the cured product layer 2 (13) could not be measured due to equipment reasons, the cured product layer 2 (13) could not be measured.
The contact angle with water on the surface other than the groove of (13) was 5 °. It is also considered that the contact angle of the side surface of the groove to be the flow path (14) is the same as the contact angle of water on the surface of the cured product layer 2 (13).

【0101】〔部材(B)の接着〕エネルギー線硬化性
組成物[e2]に代えて、エネルギー線硬化性組成物
[e5]を用いた以外は、実施例3と同様にして、部材
(B)を作製すると同時に、部材(A)に接着し、図2
に示した5cm×2.5cmの範囲を切り出して、実施例3
と同形状の微小ケミカルデバイス[D4]を作製した。
[Adhesion of member (B)] The member (B) was prepared in the same manner as in Example 3 except that the energy ray-curable composition [e5] was used instead of the energy ray-curable composition [e2]. 2) and simultaneously adhered to the member (A),
Example 3 was cut out from the area of 5 cm × 2.5 cm shown in FIG.
A microchemical device [D4] having the same shape as that described above was produced.

【0102】〔各部の水との接触角〕微小ケミカルデバ
イス[D4]は、流路(14)の部材(A)側の面、及
び流路(14)の両側面の部材(A)側1/2が水との
接触角が5°の低接触角部分、流路(14)の部材
(B)面が水との接触角が88°の高接触角部分、及び
流路(14)の両側面の部材(B)側1/2が水との接
触角が68°の高接触角部分であった。また、流出路
(16)の流路(14)との接続部における内面の水と
の接触角δL は5°、流出路(16’)の流路(14)
との接続部における内面の水との接触角δH は88°で
あった。
[Contact Angle of Each Part with Water] The microchemical device [D4] has a surface on the member (A) side of the channel (14) and a member (A) side on both sides of the channel (14). / 2 is a low contact angle portion where the contact angle with water is 5 °, the member (B) of the channel (14) is a high contact angle portion where the contact angle with water is 88 °, and the channel (14) is The 側 side of the member (B) on both sides was a high contact angle portion having a contact angle with water of 68 °. The contact angle δ L with the water on the inner surface at the connection portion of the outflow channel (16) with the flow channel (14) is 5 °, and the flow channel (14) of the outflow channel (16 ′) is used.
And the contact angle δ H with the water on the inner surface at the connection with the was 88 °.

【0103】〔液−液接触試験〕微小ケミカルデバイス
[D4]を、流入路(15、15’)と流出路(16、
16’)がデバイスの側面となる向きに設置し、流入路
(15、15’)にそれぞれマイクロシリンジを接続
し、流入路(15)から水、流入路(15’)からn−
ヘキサンをそれぞれ流量0.02mm3 /秒で注入する
と、水は流路(14)の低接触角部分、n−ヘキサンは
高接触各部分を伝って層状で流れ、流出路(16)から
水、流出路(16’)からn−ヘキサンが流出した。ま
た、n−ヘキサンの流量を一定とし、水の流量を0.5
〜2倍に変化させても水とn−ヘキサンは分離されて流
出した。
[Liquid-Liquid Contact Test] The microchemical device [D4] was connected to the inflow path (15, 15 ') and the outflow path (16, 15').
16 ′) is installed in a direction to be the side of the device, micro-syringes are respectively connected to the inflow paths (15, 15 ′), and water is supplied from the inflow path (15) and n− is supplied from the inflow path (15 ′).
When hexane is injected at a flow rate of 0.02 mm 3 / sec, water flows in layers at a low contact angle portion of the flow channel (14) and n-hexane flows in layers at a high contact portion, and water flows out of the outflow channel (16). N-Hexane flowed out from the outflow channel (16 '). Further, the flow rate of n-hexane was kept constant, and the flow rate of water was 0.5
Water and n-hexane were separated and flowed out even when changed by up to 2-fold.

【0104】[実施例5]実施例3において、部材
(A)のエネルギー線硬化性組成物[e2]硬化物層1
(12)の上へのエネルギー線硬化性組成物[e2]の
塗布に127μm のバーコーターの代わりに300μm
のバーコーターを用いることにより厚さ220μm のエ
ネルギー線硬化性組成物[e2]硬化物層1(13)を
形成したこと、部材(B)のエネルギー線硬化性組成
物[e2]硬化物層1(18)の上へのエネルギー線硬
化性組成物[e2]の塗布に127μm のバーコーター
の代わりに300μm のバーコーターを用いることによ
り厚さ220μm のエネルギー線硬化性組成物[e2]
硬化物層2(18)を形成したこと、流路寸法が幅3
00μm 、高さ440μm であること、流出路(1
6’)として直径1.6mmのキリ孔を穿ち、外径1.6
mm、内径0.5mmのポリ四フッ化エチレン製のチューブ
を流路(14)位置まで挿入し固定したこと、及び流
出路(16)として直径0.5mmのキリ孔を流路(1
4)位置までで穿ち、また流路(14)位置までの1/
2の深さまでの範囲を直径1.6mmのキリ孔とし、外径
1.6mm、内径0.5mmのポリ四フッ化エチレン製のチ
ューブを流路(14)位置までの1/2の深さまで挿入
し固定したこと、以外は、実施例3と同様にして微小ケ
ミカルデバイス[D5]を作製した。
[Example 5] In Example 3, the energy ray-curable composition [e2] of the member (A) was used.
(12) The energy ray-curable composition [e2] was applied on top of 300 μm instead of a 127 μm bar coater.
The energy beam-curable composition [e2] cured product layer 1 (13) having a thickness of 220 μm was formed by using the bar coater described above, and the energy beam-curable composition [e2] cured product layer 1 of the member (B) was used. (18) The energy ray-curable composition [e2] having a thickness of 220 μm is applied by using a 300 μm bar coater instead of the 127 μm bar coater for application of the energy ray-curable composition [e2].
The cured product layer 2 (18) was formed, and the flow path dimension was width 3
00 μm, height 440 μm, outflow channel (1
6 '), drill a drill hole with a diameter of 1.6 mm and an outer diameter of 1.6
A tube made of polytetrafluoroethylene having a diameter of 0.5 mm and an inner diameter of 0.5 mm was inserted and fixed to the position of the flow path (14), and a 0.5 mm diameter drill hole was formed as a flow path (1) as an outflow path (16).
4) drilling up to the position, and 1 /
The area up to the depth of 2 is a drill hole with a diameter of 1.6 mm, and a tube made of polytetrafluoroethylene with an outer diameter of 1.6 mm and an inner diameter of 0.5 mm is reduced to half the depth up to the position of the flow path (14). A microchemical device [D5] was produced in the same manner as in Example 3 except that the device was inserted and fixed.

【0105】〔各部の水との接触角〕微小ケミカルデバ
イス[D5]は、流出路(16)の流路(14)との接
続部における内面の水との接触角δL が22°、流出路
(16’)の流路(14)との接続部も含めた内面の水
との接触角δH が110°であった以外は、微小ケミカ
ルデバイス[D3]と同様であった。。
[Contact Angle of Each Part with Water] The microchemical device [D5] has a contact angle δ L with water on the inner surface of the outflow path (16) at the connection portion with the flow path (14) of 22 °, It was the same as the microchemical device [D3], except that the contact angle δ H with the water on the inner surface including the connection with the channel (14) of the channel (16 ′) was 110 °. .

【0106】〔液−液接触試験〕微小ケミカルデバイス
[D5]を、流入路(15、15’)と流出路(16、
16’)がデバイスの側面となる向きに設置し、流入路
(15、15’)にそれぞれマイクロシリンジを接続し
て、流入路(15)から水、流入路(15’)からn−
ヘキサンをそれぞれ流量0.07mm3 /秒で注入する
と、水は流路(14)の低接触角部分、n−ヘキサンは
高接触各部分を伝って層状で流れ、流出路(16)に接
続されたチューブから水、流出路(16’)に接続され
たチューブからn−ヘキサンが流出した。また、n−ヘ
キサンの流量を一定とし、水の流量を0.7〜1.5倍
に変化させても水とn−ヘキサンは分離されて流出し
た。
[Liquid-Liquid Contact Test] The microchemical device [D5] was connected to the inflow channel (15, 15 ') and the outflow channel (16, 15').
16 ′) is installed so as to face the side of the device, micro-syringes are respectively connected to the inflow channels (15, 15 ′), and water is supplied from the inflow channel (15) and n− is supplied from the inflow channel (15 ′).
When hexane is injected at a flow rate of 0.07 mm 3 / sec, water flows in a low contact angle portion of the flow channel (14) and n-hexane flows in a layered manner through the high contact portions, and is connected to the outflow channel (16). Water flowed out of the tube and n-hexane flowed out of the tube connected to the outflow channel (16 '). Further, even when the flow rate of n-hexane was kept constant and the flow rate of water was changed to 0.7 to 1.5 times, water and n-hexane were separated and flowed out.

【0107】<実施例6> 〔微小ケミカルデバイスの作製〕実施例5において、
流出路(16)としてポリ四フッ化エチレン製のチュー
ブを流路(14)位置までの1/2の深さまで挿入し固
定する代わりに、硬質ポリ塩化ビニル製[p1]の外径
1.6mm、内径0.5mmのチューブ(自作)を流路(1
4)位置まで挿入し固定したこと、及び流出路(1
6’)としてポリ四フッ化エチレン製のチューブを流路
(14)位置まで挿入し固定する代わりに、ポリ−4−
メチルペンテン(三井化学社製)[p5]の外径1.6
mm、内径0.5mmのチューブ(自作)を流路(14)位
置まで挿入し固定したこと以外は、実施例5と同様にし
て、微小ケミカルデバイス[D6]を作製した。
<Example 6> [Production of microchemical device]
Instead of inserting and fixing a tube made of polytetrafluoroethylene as the outflow channel (16) to a half depth to the position of the flow channel (14), an outer diameter of 1.6 mm made of rigid polyvinyl chloride [p1] is used. , A 0.5 mm inner diameter tube (self-made)
4) Inserted and fixed to the position, and the outflow channel (1
6 '), instead of inserting and fixing a tube made of polytetrafluoroethylene to the position of the flow path (14),
Outer diameter of methylpentene (Mitsui Chemicals) [p5] 1.6
A microchemical device [D6] was produced in the same manner as in Example 5, except that a tube (home-made) having a diameter of 0.5 mm and an inner diameter of 0.5 mm was inserted and fixed to the position of the flow path (14).

【0108】〔各部の水との接触角〕即ち、微小ケミカ
ルデバイス[D6]は、流出路(16)の流路(14)
との接続部を含む内面の水との接触角δL が87°、流
出路(16’)の流路(14)との接続部を含む内面の
水との接触角δH が104°であった以外は、微小ケミ
カルデバイス[D5]と同様であった。
[Contact Angle of Each Part with Water] That is, the microchemical device [D6] is connected to the flow path (14) of the outflow path (16).
Contact angle [delta] H is 104 ° with water of the inner surface including the connection portion of the contact angle [delta] L is 87 ° to water of the inner surface, the flow path of the outflow passage (16 ') and (14) including a connecting portion between the Except for the above, it was the same as the microchemical device [D5].

【0109】〔液−液接触試験〕微小ケミカルデバイス
[D6]について実施例5と同様の試験を行ったとこ
ろ、実施例5と同様の結果を得た。
[Liquid-Liquid Contact Test] The same test as in Example 5 was performed on the microchemical device [D6], and the same result as in Example 5 was obtained.

【0110】即ち、流出路(16)の流路との接続口付
近の水との接触角δL と、流出路(16’)の流路との
接続口付近の水との接触角δH の差が10°以上である
と水とn−ヘキサンを分離流出させることが可能である
が、差が小さいと、分離可能な条件範囲が狭くなること
が判った。
That is, the contact angle δ L with water near the connection port with the flow path of the outflow path (16) and the contact angle δ H with water near the connection port with the flow path of the outflow path (16 ′). When the difference is 10 ° or more, water and n-hexane can be separated and flown out, but when the difference is small, the condition range where separation can be performed is narrowed.

【0111】<実施例7> 〔微小ケミカルデバイスの作製〕実施例5において、
流出路(16)としてポリ四フッ化エチレン製のチュー
ブを流路(14)位置までの1/2の深さまで挿入し固
定する代わりに、透明硬質ポリ塩化ビニル[p1]製の
外径1.6mm、内径0.5mmのチューブ(自作)を流路
(14)位置まで挿入して固定したこと、及び流出路
(16’)としてポリ四フッ化エチレン製のチューブを
使用する代わりに、透明硬質ポリ塩化ビニル[p1]製
の外径1.6mm、内径0.5mmのチューブ(自作)を使
用したこと以外は、実施例5と同様にして、微小ケミカ
ルデバイス[D7]を作製した。
<Example 7> [Preparation of microchemical device]
Instead of inserting and fixing a tube made of polytetrafluoroethylene as the outflow channel (16) to a depth of 流 路 to the position of the flow channel (14), an outer diameter of transparent rigid polyvinyl chloride [p1] of 1. A 6 mm, 0.5 mm inner diameter tube (made by hand) was inserted and fixed to the position of the flow path (14), and instead of using a polytetrafluoroethylene tube as the outflow path (16 '), a transparent hard tube was used. A microchemical device [D7] was produced in the same manner as in Example 5, except that a tube (self-made) made of polyvinyl chloride [p1] having an outer diameter of 1.6 mm and an inner diameter of 0.5 mm was used.

【0112】〔各部の水との接触角〕即ち、微小ケミカ
ルデバイス[D7]は、流出路(16)、流出路(1
6’)共に流路(14)との接続部における内面の水と
の接触角は87°であった以外は、微小ケミカルデバイ
ス[D5]と同様であった。
[Contact Angle of Each Part with Water] That is, the microchemical device [D7] has the outflow path (16) and the outflow path (1).
6 ') was the same as the microchemical device [D5] except that the contact angle with the water on the inner surface at the connection with the flow path (14) was 87 °.

【0113】〔液−液接触試験〕微小ケミカルデバイス
[D7]について実施例5と同様の試験を行ったとこ
ろ、流出路(16’)から2液が塊状となって流出し、
流出路(16)からは流出しなかった。しかし、流出路
(16)に水を充満させた状態から試験を開始すると、
水流量がn−ヘキサン流量より若干少ない極狭い範囲
で、流出路(16)から水、流出路(16’)からn−
ヘキサンが流出した。
[Liquid-Liquid Contact Test] The same test as in Example 5 was performed on the microchemical device [D7]. As a result, the two liquids flowed out from the outflow passage (16 ′) in a lump,
It did not flow out of the outflow channel (16). However, when the test is started with the outflow channel (16) filled with water,
In a very narrow range in which the flow rate of water is slightly smaller than the flow rate of n-hexane, water flows out of the outflow path (16), and n- flows
Hexane eluted.

【0114】即ち、流路(14)の低接触角部分に接続
された流出路(16)と、高接触角部分に接続された流
出路(16’)の接続部分における水との接触角δL
δHが共に25度を超え90°以下であり、かつその差
がない場合であっても、水とn−ヘキサンを分離するこ
とは可能であるが、条件は限られることが判った。
That is, the contact angle δ between the outflow passage (16) connected to the low contact angle portion of the flow path (14) and the outflow passage (16 ') connected to the high contact angle portion is in contact with water. L ,
Even when δ H is more than 25 ° and not more than 90 ° and there is no difference, it is possible to separate water and n-hexane, but the conditions are limited.

【0115】<実施例8> 〔微小ケミカルデバイスの作製〕実施例5において、流
出路(16)としてポリ四フッ化エチレン製のチューブ
を流路(14)位置までの1/2の深さまで挿入し固定
する代わりに、流路(14)位置まで挿入し固定した以
外は、実施例5と同様にして、微小ケミカルデバイス
[D8]を作製した。
<Example 8> [Preparation of microchemical device] In Example 5, a tube made of polytetrafluoroethylene was inserted as the outflow channel (16) to a depth of 1/2 of the position of the flow channel (14). A microchemical device [D8] was produced in the same manner as in Example 5 except that the device was inserted and fixed to the position of the flow path (14) instead of fixing.

【0116】〔各部の水との接触角〕即ち、微小ケミカ
ルデバイス[D8]は、流出路(16)、流出路(1
6’)共に流路(14)との接続部における内面の水と
の接触角は110°であった以外は微小ケミカルデバイ
ス[D5]と同様であった。
[Contact Angle of Each Part with Water] That is, the microchemical device [D8] has the outflow path (16) and the outflow path (1).
6 ′) Both were the same as the microchemical device [D5] except that the contact angle with the water on the inner surface at the connection with the flow path (14) was 110 °.

【0117】〔液−液接触試験〕微小ケミカルデバイス
[D8]について実施例5と同様の試験を行ったとこ
ろ、水流量がn−ヘキサン流量より若干少ない極狭い範
囲で、流出路(16)から水、流出路(16’)からn
−ヘキサンが流出した。
[Liquid-Liquid Contact Test] When a test similar to that of Example 5 was performed on the microchemical device [D8], the flow rate of water from the outflow passage (16) was extremely narrow in a slightly narrower range than the flow rate of n-hexane. Water, n from outflow channel (16 ')
-Hexane eluted.

【0118】即ち、流路(14)の低接触角部分に接続
された流出路(16)と、高接触角部分に接続された流
出路(16’)の接続部分における水との接触角δL
δHが共に90°を越え、かつその差がない場合であっ
ても、水とn−ヘキサンを分離することは可能である
が、条件は限られることが判った。
That is, the contact angle δ between the outflow passage (16) connected to the low contact angle portion of the flow path (14) and the outflow passage (16 ') connected to the high contact angle portion is in contact with water. L ,
Even when δ H exceeds 90 ° and there is no difference between them, it was found that water and n-hexane could be separated, but the conditions were limited.

【0119】<実施例9> 〔微小ケミカルデバイスの作製〕実施例1において、部
材(A)及び部材(B)の素材として、ポリカーボネー
ト[p2]に代えて、透明硬質ポリ塩化ビニル[p
1]、ナイロン6(BASFジャパン社製の「A4
H」)[p3]、ポリアリレート樹脂(ユニチカ株式
会社製の「Uポリマー U−70)[p4]をそれぞれ
使用した以外は、実施例3と同様にして、微小ケミカル
デバイス[D9−1〜3]を作製した。
<Example 9> [Preparation of microchemical device] In Example 1, instead of polycarbonate [p2], transparent rigid polyvinyl chloride [p] was used as a material for members (A) and (B).
1], nylon 6 (“A4 manufactured by BASF Japan Ltd.”
H ") [p3] and a microchemical device [D9-1-3] in the same manner as in Example 3 except that a polyarylate resin (" U polymer U-70 "manufactured by Unitika Ltd.) [p4] was used, respectively. ] Was produced.

【0120】〔液−液接触試験〕微小ケミカルデバイス
[D9−1〜3]について実施例3と同様の試験を行
い、実施例1と同様の結果を得た。
[Liquid-Liquid Contact Test] The same test as in Example 3 was performed on the microchemical device [D9-1-3], and the same result as in Example 1 was obtained.

【0121】[0121]

【表1】 [Table 1]

【0122】[0122]

【発明の効果】本発明の微小ケミカルデバイスは、隔膜
やバッチ式分液装置を必要とせず、構造が単純で、極め
て小型の抽出用ケミカルデバイスであり、極微量のサン
プルの抽出処理、抽出反応などに適用することができ
る。
The microchemical device of the present invention does not require a diaphragm or a batch type liquid separation device, has a simple structure, and is an extremely small chemical device for extraction. And so on.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で作製した微小ケミカルデバイスを部材
(B)の表面に垂直な方向から見た破砕平面図である。
FIG. 1 is a diagram showing a member of a microchemical device manufactured in an example.
It is the crushing top view seen from the direction perpendicular | vertical to the surface of (B).

【符号の説明】[Explanation of symbols]

1 ポリ塩化ビニル板 2 エネルギー線硬化性組成物[e1]硬化物層1 2’ エネルギー線硬化性組成物[e2]硬化物層1 3 エネルギー線硬化性組成物[e1]硬化物層2 3’ エネルギー線硬化性組成物[e2]硬化物層2 4 流路 5 流入路 5’ 流入路 6 流出路 6’ 流出路 7 流入口 7’ 流入口 8 流出口 8’ 流出口 9 エネルギー線硬化性組成物[e1]硬化物 DESCRIPTION OF SYMBOLS 1 Polyvinyl chloride board 2 Energy ray curable composition [e1] Cured material layer 1 2 'Energy ray curable composition [e2] Cured material layer 13 3 Energy ray curable composition [e1] Cured material layer 2 3' Energy ray-curable composition [e2] Cured product layer 2 4 Flow path 5 Inflow path 5 'Inflow path 6 Outflow path 6' Outflow path 7 Inlet 7 'Inflow 8 Outflow 8' Outflow 9 Energy ray curable composition Object [e1] cured product

【図2】実施例で作製した微小ケミカルデバイスを部材
(B)の表面に垂直な方向から見た平面図(イ)及び平
面図に対応した正面図(ロ)である。
FIGS. 2A and 2B are a plan view (a) of the microchemical device manufactured in the example viewed from a direction perpendicular to the surface of a member (B) and a front view (b) corresponding to the plan view.

【符号の説明】[Explanation of symbols]

11 ポリカーボネート板 12 エネルギー線硬化性組成物[e1]硬化物層1 13 エネルギー線硬化性組成物[e1]硬化物層2 14 流路 15 流入路 15’ 流入路 16 流出路 16’ 流出路 17 ポリカーボネート板 18 エネルギー線硬化性組成物[e2]硬化物層1 DESCRIPTION OF SYMBOLS 11 Polycarbonate board 12 Energy beam curable composition [e1] Cured material layer 1 13 Energy beam curable composition [e1] Cured material layer 2 14 Flow path 15 Inflow path 15 'Inflow path 16 Outflow path 16' Outflow path 17 Polycarbonate Plate 18 Energy ray-curable composition [e2] Cured material layer 1

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 1/10 G01N 1/10 N Fターム(参考) 4D056 AB15 AC02 AC03 AC09 AC22 BA01 BA20 CA02 CA08 CA39 CA40 DA10 4G075 AA70 BB03 BD15 BD22 EE12 FC02 4H006 AA04 AD16 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) G01N 1/10 G01N 1/10 NF term (reference) 4D056 AB15 AC02 AC03 AC09 AC22 BA01 BA20 CA02 CA08 CA39 CA40 DA10 4G075 AA70 BB03 BD15 BD22 EE12 FC02 4H006 AA04 AD16

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 断面積が1×10-12m2 〜1×10-6m2
の範囲にある毛細管状の流路を有する微小ケミカルデバ
イスであって、流路の内面が、水との接触角が25゜以
下の低接触角部分と、水との接触角が低接触角部分のそ
れより10゜以上高い高接触角部分を有し、かつ、低接
触角部分と高接触角部分がそれぞれ流路の上流端から下
流端にわたって途切れずに連続していること、を特徴と
する微小ケミカルデバイス。
1. A sectional area of 1 × 10 −12 m 2 to 1 × 10 −6 m 2.
Wherein the inner surface of the flow channel has a low contact angle portion having a contact angle with water of 25 ° or less, and a low contact angle portion having a contact angle with water. Having a high contact angle portion that is at least 10 ° higher than that of the flow path, and wherein the low contact angle portion and the high contact angle portion are respectively continuous from the upstream end to the downstream end of the flow path without interruption. Micro chemical device.
【請求項2】 微小ケミカルデバイスが、流路の下流端
において、流路の低接触角部分と高接触角部分からそれ
ぞれ流出路が形成されている請求項1記載の微小ケミカ
ルデバイス。
2. The microchemical device according to claim 1, wherein the outflow path is formed at a downstream end of the flow channel from a low contact angle portion and a high contact angle portion of the flow channel.
【請求項3】 流路の高接触角部分に接続された流出路
の接続部における内面の水との接触角δH が、流路の低
接触角部分に接続された流出路の接続部における内面の
水との接触角δL より10°以上高い請求項2記載の微
小ケミカルデバイス。
3. The contact angle δ H with water on the inner surface of the connection portion of the outflow passage connected to the high contact angle portion of the flow passage is set at the connection portion of the outflow passage connected to the low contact angle portion of the flow passage. The microchemical device according to claim 2, wherein the contact angle between the inner surface and water is greater than or equal to 10 L.
【請求項4】 流路の低接触角部分に接続された流出路
の接続部における内面の水との接触角δL と、流路の高
接触角部分に接続された流出路接続部における内面の水
との接触角δH が、(イ)δL≦25°であり、かつ3
5°≦δH、(ロ)δL≦90°であり、かつ90°<δ
H、の少なくともいずれかの条件を満足する請求項3記
載の微小ケミカルデバイス。
4. A contact angle δ L of the inner surface with water at a connection portion of the outflow channel connected to the low contact angle portion of the flow channel, and an inner surface of the outflow channel connection portion connected to the high contact angle portion of the flow channel. The contact angle δ H with water is (a) δ L ≦ 25 ° and 3
5 ° ≦ δ H , (b) δ L ≦ 90 °, and 90 ° <δ
H, micro chemical device according to claim 3, wherein satisfies at least one of these conditions.
【請求項5】 流路の高接触角部分に接続された流出路
が、流路に接続されたチューブである請求項1〜4のい
ずれか1項記載の微小ケミカルデバイス。
5. The microchemical device according to claim 1, wherein the outflow path connected to the high contact angle portion of the flow path is a tube connected to the flow path.
【請求項6】 微小ケミカルデバイスが、流路の上流端
において、流路の低接触角部分と高接触角部分にそれぞ
れ接続して流入路が形成されている請求項1〜5のいず
れか1項記載の微小ケミカルデバイス。
6. The microchemical device according to claim 1, wherein an inflow channel is formed at an upstream end of the flow channel by connecting to the low contact angle portion and the high contact angle portion of the flow channel. Item 3. The microchemical device according to Item 1.
【請求項7】 流路が、部材(A)と部材(B)の間に
流路となる部分を除いて固体状物質が充填された形状
の、もしくは表面に溝を有する部材(A)の溝形成面に
他の部材(B)が密着された形状の、部材(A)と部材
(B)との間に形成されたものであり、流路内面の低接
触各部分が、流路の部材(A)側底面、部材(A)側底
面及び少なくとも一方の側面、部材(B)面、部材
(B)面及び少なくとも一方の側面なる群から選ばれる
いずれか一である請求項1〜6のいずれか1項記載の微
小ケミカルデバイス。
7. The member (A) having a channel filled with a solid substance except for a portion serving as a channel between the member (A) and the member (B) or having a groove on a surface thereof. It is formed between the member (A) and the member (B) in a shape in which another member (B) is in close contact with the groove forming surface. The member (A) side bottom surface, the member (A) side bottom surface and at least one side surface, the member (B) surface, the member (B) surface and at least one side surface are any one selected from the group consisting of: The microchemical device according to any one of the above items.
【請求項8】 部材(A)及び部材(B)が有機高分子
重合体からなる請求項7記載の微小ケミカルデバイス。
8. The microchemical device according to claim 7, wherein the member (A) and the member (B) are made of an organic polymer.
【請求項9】 部材(A)及び部材(B)がそれぞれ、
ポリカーボネート系重合体、塩化ビニル系重合体、ポリ
アミド系重合体、ポリエステル系重合体、(メタ)アク
リル系架橋重合体及びマレイミド系架橋重合体からなる
群から選ばれた重合体からなる請求項7記載の微小ケミ
カルデバイス。
9. The member (A) and the member (B) are each
8. A polymer selected from the group consisting of a polycarbonate polymer, a vinyl chloride polymer, a polyamide polymer, a polyester polymer, a (meth) acrylic crosslinked polymer and a maleimide crosslinked polymer. Micro chemical device.
JP32040699A 1999-11-11 1999-11-11 Fine chemical device having extraction structure Withdrawn JP2001137613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32040699A JP2001137613A (en) 1999-11-11 1999-11-11 Fine chemical device having extraction structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32040699A JP2001137613A (en) 1999-11-11 1999-11-11 Fine chemical device having extraction structure

Publications (1)

Publication Number Publication Date
JP2001137613A true JP2001137613A (en) 2001-05-22

Family

ID=18121117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32040699A Withdrawn JP2001137613A (en) 1999-11-11 1999-11-11 Fine chemical device having extraction structure

Country Status (1)

Country Link
JP (1) JP2001137613A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028836A (en) * 2001-07-11 2003-01-29 Kanagawa Acad Of Sci & Technol Microchannel solid crossing structure and method for forming solid crossing multilayered stream
WO2003076038A1 (en) * 2002-03-14 2003-09-18 Kanagawa Academy Of Science And Technology Method of enriching liquid phase inside micro chip by gas-liquid two-phase flow and micro chip device therefor
JP2004305937A (en) * 2003-04-08 2004-11-04 Tosoh Corp Structure having minute flow passage
JP2005257544A (en) * 2004-03-12 2005-09-22 Gl Sciences Inc Microchip
JP2005537916A (en) * 2002-09-06 2005-12-15 エピジェム リミテッド Modular microfluidic system
JP2007501940A (en) * 2003-08-11 2007-02-01 シンエックスエックスエス・マイクロテクノロジー・アクチエンゲゼルシヤフト A flow cell comprising a laminate with coupling means
JP2008203003A (en) * 2007-02-19 2008-09-04 Seiko Instruments Inc Microchannel and microreactor
JP2008279382A (en) * 2007-05-11 2008-11-20 Sony Corp Manufacturing method of passage substrate
US7572375B2 (en) 2004-02-16 2009-08-11 Fuji Xerox Co., Ltd. Method and device for treating fine particles
KR101128119B1 (en) 2003-01-31 2012-03-23 스미또모 가가꾸 가부시키가이샤 Device and method of classifying emulsion and method of demulsifying emulsion
JP2012530246A (en) * 2009-06-10 2012-11-29 シンベニオ・バイオシステムズ・インコーポレーテッド Sheath flow apparatus and method
JP2017203763A (en) * 2016-05-09 2017-11-16 住友ゴム工業株式会社 Medical inspection device and cell inspection method
US10786812B2 (en) 2016-05-09 2020-09-29 Sumitomo Rubber Industries, Ltd. Medical analysis device and cell analysis method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028836A (en) * 2001-07-11 2003-01-29 Kanagawa Acad Of Sci & Technol Microchannel solid crossing structure and method for forming solid crossing multilayered stream
WO2003076038A1 (en) * 2002-03-14 2003-09-18 Kanagawa Academy Of Science And Technology Method of enriching liquid phase inside micro chip by gas-liquid two-phase flow and micro chip device therefor
JP2005537916A (en) * 2002-09-06 2005-12-15 エピジェム リミテッド Modular microfluidic system
KR101128119B1 (en) 2003-01-31 2012-03-23 스미또모 가가꾸 가부시키가이샤 Device and method of classifying emulsion and method of demulsifying emulsion
JP2004305937A (en) * 2003-04-08 2004-11-04 Tosoh Corp Structure having minute flow passage
JP2007501940A (en) * 2003-08-11 2007-02-01 シンエックスエックスエス・マイクロテクノロジー・アクチエンゲゼルシヤフト A flow cell comprising a laminate with coupling means
US7572375B2 (en) 2004-02-16 2009-08-11 Fuji Xerox Co., Ltd. Method and device for treating fine particles
JP2005257544A (en) * 2004-03-12 2005-09-22 Gl Sciences Inc Microchip
JP2008203003A (en) * 2007-02-19 2008-09-04 Seiko Instruments Inc Microchannel and microreactor
JP2008279382A (en) * 2007-05-11 2008-11-20 Sony Corp Manufacturing method of passage substrate
JP2012530246A (en) * 2009-06-10 2012-11-29 シンベニオ・バイオシステムズ・インコーポレーテッド Sheath flow apparatus and method
JP2017203763A (en) * 2016-05-09 2017-11-16 住友ゴム工業株式会社 Medical inspection device and cell inspection method
US10786812B2 (en) 2016-05-09 2020-09-29 Sumitomo Rubber Industries, Ltd. Medical analysis device and cell analysis method

Similar Documents

Publication Publication Date Title
KR100739515B1 (en) Microdevice having multilayer structure and method for fabricating the same
JP2001137613A (en) Fine chemical device having extraction structure
JP3777112B2 (en) Microfluidic device and manufacturing method thereof
JP2010111129A (en) Microfluid product and method of manufacturing same
JP4074713B2 (en) Liquid feeding device and manufacturing method thereof
JP2002018271A (en) Micro chemical device
JP2002102681A (en) Minute chemical device having heating/deairing mechanism
KR20030038739A (en) Very small chemical device and flow rate adjusting method therefor
JP2001088098A (en) Micro chemical device with depressurized liquid feeding mechanism
JP2000042402A (en) Liquid transport device and its production
JP2003084001A (en) Micro fluid device having micro valve mechanism, micro valve mechanism driving apparatus therefor, and flow control method
JP2001088096A (en) Micro chemical device with absorbing type liquid feeding mechanism
JP2001137693A (en) Fine chemical device having liquid separating structure
JP2007216226A (en) Micronozzle, its manufacturing method, spotting method, and spotter
JP2001070784A (en) Extremely small chemical device with valve mechanism
JP2002370200A (en) Method of manufacturing miniature valve mechanism
JP2002086399A (en) Micro-device having lamination structure and manufacturing method for it
JP2000288381A (en) Manufacture of microchemical device
JP2003136500A (en) Method of manufacturing micro fluid device having resin diaphragm
JP2006043696A (en) Material separation device and material separation method
JP2003190768A (en) Method for manufacturing micro-fluid device having porous part
JP4307771B2 (en) Manufacturing method of microfluidic device
JP2004073995A (en) Method for controlling flow rate, micro fluid device, and apparatus for controlling flow rate
JP2008043883A (en) Material separation device and material separation method
JP2000297157A (en) Microchemical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

RD02 Notification of acceptance of power of attorney

Effective date: 20061031

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090423