JPH11100273A - Silicon nitride sintered compact, its production and circuit board - Google Patents

Silicon nitride sintered compact, its production and circuit board

Info

Publication number
JPH11100273A
JPH11100273A JP9261560A JP26156097A JPH11100273A JP H11100273 A JPH11100273 A JP H11100273A JP 9261560 A JP9261560 A JP 9261560A JP 26156097 A JP26156097 A JP 26156097A JP H11100273 A JPH11100273 A JP H11100273A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
sio
phase
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9261560A
Other languages
Japanese (ja)
Inventor
Hideki Hirotsuru
秀樹 廣津留
Ryuichi Terasaki
隆一 寺崎
Kazuyuki Hiruta
和幸 蛭田
Hiroshi Yokota
博 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP9261560A priority Critical patent/JPH11100273A/en
Publication of JPH11100273A publication Critical patent/JPH11100273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a sintered compact excellent in mechanical property and thermal conductive property by containing S3 N4 , one or more kinds of Y and lanthanoid group elements and one or more kinds of Hf, Ti, Zr in a specific ratio expressed in terms of oxide and specifying the ratio of SiO2 /(SiO2 +oxide of lanthanoid element). SOLUTION: The Si3 N4 based sintered compact contains 86-98.8 mol.% Si3 N4 , 1-10 mol.% one or more kinds of Y and the lanthanoid elements expressed in terms of oxide and 0.2-4 mol.% one or more kinds of Hf, Ti and Zr expressed in terms of oxide and the molar ratio of SiO2 (SiO2 +oxide of lanthanoid group element or the like) is 0.01-0.1 when the quantity of oxygen in the sintered compact is expressed in terms of SiO2 and total content of Al, Be and Zr is <=2,900 ppm. The sintered compact is >=95% in the density, 0.5-3 μm in the average particle diameter of β-type Si3 N4 particle, >=70 W/(m.k) in the heat conductivity, >=500MPa in the three-point bending strength and >=6MPa.m<1/2> in fracture toughness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体用基板をは
じめ、自動車、機械装置等の幅広い分野で使用される各
種構造部品の素材として利用でき、強度、破壊靭性等の
機械的特性に優れ且つ熱伝導率等の放熱特性に優れた窒
化珪素質焼結体及びそれを用いた窒化珪素質回路基板に
関する。
The present invention can be used as a material for various structural components used in a wide range of fields such as semiconductor substrates, automobiles, machinery and the like, and has excellent mechanical properties such as strength and fracture toughness. The present invention relates to a silicon nitride sintered body having excellent heat dissipation characteristics such as thermal conductivity and a silicon nitride circuit board using the same.

【0002】[0002]

【従来の技術】窒化珪素質焼結体(以下、単に窒化珪素
セラミックスともいう)は、常温及び高温で化学的に安
定な材料であり、優れた機械的特性を有するので、自動
車用エンジン部材、摺動部材等として適した材料であ
る。また、高い絶縁性を利用して、電気絶縁材料として
も使用されている。
2. Description of the Related Art A silicon nitride-based sintered body (hereinafter, also simply referred to as silicon nitride ceramics) is a material which is chemically stable at ordinary and high temperatures and has excellent mechanical properties. It is a material suitable as a sliding member or the like. It is also used as an electrical insulating material by utilizing high insulating properties.

【0003】しかし、窒化珪素は共有結合性の強い物質
であり、優れた高温特性を有する反面、難焼結性の物質
である。この為、窒化珪素セラミックスは、Y2 3
の酸化物を焼結助剤として添加し、焼結性を高めて緻密
化させている。これらの焼結助剤及び原料である窒化珪
素粉末中に含まれるSiO2 が窒化珪素セラミックスの
粒界相を形成し、機械的特性や熱的特性に影響を及ぼ
す。
[0003] However, silicon nitride is a substance having a strong covalent bond and has excellent high-temperature characteristics, but is a substance which is difficult to be sintered. For this reason, silicon nitride ceramics are added with an oxide such as Y 2 O 3 as a sintering aid to increase the sinterability and make the ceramics denser. These sintering aids and SiO 2 contained in the silicon nitride powder as a raw material form a grain boundary phase of the silicon nitride ceramics, and affect mechanical and thermal properties.

【0004】従来の窒化珪素セラミックスは、上述した
とおり、窒化珪素粉末に焼結助剤を添加し、成形した
後、得られた成形体を1600℃〜2200℃の高温で
所定時間焼成し、得られた焼結体を所望の形状に研削加
工して製造されている。
[0004] As described above, conventional silicon nitride ceramics are obtained by adding a sintering aid to silicon nitride powder, molding the resultant, and firing the obtained molded body at a high temperature of 1600 ° C to 2200 ° C for a predetermined time. It is manufactured by grinding the obtained sintered body into a desired shape.

【0005】一方、半導体回路用の基板としては、電気
絶縁性に加えて、優れた放熱特性を得ることができるよ
うに高い熱伝導率が要求される。従来からアルミナ(A
23 )焼結体などのように、絶縁性に優れたセラミ
ックス基板の表面に、導電性を有する金属回路層をろう
材で接合し、更に金属回路層の所定位置に半導体素子を
搭載した回路基板が広く普及している。
[0005] On the other hand, a substrate for a semiconductor circuit is required to have high thermal conductivity so as to obtain excellent heat dissipation characteristics in addition to electric insulation. Conventionally, alumina (A
l 2 O 3 ) A conductive metal circuit layer is joined to the surface of a ceramic substrate having excellent insulation properties, such as a sintered body, with a brazing material, and a semiconductor element is mounted on a predetermined position of the metal circuit layer. Circuit boards are widely used.

【0006】近年、回路基板の小型化、半導体素子の高
集積化等が進むに従い、これらの回路基板における絶縁
材料の放熱特性の向上が望まれている。この様な材料と
してはBeOを添加した炭化珪素(SiC)や窒化アル
ミニウム(AlN)等が開発されている。しかし、Si
CやAlNは熱伝導率は高いが、強度や破壊靭性といっ
た機械的特性が低いため、耐熱サイクル特性や取り扱い
時の強度等に問題があった。
In recent years, as circuit boards have become smaller and semiconductor elements have become more highly integrated, it has been desired to improve the heat radiation characteristics of insulating materials in these circuit boards. As such a material, silicon carbide (SiC) and aluminum nitride (AlN) to which BeO is added have been developed. However, Si
C and AlN have high thermal conductivity, but have low mechanical properties such as strength and fracture toughness, and thus have problems in heat cycle characteristics and handling strength.

【0007】窒化珪素質焼結体は、強度や破壊靭性等の
機械的特性に優れるため、構造材料への適用が進んでい
る材料ではあるが、SiCやAlNに比べて熱伝導率が
低いため、高い放熱特性が要求される電気絶縁基板への
適用は十分にはすすんでいなかった。窒化珪素の熱伝導
率が低い理由は、窒化珪素を緻密化させる為に添加した
焼結助剤成分の一部が、窒化珪素粒内に固溶したり、粒
界に遍在したりするため、フォノン(セラミックス中で
熱を伝達する機構)が散乱されることが原因である。例
えば、一般的な焼結助剤であるY2 3 とAl2 3
添加した焼結体では、熱伝導率は20W/(m・K)程
度であった。
[0007] Silicon nitride sintered bodies are excellent in mechanical properties such as strength and fracture toughness, and thus are being applied to structural materials. However, they have low thermal conductivity compared to SiC and AlN. However, it has not been sufficiently applied to an electrical insulating substrate requiring high heat radiation characteristics. The reason that the thermal conductivity of silicon nitride is low is that a part of the sintering aid component added to densify silicon nitride is dissolved in silicon nitride grains or is ubiquitous in grain boundaries. This is because phonons (mechanisms for transferring heat in ceramics) are scattered. For example, in a sintered body to which Y 2 O 3 and Al 2 O 3 , which are general sintering aids, are added, the thermal conductivity is about 20 W / (m · K).

【0008】窒化珪素粒子内にAl及び酸素が存在する
と局部的にサイアロンを形成し、このサイアロンの熱伝
導率が非常に低いため、Al系の焼結助剤を用いた窒化
珪素焼結体の熱伝導率は低くなってしまう。窒化珪素
は、電気絶縁材料であるため、フォノンにより熱が運ば
れる。フォノンは格子の乱れ、粒界相、気孔等により散
乱されるので、窒化珪素の熱伝導率も、窒化珪素の結晶
構造、焼結助剤の種類、結晶粒内への固溶などの影響を
受ける。窒化珪素の理想的な熱伝導率は、組成、結晶構
造等に基づけば200W/(m・K)以上であると推測
されているが、実際に窒化珪素の単結晶を合成し実用用
途に適用することは難しく、一般には焼結体として製造
されている。
When Al and oxygen are present in the silicon nitride particles, a sialon is locally formed, and the thermal conductivity of the sialon is extremely low. Therefore, a silicon nitride sintered body using an Al-based sintering aid is used. Thermal conductivity will be low. Since silicon nitride is an electrically insulating material, heat is carried by phonons. Since phonons are scattered by lattice disorder, grain boundary phase, pores, etc., the thermal conductivity of silicon nitride also depends on the crystal structure of silicon nitride, the type of sintering aid, and the solid solution in the crystal grains. receive. The ideal thermal conductivity of silicon nitride is estimated to be 200 W / (m · K) or more based on the composition, crystal structure, etc., but a silicon nitride single crystal is actually synthesized and applied to practical use. It is difficult to do so, and is generally manufactured as a sintered body.

【0009】窒化珪素の焼結は、窒化珪素粒子が焼結助
剤と窒化珪素原料粉末中に含まれるSiO2 成分とから
なる液相に溶解・析出しながら進むので、得られる窒化
珪素焼結体中の個々の窒化珪素粒子は、単結晶に近く、
比較的高い熱伝導率が期待されるのであるが、実際の窒
化珪素焼結体においては、前述した粒界相や窒化珪素粒
内への不純物の固溶の影響のほうが大きく、通常の製造
条件によるならば、理論熱伝導率の1〜2割程度の熱伝
導率しか得られないのが実状である。
The sintering of silicon nitride proceeds while the silicon nitride particles dissolve and precipitate in a liquid phase comprising a sintering aid and a SiO 2 component contained in the silicon nitride raw material powder. Individual silicon nitride particles in the body are close to a single crystal,
Although relatively high thermal conductivity is expected, in the actual silicon nitride sintered body, the influence of the solid solution of the impurities in the grain boundary phase and silicon nitride grains described above is larger, and the usual manufacturing conditions According to the above, in reality, only about 10 to 20% of the theoretical thermal conductivity can be obtained.

【0010】この為、窒化珪素焼結体の高熱伝導化につ
いては、日本セラミックス協会学術論文誌1989年1
月号56〜62頁に記載されているとおりに、Alを含
有する焼結助剤を用いず、Y2 3 のみを添加してHI
P(熱間等方圧)焼結することにより、熱伝導率が70
W/(m・K)の焼結体を得ている。
[0010] For this reason, the high thermal conductivity of a silicon nitride sintered body has been described in the academic journal of the Ceramic Society of Japan, January 1989.
As described in Monthly Pages 56 to 62, HI was obtained by adding only Y 2 O 3 without using a sintering aid containing Al.
P (hot isostatic pressure) sintering results in a thermal conductivity of 70
A sintered body of W / (m · K) is obtained.

【0011】また、特開平4ー175268号公報や特
開平4−219371号公報に記載されているとおり
に、焼結体中のAl、酸素含有量を低下させ、Ti、Z
r、Hf等の金属を添加し、場合によってはY2 3
焼結助剤として添加することにより、熱伝導率40W/
(m・K)以上の焼結体を得る方法が知られている。
Further, as described in JP-A-4-175268 and JP-A-4-219371, the contents of Al and oxygen in the sintered body are reduced, and the contents of Ti and Z are reduced.
By adding metals such as r and Hf, and optionally adding Y 2 O 3 as a sintering aid, a thermal conductivity of 40 W /
A method for obtaining a sintered body of (m · K) or more is known.

【0012】更に、日本セラミックス協会学術論文誌1
996年1月号49〜53頁には、焼結助剤として少量
のY2 3 及びNd2 3 を用い、2200℃と非常に
高い温度で4時間、HIP焼結することにより、熱伝導
率が100W/(m・K)以上の窒化珪素質焼結体を得
ている。
Further, The Ceramic Society of Japan 1
In 996, January, pp 49-53, using a small amount of Y 2 O 3 and Nd 2 O 3 as a sintering aid, 2200 ° C. and a very high temperature for 4 hours, by HIP sintering, heat A silicon nitride sintered body having a conductivity of 100 W / (m · K) or more is obtained.

【0013】[0013]

【発明が解決しようとする課題】従来の電気絶縁性高熱
伝導セラミックスとして知られているSiC、BeO、
AlNは、熱伝導率が100W/(m・K)以上と高
く、放熱特性には優れているが、強度、破壊靭性等の機
械的特性が低い。この為、回路基板等として用いる場
合、実装工程において破損を生じたり、半導体素子の作
動に伴う繰り返し熱サイクルを受けて、金属回路層との
接合部付近のセラミックス基板にクラックが発生し易
く、耐熱サイクル特性及び信頼性が低いという問題があ
った。
SUMMARY OF THE INVENTION Conventionally known SiC, BeO,
AlN has a high thermal conductivity of 100 W / (m · K) or more and is excellent in heat radiation properties, but has low mechanical properties such as strength and fracture toughness. Therefore, when used as a circuit board or the like, the ceramic substrate near the joint with the metal circuit layer is liable to crack due to damage in the mounting process or repeated thermal cycling accompanying the operation of the semiconductor element, and heat resistance There was a problem that cycle characteristics and reliability were low.

【0014】また、従来の窒化珪素セラミックスは、強
度、破壊靭性等の機械的特性は優れているものの、熱伝
導特性に関しては、上記したとおりに、SiC、Be
O、AlNセラミックス等に比べ低いこと、更に、高熱
伝導率を有するものを得ようとすると、Al等の不純物
が少ない高純度の原料粉末を用いて、高温でHIP焼結
等の特殊な焼結法を用いなければならず、得られる焼結
体が非常に高価になってしまい、半導体用回路基板等の
電子材料用途には殆ど実用化されていないのが現状であ
る。
Although conventional silicon nitride ceramics have excellent mechanical properties such as strength and fracture toughness, their thermal conductivity properties are, as described above, SiC and Be.
In order to obtain a material having a lower thermal conductivity than O and AlN ceramics, and a material having a high thermal conductivity, a special sintering such as HIP sintering at a high temperature using a high-purity raw material powder containing few impurities such as Al is used. It is necessary to use the method, and the obtained sintered body is very expensive, and at present, it is hardly practically used for electronic materials such as circuit boards for semiconductors.

【0015】本発明は、上記の事情に鑑みなされたもの
であって、優れた強度、破壊靭性を有し、機械的特性に
優れているいると共に、優れた熱伝導特性を持つことに
より、放熱特性及び信頼性に優れる半導体用回路基板や
バルブ等の自動車部品の素材として好適な窒化珪素質焼
結体を安価に提供することを目的としている。
The present invention has been made in view of the above-mentioned circumstances, and has excellent strength, fracture toughness, excellent mechanical properties, and excellent heat conduction properties. It is an object of the present invention to provide inexpensively a silicon nitride sintered body that is excellent in characteristics and reliability and is suitable as a material for automotive parts such as semiconductor circuit boards and valves.

【0016】[0016]

【課題を解決するための手段】本発明者は上記目的を達
成するために、窒化珪素質焼結体を得るための原料粉末
の粉体特性、焼結助剤の組成、量、更には焼結条件等に
関して鋭意検討した結果、強度、破壊靭性等の機械的特
性に優れ且つ従来のものよりも大幅に高い熱伝導率有す
る窒化珪素質焼結体を得て、本発明を完成するに至った
ものである。
Means for Solving the Problems To achieve the above object, the present inventor has set forth the powder characteristics of the raw material powder, the composition and amount of the sintering aid, and the sintering aid for obtaining a silicon nitride based sintered body. As a result of intensive studies on the bonding conditions and the like, a silicon nitride based sintered body having excellent mechanical properties such as strength and fracture toughness and having a significantly higher thermal conductivity than conventional ones was obtained, and the present invention was completed. It is a thing.

【0017】すなわち、本発明の窒化珪素質焼結体は、
窒化珪素(Si3 4 )86〜98.8mol%、イッ
トリウム(Y)及びランタノイド族元素からなる群から
選ばれる1種以上を酸化物(Re2 3 )換算で1〜1
0mol%、更にHf、Ti、Zrからなる群から選ば
れる1種以上を酸化物(MO2 )換算で0.2〜4mo
l%含有し、焼結体中の全酸素量よりRe2 3 及びM
2 に帰属する酸素量を除いた残部をSiO2 とすると
きに、SiO2 /(Re2 3 +SiO2 )のモル比が
0.05〜0.5であり、窒化珪素粒子の平均粒子径
(平均短軸径)が0.5〜3μm、焼結体中のAl、B
e及びLiの含有量の合計が2000ppm以下であ
り、しかも熱伝導率が70W/(m・K)以上であるこ
とを特徴とする窒化珪素質焼結体である。
That is, the silicon nitride sintered body of the present invention
86 to 98.8 mol% of silicon nitride (Si 3 N 4 ), at least one element selected from the group consisting of yttrium (Y) and lanthanoid group elements is 1 to 1 in terms of oxide (Re 2 O 3 ).
0 mol%, and at least one member selected from the group consisting of Hf, Ti, and Zr in an amount of 0.2 to 4 mol in terms of oxide (MO 2 ).
1%, and Re 2 O 3 and M
The remainder excluding the amount of oxygen belonging to O 2 when the SiO 2, the molar ratio of SiO 2 / (Re 2 O 3 + SiO 2) is from 0.05 to 0.5, the average particle of the silicon nitride particles The diameter (average minor axis diameter) is 0.5 to 3 μm, and Al and B in the sintered body
A silicon nitride based sintered body characterized in that the total content of e and Li is 2000 ppm or less and the thermal conductivity is 70 W / (m · K) or more.

【0018】また、本発明の窒化珪素質焼結体は、X線
回折による粒界結晶相としてK相(ReSi2 N)、J
相(Re4 Si2 7 4 )、H相(Re10Si7 23
4)、Re2 Si3 3 4 、Re2 SiO5 及びR
2 3 の1種以上を含有し、K相、J相、H相、Re
2 Si3 3 4 、Re2 SiO5 及びRe2 3 の各
々のメインピーク強度の合計(IGB)が、β型窒化珪素
の(200)面のピーク強度(ISN)に対し0.03〜
0.15であることを特徴とする前記の窒化珪素質焼結
体である。
The silicon nitride sintered body of the present invention has a K phase (ReSi 2 N),
Phase (Re 4 Si 2 O 7 N 4 ), H phase (Re 10 Si 7 O 23
N 4 ), Re 2 Si 3 O 3 N 4 , Re 2 SiO 5 and R
e 2 O 3 , K phase, J phase, H phase, Re phase
The total (I GB ) of the main peak intensities of each of 2 Si 3 O 3 N 4 , Re 2 SiO 5 and Re 2 O 3 is 0 with respect to the peak intensity ( ISN ) of the (200) plane of β-type silicon nitride. .03-
0.15 is the silicon nitride based sintered body described above.

【0019】更に本発明は、Al、Be及びLiの合計
含有量が2000ppm以下であり、α率が50%以下
の窒化珪素粉末86〜98.8mol%に、イットリウ
ム(Y)及びランタノイド族元素からなる群の1種以上
を酸化物換算で1〜10mol%、更にHf、Ti、Z
rからなる群から選ばれる1種以上を0.2〜4mol
%、窒化珪素粉末中の酸素量をSiO2 換算したSiO
2 量及び添加するSiO2 量の合計が、SiO2 /(R
2 3 +SiO2 )のモル比が0.05〜0.5とな
るように添加混合し、1MPa未満の窒素加圧雰囲気
中、温度1750〜2000℃で焼成することを特徴と
する前記の窒化珪素質焼結体の製造方法である。
Further, according to the present invention, 86 to 98.8 mol% of silicon nitride powder having a total content of Al, Be and Li of not more than 2000 ppm and an α ratio of not more than 50% is prepared from yttrium (Y) and lanthanoid group elements. 1 to 10 mol% in terms of oxide, and further, Hf, Ti, Z
0.2 to 4 mol of at least one member selected from the group consisting of
%, The amount of oxygen in the silicon nitride powder is calculated as SiO 2
Total 2 amount and added to SiO 2 weight, SiO 2 / (R
e 2 O 3 + SiO 2 ) is added and mixed so as to have a molar ratio of 0.05 to 0.5, and fired at a temperature of 1750 to 2000 ° C. in a nitrogen pressurized atmosphere of less than 1 MPa. This is a method for producing a silicon nitride-based sintered body.

【0020】加えて、本発明は、前記窒化珪素質焼結体
を用いてなる回路基板である。
In addition, the present invention is a circuit board using the silicon nitride sintered body.

【0021】[0021]

【発明の実施の形態】窒化珪素セラミックスは、柱状の
β型窒化珪素粒子が複雑に絡み合った焼結体組織を呈し
ており、この組織が強度、破壊靭性等の機械的特性に大
きく寄与している。また、焼結体中の気孔は、欠陥とし
て作用し強度特性に影響を及ぼす。窒化珪素セラミック
スにおいては、これらの欠陥をも含めた焼結体組織を適
正化することが、強度、破壊靭性等の機械的特性に優れ
た焼結体を得るために重要である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Silicon nitride ceramics have a sintered body structure in which columnar β-type silicon nitride particles are intricately entangled, and this structure greatly contributes to mechanical properties such as strength and fracture toughness. I have. Moreover, the pores in the sintered body act as defects and affect the strength characteristics. In silicon nitride ceramics, it is important to optimize the structure of the sintered body including these defects in order to obtain a sintered body having excellent mechanical properties such as strength and fracture toughness.

【0022】しかし、窒化珪素焼結体中の窒化珪素粒子
が相接する時の二粒子界面の厚さは1nm程度であり、
これはフォノンの平均自由工程の1/10以下である。
このことから、窒化珪素焼結体の熱伝導率に関しては、
粒界相の影響よりも窒化珪素粒子内の欠陥によるフォノ
ン散乱の影響の方がより大きな支配因子となっているも
のと考えられる。従って、窒化珪素焼結体の熱伝導率を
向上させるには、窒化珪素粒子内の欠陥を制御すること
が重要であると推測される。
However, the thickness of the interface between the two particles when the silicon nitride particles in the silicon nitride sintered body are in contact with each other is about 1 nm,
This is 1/10 or less of the phonon mean free path.
From this, regarding the thermal conductivity of the silicon nitride sintered body,
It is considered that the influence of phonon scattering due to defects in the silicon nitride particles is a larger controlling factor than the influence of the grain boundary phase. Therefore, it is presumed that it is important to control the defects in the silicon nitride particles in order to improve the thermal conductivity of the silicon nitride sintered body.

【0023】本発明者らは、上記推察に基づき、窒化珪
素焼結体中の粒内欠陥を低減させ、且つ粒界相を制御す
ることにより、本発明の目的である機械的特性と熱伝導
特性に共に優れた焼結体を得ることができるとの予測に
立ち、鋭意検討を行った結果、本発明に至ったのもので
ある。
Based on the above presumption, the present inventors have reduced the intragranular defects in the silicon nitride sintered body and controlled the grain boundary phase, so that the mechanical properties and heat conduction, which are the objects of the present invention, have been achieved. Based on the prediction that a sintered body excellent in both properties can be obtained, the present inventors have conducted intensive studies and, as a result, have arrived at the present invention.

【0024】すなわち、本発明の窒化珪素質焼結体は、
窒化珪素(Si3 4 )86〜98.8mol%、イッ
トリウム(Y)及びランタノイド族元素からなる群から
選ばれる1種以上を酸化物(Re2 3 )換算で1〜1
0mol%、更にHf、Ti、Zrからなる群から選ば
れる1種以上を酸化物(MO2 )換算で0.2〜4mo
l%含有するものである。窒化珪素の焼結助剤として
は、各種の酸化物等が用いられているが、Al2 3
例示される窒化珪素と固溶する焼結助剤を用いて得られ
る従来公知の窒化珪素質焼結体は、窒化珪素粒子内に前
記アルミナ等の焼結助剤が固溶した部分が、欠陥として
存在するために、フォノンを散乱し熱伝導率を低下させ
る。これに対し、本発明の窒化珪素質焼結体は、窒化珪
素と固溶しないイットリウム(Y)及びランタノイド族
元素からなる群から選ばれる1種以上を酸化物(Re2
3 )換算で1〜10mol%、好ましくは2〜5mo
l%含有するものであり、更に、前記焼結助剤の効果を
助長し、しかも窒化珪素と固溶しないHf、Ti、Zr
からなる群から選ばれる1種以上を酸化物(MO2 )換
算で0.2〜4mol%、好ましくは0.5〜2mol
%含有する。尚、前記イットリウム(Y)及びランタノ
イド族元素からなる群に関しては、イオン半径が小さい
イッテルビア(Yb)、エルビウム(Er)等が好まし
い。
That is, the silicon nitride sintered body of the present invention
86 to 98.8 mol% of silicon nitride (Si 3 N 4 ), at least one element selected from the group consisting of yttrium (Y) and lanthanoid group elements is 1 to 1 in terms of oxide (Re 2 O 3 ).
0 mol%, and at least one member selected from the group consisting of Hf, Ti, and Zr in an amount of 0.2 to 4 mol in terms of oxide (MO 2 ).
1%. Various oxides and the like are used as a sintering aid for silicon nitride, and a conventionally known silicon nitride obtained using a sintering aid that dissolves with silicon nitride exemplified by Al 2 O 3 is used. In the porous sintered body, a portion in which the sintering aid such as alumina is dissolved in the silicon nitride particles is present as a defect, so that phonons are scattered and the thermal conductivity is reduced. On the other hand, the silicon nitride-based sintered body of the present invention contains one or more oxides selected from the group consisting of yttrium (Y) and lanthanoid group elements that do not form a solid solution with silicon nitride (Re 2).
O 3) 1 to 10 mol% in terms of, preferably 2~5mo
Hf, Ti, Zr which promote the effect of the sintering aid and do not form a solid solution with silicon nitride.
0.2 to 4 mol%, preferably 0.5 to 2 mol, of at least one selected from the group consisting of
%contains. As for the group consisting of yttrium (Y) and lanthanoid group elements, ytterbia (Yb), erbium (Er) and the like having a small ionic radius are preferable.

【0025】前記イットリウム(Y)及びランタノイド
族元素からなる群から選ばれる1種以上の酸化物換算の
含有量が1mol%未満では、焼結時に生成する液相量
が不足し、十分に緻密化した焼結体が得られなくなる。
一方、希土類元素の含有量が10mol%を越えると、
粒界相の量が多くなり過ぎて粒界相でのフォノンの散乱
による熱伝導率の低下が起こってしまう。また、粒界相
の量が多くなり過ぎると、強度、破壊靭性等の機械的特
性、特に高温強度の低下があるからである。
If the content of one or more oxides selected from the group consisting of yttrium (Y) and lanthanoid group elements is less than 1 mol%, the amount of liquid phase generated during sintering is insufficient, and sufficient densification is achieved. A sintered body cannot be obtained.
On the other hand, when the content of the rare earth element exceeds 10 mol%,
If the amount of the grain boundary phase is too large, the thermal conductivity is reduced due to phonon scattering in the grain boundary phase. On the other hand, if the amount of the grain boundary phase is too large, mechanical properties such as strength and fracture toughness, particularly, high-temperature strength are reduced.

【0026】前記Hf、Ti、Zrからなる群から選ば
れる1種以上の存在は、上述したとおり、イットリウム
或いはランタノイド族元素の焼結助剤としての役割を助
長し、しかも窒化珪素には固溶しない。一般に希土類元
素の酸化物とSiO2 からなる液相の融点は希土類元素
の酸化物が多い組成で高くなり、緻密な窒化珪素質焼結
体を得るには高温度での焼成が必要となり、このことは
イットリウム及びランタノイド族元素からなる元素にお
いても同様である。しかし、更にHf、Ti、Zrから
なる群から選ばれる1種以上の元素を存在させること
で、前記液相の融点を下げることができ、その結果緻密
な窒化珪素質焼結体を焼結温度が1750℃以上とする
だけで容易に得ることができる。また、Hf、Ti、Z
rからなる群から選ばれる1種以上の存在は、理由は不
明であるが、粒界相の結晶化を促進させ、その結果得ら
れる窒化珪素質焼結体の熱伝導率の向上、高温での機械
的特性の向上に寄与する。
As described above, one or more elements selected from the group consisting of Hf, Ti, and Zr promote the role of yttrium or a lanthanoid group element as a sintering aid, and also form a solid solution in silicon nitride. do not do. Generally, the melting point of the liquid phase composed of a rare earth element oxide and SiO 2 becomes higher in a composition containing a large amount of a rare earth element oxide, and firing at a high temperature is required to obtain a dense silicon nitride sintered body. The same applies to the elements composed of yttrium and lanthanoid group elements. However, the presence of one or more elements selected from the group consisting of Hf, Ti, and Zr can lower the melting point of the liquid phase, and consequently reduce the density of the dense silicon nitride sintered body. Can be easily obtained only by setting the temperature to 1750 ° C. or higher. Hf, Ti, Z
The presence of one or more selected from the group consisting of r promotes crystallization of the grain boundary phase, and improves the thermal conductivity of the resulting silicon nitride-based sintered body, Contributes to the improvement of the mechanical properties of

【0027】Hf、Ti、Zrからなる群から選ばれる
1種以上の含有量については、酸化物(MO2 )換算
で、0.2〜4mol%、好ましくは0.5〜2mol
%である。0.2mol%未満では、上述した焼結性の
改善及び粒界相の結晶化が十分でないし、4mol%を
超えると、得られる窒化珪素質焼結体中の粒界相の量が
増えすぎて、その結果、熱伝導率や機械的特性が低下し
てしまう。
The content of at least one selected from the group consisting of Hf, Ti and Zr is 0.2 to 4 mol%, preferably 0.5 to 2 mol, in terms of oxide (MO 2 ).
%. If it is less than 0.2 mol%, the above-described improvement in sinterability and crystallization of the grain boundary phase are not sufficient. If it exceeds 4 mol%, the amount of the grain boundary phase in the obtained silicon nitride based sintered body is too large. As a result, the thermal conductivity and mechanical properties are reduced.

【0028】また、本発明の窒化珪素質焼結体は、焼結
体中の全酸素量よりイットリウム及びランタノイド族元
素から選ばれる1種以上を酸化物換算したRe2 3
帰属する酸素量を除いた残部をSiO2 としたときに、
SiO2 /(Re2 3 +SiO2 )のモル比が0.0
5〜0.5であり好ましくは、0.1〜0.4である。
窒化珪素の焼結は、添加した焼結助剤と原料粉末中並び
に必要に応じて添加したSiO2 からなる粒界相(液
相)に窒化珪素粒子が溶解−析出しながら粒成長してゆ
く。この場合、液相中のSiO2 の量が増加すると、そ
の一部が液相から析出する窒化珪素粒子中に固溶して、
窒化珪素粒子中の欠陥として存在し、その結果、フォノ
ンを散乱して熱伝導率を低下させてしまう。このため、
粒界相の組成として、焼結体中の全酸素量よりイットリ
ウム及びランタノイド族元素からなる群から選ばれる1
種以上を酸化物換算したRe2 3 に帰属する酸素量を
除いた残部をSiO2 としたときに、SiO2 /(Re
2 3 +SiO2 )のモル比を0.5以下にすることが
熱伝導率向上の面で有効である。
The silicon nitride sintered body of the present invention has an oxygen content attributable to Re 2 O 3 in which at least one element selected from the group consisting of yttrium and lanthanoid elements is converted into an oxide based on the total oxygen content in the sintered body. When the remainder except for is SiO 2 ,
When the molar ratio of SiO 2 / (Re 2 O 3 + SiO 2 ) is 0.0
It is 5 to 0.5, preferably 0.1 to 0.4.
In the sintering of silicon nitride, the silicon nitride particles grow while dissolving and precipitating in the added sintering aid and raw material powder and in the grain boundary phase (liquid phase) composed of SiO 2 added as required. . In this case, when the amount of SiO 2 in the liquid phase increases, a part thereof forms a solid solution in silicon nitride particles precipitated from the liquid phase,
It exists as a defect in silicon nitride particles, and as a result, phonons are scattered and thermal conductivity is reduced. For this reason,
The composition of the grain boundary phase is selected from the group consisting of yttrium and lanthanoid group elements based on the total oxygen content in the sintered body.
The remainder excluding the amount of oxygen belonging to Re 2 O 3 in terms oxide or species is taken as SiO 2, SiO 2 / (Re
The 2 O 3 + SiO 2) molar ratio of it to 0.5 or less is effective in terms of improving the thermal conductivity.

【0029】一方、原料粉末である窒化珪素粉末中には
不可避的に酸素が含まれており、焼結体中には、この酸
素に起因するSiO2 成分が存在する。このため、Si
2/(Re2 3 +SiO2 )のモル比を下げるため
には、酸素量の少ない原料粉末を用いるか、前記Re2
3 量を増加させる必要がある。しかし、原料粉末中の
全酸素量を下げるのには限界があるし、Re2 3 量を
増加させる場合には粒界相の量が増えてしまい、機械的
特性や熱伝導率等の低下を引き起こす。このような理由
から、SiO2 /(Re2 3 +SiO2 )のモル比の
下限値については、0.05である。
On the other hand, silicon nitride powder, which is a raw material powder, inevitably contains oxygen, and the sintered body contains a SiO 2 component caused by this oxygen. For this reason, Si
O 2 / in order to reduce the (Re 2 O 3 + SiO 2 ) molar ratio of either use less raw material powder having oxygen content, the Re 2
It is necessary to increase the amount of O 3 . However, there is a limit in reducing the total amount of oxygen in the raw material powder, and when the amount of Re 2 O 3 is increased, the amount of the grain boundary phase increases, and the mechanical properties and thermal conductivity decrease. cause. For this reason, the lower limit of the molar ratio of SiO 2 / (Re 2 O 3 + SiO 2 ) is 0.05.

【0030】また、本発明の窒化珪素質焼結体の密度
は、95%以上であることが好ましく、更に好ましくは
97%以上である。焼結体密度が95%未満では、焼結
体中の気孔量が多くなり過ぎ、これらが欠陥となり強度
の低下をもたらし、十分な強度特性が得られなくなる
し、焼結体中の気孔は、フォノンを散乱し熱伝導率の低
下をも引き起こすからである。
The density of the silicon nitride sintered body of the present invention is preferably at least 95%, more preferably at least 97%. If the density of the sintered body is less than 95%, the amount of pores in the sintered body becomes too large, these become defects and cause a decrease in strength, and sufficient strength characteristics cannot be obtained. This is because phonons are scattered and the thermal conductivity is also reduced.

【0031】さらに、本発明の窒化珪素質焼結体は、焼
結体中のAl、Be及びLiの含有量の合計が2000
ppm以下であり、好ましくは500ppm以下であ
る。Al、Be及びLiは焼結時に窒化珪素粒子中に固
溶し、その結果、窒化珪素粒子内に欠陥を形成しフォノ
ンを散乱して、熱伝導率の低下をもたらす。つまり、A
l、Be及びLiの含有量が2000ppmを越える
と、これらの元素の窒化珪素粒子への固溶量が多くなり
過ぎ、その結果、熱伝導率が低下してしまう。
Further, in the silicon nitride sintered body of the present invention, the total content of Al, Be and Li in the sintered body is 2,000.
ppm or less, preferably 500 ppm or less. Al, Be, and Li form a solid solution in the silicon nitride particles during sintering. As a result, defects are formed in the silicon nitride particles, phonons are scattered, and the thermal conductivity is reduced. That is, A
If the contents of l, Be and Li exceed 2000 ppm, the solid solution amount of these elements in the silicon nitride particles becomes too large, and as a result, the thermal conductivity decreases.

【0032】尚、窒化珪素質焼結体中のイットリウム、
ランタノイド族元素、Hf、Ti、Zr、Al、Be及
びLiの含有量は、焼結体を粉砕した後、原子吸光法で
定量することができるし、焼結体中の全酸素量について
は、焼結体を粉砕し、LECO社製のO/N同時分析計
(TC−436)にて定量することができる。
Yttrium in the silicon nitride sintered body,
The content of lanthanoid elements, Hf, Ti, Zr, Al, Be and Li can be determined by atomic absorption method after pulverizing the sintered body, and the total oxygen content in the sintered body can be determined by: The sintered body can be pulverized and quantified by an O / N simultaneous analyzer (TC-436) manufactured by LECO.

【0033】更にまた、本発明に係わる窒化珪素質焼結
体中のβ型窒化珪粒子の平均粒子径(短軸径)は、0.
5〜3μmである。熱の伝達機構であるフォノンは、窒
化珪素粒子内では伝搬し易く、粒界相で散乱される。こ
のため、個々の粒子が大きくなると、粒界相によるフォ
ノン散乱の程度が減少し、熱伝導率が向上する。平均粒
子径が0.5μm未満では、粒界相によるフォノン散乱
の寄与が大きくなり十分な熱伝導率が得にくい。一方、
平均粒子径が3μmを越えると、熱伝導率は向上するも
のの、粗大に粒成長した窒化珪素粒子が欠陥となって、
強度等の機械的特性が低下してしまう。
Furthermore, the average particle diameter (short axis diameter) of β-type silicon nitride particles in the silicon nitride sintered body according to the present invention is 0.1.
5 to 3 μm. Phonon, which is a heat transfer mechanism, easily propagates in silicon nitride particles and is scattered in the grain boundary phase. Therefore, as the size of each particle increases, the degree of phonon scattering by the grain boundary phase decreases, and the thermal conductivity improves. If the average particle diameter is less than 0.5 μm, the contribution of phonon scattering by the grain boundary phase increases, and it is difficult to obtain a sufficient thermal conductivity. on the other hand,
When the average particle diameter exceeds 3 μm, the thermal conductivity improves, but the coarsely grown silicon nitride particles become defects,
Mechanical properties such as strength are reduced.

【0034】窒化珪素質焼結体の組織評価に関しては、
窒化珪素質焼結体を研削加工し、更にダイヤモンド砥粒
で鏡面研磨した後、酸素を8%含有するCF4 ガス中で
高周波プラズマによるエッチングを行い、得られた試料
を走査型電子顕微鏡(SEM)を用いて観察をする。次
に、組織の定量評価については、得られたSEM写真を
用いて、画像解析装置により粒子個数300以上で定量
評価を行った。尚、β型窒化珪素粒子は、形状が六角柱
状であり、平均粒子径としては、短軸側の粒子径の面積
50%に相当する粒子径を平均粒子径とした。
Regarding the structure evaluation of the silicon nitride sintered body,
The silicon nitride-based sintered body is ground and further mirror-polished with diamond abrasive grains, then etched by high-frequency plasma in CF 4 gas containing 8% of oxygen, and the obtained sample is scanned with a scanning electron microscope (SEM). Observe using). Next, regarding the quantitative evaluation of the structure, the obtained SEM photograph was used to quantitatively evaluate the number of particles at 300 or more by an image analyzer. The β-type silicon nitride particles had a hexagonal column shape, and the average particle diameter was a particle diameter corresponding to 50% of the particle diameter on the minor axis side.

【0035】上記構成を持つ本発明の窒化珪素質焼結体
は、その熱伝導率が70W/(m・K)以上である。熱
伝導率が70W/(m・K)未満では、放熱基板等とし
て用いる場合、十分な放熱特性が得られず、その用途が
限定されるからである。
The silicon nitride sintered body of the present invention having the above configuration has a thermal conductivity of 70 W / (m · K) or more. If the thermal conductivity is less than 70 W / (m · K), when used as a heat dissipation substrate or the like, sufficient heat dissipation characteristics cannot be obtained, and the use thereof is limited.

【0036】また、本発明に係わる窒化珪素質焼結体の
機械的特性は、3点曲げ強さが500MPa以上で、破
壊靭性値が6MPa・m1/2 以上であるものとすること
が好ましい。機械的特性がこれらの値よりも低い場合、
放熱基板やエンジン部品として用いる場合の機械的特性
が不十分となり、高い信頼性を要求される用途に用いる
ことができなくなることがある。
The mechanical properties of the silicon nitride sintered body according to the present invention are preferably such that the three-point bending strength is 500 MPa or more and the fracture toughness value is 6 MPa · m 1/2 or more. . If the mechanical properties are lower than these values,
When used as a heat radiation board or an engine component, the mechanical properties become insufficient, and it may not be possible to use it for applications requiring high reliability.

【0037】更に、本発明の窒化珪素質焼結体は、X線
回折による粒界結晶相としてK相(ReSi2 N)、J
相(Re4 Si2 7 4 )、H相(Re10Si7 23
4)、Re2 Si3 3 4 、Re2 SiO5 及びR
2 3 の1種以上を含有し、K相、J相、H相、Re
2 Si3 3 4 、Re2 SiO5 及びRe2 3 の各
々のメインピーク強度の合計(IGB)が、β型窒化珪素
の(200)面のピーク強度(ISN)に対し0.03〜
0.15であることが好ましい。尚、結晶相の同定は、
焼結体を研削加工した後、焼結体のままX線回折装置で
測定することができる。
Further, the silicon nitride sintered body of the present invention has a K phase (ReSi 2 N),
Phase (Re 4 Si 2 O 7 N 4 ), H phase (Re 10 Si 7 O 23
N 4 ), Re 2 Si 3 O 3 N 4 , Re 2 SiO 5 and R
e 2 O 3 , K phase, J phase, H phase, Re phase
The total (I GB ) of the main peak intensities of each of 2 Si 3 O 3 N 4 , Re 2 SiO 5 and Re 2 O 3 is 0 with respect to the peak intensity ( ISN ) of the (200) plane of β-type silicon nitride. .03-
It is preferably 0.15. The identification of the crystal phase
After grinding the sintered body, the sintered body can be measured with an X-ray diffractometer.

【0038】窒化珪素質焼結体の熱伝導率は、窒化珪素
粒子内の欠陥及び粒界相によるフォノンの散乱に大きく
支配されている。そこで、粒界相を結晶化することによ
り、熱伝導率を向上することができる。本発明の窒化珪
素質焼結体の粒界結晶相の種類に関しては、K相、J
相、H相、Re2 Si3 3 4 、Re2 SiO5 及び
Re2 3 である。本発明者らの検討によれば、窒化珪
素質焼結体の熱伝導率に関して、窒化珪素粒子が液相に
溶解−析出する際に、酸素が固溶し難い組成の液相(イ
ットリウム及びランタノイド族元素の酸化物の比率が高
い液相)を形成することが有効であること、つまり、X
線回折によって得られる粒界結晶相の組成が、請求項1
の組成(SiO2 /(SiO2 +Re2 3 ))を満足
する化合物であること、更に窒化珪素がこれらに固溶し
た組成であることが熱伝導率の向上に重要であることを
見出したものである。
The thermal conductivity of the silicon nitride sintered body is largely controlled by phonon scattering due to defects in silicon nitride particles and a grain boundary phase. Therefore, the thermal conductivity can be improved by crystallizing the grain boundary phase. Regarding the type of grain boundary crystal phase of the silicon nitride sintered body of the present invention,
Phase, H phase, Re 2 Si 3 O 3 N 4 , Re 2 SiO 5 and Re 2 O 3 . According to the study of the present inventors, regarding the thermal conductivity of a silicon nitride-based sintered body, when silicon nitride particles are dissolved and precipitated in a liquid phase, a liquid phase (yttrium and lanthanoid) having a composition in which oxygen is hardly dissolved in a liquid phase. It is effective to form a liquid phase having a high ratio of the oxide of the group III element), that is, X
2. The composition of a grain boundary crystal phase obtained by line diffraction,
Was found to be a compound that satisfies the composition (SiO 2 / (SiO 2 + Re 2 O 3 )) and that a composition in which silicon nitride was dissolved in these compounds was important for improving the thermal conductivity. Things.

【0039】本発明の窒化珪素質焼結体においては、上
記したとおり、粒界相が特定の値以上に結晶化している
ことが特徴であり、その結晶化の程度に関しては、K
相、J相、H相、Re2 Si3 3 4 、Re2 SiO
5 及びRe2 3 の各々のメインピーク強度の合計(I
GB)が、β型窒化珪素の(200)面のピーク強度(I
SN)に対し0.03〜0.15である。IGB/ISN
0.03未満では、粒界相の結晶化が不十分であり、十
分な熱伝導率が得られなくなることがあるし、高温強度
といった機械的特性も低下してしまうことがある。一
方、IGB/ISNが0.15を越えると、粒界相の量が多
くなり過ぎて、熱伝導率、機械的特性が低下してしまう
ことがある。
In the silicon nitride sintered body of the present invention,
As noted, the grain boundary phase has crystallized above a certain value
And the degree of crystallization is K
Phase, J phase, H phase, ReTwoSiThreeOThreeNFour, ReTwoSiO
FiveAnd ReTwoOThreeOf the main peak intensities (I
GB) Is the peak intensity (I) of the (200) plane of β-type silicon nitride.
SN) Is 0.03 to 0.15. IGB/ ISNBut
If it is less than 0.03, crystallization of the grain boundary phase is insufficient, and
Thermal conductivity may not be obtained, and high-temperature strength
, Etc., may also be reduced. one
One, IGB/ ISNExceeds 0.15, the amount of the grain boundary phase is large.
It becomes too hot and thermal conductivity and mechanical properties decrease
Sometimes.

【0040】次に、本発明の窒化珪素質焼結体の製造方
法は、Al、Be及びLiの合計含有量が2000pp
m以下であり、α率が50%以下の窒化珪素粉末86〜
98.8mol%に、イットリウム(Y)及びランタノ
イド族元素からなる群から選ばれた1種以上を酸化物換
算で1〜10mol%、更にHf、Ti、Zrからなる
群から選ばれた1種以上を0.2〜4mol%、窒化珪
素粉末中の酸素量をSiO2 換算したSiO2 量及び添
加するSiO2 量の合計が、SiO2 /(Re 2 3
SiO2 )のモル比が0.05〜0.5となるように添
加混合し、1MPa以下の窒素加圧雰囲気中、温度17
50〜2000℃で焼成することを特徴とするものであ
る。
Next, a method for producing the silicon nitride sintered body of the present invention will be described.
According to the method, the total content of Al, Be and Li is 2000 pp.
m or less, and the α ratio is 50% or less.
98.8 mol% of yttrium (Y) and lantano
Oxide conversion of at least one selected from the group consisting of id group elements
1 to 10 mol% in total, further consisting of Hf, Ti, Zr
0.2 to 4 mol% of at least one selected from the group
Oxygen content in elementary powderTwoConverted SiOTwoAmount and addition
SiO to be addedTwoThe sum of the amounts is SiOTwo/ (Re TwoOThree+
SiOTwo) Is added so that the molar ratio is 0.05 to 0.5.
And mixed in a nitrogen pressurized atmosphere of 1 MPa or less, at a temperature of 17
Characterized by firing at 50 to 2000 ° C.
You.

【0041】原料である窒化珪素粉末の不純物として
は、Al、Be及びLiの合計含有量は2000ppm
以下であり、好ましくは500ppm以下である。A
l、Be及びLiはいずれも焼結時に窒化珪素粒子中に
固溶し、その結果、窒化珪素粒子内に欠陥を形成し、そ
の結果、フォノンを散乱して熱伝導率の低下をもたら
す。つまり、原料粉末中のAl、Be及びLiの含有量
が2000ppmを越えると、焼結時にこれらの元素の
窒化珪素粒子への固溶量が多くなり過ぎ、その結果、熱
伝導率が低下してしまう。
As impurities of the silicon nitride powder as a raw material, the total content of Al, Be and Li is 2000 ppm.
Or less, preferably 500 ppm or less. A
All of l, Be, and Li form a solid solution in the silicon nitride particles during sintering, thereby forming defects in the silicon nitride particles, and as a result, scatter phonons to lower the thermal conductivity. That is, if the content of Al, Be and Li in the raw material powder exceeds 2000 ppm, the amount of these elements dissolved in the silicon nitride particles during sintering becomes too large, and as a result, the thermal conductivity decreases. I will.

【0042】また、窒化珪素粉末のα率は50%以下で
あり、好ましくは30%以下である。α率が50%を超
えると、本発明の助剤組成では充分に緻密な焼結体が得
られず、さらに、得られた焼結体の熱伝導率が低下して
しまうという問題点がある。
The α ratio of the silicon nitride powder is 50% or less, preferably 30% or less. If the α ratio exceeds 50%, there is a problem that a sufficiently dense sintered body cannot be obtained with the auxiliary composition of the present invention, and further, the thermal conductivity of the obtained sintered body decreases. .

【0043】次に、焼結助剤としては、窒化珪素粉86
〜98.8mol%に対し、イットリウム(Y)及びラ
ンタノイド族からなる群から選ばれた1種類以上を酸化
物換算で1〜10mol%、好ましくは2〜5mol%
添加し、更にHf、Ti、Zrからなる群から選ばれた
1種以上を0.2〜4mol%、好ましくは0.5〜2
mol%添加する。イットリウム(Y)及びランタノイ
ド族元素の酸化物、並びにHf、Ti、Zrの酸化物
は、いずれも窒化珪素と固溶しないので、焼結助剤とし
て用いるとき、得られる窒化珪素質焼結体の熱伝導率向
上に効果がある。
Next, silicon nitride powder 86 was used as a sintering aid.
One to at least one selected from the group consisting of yttrium (Y) and the lanthanoid group is 1 to 10 mol%, preferably 2 to 5 mol%, in terms of oxide, with respect to 9898.8 mol%.
And at least one selected from the group consisting of Hf, Ti and Zr in an amount of 0.2 to 4 mol%, preferably 0.5 to 2 mol%.
mol% is added. Since the oxides of yttrium (Y) and lanthanoid elements and the oxides of Hf, Ti and Zr do not form a solid solution with silicon nitride, when used as a sintering aid, the obtained silicon nitride sintered body Effective for improving thermal conductivity.

【0044】イットリウム(Y)及びランタノイド族元
素からなる群の1種以上の添加量が酸化物換算で1mo
l%未満では、焼結時に生成する液相量が不足し、十分
に緻密化した焼結体が得られなくなる。一方、添加量が
酸化物換算で10mol%を越えると、粒界相の量が多
くなり過ぎて粒界相でのフォノンの散乱による熱伝導率
の低下が起こってしまう。また、粒界相の量が多くなり
過ぎると、強度、破壊靭性等の機械的特性、特に高温強
度の低下がある。一方、Hf、Ti、Zrからなる群か
ら選ばれた1種以上の添加量は、酸化物換算で、0.2
mol%未満では焼結への改善効果及び粒界相の結晶化
効果が望めず、4mol%を超えたときには、粒界相の
量が多くなり過ぎて粒界相でのフォノンの散乱による熱
伝導率の低下が起こってしまう。
The amount of addition of at least one of the group consisting of yttrium (Y) and lanthanoid group elements is 1 mol in terms of oxide.
If it is less than 1%, the amount of liquid phase generated during sintering becomes insufficient, and a sufficiently dense sintered body cannot be obtained. On the other hand, if the added amount exceeds 10 mol% in terms of oxide, the amount of the grain boundary phase becomes too large and the thermal conductivity is reduced due to phonon scattering in the grain boundary phase. On the other hand, if the amount of the grain boundary phase is too large, mechanical properties such as strength and fracture toughness, particularly, high-temperature strength are reduced. On the other hand, the addition amount of at least one selected from the group consisting of Hf, Ti, and Zr is 0.2% in terms of oxide.
If the amount is less than 4 mol%, the effect of improving the sintering and the effect of crystallization of the grain boundary phase cannot be expected. If the amount exceeds 4 mol%, the amount of the grain boundary phase becomes too large and the heat conduction due to phonon scattering in the grain boundary phase. The rate will drop.

【0045】また、窒化珪素粉末中の酸素量をSiO2
換算したSiO2 量及び添加するSiO2 量に関して
は、SiO2 /(Re2 3 +SiO2 )のモル比が
0.05〜0.5であり、好ましくは、0.1〜0.4
である。窒化珪素の焼結は、添加した焼結助剤と原料粉
末中及び添加したSiO2からなる粒界相(液相)に窒
化珪素粒子が溶解−析出しながら粒成長してゆく。この
場合、液相中のSiO2 の量が増加すると、その一部が
液相から析出する窒化珪素粒子中に固溶して、その結
果、窒化珪素粒子中の欠陥として存在し、フォノンを散
乱して熱伝導率を低下させてしまう。このため、粒界相
の組成として、焼結体中の酸素量よりイットリウム
(Y)及びランタノイド族元素を酸化物換算したRe2
3 に帰属する酸素量を除いた残部をSiO2 とし、S
iO2 /(Re2 3 +SiO2 )のモル比を0.5以
下にすることが熱伝導率向上に有効である。
Further, the oxygen content in the silicon nitride powder is determined as SiO 2
Regarding the converted SiO 2 amount and the added SiO 2 amount, the molar ratio of SiO 2 / (Re 2 O 3 + SiO 2 ) is 0.05 to 0.5, preferably 0.1 to 0.4.
It is. In the sintering of silicon nitride, silicon nitride particles grow while dissolving and precipitating in a grain boundary phase (liquid phase) composed of the added sintering aid and the raw material powder and the added SiO 2 . In this case, when the amount of SiO 2 in the liquid phase increases, a part thereof forms a solid solution in silicon nitride particles precipitated from the liquid phase, and as a result, exists as defects in the silicon nitride particles and scatters phonons. As a result, the thermal conductivity is reduced. Therefore, the composition of the grain boundary phase, Re 2 that the amount of oxygen from yttrium (Y) and lanthanoids group elements in the sintered body in terms oxide
The remainder excluding the oxygen amount attributed to O 3 is referred to as SiO 2 ,
It is effective to improve the thermal conductivity by setting the molar ratio of iO 2 / (Re 2 O 3 + SiO 2 ) to 0.5 or less.

【0046】一方、窒化珪素粉末中には不可避的に酸素
が含まれており、焼結体中には、この酸素に起因するS
iO2 成分が存在する。このため、SiO2 /(Re2
3+SiO2 )のモル比を下げるためには、SiO2
の添加量を抑え、酸素量の少ない原料粉末を用いるか、
Re2 3 量を増加させる必要がある。しかし、原料粉
末中の酸素量を下げるのには限界があり、Re2 3
を増加させると粒界相量が増えてしまい、機械的特性や
熱伝導率等の低下を引き起こす。このため、SiO2
(Re2 3 +SiO2 )のモル比の下限値について
は、0.05である。
On the other hand, oxygen is inevitably contained in the silicon nitride powder, and S
An iO 2 component is present. For this reason, SiO 2 / (Re 2
In order to reduce the molar ratio of (O 3 + SiO 2 ), SiO 2
Use less raw material powder with less oxygen content,
It is necessary to increase the amount of Re 2 O 3 . However, there is a limit in reducing the amount of oxygen in the raw material powder, and when the amount of Re 2 O 3 is increased, the amount of the grain boundary phase is increased, which causes a decrease in mechanical properties and thermal conductivity. For this reason, SiO 2 /
The lower limit of the molar ratio of (Re 2 O 3 + SiO 2 ) is 0.05.

【0047】次に、上記の配合物をボールミル等で均一
に混合する。得られた混合粉末は、金型成形後、冷間静
水圧成形(CIP)して成形体とする。成形方法に関し
ては、上記手法以外の泥しょう鋳込成形法、押出成形法
等でも問題ない。また、必要に応じて、分散剤、バイン
ダー等を添加してもよい。
Next, the above composition is uniformly mixed by a ball mill or the like. The resulting mixed powder is subjected to cold isostatic pressing (CIP) after forming a mold to form a formed body. As for the molding method, there is no problem with a slurry casting method, an extrusion method, or the like other than the above method. Further, if necessary, a dispersant, a binder, and the like may be added.

【0048】次に、得られた成形体を、必要に応じて脱
脂後、1MPa以下の窒素加圧雰囲気中、温度1750
〜2000℃で1〜48時間焼成して焼結体を作製す
る。焼成温度に関しては、1750℃以下では緻密化不
足が発生し、2000℃以上では、窒化珪素の分解が起
こると共に粒成長が進みすぎ、得られる焼結体の機械的
特性が低下する。焼結温度に関しては、好ましくは18
50〜1950℃である。焼成時間に関しては、1時間
未満では緻密化不足が発生しやすく、48時間を越える
長時間焼成はコスト的に得策でない。また焼成雰囲気に
関しては、本発明の焼成温度においては、窒化珪素の分
解を押さえる為、窒素加圧が必要となる。窒素加圧の上
限圧力に関しては、得られる焼結体の物性面からは高い
方が好ましい。しかし、窒素加圧が1MPaを超える
と、HIP等の特殊な焼結装置を必要とし、得られる焼
結体のコストが非常に高価になってしまうという問題が
ある。
Next, the obtained molded body is degreased as required, and then heated to a temperature of 1750 in a nitrogen pressurized atmosphere of 1 MPa or less.
It is fired at 20002000 ° C. for 1 to 48 hours to produce a sintered body. If the firing temperature is 1750 ° C. or lower, insufficient densification occurs. If the firing temperature is 2000 ° C. or higher, silicon nitride is decomposed and grain growth proceeds excessively, and the mechanical properties of the obtained sintered body deteriorate. Regarding the sintering temperature, preferably 18
50-1950 ° C. Regarding the firing time, if it is less than 1 hour, insufficient densification tends to occur, and firing for more than 48 hours is not economically advantageous. Regarding the firing atmosphere, nitrogen pressure is required at the firing temperature of the present invention in order to suppress decomposition of silicon nitride. The upper limit of the nitrogen pressure is preferably higher from the viewpoint of the physical properties of the obtained sintered body. However, when the nitrogen pressure exceeds 1 MPa, a special sintering device such as HIP is required, and there is a problem that the cost of the obtained sintered body becomes very high.

【0049】また、本発明の窒化珪素質焼結体は、熱伝
導特性、電気絶縁性及び機械的特性が要求される回路基
板等に用いることができる。例えば、パワーモジュール
用の回路基板等では、従来、回路基板に求められていた
電気絶縁性に加え、高い熱伝達性能と機械的特性が要求
されてきている。本発明の窒化珪素回路基板は、ベース
となる窒化珪素質焼結体の強度、破壊靭性等の機械的特
性が優れている為、ヒートサイクル等の熱応力や基板自
体に対する曲げ応力に対し、高い信頼性を有することが
できる。また、窒化珪素自体、高い絶縁抵抗を有するた
め、厳しい使用条件で用いられる回路基板に適してい
る。更に、本発明の窒化珪素質焼結体を用いた窒化珪素
質回路基板は、一般的なセラミックス回路基板であるア
ルミナ回路基板に比べ、機械的特性に優れるだけでな
く、高熱伝導率が要求される回路基板の用途に適してい
る。
Further, the silicon nitride sintered body of the present invention can be used for a circuit board or the like which is required to have thermal conductivity, electrical insulation and mechanical properties. For example, in the case of a circuit board for a power module or the like, high heat transfer performance and mechanical properties have been required in addition to the electrical insulation properties required of the circuit board. The silicon nitride circuit board of the present invention has excellent mechanical properties such as strength and fracture toughness of a silicon nitride based sintered body as a base, and therefore has a high thermal stress such as a heat cycle and a bending stress on the board itself. Can have reliability. Further, since silicon nitride itself has a high insulation resistance, it is suitable for a circuit board used under severe use conditions. Further, the silicon nitride circuit board using the silicon nitride sintered body of the present invention is required to have not only excellent mechanical properties but also high thermal conductivity as compared with an alumina circuit board which is a general ceramic circuit board. Suitable for circuit board applications.

【0050】このような回路基板の製造方法としては、
板状の窒化珪素質焼結体又は研削加工等により板状に加
工した窒化珪素質焼結体を金属板と接合した後、エッチ
ング等手法により回路を形成して製造することができ
る。窒化珪素質焼結体と金属板との接合方法に関して
は、例えば窒化珪素質焼結体と金属板とを不活性ガス又
は真空雰囲気中で加熱し、焼結体と金属板を直接接合す
る方法(直接接合法)やTi、Zr等の活性金属と低融
点合金を作るAg、Cu等の金属を混合又は合金とした
ろう材を窒化珪素質焼結体と金属板との間に介在させて
不活性ガス又は真空雰囲気中で加熱圧着する方法(活性
金属法)を利用して製造できる。
As a method of manufacturing such a circuit board,
After joining a plate-shaped silicon nitride-based sintered body or a silicon nitride-based sintered body processed into a plate shape by grinding or the like to a metal plate, a circuit can be formed by a technique such as etching and the like. Regarding the joining method of the silicon nitride-based sintered body and the metal plate, for example, a method of heating the silicon nitride-based sintered body and the metal plate in an inert gas or a vacuum atmosphere, and directly joining the sintered body and the metal plate (Direct joining method) or a brazing material made by mixing or alloying an active metal such as Ti or Zr with a metal such as Ag or Cu to form a low melting point alloy between the silicon nitride sintered body and the metal plate. It can be manufactured using a method of hot pressing in an inert gas or vacuum atmosphere (active metal method).

【0051】[0051]

【実施例】以下、実施例と比較例をあげて、更に本発明
を詳細に説明するが、本発明はこれに限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0052】〔実施例1〜22、比較例1〜9〕表1に
示す粉体特性の異なる窒化珪素粉末A〜Eに、表2に示
す組成の酸化物を添加し、更にメタノールを添加してボ
ールミルで5時間湿式混合した。次に、これらの混合粉
末を濾過・乾燥後、20MPaの成形圧で金型成形した
後、200MPaの成形圧でCIP成形して、5mm×
30mm×50mmの成形体を得た。得られた成形体
は、窒化ホウ素(BN)製の坩堝に充填し、カーボンヒ
ーターの電気炉で表2に示す窒素ガス圧力、焼成温度、
焼成時間の条件で焼結し、焼結体を作製した。また、上
記操作で得た各種の焼結体の密度を、アルキメデス法で
測定し、その結果を表3に示した。
[Examples 1 to 22, Comparative Examples 1 to 9] To silicon nitride powders A to E having different powder properties shown in Table 1, oxides having compositions shown in Table 2 were added, and methanol was further added. And wet mixed in a ball mill for 5 hours. Next, after filtering and drying these mixed powders, a metal mold was formed at a molding pressure of 20 MPa, and a CIP was formed at a molding pressure of 200 MPa.
A 30 mm × 50 mm molded body was obtained. The obtained molded body was filled in a crucible made of boron nitride (BN), and nitrogen gas pressure, firing temperature, and the like shown in Table 2 were measured in an electric furnace of a carbon heater.
Sintering was performed under the conditions of the firing time to produce a sintered body. In addition, the densities of the various sintered bodies obtained by the above operations were measured by the Archimedes method, and the results are shown in Table 3.

【0053】[0053]

【表1】 [Table 1]

【0054】[0054]

【表2】 [Table 2]

【0055】[0055]

【表3】 [Table 3]

【0056】次に、得られた各種焼結体を#200のダ
イヤモンドホイールで平面研削し、20mm×20mm
×3mmの形状に加工した。実施例1、2、10、1
6、17、20及び比較例7、8について、これらの加
工体を用いX線回折により結晶相の同定を行った。X線
回折の結果を表4に示す。尚、比較例6については、焼
成時の重量減少が50%以上あり、その後の評価に供す
ることのできる焼結体が得られなかった。
Next, the obtained various sintered bodies were ground by a # 200 diamond wheel to obtain a surface of 20 mm × 20 mm.
It was processed into a shape of × 3 mm. Examples 1, 2, 10, 1
With respect to 6, 17, 20 and Comparative Examples 7 and 8, the crystal phases were identified by X-ray diffraction using these processed bodies. Table 4 shows the results of the X-ray diffraction. In addition, about Comparative Example 6, the weight loss at the time of baking was 50% or more, and the sintered compact which can be used for subsequent evaluation was not obtained.

【0057】[0057]

【表4】 [Table 4]

【0058】次に、これらの焼結体を研削加工し、熱伝
導率測定用の10mmφ×3mmの円盤及びJIS−R
1601に準じた強度試験体を作製し、熱伝導率と室温
の3点曲げ強さを評価した。尚、熱伝導率測定はレーザ
フラッシュ法により測定した。更に、強度試験体をダイ
ヤモンド砥粒で鏡面研磨し、JIS−R1607に準じ
てIF法による破壊靱性の評価を行った。
Next, these sintered bodies were ground, and a 10 mmφ × 3 mm disk for measuring thermal conductivity and a JIS-R
A strength test body according to the standard 1601 was prepared, and the thermal conductivity and the three-point bending strength at room temperature were evaluated. The thermal conductivity was measured by a laser flash method. Further, the strength test body was mirror-polished with diamond abrasive grains, and the fracture toughness was evaluated by the IF method according to JIS-R1607.

【0059】また、鏡面研磨した焼結体を8%の酸素を
含有するCF4 ガス雰囲気中で、80Wの出力で2分
間、高周波プラズマによるエッチングを行った後、SE
Mにより焼結体組織の観察(写真撮影)を行った。次い
で、これらのSEM写真を用いて画像解析装置により焼
結体組織の定量評価を行った。各焼結体組織の定量評価
には、300個以上の窒化珪素粒子のデータを用い、各
焼結体の平均粒子径を測定した。これらの結果を表5に
示した。
The mirror-polished sintered body was etched in a CF 4 gas atmosphere containing 8% oxygen at a power of 80 W for 2 minutes by high-frequency plasma, and then subjected to SE.
Observation (photographing) of the sintered body structure was performed using M. Next, using these SEM photographs, a quantitative evaluation of the sintered body structure was performed by an image analyzer. For the quantitative evaluation of each sintered body structure, the average particle diameter of each sintered body was measured using data of 300 or more silicon nitride particles. Table 5 shows the results.

【0060】また、強度試験に用いた試験体の一部を窒
化珪素製の乳鉢と乳棒で粉砕し、LECO社O/N同時
分析計(TC−436)による酸素量の評価及び原子吸
光法による金属元素の含有量の定量評価を行った。得ら
れた結果を表3及び表5に示す。
A part of the test specimen used for the strength test was pulverized with a mortar and pestle made of silicon nitride, and the oxygen content was evaluated by an O / N simultaneous analyzer (TC-436) manufactured by LECO and the atomic absorption method was used. The quantitative evaluation of the content of the metal element was performed. Tables 3 and 5 show the obtained results.

【0061】[0061]

【表5】 [Table 5]

【0062】〔実施例23〜31〕表6に示す配合品を
実施例1と同じ方法により、混合、成形して、5mm×
30mm×50mmの成形体を得た。得られた成形体
は、窒化ホウ素(BN)製の坩堝に充填し、カーボンヒ
ーターの電気炉で、0.9MPaの窒素加圧雰囲気下、
温度1900℃で8時間焼成し、焼結体を作製した。得
られた焼結体は、実施例1と同じ方法により、焼結体中
の組成、不純物量、焼結体密度、3点曲げ強さ、破壊靭
性、平均粒子径、熱伝導率の評価を行った。得られた結
果を表7及び表8に示す。
[Examples 23 to 31] The compounds shown in Table 6 were mixed and molded in the same manner as in Example 1 to obtain a mixture of 5 mm ×
A 30 mm × 50 mm molded body was obtained. The obtained molded body is filled in a crucible made of boron nitride (BN), and is heated in a carbon heater electric furnace under a nitrogen pressurized atmosphere of 0.9 MPa.
It was fired at a temperature of 1900 ° C. for 8 hours to produce a sintered body. The obtained sintered body was evaluated for the composition, the amount of impurities, the sintered body density, the three-point bending strength, the fracture toughness, the average particle diameter, and the thermal conductivity in the sintered body in the same manner as in Example 1. went. Tables 7 and 8 show the obtained results.

【0063】[0063]

【表6】 [Table 6]

【0064】[0064]

【表7】 [Table 7]

【0065】[0065]

【表8】 [Table 8]

【0066】また、実施例23について、X線回折によ
る結晶相の同定を行った結果、K相(Y4 Si2 7
7 及びYb4 Si2 7 7 )、Y2 3 ・Si
3 4 、Yb2 3 ・Si3 4 、Y2 3 ・2HfO
2 、Yb2 3 ・2HfO2 が確認でき、IGB/ISN
0.10であった。
The crystal phase of Example 23 was identified by X-ray diffraction. As a result, the K phase (Y 4 Si 2 O 7 N) was obtained.
7 and Yb 4 Si 2 O 7 N 7 ), Y 2 O 3 .Si
3 N 4 , Yb 2 O 3 .Si 3 N 4 , Y 2 O 3 .2HfO
2, Yb 2 O 3 · 2HfO 2 can be confirmed, I GB / I SN was 0.10.

【0067】〔実施例42〕窒化珪素粉末A:96mo
l%に、YF3 :4mol%、Y2 3 :1mol%、
HfO2 :1mol%及びSiO2 :3mol%を添加
し、実施例1と同じ方法で、焼結体を作製した。得られ
た焼結体の密度は、99%であり、焼結体中の希土類元
素量は、酸化物換算で2.4mol%であった。また、
焼結体中の酸素量から前記の希土類元素量に関与する酸
素量を引いた分をSiO2 量とした場合のSiO2
(Y2 3 +SiO2 )のモル比は0.25であった。
Example 42 Silicon nitride powder A: 96 mo
1%, YF 3 : 4 mol%, Y 2 O 3 : 1 mol%,
HfO 2 : 1 mol% and SiO 2 : 3 mol% were added, and a sintered body was produced in the same manner as in Example 1. The density of the obtained sintered body was 99%, and the amount of the rare earth element in the sintered body was 2.4 mol% in terms of oxide. Also,
SiO 2 / SiO 2 where the amount obtained by subtracting the oxygen amount related to the rare earth element amount from the oxygen amount in the sintered body is defined as the SiO 2 amount
The molar ratio of (Y 2 O 3 + SiO 2 ) was 0.25.

【0068】更に、得られた焼結体の3点曲げ強さは7
10MPa、破壊靱性値は6.6MPa・m1/2 、熱伝
導率は121W/(m・K)であった。また、平均粒子
径は1.0μmであった。
Further, the three-point bending strength of the obtained sintered body was 7
10 MPa, the fracture toughness value was 6.6 MPa · m 1/2 , and the thermal conductivity was 121 W / (m · K). The average particle size was 1.0 μm.

【0069】〔実施例43、44〕実施例43は実施例
1、実施例44は実施例2のそれぞれの助剤混合粉末を
10MPaの圧力で金型成形した後、200MPaの圧
力でCIP成形して50mm×100mm×8mmの成
形体を得た。これらの成形体は、BN製の容器に充填
し、カーボンヒーターの電気炉で、0.9MPaの窒素
加圧雰囲気下、温度1900℃で8時間焼成して焼結体
を作製した。得られた焼結体は、研削加工により40m
m×80mm×0.6mmの形状の平板とした。得られ
た焼結体の熱伝導率は、実施例43が113W/(m・
K)、実施例44が123W/(m・K)であった。
[Examples 43 and 44] In Example 43, the auxiliary mixed powder of Example 1 and Example 44 were molded in a mold at a pressure of 10 MPa, and then CIP molded at a pressure of 200 MPa. Thus, a molded product of 50 mm × 100 mm × 8 mm was obtained. These compacts were filled in a container made of BN, and fired in a carbon heater electric furnace at a temperature of 1900 ° C. for 8 hours under a nitrogen pressurized atmosphere of 0.9 MPa to produce a sintered body. The obtained sintered body is 40 m
It was a flat plate having a shape of mx 80 mm x 0.6 mm. The thermal conductivity of the obtained sintered body was 113 W / (m · m) in Example 43.
K), and the value of Example 44 was 123 W / (m · K).

【0070】次に、前記窒化珪素平板の両面に活性金属
含有ろう材(Ag−Cu−Ti:80−15−5)を3
0μmの厚さでスクリーン印刷し、回路側に0.3mm
厚の銅板及び裏面に0.15mm厚の銅板を載置し、1
-3Pa台の真空雰囲気下、温度850℃で30分間加
熱した。その後、冷却して複合体を得た。この複合体に
ついて、板厚0.3mmの銅板側を研磨し、パターニン
グ用レジストを印刷し、熱硬化後、塩化第二鉄水溶液に
浸漬エッチングしてパターンを形成した。更に、回路間
に残存する接合材を除くため、銅板部を酸性フッ化アン
モニウム水溶液に浸触させた後、水洗してパターン形成
した回路基板を作製した。
Next, an active metal-containing brazing material (Ag-Cu-Ti: 80-15-5) was applied on both sides of the silicon nitride flat plate.
Screen printed with a thickness of 0μm, 0.3mm on the circuit side
A 0.15 mm thick copper plate is placed on the thick copper plate and
It was heated at a temperature of 850 ° C. for 30 minutes in a vacuum atmosphere of the order of 0 −3 Pa. Thereafter, the mixture was cooled to obtain a composite. This composite was polished on the side of a copper plate having a thickness of 0.3 mm, printed with a resist for patterning, thermally cured, and then immersed and etched in an aqueous ferric chloride solution to form a pattern. Further, in order to remove the bonding material remaining between the circuits, the copper plate portion was immersed in an aqueous solution of ammonium ammonium fluoride, and then washed with water to produce a circuit board having a pattern formed thereon.

【0071】次に、前記回路基板を、下部スパン30m
mでの3点曲げ強さを測定したところ、実施例43は7
60MPa、実施例44は750MPaであった。ま
た、−40℃から150℃の温度幅で3000回のヒー
トサイクル試験を行った。ヒートサイクル試験後の基板
の3点曲げ強さは、実施例43が720MPa、実施例
44が700MPaであり、ヒートサイクル試験後も回
路間の亀裂や回路の剥離は認められなかった。
Next, the circuit board is placed in a lower span of 30 m.
When the three-point bending strength at m was measured, Example 43 was 7
It was 60 MPa, and Example 44 was 750 MPa. In addition, 3000 heat cycle tests were performed in a temperature range of -40 ° C to 150 ° C. The three-point bending strength of the substrate after the heat cycle test was 720 MPa in Example 43 and 700 MPa in Example 44, and no cracks between circuits or peeling of the circuit were recognized even after the heat cycle test.

【0072】〔実施例45〕実施例43の窒化珪素平板
の両面に、実施例43で用いた板厚の異なる2種類の銅
板を載置し、窒素ガス雰囲気、温度1050℃で5分間
加熱処理し、その後、冷却して複合体を作製した。得ら
れた複合体は、実施例43と同様の手法で回路基板を作
製した。得られた回路基板の3点曲げ強さは740MP
aであり、ヒートサイクル3000回後の3点曲げ強さ
は690MPaであった。また、ヒートサイクル試験後
も回路間の亀裂や回路の剥離は認められなかった。
Example 45 Two types of copper plates having different thicknesses used in Example 43 were placed on both surfaces of the silicon nitride flat plate of Example 43, and were heated in a nitrogen gas atmosphere at a temperature of 1050 ° C. for 5 minutes. Then, cooling was performed to produce a composite. From the obtained composite, a circuit board was produced in the same manner as in Example 43. The three-point bending strength of the obtained circuit board is 740MP.
a, and the three-point bending strength after 3000 heat cycles was 690 MPa. Also, no cracks between circuits or peeling of circuits were observed after the heat cycle test.

【0073】〔実施例46〕実施例1の焼結助剤を混合
した粉末に、成形用バインダーとしてセランダー(ユケ
ン工業社製)を20重量部、純水20重量部を添加混合
し、押し出し成形機でシート幅100mm、シート厚
0.8mmのシートを作製した。得られたシートは45
mm×90mmのサイズに裁断し、表面にBN粉を塗布
して10枚積層し、大気中、温度550℃で2時間脱脂
した。次に、得られた脱脂体をBN容器に充填し、カー
ボンヒーターの電気炉で、0.9MPaの窒素加圧雰囲
気下、温度1900℃で8時間焼成して焼結体を作製し
た。得られた焼結体は、#400のアルミナ砥粒を用い
て乾式ホーニングして表面のBN及び変質層等を除去し
た。得られた焼結体の熱伝導率は114W/(m・K)
であった。
Example 46 To a powder mixed with the sintering aid of Example 1, 20 parts by weight of Serander (manufactured by Yuken Industries) and 20 parts by weight of pure water were added and mixed as a molding binder, followed by extrusion molding. A sheet having a sheet width of 100 mm and a sheet thickness of 0.8 mm was produced by a machine. The resulting sheet is 45
The sheet was cut into a size of mm × 90 mm, BN powder was applied to the surface, and 10 sheets were laminated, and degreased in air at a temperature of 550 ° C. for 2 hours. Next, the obtained degreased body was filled in a BN container, and fired at a temperature of 1900 ° C. for 8 hours in a nitrogen pressurized atmosphere of 0.9 MPa in an electric furnace of a carbon heater to produce a sintered body. The obtained sintered body was dry-honed using # 400 alumina abrasive grains to remove BN and altered layers on the surface. The thermal conductivity of the obtained sintered body is 114 W / (m · K)
Met.

【0074】次に、前記窒化珪素平板を用いて、実施例
43と同じ手法で回路基板を作製した。得られた回路基
板の3点曲げ強さは750MPaであり、ヒートサイク
ル3000回後の3点曲げ強さは720MPaであっ
た。また、ヒートサイクル試験後も回路間の基板の亀裂
や回路との基板の剥離は認められなかった。
Next, a circuit board was manufactured using the silicon nitride flat plate in the same manner as in Example 43. The three-point bending strength of the obtained circuit board was 750 MPa, and the three-point bending strength after 3000 heat cycles was 720 MPa. Further, even after the heat cycle test, cracks of the substrate between the circuits and peeling of the substrate from the circuit were not recognized.

【0075】[0075]

【発明の効果】本発明の窒化珪素質焼結体は、焼結時の
窒化珪素粒子内部への不純物の固溶量を低減し、粒界相
の組成、量、結晶性を制御しているので、強度、破壊靭
性の機械的特性に優れると共に、熱伝導率が70W/
(m・K)以上と高く、半導体用絶縁基板をはじめと
し、自動車、機械装置等の幅広い分野で各種構造部品の
素材として利用することができる。更に、本発明の窒化
珪素質焼結体の製造方法は、HIP等の特殊な焼結方法
を用いないで、前記の熱伝導率と機械的特性に優れた窒
化珪素質焼結体を安価に製造することができる。また、
本発明の窒化珪素回路基板は、熱伝導率が高く、機械的
特性に優れているので、信頼性が要求される輸送機器等
の用途や、パワーモジュール用回路基板等に適した回路
基板である。
The silicon nitride sintered body of the present invention controls the composition, amount and crystallinity of the grain boundary phase by reducing the amount of impurities dissolved in the silicon nitride particles during sintering. Therefore, it has excellent mechanical properties such as strength and fracture toughness, and has a thermal conductivity of 70 W /
(M · K) or more, it can be used as a material for various structural parts in a wide range of fields such as insulating substrates for semiconductors, automobiles, machinery and the like. Furthermore, the method for producing a silicon nitride-based sintered body of the present invention uses the above-described silicon nitride-based sintered body having excellent thermal conductivity and mechanical properties at a low cost without using a special sintering method such as HIP. Can be manufactured. Also,
Since the silicon nitride circuit board of the present invention has high thermal conductivity and excellent mechanical properties, it is a circuit board suitable for use in transportation equipment and the like requiring reliability and a circuit board for a power module. .

フロントページの続き (72)発明者 横田 博 東京都町田市旭町3丁目5番1号 電気化 学工業株式会社総合研究所内Continuation of front page (72) Inventor Hiroshi Yokota 3-5-1 Asahicho, Machida-shi, Tokyo Denki Kagaku Kogyo Co., Ltd. Research Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 窒化珪素(Si3 4 )86〜98.8
mol%、イットリウム(Y)及びランタノイド族元素
から選ばれる1種以上を酸化物(Re2 3 )換算で1
〜10mol%、更にHf、Ti、Zrから選ばれる1
種以上を酸化物(MO2 )換算で0.2〜4mol%含
有し、焼結体中の全酸素量よりRe2 3 及びMO2
帰属する酸素量を除いた残部をSiO2 とするときに、
SiO2/(Re2 3 +SiO2 )のモル比が0.0
5〜0.5であり、窒化珪素粒子の平均粒子径(平均短
軸径)が0.5〜3μm、焼結体中のAl、Be及びL
iの含有量の合計が2000ppm以下であり、しかも
熱伝導率が70W/(m・K)以上であることを特徴と
する窒化珪素質焼結体。
A silicon nitride (Si)ThreeNFour) 86-98.8
mol%, yttrium (Y) and lanthanoid elements
At least one oxide selected from the group consisting of oxides (ReTwoOThree1)
1 to 10 mol%, further selected from Hf, Ti, Zr
Oxide (MOTwo) Contains 0.2-4mol% in conversion
From the total oxygen content in the sintered bodyTwoO ThreeAnd MOTwoTo
The remainder excluding the oxygen content attributable is SiOTwoAnd when
SiOTwo/ (ReTwoOThree+ SiOTwo) Is 0.0
5 to 0.5, and the average particle diameter (average
(Shaft diameter) 0.5 to 3 μm, Al, Be and L in the sintered body
the total content of i is 2000 ppm or less, and
Characterized by a thermal conductivity of 70 W / (m · K) or more
Silicon nitride sintered body.
【請求項2】 X線回折による粒界結晶相としてK相
(ReSi2 N)、J相(Re4 Si2 7 4 )、H
相(Re10Si7 234 )、Re2 Si3 34
Re2 SiO5 及びRe2 3 の少なくとも1種以上を
含有し、K相、J相、H相、Re2 Si3 3 4 、R
2 SiO5 及びRe2 3 の各々のメインピーク強度
の合計(IGB)が、β型窒化珪素の(200)面のピー
ク強度(I SN)に対し、0.03〜0.15であること
を特徴とする請求項1記載の窒化珪素質焼結体。
2. K phase as a grain boundary crystal phase by X-ray diffraction
(ReSiTwoN), J phase (ReFourSiTwoO7NFour), H
Phase (ReTenSi7Otwenty threeNFour), ReTwoSiThreeOThreeNFour,
ReTwoSiOFiveAnd ReTwoOThreeAt least one of
Contains, K phase, J phase, H phase, ReTwoSiThreeOThreeNFour, R
eTwoSiOFiveAnd ReTwoOThreeEach main peak intensity
Sum of (IGB) Is the peak of the (200) plane of β-type silicon nitride.
Strength (I SN) To 0.03 to 0.15
The silicon nitride-based sintered body according to claim 1, wherein:
【請求項3】 Al、Be及びLiの合計含有量が20
00ppm以下であり、α率が50%以下の窒化珪素粉
末86〜98.8mol%に、イットリウム(Y)及び
ランタノイド族元素からなる群の1種以上を酸化物換算
で1〜10mol%、更にHf、Ti、Zrからなる群
から選ばれる1種以上を0.2〜4mol%、窒化珪素
粉末中の酸素量をSiO2 換算したSiO2 量及び添加
するSiO2 量の合計が、SiO2 /(Re2 3 +S
iO2 )のモル比が0.05〜0.5となるように添加
混合し、1MPa未満の窒素加圧雰囲気中、温度175
0〜2000℃で焼成することを特徴とする請求項1又
は請求項2記載の窒化珪素質焼結体の製造方法。
3. The total content of Al, Be and Li is 20.
And at least one of a group consisting of yttrium (Y) and a lanthanoid group element is added to 1 to 10 mol% in terms of oxide, and further to Hf , Ti, 0.2~4mol% at least one member selected from the group consisting of Zr, a total amount of SiO 2 oxygen amount of the silicon nitride powder was SiO 2 in terms and added to SiO 2 weight, SiO 2 / ( Re 2 O 3 + S
iO 2 ) was added and mixed so that the molar ratio was 0.05 to 0.5, and the mixture was heated to a temperature of 175
3. The method for producing a silicon nitride-based sintered body according to claim 1, wherein the firing is performed at 0 to 2000 [deg.] C.
【請求項4】 請求項1又は請求項2記載の窒化珪素質
焼結体を用いてなることを特徴とする窒化珪素質回路基
板。
4. A silicon nitride based circuit board comprising the silicon nitride based sintered body according to claim 1 or 2.
JP9261560A 1997-09-26 1997-09-26 Silicon nitride sintered compact, its production and circuit board Pending JPH11100273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9261560A JPH11100273A (en) 1997-09-26 1997-09-26 Silicon nitride sintered compact, its production and circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9261560A JPH11100273A (en) 1997-09-26 1997-09-26 Silicon nitride sintered compact, its production and circuit board

Publications (1)

Publication Number Publication Date
JPH11100273A true JPH11100273A (en) 1999-04-13

Family

ID=17363606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9261560A Pending JPH11100273A (en) 1997-09-26 1997-09-26 Silicon nitride sintered compact, its production and circuit board

Country Status (1)

Country Link
JP (1) JPH11100273A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012994A (en) * 2007-07-02 2009-01-22 National Institute Of Advanced Industrial & Technology Low core loss dielectric material for high frequency, method for producing the same, and member thereof
WO2016117553A1 (en) * 2015-01-23 2016-07-28 株式会社東芝 Silicon nitride sintered compact having high thermal conductivity, silicon nitride substrate and silicon nitride circuit substrate using same, and semiconductor device
WO2020203683A1 (en) * 2019-03-29 2020-10-08 デンカ株式会社 Silicon nitride sintered body, method for producing same, multilayer body and power module
WO2024095834A1 (en) * 2022-11-02 2024-05-10 株式会社トクヤマ Sintered silicon nitride object

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009012994A (en) * 2007-07-02 2009-01-22 National Institute Of Advanced Industrial & Technology Low core loss dielectric material for high frequency, method for producing the same, and member thereof
WO2016117553A1 (en) * 2015-01-23 2016-07-28 株式会社東芝 Silicon nitride sintered compact having high thermal conductivity, silicon nitride substrate and silicon nitride circuit substrate using same, and semiconductor device
JPWO2016117553A1 (en) * 2015-01-23 2017-11-02 株式会社東芝 High thermal conductivity silicon nitride sintered body, silicon nitride substrate, silicon nitride circuit substrate and semiconductor device using the same
EP3248956A4 (en) * 2015-01-23 2018-08-22 Kabushiki Kaisha Toshiba, Inc. Silicon nitride sintered compact having high thermal conductivity, silicon nitride substrate and silicon nitride circuit substrate using same, and semiconductor device
US10308560B2 (en) 2015-01-23 2019-06-04 Kabushiki Kaisha Toshiba High thermal conductive silicon nitride sintered body, and silicon nitride substrate and silicon nitride circuit board and semiconductor apparatus using the same
WO2020203683A1 (en) * 2019-03-29 2020-10-08 デンカ株式会社 Silicon nitride sintered body, method for producing same, multilayer body and power module
WO2024095834A1 (en) * 2022-11-02 2024-05-10 株式会社トクヤマ Sintered silicon nitride object

Similar Documents

Publication Publication Date Title
JP5850031B2 (en) Silicon nitride sintered body, silicon nitride circuit board, and semiconductor module
JP5245405B2 (en) Silicon nitride substrate, manufacturing method thereof, silicon nitride wiring substrate using the same, and semiconductor module
JP5673106B2 (en) Method for manufacturing silicon nitride substrate, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
CN112789256B (en) Ceramic sintered body and substrate for semiconductor device
JP3565425B2 (en) Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body
JPWO2019235593A1 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP5439729B2 (en) Silicon nitride substrate, manufacturing method thereof, silicon nitride circuit substrate and semiconductor module using the same
JP2002293642A (en) Silicon nitride-based sintered compact having high thermal conductivity, method of producing the same, and circuit board
JP2002201076A (en) Silicon nitride substrate and circuit substrate
JP4556162B2 (en) Silicon nitride-based sintered body, method for producing the same, and circuit board using the same
JPH11100274A (en) Silicon nitride sintered compact, its production and circuit board
JP3002642B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board using the same
JP4089974B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board for electronic components using the same
JPH11100273A (en) Silicon nitride sintered compact, its production and circuit board
JP2003313079A (en) Silicon nitride-based sintered compact, method of producing the same, and circuit board using the sintered compact
JP2000351673A (en) High heat-conductive silicon nitride-based sintered product and its production
JP2002029850A (en) Sintered silicon nitride compact and method for manufacturing the same
JP2002029849A (en) Sintered silicon nitride compact and method for manufacturing the same as well as circuit board using the same
JPH11236270A (en) Silicon nitride substrate and its manufacture
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JP2002029851A (en) Silicon nitride composition, method for manufacturing sintered silicon nitride compact using the same and sintered silicon nitride compact
JP4348659B2 (en) High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device
JP2001019557A (en) Silicon nitride sintered compact, its production and substrate
WO2020115870A1 (en) Ceramic sintered body and substrate for semiconductor devices
JPH11322437A (en) Silicon nitride sintered compact, its production and circuit board using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070208

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070316