JP2001019555A - Silicon nitride sintered compact and substrate using the same - Google Patents

Silicon nitride sintered compact and substrate using the same

Info

Publication number
JP2001019555A
JP2001019555A JP11192661A JP19266199A JP2001019555A JP 2001019555 A JP2001019555 A JP 2001019555A JP 11192661 A JP11192661 A JP 11192661A JP 19266199 A JP19266199 A JP 19266199A JP 2001019555 A JP2001019555 A JP 2001019555A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
nitride sintered
minor axis
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11192661A
Other languages
Japanese (ja)
Inventor
Yoichi Ogata
陽一 尾形
Hideyuki Emoto
秀幸 江本
Hiroshi Yokota
博 横田
Masahiro Ibukiyama
正浩 伊吹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP11192661A priority Critical patent/JP2001019555A/en
Publication of JP2001019555A publication Critical patent/JP2001019555A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a sintered compact having high thermal conductivity by making the sintered compact include a silicon nitride particle having a specific ppm or lower than it of the total content of oxygen, Al, Ca and Fe and a specific value or larger than it of a minor axis diameter orientated in one direction. SOLUTION: This silicon nitride sintered compact contains preferably 20-60 area % based on the whole silicon nitride sintered compact of a silicon nitride particle having <=1,000 ppm total content of oxygen, Al, Ca and Fe and >=2 μm minor axis diameter orientated in one direction. The ratio I (002)/I (200) of X-ray diffraction intensity I (200) of plane (002) of silicon nitride observed in the orientation direction to the X-ray diffraction intensity I (200) of plane (200) of silicon nitride is preferably >=40. Silicon nitride powder comprising 2-30 wt.% of a silicon nitride particle having >=2.5 average aspect ratio, containing <=300 ppm of Al and <=1 wt.% of oxygen and having >=30% β ratio is mixed with one or more of yttrium and/or a rare earth element and its compound and sintered to give the objective silicon nitride sintered compact.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機械的特性に優
れ、高い熱伝導率を有する窒化珪素焼結体に関するもの
であり、さらに、自動車、車両、機器装置等に用いられ
る高信頼性の窒化珪素回路基板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride sintered body having excellent mechanical properties and high thermal conductivity, and moreover, a highly reliable nitride used for automobiles, vehicles, equipment and the like. The present invention relates to a silicon circuit board.

【0002】[0002]

【従来の技術】従来から、熱発生の大きい半導体素子等
を搭載するための回路基板として、アルミナ(Al
23)セラミックスなどのような絶縁性に優れたセラミ
ックス基板の表面に、導電性を有する回路層を接合した
回路基板が広く普及している。しかし、近年これら半導
体素子は機器類の小型化、高性能化に伴って熱発生の密
度が増加する傾向にあり、信頼性高く安定動作を得るた
めには半導体素子の発生する熱を放散して、素子のジャ
ンクションが破壊されない温度より充分低くできるよう
にすることが一層重要な課題となってきており、前記回
路基板の特性として電気絶縁性が高いことに加え、より
高い熱伝導性が要求されてきている。
2. Description of the Related Art Conventionally, alumina (Al) has been used as a circuit board for mounting a semiconductor element or the like which generates a large amount of heat.
2. Description of the Related Art Circuit boards in which a conductive circuit layer is bonded to the surface of a ceramic substrate having excellent insulating properties, such as 2 O 3 ) ceramics, are widely used. However, in recent years, these semiconductor elements tend to increase in heat generation density with miniaturization and high performance of equipment, and in order to obtain reliable and stable operation, heat generated by the semiconductor element is dissipated. It has become an even more important issue to be able to sufficiently lower the temperature at which the junction of the element is not destroyed, and in addition to high electrical insulation properties as the characteristics of the circuit board, higher thermal conductivity is required. Is coming.

【0003】これらの要求に伴って開発されてきた基板
材料としてベリリア(BeO)、炭化珪素(SiC)、
窒化アルミニウム(AlN)などが挙げられ、熱伝導率
としても160W/mKを越えるものも得られている。
しかしながら、BeOは熱伝導性は高く放熱性には優れ
ているが、毒性が高く、人体や環境の観点から問題があ
った。また、SiCやAlNも熱伝導率が高く放熱性に
は優れているが、機械的特性が不十分であり、回路基板
として用いる場合には、半導体素子の作動に伴う繰り返
しの熱サイクルや動作環境の温度変化等で、金属回路層
の接合部付近のセラミックス部分にクラックが発生しや
すく、信頼性が低いという問題点があった。
[0003] Substrate materials developed in response to these requirements include beryllia (BeO), silicon carbide (SiC),
Aluminum nitride (AlN) and the like, and those having a thermal conductivity exceeding 160 W / mK have been obtained.
However, BeO has high thermal conductivity and excellent heat dissipation, but has high toxicity and has a problem from the viewpoint of human body and environment. In addition, SiC and AlN also have high thermal conductivity and excellent heat dissipation properties, but have insufficient mechanical properties, and when used as a circuit board, require repeated thermal cycling or operating environment associated with the operation of a semiconductor element. There is a problem that cracks are likely to occur in the ceramic portion near the joint of the metal circuit layer due to the temperature change, and the reliability is low.

【0004】窒化珪素(Si34)は、常温や高温で化
学的に安定でかつ機械的特性も優れていることから、自
動車用エンジン部材、摺動部材などの構造材料として用
いられているほか、近年は高い電気絶縁性を有すること
から一部の回路基板材料としても用いられるようになっ
てきている。しかしながら、従来のSi34はAlN等
に比べ熱伝導性が低いために、回路基板等の電子材料と
しての用途には限界があり、範囲はかなり限られたもの
となっているのが現状である。
[0004] Silicon nitride (Si 3 N 4 ) is chemically stable at room temperature or high temperature and has excellent mechanical properties, and is therefore used as a structural material for automobile engine members and sliding members. In addition, recently, it has been used as a material for some circuit boards because of its high electrical insulation. However, since conventional Si 3 N 4 has lower thermal conductivity than AlN or the like, its use as an electronic material such as a circuit board is limited, and the range is considerably limited at present. It is.

【0005】従来、Si34は、α型窒化珪素粉末に、
焼結性を高めるためにイットリア(Y23)やAl23
等の焼結助剤を添加し、所定の形状に成形した後、窒化
珪素の分解を防ぐために窒素加圧雰囲気中で2000℃
程度の高温で焼成し、緻密化した焼結体を得て、さらに
所望の形状に研削加工して作製するのが一般的である。
しかし、焼結助剤や原料窒化珪素粉に含まれるSiO2
やAl23は焼結した窒化珪素粒内に固溶したり、粒界
に偏析することで、セラミックス中の主要熱伝達媒体で
あるフォノンが散乱され、熱伝導率が充分に上がらず2
0W/mK程度であり、用途が限られていた。
Conventionally, Si 3 N 4 has been added to α-type silicon nitride powder,
Yttria (Y 2 O 3 ) or Al 2 O 3
After sintering aids are added and formed into a predetermined shape, the temperature is set to 2000 ° C. in a nitrogen pressurized atmosphere to prevent decomposition of silicon nitride.
In general, the sintered body is fired at a high temperature to obtain a densified sintered body, and is further formed by grinding into a desired shape.
However, sintering aids and SiO 2 contained in raw silicon nitride powder
And Al 2 O 3 dissolve in the sintered silicon nitride grains or segregate at the grain boundaries, thereby scattering phonon, which is the main heat transfer medium in the ceramics, and failing to sufficiently increase the thermal conductivity.
It was about 0 W / mK, and its use was limited.

【0006】これらの問題解決として特開平4−219
371号公報では焼結体中のAlや酸素含有量を低減さ
せることで40W/mK以上のSi34を得る方法が開
示されている。また特開平6−135771号公報では
焼結体中の不純物量を規定すると共に助剤量を規定する
ことで60W/mK以上の焼結体を得る方法が開示され
ている。更に、特開平−165265号公報では焼結体
の窒化珪素結晶を配向させることで100〜150W/
mKの窒化珪素焼結体の製法が開示されている。
[0006] To solve these problems, Japanese Patent Laid-Open No. 4-219 has been proposed.
No. 371 discloses a method of obtaining Si 3 N 4 of 40 W / mK or more by reducing the content of Al and oxygen in a sintered body. Japanese Patent Application Laid-Open No. 6-135771 discloses a method for obtaining a sintered body of 60 W / mK or more by defining the amount of impurities in the sintered body and the amount of an auxiliary agent. Further, Japanese Patent Application Laid-Open No. Hei 165-265 discloses that a silicon nitride crystal of a sintered body is oriented so as to be 100 to 150 W /
A method for producing a silicon nitride sintered body having a mK is disclosed.

【0007】しかしながら、これらの方法では熱伝達経
路と不純物の関係を考慮しておらず、安定して高熱伝導
性の焼結体を得ることが難しいだけではなく、AlNや
SiCのような160W/mKを越える高熱伝導性を得
られずやはり用途が限られていた。
However, these methods do not consider the relationship between the heat transfer path and the impurities, and it is not only difficult to obtain a sintered body having high thermal conductivity stably, but also to obtain 160 W / The high thermal conductivity exceeding mK could not be obtained, and the application was also limited.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の従来
技術を鑑みて、従来に比べて高い熱伝導性を有する窒化
珪素焼結体を安定に提供することであり、さらに、前記
窒化珪素焼結体を適用することで、例えばパワーデバイ
ス用半導体回路基板材料を提供することを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above prior art, and has as its object to stably provide a silicon nitride sintered body having higher thermal conductivity than conventional ones. An object of the present invention is to provide, for example, a semiconductor circuit board material for a power device by applying a sintered body.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記目的を
達成するために、窒化珪素粉末の粉体特性、成形方法、
焼結条件等に関して鋭意検討した結果、窒化珪素焼結体
の粗大粒子の純度を制御し、熱伝達の経路を考慮して前
記粗大粒子の配向性を制御することで任意の一方向の熱
伝導性を大幅に向上した窒化珪素焼結体が得られること
を見出し、本発明に至ったものである。
In order to achieve the above object, the present inventor has set forth the powder characteristics of silicon nitride powder, a molding method,
As a result of intensive studies on the sintering conditions, etc., it was found that by controlling the purity of the coarse particles of the silicon nitride sintered body and controlling the orientation of the coarse particles in consideration of the heat transfer path, heat conduction in any one direction was possible. The present inventors have found that a silicon nitride sintered body having greatly improved properties can be obtained, and have reached the present invention.

【0010】つまり、本発明者らの実験的検討の結果、
窒化珪素の焼結体は含有不純物の量が少ないほどよい
が、特に酸素、Al、Ca、Feは窒化珪素粒子内に残
留するときには、該窒化珪素粒子内のフォノン伝播が阻
害され、結果的に窒化珪素焼結体の熱伝導率が低下する
ことを見出した。そして、特定のサイズの窒化珪素粒子
について、その粒子中の酸素、Al、Ca、Feの含有
量の合計が少なく、1000ppm以下であれば、容易
に130W/mK以上の熱伝導率を有する窒化珪素焼結
体が得られること、更に、前記窒化珪素粒子を一方向に
配向させるときには、その方向で160W/mK以上の
熱伝導率を容易に達成することができることをも見いだ
し、本発明に至ったものである。
That is, as a result of an experimental study by the present inventors,
The sintered body of silicon nitride is better as the content of impurities is smaller, but particularly when oxygen, Al, Ca and Fe remain in the silicon nitride particles, phonon propagation in the silicon nitride particles is hindered. It has been found that the thermal conductivity of the silicon nitride sintered body decreases. And silicon nitride particles having a thermal conductivity of 130 W / mK or more easily when the total content of oxygen, Al, Ca, and Fe in the silicon nitride particles of a specific size is small and 1000 ppm or less. The present inventors have found that a sintered body can be obtained, and that when the silicon nitride particles are oriented in one direction, a thermal conductivity of 160 W / mK or more can be easily achieved in that direction, and the present invention has been achieved. Things.

【0011】本発明の窒化珪素焼結体は、上述の通り
に、その微構造中に特定の不純物が特定量に限定され、
しかも特定サイズ以上に発達した窒化珪素粒子を存在さ
せ、しかもその粒子の方向を任意の一方向に配向させて
いるので、その方向へのフォノン伝播が滞ることがな
く、160W/mK以上の高い熱伝導性が達成されてい
る。すなわち、本発明は、酸素、Al、Ca、Feの含
有量の合計が1000ppm以下であり、かつ短軸径が
2μm以上である窒化珪素粒子を含有し、しかも前記短
軸径が2μm以上である窒化珪素粒子が一方向に配向し
ていることを特徴とする窒化珪素焼結体である。
As described above, in the silicon nitride sintered body of the present invention, specific impurities are limited to a specific amount in its microstructure.
Moreover, since silicon nitride particles developed to a specific size or more are present and the direction of the particles is oriented in any one direction, phonon propagation in that direction does not stop, and a high heat of 160 W / mK or more. Conductivity has been achieved. That is, the present invention contains silicon nitride particles having a total content of oxygen, Al, Ca, and Fe of 1000 ppm or less, and a minor axis diameter of 2 μm or more, and the minor axis diameter is 2 μm or more. A silicon nitride sintered body characterized in that silicon nitride particles are oriented in one direction.

【0012】更に、前記配向の程度に関しては、配向し
ている方向からみた窒化珪素の(002)面のX線回折
強度I(002)と窒化珪素の(200)面のX線回折
強度I(200)の比I(002)/I(200)が、
大きいほど好ましく、特に40以上であればよい。
Further, regarding the degree of the orientation, the X-ray diffraction intensity I (002) of the (002) plane of silicon nitride and the X-ray diffraction intensity I ( 200), the ratio I (002) / I (200)
The larger the value, the more preferable it is.

【0013】本発明において、短軸径が2μm以上であ
る窒化珪素粒子の量については、窒化珪素焼結体全体の
20〜60面積%を占めることが高熱伝導率を達成する
面で好ましい。
In the present invention, the amount of silicon nitride particles having a minor axis diameter of 2 μm or more preferably accounts for 20 to 60 area% of the entire silicon nitride sintered body from the viewpoint of achieving high thermal conductivity.

【0014】本発明の窒化珪素焼結体は、上記の特徴を
有するが故に、任意の一方向に関して160W/mK以
上の熱伝導率を有するという特徴がある。
Since the silicon nitride sintered body of the present invention has the above characteristics, it has a characteristic of having a thermal conductivity of 160 W / mK or more in any one direction.

【0015】本発明の窒化珪素焼結体を得る方法につい
ては、次ぎに例示する本発明の窒化珪素焼結体の製造方
法により、容易に得ることができる。
The method for obtaining the silicon nitride sintered body of the present invention can be easily obtained by the following method for manufacturing a silicon nitride sintered body of the present invention.

【0016】本発明の窒化珪素焼結体の製造方法は、窒
化珪素粉末に、焼結助剤として少なくともイットリウム
及び/又は希土類元素またはその化合物の一種以上を添
加してなる原料粉末を成形後に焼結する方法に属する。
In the method for producing a silicon nitride sintered body of the present invention, a raw material powder obtained by adding at least one of yttrium and / or a rare earth element or a compound thereof as a sintering aid to a silicon nitride powder is sintered after molding. Belongs to the method of tying.

【0017】本発明の製造方法にあっては、原料とする
窒化珪素粉末は不純物が少ないほどよいが、得られる短
軸径が2μm以上の窒化珪素粒子中の酸素、Al、C
a、Feの含有量の合計が1000ppmとする為に、
特にAlを300ppm以下、酸素を1重量%以下とす
ることが重要である。尚、Ca、Feについては、後述
する焼結操作中に生じる窒化珪素粒子の成長、純化の過
程で粒界相に排出されるので、窒化珪素粉末中に300
0ppm程度まで許容される。
In the production method of the present invention, the silicon nitride powder used as a raw material is preferably as low as possible in impurities, but the oxygen, Al, and C in silicon nitride particles having a short axis diameter of 2 μm or more are obtained.
a, In order to make the total content of Fe 1000 ppm,
In particular, it is important to make Al 300 ppm or less and oxygen 1% by weight or less. Since Ca and Fe are discharged to the grain boundary phase in the process of growing and purifying silicon nitride particles generated during the sintering operation described later, 300 Ca is contained in the silicon nitride powder.
Tolerable to about 0 ppm.

【0018】また、窒化珪素粉末のβ率が低い場合に
は、得られる窒化珪素焼結体中の短軸径が2μm以上の
窒化珪素粒子の純度が充分上がらず、高い熱伝導性が得
られないことから、30%以上であることが必要であ
る。高α率の窒化珪素粉と高β率の窒化珪素粉末を充分
に混合し均一に分散させたものを用いても、X線回折で
β率が30%以上となるものであれば構わない。
When the β ratio of the silicon nitride powder is low, the purity of silicon nitride particles having a minor axis diameter of 2 μm or more in the obtained silicon nitride sintered body does not sufficiently increase, and high thermal conductivity is obtained. Therefore, it is necessary to be 30% or more. Even if a silicon nitride powder having a high α ratio and a silicon nitride powder having a high β ratio are sufficiently mixed and uniformly dispersed, a powder having a β ratio of 30% or more in X-ray diffraction may be used.

【0019】さらに、原料とする窒化珪素粉末には平均
アスペクト比が2.5以上である粉末を2〜30重量%
を含むことが重要である。平均アスペクト比が2.5よ
り小さい場合には、得られる窒化珪素焼結体の配向度合
いが充分に高くならないし、一方、大きすぎると焼結中
に異常粒成長が激しく起こり、焼結体の強度が極端に低
下する現象が発生することがある。
Further, the silicon nitride powder used as a raw material contains powder having an average aspect ratio of 2.5 or more by 2 to 30% by weight.
It is important to include When the average aspect ratio is smaller than 2.5, the degree of orientation of the obtained silicon nitride sintered body does not become sufficiently high. On the other hand, when it is too large, abnormal grain growth occurs vigorously during sintering, and A phenomenon in which the strength is extremely reduced may occur.

【0020】本発明の製造方法において、成形方法は特
に限定することはないが、押し出し成形法は押し出し圧
力が高く配向を生じさせるのに比較的有利な方法であ
る。原料粉末に有機質バインダーを添加し、窒化珪素粉
末中の窒化珪素粒子を配向させたグリーンシートとする
ことが重要である。グリーンシートの面内方向の熱伝導
性を高くする場合はそのまま用いて成形体とし、グリー
ンシートの面と垂直方向の熱伝導率を高くする場合に
は、上記で得られた配向したグリーンシートを複数積層
し加圧する等の方法でよく密着させ、積層方向に切断す
ることで成形体とすればよい。前記の成形体を脱脂した
後、焼結することで任意の一方向が160W/mK以上
の高い熱伝導率を有する窒化珪素焼結体を得ることがで
きる。更に、プレス法やドクターブレード法等でも成形
時のシート厚さを薄くして積層枚数を増やすことでも本
発明の窒化珪素焼結体を作製することができる。
In the production method of the present invention, the molding method is not particularly limited, but the extrusion molding method has a high extrusion pressure and is a relatively advantageous method for causing orientation. It is important to add an organic binder to the raw material powder to form a green sheet in which silicon nitride particles in the silicon nitride powder are oriented. When increasing the thermal conductivity in the in-plane direction of the green sheet, it is used as it is as a molded body, and when increasing the thermal conductivity in the direction perpendicular to the surface of the green sheet, the oriented green sheet obtained above is used. A plurality of layers may be laminated and closely adhered to each other by a method such as pressing, and then cut in the laminating direction to form a molded body. After degreasing the above-mentioned molded body, by sintering, a silicon nitride sintered body having a high thermal conductivity of 160 W / mK or more in any one direction can be obtained. Furthermore, the silicon nitride sintered body of the present invention can also be manufactured by reducing the sheet thickness at the time of molding and increasing the number of laminated sheets by a pressing method, a doctor blade method, or the like.

【0021】本発明の製造方法の焼結条件としては、結
果的に、酸素、Al、Ca、Feの含有量の合計が10
00ppm以下にまで純化された短軸径2μm以上の窒
化珪素粒子が形成されるように選択されれば良い。そ
の、具体的な焼結条件としては、昇温速度が少なくとも
規定温度として1500℃を越えてからは0.5〜10
℃/minとし、焼結温度が1800℃以上であって、
焼結温度と焼結時間の積が2×104℃・Hr〜2×1
5℃・Hrとする。
As a sintering condition of the production method of the present invention, as a result, the total content of oxygen, Al, Ca, and Fe is 10%.
What is necessary is just to select so as to form silicon nitride particles having a minor axis diameter of 2 μm or more purified to 00 ppm or less. The specific sintering conditions are as follows.
° C / min, and the sintering temperature is 1800 ° C or more,
The product of sintering temperature and sintering time is 2 × 10 4 ° C. · Hr to 2 × 1
And 0 5 ℃ · Hr.

【0022】昇温速度が0.5℃/minより遅いと異
常粒成長が起きやすく、10℃/minより早いと十分
に純化された短軸径2μm以上の窒化珪素粒子を得るこ
とが出来なくなる。
If the heating rate is lower than 0.5 ° C./min, abnormal grain growth is likely to occur, and if it is higher than 10 ° C./min, it is impossible to obtain sufficiently purified silicon nitride particles having a minor axis diameter of 2 μm or more. .

【0023】焼結温度は緻密化の観点から1800℃以
上であることが必要であるが、本発明者らは、この温度
領域内で特定の条件を満足するときにのみ本発明の目的
を達成できるという知見を得て本発明に至ったものであ
る。即ち、焼結温度と焼結時間の積が2×104℃・H
rより少ないと緻密化が充分ではないか、粗大粒の純化
が充分に起こらず、得られる窒化珪素焼結体の熱伝導率
が低くなってしまう。また、2×105℃・Hrより大
きいと粒成長が進みすぎて焼結体の強度が低くなるだけ
でなく、粗大粒子割合が大きくなりすぎて熱伝達経路が
確保できず熱伝導率の低下も生じてくる。
The sintering temperature needs to be 1800 ° C. or higher from the viewpoint of densification, but the present inventors have achieved the object of the present invention only when specific conditions are satisfied within this temperature range. The present invention has been made based on the finding that it can be achieved. That is, the product of the sintering temperature and the sintering time is 2 × 10 4 ° C. · H
If it is less than r, the densification is not sufficient or the coarse grains are not sufficiently purified, and the thermal conductivity of the obtained silicon nitride sintered body is low. On the other hand, if the temperature is higher than 2 × 10 5 ° C · Hr, the grain growth proceeds too much to lower the strength of the sintered body, and also the ratio of coarse particles becomes too large to secure a heat transfer path and lower the thermal conductivity. Also occurs.

【0024】本発明で得られる窒化珪素焼結体は、従来
に比べて極めて高い熱伝導率を有し、しかも、電気絶縁
性、機械的特性にも優れているので、従来の窒化珪素焼
結体が適用できなかった発生熱量の多い素子用の回路基
板、例えばパワーモジュール等の回路基板として好適で
ある。
The silicon nitride sintered body obtained by the present invention has an extremely high thermal conductivity as compared with the conventional one, and also has excellent electrical insulation and mechanical properties. It is suitable as a circuit board for an element having a large amount of generated heat to which a body cannot be applied, for example, a circuit board for a power module or the like.

【0025】本発明の回路基板を得るには、上記窒化珪
素焼結体を板状とし、銅やアルミニウム等の金属板を積
層した後エッチング等の方法で回路形成する方法、或い
は回路形成をした金属板を接合する方法等の従来公知の
方法により達成することができる。
In order to obtain the circuit board of the present invention, the above-mentioned silicon nitride sintered body is made into a plate shape, a metal plate such as copper or aluminum is laminated, and then a circuit is formed by a method such as etching or the circuit is formed. It can be achieved by a conventionally known method such as a method of joining metal plates.

【0026】尚、金属板を窒化珪素焼結体に積層する方
法については、ロウ材を用いて接合する方法、窒化珪素
焼結体に酸化層を設けた後に金属板を直接接合する方
法、溶融金属を窒化珪素焼結体に接触させて接合する方
法等のいずれの方法であっても構わない。
The method of laminating the metal plate on the silicon nitride sintered body includes a method of joining using a brazing material, a method of directly joining the metal plate after providing an oxide layer on the silicon nitride sintered body, and a method of melting. Any method such as a method in which a metal is brought into contact with and bonded to a silicon nitride sintered body may be used.

【0027】[0027]

【実施例】以下、実施例と比較例とをあげて、本発明を
詳細に説明するが、本発明はこれらに限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0028】〔実施例1〜10および比較例1〜5〕表
1に示す特性の異なる窒化珪素粉末a〜jを用い、表2
に示す配合Cで焼結助剤を添加し、ヘンシェルミキサー
で充分に撹拌混合して原料粉末とした。得られた原料粉
末にメチルセルロース系の有機バインダー(ユケン工業
社製「セランダー」)18重量部を加えて混合し、次に
水12重量部を徐々に添加しながら充分撹拌混合を行っ
た。次に得られた混合物をニーダーで冷却しながら充分
に混練しコンパウンドとした後、押し出し圧力180k
g/cm2にて押し出し成形法でシートに成形した。得
られたシートを耐圧容器に入る形状に切断した後、積層
し、前記ステンレスの耐圧容器に入れ、真空にした後、
積層面と垂直な方向から200kg/cm2の圧力にて
加圧成形した。得られたシート又は成形体は、真空中5
00℃にて脱脂した後、脱脂体を窒化硼素の容器に装
填、カーボンヒーターの電気炉を用いて表3に示す焼結
条件にて焼結し、充分緻密化した厚さ約0.6mmの焼
結体を得た。
Examples 1 to 10 and Comparative Examples 1 to 5 Using silicon nitride powders a to j having different characteristics shown in Table 1,
A sintering aid was added in Formulation C shown below, and thoroughly mixed with a Henschel mixer to obtain a raw material powder. To the obtained raw material powder, 18 parts by weight of a methylcellulose-based organic binder (“Selander” manufactured by Yuken Industries Co., Ltd.) was added and mixed, and then sufficiently stirred and mixed while gradually adding 12 parts by weight of water. Next, the obtained mixture was sufficiently kneaded while cooling with a kneader to form a compound, and the extrusion pressure was 180 k.
It was formed into a sheet by an extrusion method at g / cm 2 . After cutting the obtained sheet into a shape that fits into a pressure-resistant container, laminating it, putting it in the stainless steel pressure-resistant container, and applying vacuum,
Pressure molding was performed at a pressure of 200 kg / cm 2 from a direction perpendicular to the lamination surface. The obtained sheet or molded product is placed in a vacuum for 5 hours.
After degreased at 00 ° C., the degreased body was loaded into a container of boron nitride, sintered under the sintering conditions shown in Table 3 using an electric furnace of a carbon heater, and was sufficiently densified to a thickness of about 0.6 mm. A sintered body was obtained.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】得られた焼結体について、以下の方法で、
評価を行った。この結果を表4に示す。 (1)組織形態:得られた各種焼結体を平面研削盤で表面
粗加工した後、さらにラッピング装置で鏡面研磨した。
さらにArベースの酸素、CF4を含有するガス雰囲気
中100Wの高周波プラズマでエッチングを行った後、
SEMにて組織観察を行った。次いで、画像解析装置に
て短軸径が2μm以上である窒化珪素粗大粒子の面積割
合等の定量評価を行った。 (2)窒化珪素粒子の配向性:得られた焼結体の窒化珪素
粒子の軸が配向している方向からX線を当てるようにし
て、X線回折を測定し、窒化珪素(002)面の回折強
度I(002)と窒化珪素(200)面の回折強度I
(200)の比からc軸の配向性を評価した。 配向度 =〔 I(002)/I(200)〕× 10
0 (3)β率:X線回折の回折強度測定結果より次の式で算
出した。 β率=((Iβ101+Iβ210)/(Iα102+Iα210
Iβ101+Iβ210))×100 (4)熱伝導性:φ10×3mmのサンプルを作製しリガ
ク社製のレーザーフラッシュ装置を用いて室温にて熱伝
導率を測定した。 (5)含有酸素量および含有不純物元素量:焼結体および
粉体の含有酸素量は窒化珪素製の乳鉢と乳棒で粉砕し、
LECO社のO/N同時分析装置で、金属含有元素の分
析は原子吸光法にて定量評価を行った。また、短軸径が
2μm以上の窒化珪素粒子の含有酸素量および金属元素
量は、得られた焼結体を窒化珪素製の乳鉢と乳棒で粉砕
しJournal of American Cera
mic Society論文誌1994年7月号185
7〜1862ページに記載されている方法に基づき粒界
相を溶解させた後、湿式分級にて短軸径2μm未満の窒
化珪素粒子を除去後、原子吸光法で金属含有量の定量評
価を実施した。
With respect to the obtained sintered body, the following method is used.
An evaluation was performed. Table 4 shows the results. (1) Microstructure: The obtained various sintered bodies were subjected to surface roughening with a surface grinder and then mirror-polished with a lapping device.
Further, after etching with high-frequency plasma of 100 W in a gas atmosphere containing Ar-based oxygen and CF 4 ,
The structure was observed by SEM. Next, quantitative evaluation of the area ratio of silicon nitride coarse particles having a minor axis diameter of 2 μm or more was performed by an image analyzer. (2) Orientation of silicon nitride particles: X-rays were applied from the direction in which the axis of the silicon nitride particles of the obtained sintered body was oriented, and X-ray diffraction was measured to obtain a silicon nitride (002) plane. Diffraction intensity I (002) and diffraction intensity I of silicon nitride (200) plane
The c-axis orientation was evaluated from the ratio of (200). Degree of orientation = [I (002) / I (200)] × 10
0 (3) β ratio: It was calculated by the following formula from the measurement result of the diffraction intensity of X-ray diffraction. β rate = ((Iβ 101 + Iβ 210 ) / (Iα 102 + Iα 210 +
Iβ 101 + Iβ 210)) × 100 (4) Thermal conductivity: to prepare a sample of .phi.10 × 3 mm was measured for thermal conductivity at room temperature using a Rigaku Corp. laser flash apparatus. (5) Oxygen content and impurity element content: The oxygen content of the sintered body and powder is pulverized with a mortar and pestle made of silicon nitride,
The analysis of metal-containing elements was quantitatively evaluated by an atomic absorption method using an O / N simultaneous analyzer of LECO. Further, the content of oxygen and the amount of metal element of the silicon nitride particles having a minor axis diameter of 2 μm or more can be determined by crushing the obtained sintered body with a mortar and pestle made of silicon nitride, and Journal of American Cera.
Mic Society Transactions July 1994, 185
After dissolving the grain boundary phase based on the method described on pages 7 to 1862, the silicon nitride particles having a minor axis diameter of less than 2 μm are removed by wet classification, and the metal content is quantitatively evaluated by the atomic absorption method. did.

【0033】[0033]

【表4】 [Table 4]

【0034】〔実施例11〜15〕表1のcの窒化珪素
粉末を用い、表2に示す配合A〜Fで焼結助剤を添加し
実施例2と同様にして打ち抜き成形体を作製した。得ら
れた成形体は真空中500℃にて脱脂した後、脱脂体を
窒化硼素の容器に装填、カーボンヒーターの電気炉を用
いて表3に示す焼結条件2にて焼結し、充分緻密化した
厚さ約0.6mmの焼結体を得た。得られた焼結体の評
価は実施例1と同様に行い、表5に示す結果を得た。
Examples 11 to 15 Punched molded bodies were prepared in the same manner as in Example 2 by using the silicon nitride powder of Table 1c and adding sintering aids in formulations A to F shown in Table 2. . The obtained molded body was degreased at 500 ° C. in a vacuum, and then the degreased body was charged into a container of boron nitride, and sintered under an sintering condition 2 shown in Table 3 using an electric furnace of a carbon heater to obtain a sufficiently dense body. A sintered body having a thickness of about 0.6 mm was obtained. Evaluation of the obtained sintered body was performed in the same manner as in Example 1, and the results shown in Table 5 were obtained.

【0035】[0035]

【表5】 [Table 5]

【0036】〔実施例16〜20および比較例6〜1
0〕表1のcの窒化珪素粉を用い、表2に示す配合Cで
焼結助剤を添加し実施例2と同様にして打ち抜き成形体
を作製した。得られた成形体を真空中500℃にて脱脂
した後、脱脂体を窒化硼素の容器に装填、カーボンヒー
ターの電気炉を用いて表3に示す焼結条件1〜11にて
焼結し、充分緻密化した厚さ約0.6mmの焼結体を得
た。得られた焼結体の評価は実施例1と同様に行い、表
6に示す結果を得た。
[Examples 16 to 20 and Comparative Examples 6-1]
0] Using a silicon nitride powder of Table 1c, a sintering aid was added in a formulation C shown in Table 2, and a punched compact was produced in the same manner as in Example 2. After degreased the obtained molded body at 500 ° C. in a vacuum, the degreased body was loaded into a container of boron nitride, and sintered under the sintering conditions 1 to 11 shown in Table 3 using an electric furnace of a carbon heater, A sufficiently densified sintered body having a thickness of about 0.6 mm was obtained. Evaluation of the obtained sintered body was performed in the same manner as in Example 1, and the results shown in Table 6 were obtained.

【0037】[0037]

【表6】 [Table 6]

【0038】〔実施例21〕表1のcの窒化珪素粉を用
い、表2に示す配合Cで焼結助剤を添加し実施例2と同
様にして押し出し成形法にて得られたシートを積層した
後、ステンレスの耐圧容器に入れ、真空にした後、積層
面と垂直な方向から60℃、200kg/cm2の圧力
にて加圧成形した。得られた成形体を積層面に直角にな
るよう厚さ0.8mmに切り出し成形体とした。得られ
たシートは打ち抜きプレス機にて所定の大きさに打ち抜
き成形体とした。得られた成形体は、空気中500℃に
て脱脂した後、カーボンヒーターの電気炉を用いて表3
に示す焼成条件2にて焼結し、厚さ約0.6mmの焼結
体を得た。得られた焼結体の評価は実施例1と同様に行
い、表7に示す結果を得た。
Example 21 A sheet obtained by the extrusion molding method in the same manner as in Example 2 using the silicon nitride powder of Table 1c and a sintering aid in the composition C shown in Table 2 was used. After lamination, it was placed in a stainless steel pressure-resistant container, evacuated, and pressure-formed at a temperature of 60 ° C. and a pressure of 200 kg / cm 2 from a direction perpendicular to the lamination surface. The obtained molded body was cut out to a thickness of 0.8 mm so as to be perpendicular to the lamination surface to obtain a molded body. The obtained sheet was punched and formed into a predetermined size by a punching press machine. The obtained molded body was degreased in air at 500 ° C., and then subjected to Table 3 using a carbon heater electric furnace.
Under the sintering condition 2 shown in Table 2 to obtain a sintered body having a thickness of about 0.6 mm. Evaluation of the obtained sintered body was performed in the same manner as in Example 1, and the results shown in Table 7 were obtained.

【0039】[0039]

【表7】 [Table 7]

【0040】〔実施例22〕実施例21と同様にしてシ
ートを積層した後、静水圧加圧装置で10tの荷重を5
分かけて加圧成形し、得られた成形体を積層面に直角に
なるよう厚さ0.8mmに切り出し成形体とした。得ら
れたシートは打ち抜きプレス機にて所定の大きさに打ち
抜き成形体とした。得られた成形体は、空気中500℃
にて脱脂した後、カーボンヒーターの電気炉を用いて表
3に示す焼結条件2にて焼結し、厚さ0.6mmの焼結
体を得た。得られた焼結体の評価は実施例1と同様に行
い、表7に示す結果を得た。
Example 22 After laminating the sheets in the same manner as in Example 21, a load of 10 t was applied to the sheet by using a hydrostatic pressure press.
The resulting molded body was cut out to a thickness of 0.8 mm so as to be perpendicular to the lamination surface to obtain a molded body. The obtained sheet was punched and formed into a predetermined size by a punching press machine. The obtained molded body is in air at 500 ° C.
After degreased in, sintering was performed under the sintering conditions 2 shown in Table 3 using an electric furnace of a carbon heater to obtain a sintered body having a thickness of 0.6 mm. Evaluation of the obtained sintered body was performed in the same manner as in Example 1, and the results shown in Table 7 were obtained.

【0041】〔実施例23、24〕実施例23は実施例
2と、実施例24は実施例21と同様にして作製した
後、研削加工して40×60×0.6mmの窒化珪素焼
結体にしたものを用いた。それぞれの焼結体の熱伝導率
は実施例23が面方向で172W/mK、実施例24が
面に垂直方向で162W/mKであった。
[Embodiments 23 and 24] The embodiment 23 and the embodiment 24 are manufactured in the same manner as in the embodiment 21 and then ground, and then sintered to a size of 40.times.60.times.0.6 mm. The body was used. The thermal conductivity of each sintered body was 172 W / mK in Example 23 in the plane direction, and 162 W / mK in Example 24 in the direction perpendicular to the plane.

【0042】次に、前記窒化珪素焼結板の両面にAg−
Cu−Ti系ロウ材をもちいて回路側に0.3mmの銅
板を、その反対側に0.15mmの銅板を積層し、10
-2Pa以下の真空中で835℃、40分間加熱接合し、
複合体を作製した。次に、エッチングレジストで回路パ
ターンを印刷し、硬化処理後、塩化第2鉄水溶液を用い
てパターン形成を行い回路基板を作製した。これらの回
路基板を−40℃から125℃の温度幅で1000回の
ヒートサイクル試験を行った後、外観検査および超音波
探傷装置にて亀裂や銅板の剥離等の異常がないかどうか
調べたが、全く認められなかった。
Next, Ag-
Using a Cu-Ti-based brazing material, a 0.3 mm copper plate is laminated on the circuit side and a 0.15 mm copper plate is laminated on the other side.
Heat bonding at 835 ° C for 40 minutes in a vacuum of -2 Pa or less,
A composite was made. Next, a circuit pattern was printed with an etching resist, and after a curing treatment, a pattern was formed using an aqueous ferric chloride solution to produce a circuit board. These circuit boards were subjected to 1000 heat cycle tests at a temperature range of −40 ° C. to 125 ° C., and then visually inspected and inspected for abnormalities such as cracks and peeling of the copper plate by an ultrasonic flaw detector. , Was not recognized at all.

【0043】〔実施例25、26〕実施例25は実施例
23と、実施例26は実施例24と同様にして得られた
40×60×0.6mmのそれぞれの窒化珪素焼結体の
両面にAl−Si系ロウ材をもちいて0.4mmのアル
ミニウム板を積層し、10-2Pa以下の真空中で600
℃、30分間加熱接合し、複合体を作製した。次に、エ
ッチングレジストで回路パターンを印刷し、硬化処理
後、塩化第2鉄水溶液を用いてパターン形成を行い回路
基板を作製した。これらの回路基板を−40℃から12
5℃の温度幅で1000回のヒートサイクル試験を行っ
た後、外観検査および超音波探傷装置にて亀裂や銅板の
剥離等の異常がないかどうか調べたが、全く認められな
かった。
[Examples 25 and 26] In Examples 25 and 26, both surfaces of a silicon nitride sintered body of 40 × 60 × 0.6 mm obtained in the same manner as in Example 24 were obtained. A 0.4 mm aluminum plate is laminated using an Al-Si brazing material, and 600 mm in a vacuum of 10 -2 Pa or less.
Heat bonding was performed at 30 ° C. for 30 minutes to produce a composite. Next, a circuit pattern was printed with an etching resist, and after a curing treatment, a pattern was formed using an aqueous ferric chloride solution to produce a circuit board. These circuit boards are moved from -40 ° C to 12
After performing a heat cycle test 1000 times at a temperature range of 5 ° C., an appearance inspection and an ultrasonic flaw detector were used to check for any abnormality such as cracks or peeling of the copper plate, but none were found.

【0044】[0044]

【発明の効果】本発明の窒化珪素焼結体は、焼結体内部
に特定元素を特定量以下に限定した、特定サイズの窒化
珪素粒子が一方向に配向していて、その方向の熱伝導率
が160W/mK以上に達するという特徴を有している
ので、従来の窒化珪素焼結体では適用できなかったよう
な、高発熱性素子等を搭載するパワーデバイス搭載用回
路基板材料等として、或いは、電鉄、自動車、機器装置
等の広い分野で放熱部品や材料等として用いることがで
きる。
According to the silicon nitride sintered body of the present invention, silicon nitride particles of a specific size in which a specific element is limited to a specific amount or less in a sintered body are oriented in one direction, and heat conduction in that direction is performed. Since it has the characteristic that the rate reaches 160 W / mK or more, as a circuit board material for a power device mounting a high heat-generating element or the like, which cannot be applied in a conventional silicon nitride sintered body, Alternatively, it can be used as a heat dissipating component or material in a wide range of fields such as electric railways, automobiles, and equipment.

【0045】本発明の窒化珪素焼結体の製造方法は、前
記の窒化珪素焼結体を再現性良く、容易に製造できるの
で、産業上非常に有用である。
The method for producing a silicon nitride sintered body of the present invention is industrially very useful because the silicon nitride sintered body can be easily produced with good reproducibility.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊吹山 正浩 東京都町田市旭町3丁目5番1号 電気化 学工業株式会社中央研究所内 Fターム(参考) 4G001 BA08 BA09 BA12 BA14 BA32 BA71 BA73 BB08 BB09 BB12 BB14 BB32 BB71 BB73 BC12 BC14 BC22 BC52 BD03 BE12 BE22 BE31  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masahiro Ibukiyama 3-5-1 Asahimachi, Machida-shi, Tokyo Denki Kagaku Kogyo Co., Ltd. Central Research Laboratory F-term (reference) 4G001 BA08 BA09 BA12 BA14 BA32 BA71 BA73 BB08 BB09 BB12 BB14 BB32 BB71 BB73 BC12 BC14 BC22 BC52 BD03 BE12 BE22 BE31

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】酸素、Al、Ca、Feの含有量の合計が
1000ppm以下であり、かつ短軸径が2μm以上で
ある窒化珪素粒子を含有し、しかも前記短軸径が2μm
以上である窒化珪素粒子が一方向に配向していることを
特徴とする窒化珪素焼結体。
1. A silicon nitride particle having a total content of oxygen, Al, Ca and Fe of 1000 ppm or less and a minor axis diameter of 2 μm or more, and said minor axis diameter is 2 μm or less.
A silicon nitride sintered body characterized in that the silicon nitride particles are oriented in one direction.
【請求項2】短軸径が2μm以上の窒化珪素粒子が配向
している方向において、窒化珪素の(002)面のX線
回折強度I(002)と(200)面のX線回折強度I
(200)の比I(002)/I(200)が40以上
であることを特徴とする請求項1記載の窒化珪素焼結
体。
2. The X-ray diffraction intensity I (002) of the (002) plane and the X-ray diffraction intensity I (200) of the silicon nitride in the direction in which silicon nitride particles having a minor axis diameter of 2 μm or more are oriented.
2. The silicon nitride sintered body according to claim 1, wherein a ratio I (002) / I (200) of (200) is 40 or more. 3.
【請求項3】短軸径が2μm以上である窒化珪素粒子が
窒化珪素焼結体全体に対して20〜60面積%を占める
ことを特徴とする請求項1又は請求項2記載の窒化珪素
焼結体。
3. The silicon nitride sintered body according to claim 1, wherein the silicon nitride particles having a minor axis diameter of 2 μm or more occupy 20 to 60% by area of the whole silicon nitride sintered body. Union.
【請求項4】任意の一方向の熱伝導率が160W/mK
以上であることを特徴とする請求項1、請求項2又は請
求項3記載の窒化珪素焼結体。
4. The thermal conductivity in any one direction is 160 W / mK.
4. The silicon nitride sintered body according to claim 1, 2 or 3, wherein:
【請求項5】窒化珪素粉末に少なくともイットリウム及
び/又はランタノイド族元素の化合物の一種以上を添加
してなる原料粉末を成形した後に焼結する窒化珪素焼結
体の製造方法であって、平均アスペクト比が2.5以上
である窒化珪素粒子を2〜30重量%を含み、Alを3
00ppm以下、酸素を1重量%以下含有し、β率が3
0%以上である窒化珪素粉末を用い、2μm以上の短軸
径を有する窒化珪素粒子の酸素、Al、Ca、Feの含
有量の合計が1000ppm以下となるように窒化珪素
粒子を成長させながら焼結することを特徴とする窒化珪
素焼結体の製造方法。
5. A method for producing a silicon nitride sintered body, comprising forming a raw material powder obtained by adding at least one compound of yttrium and / or a lanthanoid group element to a silicon nitride powder, followed by sintering. Containing 2 to 30% by weight of silicon nitride particles having a ratio of 2.5 or more;
Contains not more than 00 ppm and not more than 1% by weight of oxygen, and has a β ratio of 3
Using silicon nitride powder of 0% or more, firing while growing silicon nitride particles such that the total content of oxygen, Al, Ca, and Fe of the silicon nitride particles having a minor axis diameter of 2 μm or more is 1000 ppm or less. A method for producing a silicon nitride sintered body.
【請求項6】成形操作に於いて、原料粉末に有機質バイ
ンダーを添加し、窒化珪素粉末中の窒化珪素粒子が一方
向に配向するように成形したグリーンシートとし、脱脂
することを特徴とする請求項5項記載の窒化珪素焼結体
の製造方法。
6. A green sheet formed by adding an organic binder to a raw material powder in a molding operation so that silicon nitride particles in the silicon nitride powder are oriented in one direction, and degreased. Item 6. The method for producing a silicon nitride sintered body according to Item 5.
【請求項7】成形操作に於いて、原料粉末に有機質バイ
ンダーを添加し、窒化珪素粉末中の窒化珪素粒子が一方
向に配向するように成形したグリーンシートを得た後、
該グリーンシートを複数積層した状態で積層方向に切断
して成形体とし、脱脂することを特徴とする請求項5項
記載の窒化珪素焼結体の製造方法。
7. In a molding operation, an organic binder is added to the raw material powder to obtain a green sheet molded so that the silicon nitride particles in the silicon nitride powder are oriented in one direction.
6. The method for producing a silicon nitride sintered body according to claim 5, wherein a plurality of the green sheets are cut in a laminating direction in a laminating direction to form a molded body and degreased.
【請求項8】焼結操作に於いて、昇温速度が少なくとも
1500℃を越えてからは0.5〜10℃/minと
し、焼結温度は1800℃以上であって、しかも焼結温
度と焼結時間の積が2×104℃・Hr〜2×105℃・
Hrとすることを特徴とする請求項5、請求項6又は請
求項7記載の窒化珪素焼結体の製造方法。
8. The sintering operation is performed at a rate of 0.5 to 10 ° C./min after the rate of temperature rise exceeds at least 1500 ° C., the sintering temperature is 1800 ° C. or more, and the sintering temperature and The product of sintering time is 2 × 10 4 ℃ ・ Hr ~ 2 × 10 5 ℃ ・
8. The method for producing a silicon nitride sintered body according to claim 5, wherein the temperature is Hr.
【請求項9】請求項1、請求項2、請求項3又は請求項
4記載の窒化珪素焼結体を用いてなることを特徴とする
窒化珪素回路基板。
9. A silicon nitride circuit substrate comprising the silicon nitride sintered body according to claim 1, 2, 3, or 4.
【請求項10】回路基板の垂直方向に、窒化珪素焼結体
の高熱伝導率方向が配向されていることを特徴とする請
求項9記載の窒化珪素回路基板。
10. The silicon nitride circuit board according to claim 9, wherein the high thermal conductivity direction of the silicon nitride sintered body is oriented in a direction perpendicular to the circuit board.
JP11192661A 1999-07-07 1999-07-07 Silicon nitride sintered compact and substrate using the same Pending JP2001019555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11192661A JP2001019555A (en) 1999-07-07 1999-07-07 Silicon nitride sintered compact and substrate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11192661A JP2001019555A (en) 1999-07-07 1999-07-07 Silicon nitride sintered compact and substrate using the same

Publications (1)

Publication Number Publication Date
JP2001019555A true JP2001019555A (en) 2001-01-23

Family

ID=16294953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11192661A Pending JP2001019555A (en) 1999-07-07 1999-07-07 Silicon nitride sintered compact and substrate using the same

Country Status (1)

Country Link
JP (1) JP2001019555A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7915533B2 (en) 2005-04-28 2011-03-29 Hitachi Metals, Ltd. Silicon nitride substrate, a manufacturing method of the silicon nitride substrate, a silicon nitride wiring board using the silicon nitride substrate, and semiconductor module
US7948075B2 (en) 2008-03-10 2011-05-24 Hitachi Metals, Ltd. Silicon nitride substrate, method of manufacturing the same, and silicon nitride circuit board and semiconductor module using the same
JP2017216422A (en) * 2016-06-02 2017-12-07 住友電気工業株式会社 Method for manufacturing sheet material, and sheet material
WO2022255092A1 (en) * 2021-06-04 2022-12-08 日本ゼオン株式会社 Ceramic sheet and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930866A (en) * 1995-07-21 1997-02-04 Nissan Motor Co Ltd Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930866A (en) * 1995-07-21 1997-02-04 Nissan Motor Co Ltd Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7915533B2 (en) 2005-04-28 2011-03-29 Hitachi Metals, Ltd. Silicon nitride substrate, a manufacturing method of the silicon nitride substrate, a silicon nitride wiring board using the silicon nitride substrate, and semiconductor module
US7948075B2 (en) 2008-03-10 2011-05-24 Hitachi Metals, Ltd. Silicon nitride substrate, method of manufacturing the same, and silicon nitride circuit board and semiconductor module using the same
JP2017216422A (en) * 2016-06-02 2017-12-07 住友電気工業株式会社 Method for manufacturing sheet material, and sheet material
WO2022255092A1 (en) * 2021-06-04 2022-12-08 日本ゼオン株式会社 Ceramic sheet and method for producing same

Similar Documents

Publication Publication Date Title
JP5245405B2 (en) Silicon nitride substrate, manufacturing method thereof, silicon nitride wiring substrate using the same, and semiconductor module
JPWO2018181606A1 (en) Heat transfer member and heat dissipation structure including the same
JP2018184333A (en) Method of manufacturing silicon nitride substrate and silicon nitride substrate
WO2007004579A1 (en) Method for producing ceramic sheet, ceramic substrate using ceramic sheet obtained by such method, and use thereof
JP3565425B2 (en) Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body
JPWO2019235593A1 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP4404602B2 (en) Ceramics-metal composite and high heat conduction heat dissipation substrate using the same
JP2000128654A (en) Silicon nitride composite substrate
JP2001019555A (en) Silicon nitride sintered compact and substrate using the same
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JPH09328365A (en) Silicon nitride powder, sintered silicon nitride and circuit board made thereof
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
JP2002029849A (en) Sintered silicon nitride compact and method for manufacturing the same as well as circuit board using the same
JP3106160B2 (en) Aluminum nitride sintered body and method for producing the same
JP3683067B2 (en) Aluminum nitride sintered body
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP4142556B2 (en) Aluminum nitride sintered body, manufacturing method and use thereof
JP4347206B2 (en) Manufacturing method of ceramic sheet, ceramic substrate using the same, and use thereof
JP2013182983A (en) Silicon nitride circuit board and module using the same
JP2001019557A (en) Silicon nitride sintered compact, its production and substrate
JP2002356376A (en) Wiring substrate and method of manufacturing the same
JPH11100273A (en) Silicon nitride sintered compact, its production and circuit board
WO2024111483A1 (en) Ceramic sintered body, method for producing same, bonded body, and power module
WO2022054685A1 (en) Multilayer body, heat dissipation structure and semiconductor module
JP5043260B2 (en) Aluminum nitride sintered body, manufacturing method and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729