JP2000352941A - Display device - Google Patents

Display device

Info

Publication number
JP2000352941A
JP2000352941A JP11166132A JP16613299A JP2000352941A JP 2000352941 A JP2000352941 A JP 2000352941A JP 11166132 A JP11166132 A JP 11166132A JP 16613299 A JP16613299 A JP 16613299A JP 2000352941 A JP2000352941 A JP 2000352941A
Authority
JP
Japan
Prior art keywords
current
channel
thin film
light emitting
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11166132A
Other languages
Japanese (ja)
Other versions
JP4337171B2 (en
Inventor
Machio Yamagishi
万千雄 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP16613299A priority Critical patent/JP4337171B2/en
Publication of JP2000352941A publication Critical patent/JP2000352941A/en
Application granted granted Critical
Publication of JP4337171B2 publication Critical patent/JP4337171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of El Displays (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the fluctuation of drain current to be supplied to an OLED(organic LED) for a back-channel phenomenon and a short channel effect in the case of adopting thin film transistors having bottom gate structure in order to drive the light mitting elements provided for every pixel of a display device. SOLUTION: In a TFT, a source S, a channel Ch and a train D becoming the path of a current which is to be supplied to an OLED are formed in a semiconductor thin film 4. The channel Ch controls a current flowing through the path in accordance with a signal which is impressed on a gate electrode 2 and it suppl the controlled current is supplied from the drain D to the PLED. Moreover, in the TFT, a conductive film 8 for shield is arranged in order to interrupt the effect of an electric field to be generated from the drain to the OLED to stabilize the current to be supplied to the OLED. In addition to this, sufficient impurities are injected in the TFT in order to suppress the shortening of the effective length of the channel Ch accompanying the rising of the voltage of the train D and, thus, the current to be supplied to the OLED is more stabilized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機エレクトロル
ミネッセンス(EL)素子等の、電流によって輝度が制
御される発光素子を各画素毎に備えた表示装置に関す
る。より詳しくは、各画素内に設けられた電界効果型薄
膜トランジスタ等の能動素子によって発光素子に供給す
る電流が制御される、所謂アクティブマトリクス型表示
装置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a display device provided with a light emitting element whose luminance is controlled by a current, such as an organic electroluminescence (EL) element, for each pixel. More specifically, the present invention relates to a so-called active matrix display device in which current supplied to a light emitting element is controlled by an active element such as a field effect thin film transistor provided in each pixel.

【0002】[0002]

【従来の技術】一般に、アクティブマトリクス型の表示
装置では、多数の画素をマトリクス状に並べ、表示すべ
き画像情報に応じて画素毎に光強度を制御することによ
って画像を表示する。電気光学物質として液晶を用いた
場合には、各画素に書き込まれる電圧に応じて画素の透
過率が変化する。電気光学物質として有機エレクトロル
ミネッセンス材料を用いたアクティブマトリクス型の表
示装置でも、基本的な動作は液晶を用いた場合と同様で
ある。しかし液晶ディスプレイと異なり、有機ELディ
スプレイは各画素に発光素子を有する、所謂自発光型で
あり、液晶ディスプレイに比べて画像の視認性が高い、
バックライトが不要、応答速度が早い等の利点を有す
る。個々の発光素子の輝度は電流量によって制御され
る。即ち、発光素子が電流駆動型或いは電流制御型であ
るという点で液晶ディスプレイ等とは大きく異なる。
2. Description of the Related Art Generally, in an active matrix type display device, an image is displayed by arranging a large number of pixels in a matrix and controlling light intensity for each pixel in accordance with image information to be displayed. When liquid crystal is used as the electro-optical material, the transmittance of the pixel changes according to the voltage written to each pixel. The basic operation of an active matrix type display device using an organic electroluminescent material as an electro-optical material is the same as that in the case of using liquid crystal. However, unlike a liquid crystal display, an organic EL display is a so-called self-luminous type having a light emitting element in each pixel, and has higher image visibility than a liquid crystal display.
It has advantages such as no need for a backlight and a high response speed. The brightness of each light emitting element is controlled by the amount of current. That is, the light emitting element is greatly different from a liquid crystal display or the like in that the light emitting element is a current drive type or a current control type.

【0003】液晶ディスプレイと同様、有機ELディス
プレイもその駆動方式として単純マトリクス方式とアク
ティブマトリクス方式とが可能である。前者は構造が単
純であるものの大型且つ高精細のディスプレイの実現が
困難であるため、アクティブマトリクス方式の開発が盛
んに行なわれている。アクティブマトリクス方式は、各
画素内に設けた発光素子に流れる電流を画素内部に設け
た能動素子(一般には薄膜トランジスタ、TFT)によ
って制御する。このアクティブマトリクス方式の有機E
Lディスプレイは例えば特開平8−234683号公報
に開示されており、その概要を図6に示す。図示するよ
うに、表示装置はガラス基板1の上に形成されており、
互いに交差する走査線X及び信号線Yと、これらの交差
部に配された画素PXL等からなる。画素PXLは、供
給される電流に応じて発光する電流駆動型の発光部と、
走査線X及び信号線Yからの信号に応じて動作し発光部
に電流を供給する回路部CKTとからなる。発光部は、
画素電極10と対向電極12との間に挟まれた有機エレ
クトロルミネッセンス(EL)層11からなる。
As with the liquid crystal display, the organic EL display can be driven by a simple matrix system or an active matrix system. The former has a simple structure, but it is difficult to realize a large-sized and high-definition display. Therefore, active matrix systems have been actively developed. In the active matrix method, a current flowing through a light emitting element provided in each pixel is controlled by an active element (generally, a thin film transistor or a TFT) provided inside the pixel. This active matrix organic E
The L display is disclosed in, for example, Japanese Patent Application Laid-Open No. 8-234683, and its outline is shown in FIG. As shown, the display device is formed on a glass substrate 1,
The scanning line X and the signal line Y intersect with each other, and the pixels PXL and the like are arranged at the intersection. The pixel PXL includes a current-driven light-emitting unit that emits light in accordance with a supplied current;
A circuit section CKT that operates in response to signals from the scanning line X and the signal line Y and supplies current to the light emitting section. The light emitting section
An organic electroluminescence (EL) layer 11 is sandwiched between a pixel electrode 10 and a counter electrode 12.

【0004】図7は、図6に示した画素PXL1個分の
等価回路図であり、特に回路部CKTの構成例を模式的
に表している。回路部CKTは第1の薄膜トランジスタ
TFT1、第2の薄膜トランジスタTFT2及び保持容
量Csとからなる。各薄膜トランジスタTFT1,TF
T2は図示するようにゲートG、ソースS及びドレイン
Dを備えている。発光部は有機エレクトロルミネッセン
ス(EL)素子である。有機EL素子は多くの場合整流
性があるため、OLED(有機発光ダイオード)と呼ば
れることがあり、図では発光素子としてダイオードの記
号を用いている。但し、発光素子は必ずしもOLEDに
限るものではなく、素子に流れる電流量によって輝度が
制御されるものであれば良い。又、発光素子に必ずしも
整流性が要求されるものではない。図示の例では、TF
T2のソースSを基準電位(接地電位)とし、発光素子
OLEDのアノードA(陽極)はVdd(一定の正電
位)に接続される一方、カソードK(陰極)はTFT2
のドレインDに接続されている。図6と図7を比較すれ
ば明らかなように、OLEDのアノードAが対向電極1
2に対応し、カソードKが画素電極10に対応してい
る。但し、接続関係はこれに限られるものではなく、例
えばカソードKとアノードAを逆にする場合も有る。
FIG. 7 is an equivalent circuit diagram of one pixel PXL shown in FIG. 6, and particularly schematically shows a configuration example of a circuit section CKT. The circuit section CKT includes a first thin film transistor TFT1, a second thin film transistor TFT2, and a storage capacitor Cs. Each thin film transistor TFT1, TF
T2 has a gate G, a source S and a drain D as shown. The light emitting section is an organic electroluminescence (EL) element. Since the organic EL element has rectifying properties in many cases, it is sometimes referred to as an OLED (organic light emitting diode). In the drawings, a diode symbol is used as the light emitting element. However, the light emitting element is not necessarily limited to the OLED, but may be any element whose luminance is controlled by the amount of current flowing through the element. Further, the light emitting element is not necessarily required to have a rectifying property. In the illustrated example, TF
The source S of T2 is set to a reference potential (ground potential), the anode A (anode) of the light emitting element OLED is connected to Vdd (constant positive potential), and the cathode K (cathode) is TFT2.
Is connected to the drain D. 6 and 7, it is clear that the anode A of the OLED is
2, the cathode K corresponds to the pixel electrode 10. However, the connection relationship is not limited to this, and for example, the cathode K and the anode A may be reversed.

【0005】図7に示した画素回路部CKTの動作は次
の通りである。まず、走査線Xを選択状態(ここでは高
レベル)とし、信号線Yにデータ電位を印加すると、T
FT1が導通し、保持容量Csが充電又は放電され、T
FT2のゲート電位はデータ電位に一致する。走査線X
を非選択状態(ここでは低レベル)とするとTFT1が
オフになり、TFT2は電気的にデータ線Yから切り離
されるが、TFT2のゲート電位は保持容量Csによっ
て安定に保持される。TFT2を介して発光素子OLE
Dに流れる電流は、TFT2のゲート/ソース及びドレ
インに印加された電圧に応じた値となり、発光素子OL
EDはその電流量に応じた輝度で発光し続ける。
The operation of the pixel circuit section CKT shown in FIG. 7 is as follows. First, when the scanning line X is set to the selected state (here, high level) and a data potential is applied to the signal line Y, T
FT1 becomes conductive, the storage capacitor Cs is charged or discharged, and T
The gate potential of FT2 matches the data potential. Scan line X
Is turned off and the TFT1 is turned off and the TFT2 is electrically disconnected from the data line Y, but the gate potential of the TFT2 is stably held by the holding capacitor Cs. Light emitting element OLE via TFT2
The current flowing through D becomes a value corresponding to the voltage applied to the gate / source and drain of TFT2, and the light emitting element OL
The ED continues to emit light at a luminance according to the amount of current.

【0006】[0006]

【発明が解決しようとする課題】有機EL素子は電流駆
動型であるので、ディスプレイの色むらを低減し正確な
階調を出すためには、電流量のばらつきを抑制すること
は重要である。電流駆動型の発光素子に駆動電流を供給
する薄膜トランジスタには、ボトムゲート構造とトップ
ゲート構造がある。ボトムゲート構造の薄膜トランジス
タは、ゲート電極と、その上面に重ねられたゲート絶縁
膜と、このゲート絶縁膜を介してゲート電極の上方に重
ねられた半導体薄膜とからなる。一方、トップゲート構
造の薄膜トランジスタは、薄膜トランジスタと、その上
面に重ねられたゲート絶縁膜と、このゲート絶縁膜を介
して半導体薄膜の上方に重ねられたゲート電極とからな
る。ここで、発光素子の回路部としてボトムゲート構造
の薄膜トランジスタを採用した場合、バックチャネル現
象や短チャネル効果のため発光素子に供給するドレイン
電流が変動するという課題がある。
Since the organic EL element is of a current-driven type, it is important to suppress the variation in the amount of current in order to reduce the color unevenness of the display and to obtain an accurate gradation. Thin film transistors for supplying a drive current to a current-driven light-emitting element include a bottom-gate structure and a top-gate structure. The bottom gate thin film transistor includes a gate electrode, a gate insulating film overlaid on the gate electrode, and a semiconductor thin film over the gate electrode with the gate insulating film interposed therebetween. On the other hand, a thin film transistor having a top gate structure includes a thin film transistor, a gate insulating film overlaid on the thin film transistor, and a gate electrode overlying the semiconductor thin film via the gate insulating film. Here, when a thin film transistor having a bottom gate structure is used as a circuit portion of the light emitting element, there is a problem that a drain current supplied to the light emitting element fluctuates due to a back channel phenomenon or a short channel effect.

【0007】[0007]

【課題を解決する為の手段】上述した従来の技術の課題
を解決するために以下の手段を講じた。即ち、本発明の
一面に係る表示装置は、互いに交差する走査線及び信号
線と、これらの交差部に配された画素とからなる。前記
画素は、供給される電流に応じて発光する電流駆動型の
発光部と、該走査線及び該信号線からの信号に応じて動
作し該発光部に電流を供給する回路部とからなる。前記
回路部は、ゲート電極とその上面に重ねられたゲート絶
縁膜と該ゲート絶縁膜を介して該ゲート電極の上方に重
ねられた半導体薄膜とからなる薄膜トランジスタを含
む。前記薄膜トランジスタは、該発光部に供給される電
流の通路となるソース、チャネル及びドレインを該半導
体薄膜に備える。前記チャネルは、該ゲート電極に印加
される信号に応じて該通路を流れる電流を制御し、該制
御された電流を該ドレインを介し該発光部に供給する。
特徴事項として、前記薄膜トランジスタは、該ドレイン
から該発光部にかけて発生する電界の影響を遮断する為
に、該チャネルの上方にシールド用の導体膜が配されて
おり、該発光部に供給される電流を安定化する。好まし
くは、前記導体膜は、該信号線又は走査線を構成する導
体膜と同一の材料で形成されている。前記導体膜は、定
電位に保持されている。或いは、前記導体膜は、該ゲー
ト電極と同電位に保持されている。好ましくは、前記薄
膜トランジスタは、該ドレインの電圧上昇に伴う該チャ
ネルの実効長の短縮化を抑制する為に充分な不純物が該
チャネルに注入されており、これにより更に該発光部に
供給される電流を安定化する。好ましくは、前記発光部
は、電流に応じて発光する有機エレクトロルミネッセン
ス素子からなる。
The following means have been taken in order to solve the above-mentioned problems of the prior art. That is, a display device according to one aspect of the present invention includes a scanning line and a signal line that intersect each other, and pixels arranged at the intersection. The pixel includes a current-driven light-emitting unit that emits light in accordance with a supplied current, and a circuit unit that operates in response to a signal from the scanning line and the signal line and supplies a current to the light-emitting unit. The circuit portion includes a thin film transistor including a gate electrode, a gate insulating film overlaid on the gate electrode, and a semiconductor thin film over the gate electrode with the gate insulating film interposed therebetween. The thin film transistor includes a source, a channel, and a drain serving as a path of a current supplied to the light emitting unit in the semiconductor thin film. The channel controls a current flowing through the passage according to a signal applied to the gate electrode, and supplies the controlled current to the light emitting unit via the drain.
As a characteristic feature, in the thin film transistor, a shielding conductive film is disposed above the channel in order to block an influence of an electric field generated from the drain to the light emitting portion, and a current supplied to the light emitting portion is provided. To stabilize. Preferably, the conductor film is formed of the same material as the conductor film forming the signal line or the scanning line. The conductor film is maintained at a constant potential. Alternatively, the conductor film is kept at the same potential as the gate electrode. Preferably, in the thin film transistor, sufficient impurities are injected into the channel to suppress the shortening of the effective length of the channel due to a rise in the voltage of the drain. To stabilize. Preferably, the light emitting section is formed of an organic electroluminescent element that emits light in response to a current.

【0008】本発明の他面に係る表示装置は、互いに交
差する走査線及び信号線と、これらの交差部に配された
画素とからなる。前記画素は、供給される電流に応じて
発光する電流駆動型の発光部と、該走査線及び該信号線
からの信号に応じて動作し該発光部に電流を供給する回
路部とからなる。前記回路部は、ゲート電極とその一面
に重ねられたゲート絶縁膜と該ゲート絶縁膜を介して該
ゲート電極に重ねられた半導体薄膜とからなる薄膜トラ
ンジスタを含む。前記薄膜トランジスタは、該発光部に
供給される電流の通路となるソース、チャネル及びドレ
インを該半導体薄膜に備える。前記チャネル、は該ゲー
ト電極に印加される信号に応じて該通路を流れる電流を
制御し、該制御された電流を該ドレインを介し該発光部
に供給する。特徴事項として、前記薄膜トランジスタ
は、該ドレインの電圧上昇に伴う該チャネルの実効長の
短縮化を抑制する為に充分な不純物が該チャネルに注入
されており、該発光部に供給される電流を安定化する。
好ましくは、前記薄膜トランジスタは、該ドレインの電
圧上昇に伴う該チャネルの実効長の短縮化を抑制するに
充分な濃度で、該チャネルの閾値電圧を調整する為に不
純物が該チャネルに注入されている。好ましくは、前記
薄膜トランジスタは、該ドレインから該発光部にかけて
発生する電界の影響を遮断する為に、該チャネルの上方
にシールド用の導体膜が配されており、これにより更に
該発光部に供給される電流を安定化する。好ましくは、
前記発光部は、電流に応じて発光する有機エレクトロル
ミネッセンス素子からなる。
[0008] A display device according to another aspect of the present invention includes a scanning line and a signal line that intersect each other and pixels arranged at the intersection. The pixel includes a current-driven light-emitting unit that emits light in accordance with a supplied current, and a circuit unit that operates in response to a signal from the scanning line and the signal line and supplies a current to the light-emitting unit. The circuit section includes a thin film transistor including a gate electrode, a gate insulating film overlaid on one surface thereof, and a semiconductor thin film overlaid on the gate electrode with the gate insulating film interposed therebetween. The thin film transistor includes a source, a channel, and a drain serving as a path of a current supplied to the light emitting unit in the semiconductor thin film. The channel controls a current flowing through the passage according to a signal applied to the gate electrode, and supplies the controlled current to the light emitting unit via the drain. As a characteristic feature, in the thin film transistor, sufficient impurities are injected into the channel to suppress the shortening of the effective length of the channel due to the increase in the voltage of the drain, and the current supplied to the light emitting portion is stabilized. Become
Preferably, in the thin film transistor, an impurity is implanted into the channel at a concentration sufficient to suppress a reduction in the effective length of the channel due to a rise in the voltage of the drain, and to adjust a threshold voltage of the channel. . Preferably, in the thin film transistor, a shielding conductor film is disposed above the channel in order to block an influence of an electric field generated from the drain to the light emitting portion, and further supplied to the light emitting portion. To stabilize the current. Preferably,
The light emitting unit includes an organic electroluminescent element that emits light in response to a current.

【0009】本発明によれば、各画素に集積形成された
回路部はボトムゲート構造の薄膜トランジスタを含んで
いる。この薄膜トランジスタのチャネル上に導体膜を設
けることにより、外部電界を遮断して、バックチャネル
現象を抑制する。特に薄膜トランジスタの動作特性上
で、飽和領域におけるドレイン電圧の増大に伴うドレイ
ン電流の増加を防いでいる。又、チャネル領域に必要な
濃度の不純物を導入することで、短チャネル効果の発生
を抑制し、持って飽和領域におけるドレイン電圧の増大
に伴うドレイン電流の漸増を防いでいる。かかるドレイ
ン電流の抑制手段を講ずることにより、有機EL素子等
の電流駆動型発光素子を集積形成した表示装置の色むら
を低減し正確な階調を出すことができる。
According to the present invention, the circuit portion integrated in each pixel includes a thin film transistor having a bottom gate structure. By providing a conductive film on the channel of the thin film transistor, an external electric field is cut off and the back channel phenomenon is suppressed. Particularly, in terms of the operating characteristics of the thin film transistor, an increase in drain current due to an increase in drain voltage in a saturation region is prevented. In addition, by introducing the necessary concentration of impurities into the channel region, the short channel effect is suppressed, and the drain current in the saturated region is prevented from gradually increasing as the drain voltage increases. By taking such a drain current suppressing means, it is possible to reduce color unevenness of a display device in which a current-driven light-emitting element such as an organic EL element is formed in an integrated manner, and to obtain an accurate gradation.

【0010】[0010]

【発明の実施の形態】以下図面を参照して本発明の実施
の形態を詳細に説明する。図1は本発明にかかる表示装
置の実施形態の一例を示す模式的な部分断面図であり、
一画素分のみを表している。尚、本表示装置の全体的な
構成は図6及び図7に示した表示装置と基本的には同様
である。即ち、本発明にかかる表示装置は、ガラス板等
からなる基板1を用いて作製されており、その上には互
いに交差する走査線及び信号線と、これらの交差部に配
された画素部とが集積的に形成されている。画素は、供
給される電流に応じて発光する電流駆動型の発光部と、
走査線及び信号線からの信号に応じて動作し発光部に電
流を供給する回路部とからなる。本実施形態では、発光
部は電流に応じて発光する有機EL素子OLEDからな
る。このOLEDは、画素電極10、有機EL層11及
び対向電極12を順に重ねたものである。画素電極10
はOLEDのカソードKとして機能し、例えば金属アル
ミニウムからなる。対向電極12はOLEDのアノード
Aとして機能し、例えばITO等の透明導電材料からな
る。画素電極10は画素毎に細分化されている一方、対
向電極12は全ての画素について共通に形成されてい
る。有機EL層11は例えば正孔輸送層と電子輸送層と
を重ねた複合膜となっている。例えば、カソードK(電
子注入電極)として機能する画素電極10の上に電子輸
送層としてAlq3を蒸着し、その上に正孔輸送層とし
てDiamineを蒸着し、その上にアノードA(正孔
注入電極)として機能する対向電極12を成膜する。
尚、Alq3は、8−hydroxy quinoli
ne aluminumを表している。このような積層
構造を有するOLEDは一例に過ぎず、本発明を限定す
るものではない。かかる構成を有するOLEDのアノー
ド/カソード間に順方向の電圧(10V程度)を印加す
ると、電子や正孔等キャリアの注入が起こり、発光が観
測される。OLEDの動作は、正孔輸送層から注入され
た正孔と電子輸送層から注入された電子より形成された
励起子による発光と考えられる。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic partial cross-sectional view showing an example of an embodiment of a display device according to the present invention.
Only one pixel is shown. The overall configuration of the present display device is basically the same as the display device shown in FIGS. That is, the display device according to the present invention is manufactured by using the substrate 1 made of a glass plate or the like, and further includes a scanning line and a signal line crossing each other, and a pixel portion arranged at the crossing portion. Are formed in an integrated manner. A pixel, a current-driven light-emitting unit that emits light in accordance with the supplied current,
A circuit unit that operates in response to signals from the scanning lines and the signal lines and supplies current to the light emitting unit. In the present embodiment, the light emitting section is formed of an organic EL element OLED that emits light according to a current. In this OLED, a pixel electrode 10, an organic EL layer 11, and a counter electrode 12 are sequentially stacked. Pixel electrode 10
Functions as a cathode K of an OLED and is made of, for example, metallic aluminum. The counter electrode 12 functions as an anode A of the OLED, and is made of a transparent conductive material such as ITO. The pixel electrode 10 is subdivided for each pixel, while the counter electrode 12 is commonly formed for all pixels. The organic EL layer 11 is, for example, a composite film in which a hole transport layer and an electron transport layer are stacked. For example, Alq3 is deposited as an electron transport layer on the pixel electrode 10 functioning as a cathode K (electron injection electrode), Diamine is deposited thereon as a hole transport layer, and an anode A (hole injection electrode) is deposited thereon. ) Is formed.
In addition, Alq3 is 8-hydroxyquinoli.
ne aluminum. The OLED having such a laminated structure is only an example and does not limit the present invention. When a forward voltage (about 10 V) is applied between the anode and the cathode of the OLED having such a configuration, injection of carriers such as electrons and holes occurs, and light emission is observed. The operation of the OLED is considered to be light emission by excitons formed from holes injected from the hole transport layer and electrons injected from the electron transport layer.

【0011】OLEDを駆動するために画素毎に設けら
れた回路部は、図示するようにボトムゲート構造のTF
Tを含んでいる。このTFTは基板1の上に形成された
ゲート電極2と、その上面に重ねられたゲート絶縁膜3
と、このゲート絶縁膜3を介してゲート電極2の上方に
重ねられた半導体薄膜4とからなる。この半導体薄膜4
は例えば多結晶シリコン薄膜からなる。TFTはOLE
Dに供給される電流の通路となるソースS、チャネルC
h及びドレインDを備えている。チャネルChは丁度ゲ
ート電極2の直上に位置する。このボトムゲート構造の
TFTは層間絶縁膜5により被覆されており、その上に
はソース電極6及びドレイン電極7が形成されている。
これら回路部の配線となるソース電極6及びドレイン電
極7の上には平坦化膜9を介してOLEDが成膜されて
いる。ここでチャネルChはゲート電極2に印加される
信号に応じて上述した通路を流れる電流を制御し、これ
をドレインD及びドレイン電極7を介してOLEDに供
給する。
A circuit section provided for each pixel for driving the OLED has a bottom gate structure TF as shown in FIG.
T. This TFT has a gate electrode 2 formed on a substrate 1 and a gate insulating film 3
And a semiconductor thin film 4 overlying the gate electrode 2 with the gate insulating film 3 interposed therebetween. This semiconductor thin film 4
Is composed of, for example, a polycrystalline silicon thin film. TFT is OLE
A source S and a channel C which are paths for a current supplied to D
h and a drain D. The channel Ch is located just above the gate electrode 2. The TFT having the bottom gate structure is covered with an interlayer insulating film 5, on which a source electrode 6 and a drain electrode 7 are formed.
An OLED is formed on a source electrode 6 and a drain electrode 7 serving as wirings of these circuit portions via a flattening film 9. Here, the channel Ch controls a current flowing through the above-described path according to a signal applied to the gate electrode 2, and supplies the current to the OLED via the drain D and the drain electrode 7.

【0012】本発明の特徴事項として、薄膜トランジス
タTFTは、ドレインD及びこれと同電位のドレイン電
極7や画素電極10から発生する電界の影響を遮断する
ために、チャネルChの上方に層間絶縁膜5を介してシ
ールド用の導体膜8が配されている。この導体膜8によ
りTFTのバックチャネル現象を抑制し、持ってOLE
Dに供給されるドレイン電流を安定化する。本実施形態
では、導体膜8は信号線(図示せず)やソース電極6、
ドレイン電極7を構成する導体膜と同一の材料で形成さ
れている。場合によっては、走査線(図示せず)やゲー
ト電極2を構成する導体膜と同一の材料で形成してもよ
い。本実施形態では導体膜8はゲート電極2と同電位に
保持されている。場合によっては、導体膜8を接地電位
若しくは電源電位(Vdd)等の定電位に保持してもよ
い。
A feature of the present invention is that the thin film transistor TFT is provided with an interlayer insulating film 5 above the channel Ch in order to cut off the influence of the electric field generated from the drain D and the drain electrode 7 and the pixel electrode 10 having the same potential. The conductor film 8 for shielding is arranged via the. This conductive film 8 suppresses the back channel phenomenon of the TFT, and
Stabilize the drain current supplied to D. In the present embodiment, the conductor film 8 includes a signal line (not shown), a source electrode 6,
The drain electrode 7 is formed of the same material as the conductive film. In some cases, it may be formed of the same material as a scanning line (not shown) and a conductive film forming the gate electrode 2. In the present embodiment, the conductor film 8 is maintained at the same potential as the gate electrode 2. In some cases, the conductor film 8 may be held at a constant potential such as a ground potential or a power supply potential (Vdd).

【0013】又、本発明の他の特徴として、薄膜トラン
ジスタTFTは、ドレインDの電圧上昇に伴うチャネル
Chの実効長の短縮化(短チャネル効果)を抑制するた
めに十分な不純物が半導体薄膜4のチャネル領域Chに
注入されており、OLEDに供給されるドレイン電流を
安定化する。TFTはドレインDの電圧上昇に伴う短チ
ャネル効果を抑制するに十分な濃度で、チャネルChの
閾値電圧を調整するために不純物がチャネルChに注入
されている。換言すると、TFTの閾値電圧調整用に注
入される不純物の濃度を通常に比べ多めに制御すること
で、短チャネル効果を抑制している。ドーズ量としては
1×1014/cm2 以下が好ましい。このドーズ量を越
えるとTFTの耐圧に問題が生じる場合がある。又、こ
のドーズ量を越えるとTFTの閾値電圧も動作に不適切
な範囲に入る場合がある。
Further, as another feature of the present invention, the thin film transistor TFT contains sufficient impurities in the semiconductor thin film 4 to suppress the shortening of the effective length of the channel Ch (short channel effect) due to the increase in the voltage of the drain D. It is injected into the channel region Ch and stabilizes the drain current supplied to the OLED. The TFT has a concentration sufficient to suppress a short channel effect caused by a rise in the voltage of the drain D, and an impurity is implanted into the channel Ch to adjust the threshold voltage of the channel Ch. In other words, the short channel effect is suppressed by controlling the concentration of the impurity implanted for adjusting the threshold voltage of the TFT to be higher than usual. The dose is preferably 1 × 10 14 / cm 2 or less. Exceeding this dose may cause a problem in the breakdown voltage of the TFT. If the dose is exceeded, the threshold voltage of the TFT may fall in an inappropriate range for operation.

【0014】図2は、本発明の原理的な説明に供する模
式図であり、TFTの参考例を表している。この参考例
は基本的には図1に示した実施形態と同様であり、対応
する部分には対応する参照番号を付して理解を容易にし
ている。但し、この参考例は実施形態と異なり、シール
ド用の導体膜がない通常のボトムゲート構造となってい
る。そこで、TFTのドレインDに加わる電圧を増加し
ていくと、電気力線が層間絶縁膜5を通して多結晶シリ
コン等からなる半導体薄膜4に印加される。この電気力
線による電界はドレイン電圧の上昇とともに増加するた
め、バックチャネルが発生し、結果的にチャネルChを
流れる電流は増加していく。
FIG. 2 is a schematic diagram for explaining the principle of the present invention, and shows a reference example of a TFT. This reference example is basically the same as the embodiment shown in FIG. 1, and corresponding parts are denoted by corresponding reference numerals to facilitate understanding. However, unlike the embodiment, the reference example has a normal bottom gate structure without a shield conductive film. Therefore, when the voltage applied to the drain D of the TFT is increased, electric lines of force are applied to the semiconductor thin film 4 made of polycrystalline silicon or the like through the interlayer insulating film 5. Since the electric field due to the lines of electric force increases with an increase in the drain voltage, a back channel occurs, and as a result, the current flowing through the channel Ch increases.

【0015】図3は、図2に示した薄膜トランジスタT
FTのドレイン電圧Vd/ドレイン電流Idの関係を示
すグラフである。OLEDを駆動するためには、Vd/
Id特性の飽和領域で、ドレイン電流Idはほぼ一定で
あることが好ましい。これにより、安定した画像輝度が
得られる。しかし、図2に示した参考例ではバックチャ
ネル現象のためVd/Id特性は飽和領域で平坦となら
ず、カーブaで示すようにVdの上昇とともにIdが漸
増している。
FIG. 3 shows the thin film transistor T shown in FIG.
9 is a graph showing a relationship between a drain voltage Vd and a drain current Id of FT. To drive the OLED, Vd /
It is preferable that the drain current Id is substantially constant in the saturation region of the Id characteristic. Thereby, stable image brightness can be obtained. However, in the reference example shown in FIG. 2, the Vd / Id characteristic does not become flat in the saturation region due to the back channel phenomenon, and Id gradually increases as Vd increases as shown by curve a.

【0016】図4は、図1に示した実施形態の要部を表
したものであり、図2の参考例との比較が容易となるよ
うに描いてある。ドレインDに印加される電圧による電
界を防ぐためには、図示するように、ソース電極6及び
ドレイン電極7を構成する層と同じ導電材で、チャネル
Chを構成する半導体薄膜4の上に層間絶縁膜5を介し
て導体膜8を設ける。このようにすれば、ドレイン電圧
による電界はシールドされることになり、チャネルCh
に悪影響を与えない。この結果、図4のTFTのVd/
Id特性は図3のカーブbのようになり、飽和領域にお
ける電流値の変動を抑制することが可能である。
FIG. 4 shows a main part of the embodiment shown in FIG. 1, and is drawn so as to be easily compared with the reference example of FIG. In order to prevent an electric field due to a voltage applied to the drain D, as shown in the figure, an interlayer insulating film is formed on the semiconductor thin film 4 forming the channel Ch using the same conductive material as the layers forming the source electrode 6 and the drain electrode 7. The conductor film 8 is provided through the intermediary 5. In this way, the electric field due to the drain voltage is shielded, and the channel Ch is shielded.
Does not adversely affect As a result, Vd /
The Id characteristic is as shown by the curve b in FIG. 3, and it is possible to suppress the fluctuation of the current value in the saturation region.

【0017】図5は、本発明の他の特徴の原理的な説明
に供する模式図である。図示するように、TFTは予め
必要な電流駆動能力に見合ったチャネルChの長さ寸法
Lを有している。しかし、ドレイン電圧の増大ととも
に、空乏層がドレイン端からソース端に向って伸びてい
く。空乏層の長さ寸法をΔLとすると、実効チャネル長
がL−ΔLとなり、短くなってくる。このようなドレイ
ン電圧の増大に伴う短チャネル効果が発生すると、当然
ドレイン電流Idが漸増してくるため、TFTのVd/
Id特性は図3のカーブaのようになる。ここで、空乏
層の長さΔLはチャネルChに注入された不純物濃度が
低いほど、長くなる。従って、ドレイン電圧の影響によ
る短チャネル効果を抑制するために必要な程度の濃度
で、チャネル領域に不純物を注入すればよい。具体的に
は、空乏層の伸びを防止するため、必要な濃度で予め半
導体薄膜4に閾値調整を兼ねたイオンインプランテーシ
ョンを行なっている。これにより、TFTのVd/Id
特性を、図3のカーブbのようにすることが可能であ
る。OLEDは電流駆動型であるので、ドレイン電流の
ばらつきを抑制することは重要である。
FIG. 5 is a schematic view for explaining the principle of another feature of the present invention. As shown in the drawing, the TFT has a length dimension L of a channel Ch that matches a required current driving capability in advance. However, as the drain voltage increases, the depletion layer extends from the drain end toward the source end. Assuming that the length of the depletion layer is ΔL, the effective channel length becomes L−ΔL, which becomes shorter. When the short channel effect occurs due to the increase of the drain voltage, the drain current Id naturally increases gradually.
The Id characteristic is as shown by a curve a in FIG. Here, the length ΔL of the depletion layer increases as the impurity concentration implanted into the channel Ch decreases. Therefore, the impurity may be implanted into the channel region at a concentration necessary to suppress the short channel effect due to the influence of the drain voltage. Specifically, in order to prevent the elongation of the depletion layer, ion implantation is performed on the semiconductor thin film 4 in advance at a required concentration while also performing threshold adjustment. Thereby, Vd / Id of TFT
The characteristic can be as shown by a curve b in FIG. Since OLEDs are current-driven, it is important to suppress variations in drain current.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば、
薄膜トランジスタ(TFT)と電流駆動型発光素子とを
組み合わせたアクティブマトリクス型表示装置におい
て、ボトムゲート構造のTFTの上にシールド用の導体
膜を設けることにより、TFT動作特性上飽和領域にお
けるドレイン電流の漸増を抑制することが可能である。
又、チャネル領域に不純物を注入することで、ドレイン
端からの空乏層の伸びを抑制して、ドレイン電流の漸増
を防ぐ。このようなシールド用の導体膜とチャネルドー
ピングとを組み合わせて、飽和領域におけるドレイン電
流の漸増を抑える。これにより、電流駆動で発光する有
機EL素子等を用いた表示装置の表示むらの低減化が達
成可能である。
As described above, according to the present invention,
In an active matrix display device in which a thin film transistor (TFT) and a current-driven light-emitting element are combined, by providing a conductive film for shielding on a TFT having a bottom gate structure, a drain current in a saturated region is gradually increased in TFT operation characteristics. Can be suppressed.
Further, by implanting an impurity into the channel region, the extension of the depletion layer from the drain end is suppressed, and the drain current is prevented from gradually increasing. By combining such a shielding conductor film and channel doping, the gradual increase of the drain current in the saturation region is suppressed. Thus, it is possible to achieve a reduction in display unevenness of a display device using an organic EL element or the like that emits light by current driving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる表示装置の実施形態を示す模式
的な部分断面図である。
FIG. 1 is a schematic partial cross-sectional view showing an embodiment of a display device according to the present invention.

【図2】本発明の原理説明に供する参考図である。FIG. 2 is a reference diagram for explaining the principle of the present invention.

【図3】同じく原理説明に供する薄膜トランジスタの特
性図である。
FIG. 3 is a characteristic diagram of a thin-film transistor similarly used for explaining the principle.

【図4】本発明にかかる表示装置の要部断面図である。FIG. 4 is a sectional view of a main part of a display device according to the present invention.

【図5】同じく本発明にかかる表示装置の要部断面図で
ある。
FIG. 5 is a sectional view of a main part of a display device according to the present invention.

【図6】従来の表示装置の一例を示す模式的な斜視図で
ある。
FIG. 6 is a schematic perspective view showing an example of a conventional display device.

【図7】従来の表示装置の一例を示す等価回路図であ
る。
FIG. 7 is an equivalent circuit diagram illustrating an example of a conventional display device.

【符号の説明】[Explanation of symbols]

1・・・基板、2・・・ゲート電極、3・・・ゲート絶
縁膜、4・・・半導体薄膜、5・・・層間絶縁膜、8・
・・導体膜、9・・・平坦化膜、10・・・画素電極、
11・・・有機EL層、12・・・対向電極、TFT・
・・薄膜トランジスタ、Ch・・・チャネル、S・・・
ソース、D・・・ドレイン、OLED・・・有機発光ダ
イオード
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Gate electrode, 3 ... Gate insulating film, 4 ... Semiconductor thin film, 5 ... Interlayer insulating film, 8
..Conductor film, 9 flattening film, 10 pixel electrode,
11: Organic EL layer, 12: Counter electrode, TFT
..Thin film transistors, Ch channels, S channels
Source, D: drain, OLED: organic light emitting diode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3K007 AB02 AB06 AB07 BA06 CA01 CB01 DA01 DB03 EB00 5C080 AA06 BB05 DD05 FF11 JJ03 JJ05 JJ06 5C094 AA03 AA13 AA23 AA25 AA53 BA03 BA29 CA19 DA13 DB01 DB10 EA04 EA05 EA10 EB02 FA01 FA02 FB12 FB14 5F110 AA30 BB01 CC08 DD02 EE30 GG02 GG13 GG34 HJ13 HL03 NN73 QQ08 QQ19  ──────────────────────────────────────────────────続 き Continuing on the front page F term (reference) 3K007 AB02 AB06 AB07 BA06 CA01 CB01 DA01 DB03 EB00 5C080 AA06 BB05 DD05 FF11 JJ03 JJ05 JJ06 5C094 AA03 AA13 AA23 AA25 AA53 BA03 BA29 CA19 DA13 DB01 DB10 EA04 EB02 FA01 5F110 AA30 BB01 CC08 DD02 EE30 GG02 GG13 GG34 HJ13 HL03 NN73 QQ08 QQ19

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 互いに交差する走査線及び信号線と、こ
れらの交差部に配された画素とからなり、 前記画素は、供給される電流に応じて発光する電流駆動
型の発光部と、該走査線及び該信号線からの信号に応じ
て動作し該発光部に電流を供給する回路部とからなり、 前記回路部は、ゲート電極とその上面に重ねられたゲー
ト絶縁膜と該ゲート絶縁膜を介して該ゲート電極の上方
に重ねられた半導体薄膜とからなる薄膜トランジスタを
含み、 前記薄膜トランジスタは、該発光部に供給される電流の
通路となるソース、チャネル及びドレインを該半導体薄
膜に備え、 前記チャネルは該ゲート電極に印加される信号に応じて
該通路を流れる電流を制御し、該制御された電流を該ド
レインを介し該発光部に供給する表示装置において、 前記薄膜トランジスタは、該ドレインから該発光部にか
けて発生する電界の影響を遮断する為に、該チャネルの
上方にシールド用の導体膜が配されており、該発光部に
供給される電流を安定化することを特徴とする表示装
置。
1. A pixel comprising: a scanning line and a signal line intersecting each other; and a pixel disposed at an intersection of the scanning line and the signal line. The pixel includes: a current driving type light emitting unit that emits light in accordance with a supplied current; A scanning portion and a circuit portion that operates in response to a signal from the signal line and supplies a current to the light emitting portion, wherein the circuit portion includes a gate electrode, a gate insulating film overlaid on an upper surface thereof, and the gate insulating film. A thin film transistor comprising a semiconductor thin film overlying the gate electrode with a source, a channel, and a drain serving as a path of a current supplied to the light emitting unit provided in the semiconductor thin film; The channel controls a current flowing through the passage according to a signal applied to the gate electrode, and supplies the controlled current to the light emitting unit through the drain. The transistor has a shield conductive film disposed above the channel to block the effect of an electric field generated from the drain to the light emitting portion, and stabilizes a current supplied to the light emitting portion. A display device characterized by the above-mentioned.
【請求項2】 前記導体膜は、該信号線又は走査線を構
成する導体膜と同一の材料で形成されていることを特徴
とする請求項1記載の表示装置。
2. The display device according to claim 1, wherein the conductive film is formed of the same material as the conductive film forming the signal line or the scanning line.
【請求項3】 前記導体膜は、定電位に保持されている
ことを特徴とする請求項1記載の表示装置。
3. The display device according to claim 1, wherein the conductive film is kept at a constant potential.
【請求項4】 前記導体膜は、該ゲート電極と同電位に
保持されていることを特徴とする請求項1記載の表示装
置。
4. The display device according to claim 1, wherein the conductive film is kept at the same potential as the gate electrode.
【請求項5】 前記薄膜トランジスタは、該ドレインの
電圧上昇に伴う該チャネルの実効長の短縮化を抑制する
為に充分な不純物が該チャネルに注入されており、これ
により更に該発光部に供給される電流を安定化すること
を特徴とする請求項1記載の表示装置。
5. In the thin film transistor, sufficient impurities are implanted into the channel to suppress the shortening of the effective length of the channel due to a rise in the voltage of the drain, whereby the thin film transistor is further supplied to the light emitting portion. 2. The display device according to claim 1, wherein the current is stabilized.
【請求項6】 前記発光部は、電流に応じて発光する有
機エレクトロルミネッセンス素子からなることを特徴と
する請求項1記載の表示装置。
6. The display device according to claim 1, wherein the light emitting unit is formed of an organic electroluminescent element that emits light according to a current.
【請求項7】 互いに交差する走査線及び信号線と、こ
れらの交差部に配された画素とからなり、 前記画素は、供給される電流に応じて発光する電流駆動
型の発光部と、該走査線及び該信号線からの信号に応じ
て動作し該発光部に電流を供給する回路部とからなり、 前記回路部は、ゲート電極とその一面に重ねられたゲー
ト絶縁膜と該ゲート絶縁膜を介して該ゲート電極に重ね
られた半導体薄膜とからなる薄膜トランジスタを含み、 前記薄膜トランジスタは、該発光部に供給される電流の
通路となるソース、チャネル及びドレインを該半導体薄
膜に備え、 前記チャネルは該ゲート電極に印加される信号に応じて
該通路を流れる電流を制御し、該制御された電流を該ド
レインを介し該発光部に供給する表示装置において、 前記薄膜トランジスタは、該ドレインの電圧上昇に伴う
該チャネルの実効長の短縮化を抑制する為に充分な不純
物が該チャネルに注入されており、該発光部に供給され
る電流を安定化することを特徴とする表示装置。
7. A scanning line and a signal line intersecting each other, and a pixel arranged at the intersection thereof. The pixel includes a current driving type light emitting unit that emits light according to a supplied current, A circuit portion that operates in response to a signal from the scanning line and the signal line and supplies a current to the light emitting portion; wherein the circuit portion includes a gate electrode, a gate insulating film overlaid on one surface thereof, and the gate insulating film. A thin film transistor comprising a semiconductor thin film overlaid on the gate electrode through the thin film transistor, wherein the thin film transistor includes a source, a channel, and a drain, which serve as a path of a current supplied to the light emitting portion, in the semiconductor thin film; In a display device, a current flowing through the passage is controlled in accordance with a signal applied to the gate electrode, and the controlled current is supplied to the light emitting unit through the drain. Is characterized in that sufficient impurities are implanted into the channel to suppress the shortening of the effective length of the channel due to a rise in the voltage of the drain, and the current supplied to the light-emitting portion is stabilized. Display device.
【請求項8】 前記薄膜トランジスタは、該ドレインの
電圧上昇に伴う該チャネルの実効長の短縮化を抑制する
に充分な濃度で、該チャネルの閾値電圧を調整する為に
不純物が該チャネルに注入されていることを特徴とする
請求項7記載の表示装置。
8. The thin film transistor has a concentration sufficient to suppress a reduction in the effective length of the channel due to a rise in the voltage of the drain, and an impurity is implanted into the channel to adjust a threshold voltage of the channel. The display device according to claim 7, wherein:
【請求項9】 前記薄膜トランジスタは、該ドレインか
ら該発光部にかけて発生する電界の影響を遮断する為
に、該チャネルの上方にシールド用の導体膜が配されて
おり、これにより更に該発光部に供給される電流を安定
化することを特徴とする請求項7記載の表示装置。
9. The thin film transistor has a shield conductive film disposed above the channel in order to cut off the influence of an electric field generated from the drain to the light emitting portion. The display device according to claim 7, wherein the supplied current is stabilized.
【請求項10】 前記発光部は、電流に応じて発光する
有機エレクトロルミネッセンス素子からなることを特徴
とする請求項7記載の表示装置。
10. The display device according to claim 7, wherein the light emitting section is formed of an organic electroluminescence element that emits light according to a current.
JP16613299A 1999-06-14 1999-06-14 Display device Expired - Fee Related JP4337171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16613299A JP4337171B2 (en) 1999-06-14 1999-06-14 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16613299A JP4337171B2 (en) 1999-06-14 1999-06-14 Display device

Publications (2)

Publication Number Publication Date
JP2000352941A true JP2000352941A (en) 2000-12-19
JP4337171B2 JP4337171B2 (en) 2009-09-30

Family

ID=15825637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16613299A Expired - Fee Related JP4337171B2 (en) 1999-06-14 1999-06-14 Display device

Country Status (1)

Country Link
JP (1) JP4337171B2 (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003208110A (en) * 2001-11-09 2003-07-25 Semiconductor Energy Lab Co Ltd Light emitting device
JP2004047446A (en) * 2002-05-15 2004-02-12 Semiconductor Energy Lab Co Ltd Light emitting device and manufacturing method thereof
JP2004531752A (en) * 2001-02-16 2004-10-14 イグニス イノベーション インコーポレーテッド Organic light emitting diode display with shielding electrode
JP2004531751A (en) * 2001-02-16 2004-10-14 イグニス イノベーション インコーポレーテッド Pixel current driver for organic light emitting diode displays
US6947019B2 (en) 2001-03-28 2005-09-20 Hitachi, Ltd. Display module
KR100594865B1 (en) 2004-08-10 2006-06-30 엘지.필립스 엘시디 주식회사 The organic electro-luminescence device and method for fabricating of the same
JP2006518864A (en) * 2003-02-24 2006-08-17 イグニス イノベーション インコーポレーテッド Pixel with organic light emitting diode and method for making the pixel
JP2007041612A (en) * 2002-01-18 2007-02-15 Semiconductor Energy Lab Co Ltd Light emission device and electronic equipment
WO2008084697A1 (en) * 2007-01-10 2008-07-17 Sony Corporation Semiconductor device and display device
CN100433361C (en) * 2006-07-10 2008-11-12 友达光电股份有限公司 Organic electroluminescence structure
JP2009175198A (en) * 2008-01-21 2009-08-06 Sony Corp El display panel and electronic apparatus
WO2010024161A1 (en) * 2008-08-28 2010-03-04 シャープ株式会社 Active matrix substrate and display device using same
US7709838B2 (en) 2005-10-17 2010-05-04 Samsung Electronics Co., Ltd. Thin film transistor array panel
US7723179B2 (en) 2002-05-15 2010-05-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method for manufacturing the same
JP2010157514A (en) * 2010-01-29 2010-07-15 Sony Corp El display panel and electronic device
JP2011075946A (en) * 2009-09-30 2011-04-14 Casio Computer Co Ltd Transistor, display device, electronic device, and method for manufacturing transistor
JP2013080715A (en) * 2001-02-01 2013-05-02 Semiconductor Energy Lab Co Ltd Light emitting device
JP2013214085A (en) * 2013-06-04 2013-10-17 Semiconductor Energy Lab Co Ltd Display divice
US8659518B2 (en) 2005-01-28 2014-02-25 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US8664644B2 (en) 2001-02-16 2014-03-04 Ignis Innovation Inc. Pixel driver circuit and pixel circuit having the pixel driver circuit
CN103647028A (en) * 2013-12-19 2014-03-19 京东方科技集团股份有限公司 Array substrate, manufacturing method thereof and display device
US8723760B2 (en) 2002-01-18 2014-05-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US8743096B2 (en) 2006-04-19 2014-06-03 Ignis Innovation, Inc. Stable driving scheme for active matrix displays
US8901579B2 (en) 2011-08-03 2014-12-02 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
USRE45291E1 (en) 2004-06-29 2014-12-16 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
US9070775B2 (en) 2011-08-03 2015-06-30 Ignis Innovations Inc. Thin film transistor
US9134825B2 (en) 2011-05-17 2015-09-15 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9153172B2 (en) 2004-12-07 2015-10-06 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
JP2015187735A (en) * 2015-05-08 2015-10-29 株式会社ジャパンディスプレイ Display unit
JP2016035586A (en) * 2001-09-07 2016-03-17 株式会社半導体エネルギー研究所 Electronic apparatus
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US9472138B2 (en) 2003-09-23 2016-10-18 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
EP3174099A1 (en) * 2015-11-27 2017-05-31 LG Display Co., Ltd. Organic light emitting diode display
US9818376B2 (en) 2009-11-12 2017-11-14 Ignis Innovation Inc. Stable fast programming scheme for displays
US9842889B2 (en) 2014-11-28 2017-12-12 Ignis Innovation Inc. High pixel density array architecture
JP2018019084A (en) * 2001-11-09 2018-02-01 株式会社半導体エネルギー研究所 Light-emitting device
US9934725B2 (en) 2013-03-08 2018-04-03 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9952698B2 (en) 2013-03-15 2018-04-24 Ignis Innovation Inc. Dynamic adjustment of touch resolutions on an AMOLED display
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10176752B2 (en) 2014-03-24 2019-01-08 Ignis Innovation Inc. Integrated gate driver
US10204540B2 (en) 2015-10-26 2019-02-12 Ignis Innovation Inc. High density pixel pattern
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10410579B2 (en) 2015-07-24 2019-09-10 Ignis Innovation Inc. Systems and methods of hybrid calibration of bias current
US10586491B2 (en) 2016-12-06 2020-03-10 Ignis Innovation Inc. Pixel circuits for mitigation of hysteresis
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10714018B2 (en) 2017-05-17 2020-07-14 Ignis Innovation Inc. System and method for loading image correction data for displays
US10971078B2 (en) 2018-02-12 2021-04-06 Ignis Innovation Inc. Pixel measurement through data line
US10997901B2 (en) 2014-02-28 2021-05-04 Ignis Innovation Inc. Display system
CN112786670A (en) * 2021-01-11 2021-05-11 武汉华星光电半导体显示技术有限公司 Array substrate, display panel and manufacturing method of array substrate
US11025899B2 (en) 2017-08-11 2021-06-01 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013080715A (en) * 2001-02-01 2013-05-02 Semiconductor Energy Lab Co Ltd Light emitting device
US8890220B2 (en) 2001-02-16 2014-11-18 Ignis Innovation, Inc. Pixel driver circuit and pixel circuit having control circuit coupled to supply voltage
JP2004531752A (en) * 2001-02-16 2004-10-14 イグニス イノベーション インコーポレーテッド Organic light emitting diode display with shielding electrode
JP2004531751A (en) * 2001-02-16 2004-10-14 イグニス イノベーション インコーポレーテッド Pixel current driver for organic light emitting diode displays
EP1362374B1 (en) * 2001-02-16 2014-05-21 Ignis Innovation Inc. Organic light emitting diode display having shield electrodes
US8664644B2 (en) 2001-02-16 2014-03-04 Ignis Innovation Inc. Pixel driver circuit and pixel circuit having the pixel driver circuit
US6947019B2 (en) 2001-03-28 2005-09-20 Hitachi, Ltd. Display module
JP2016035586A (en) * 2001-09-07 2016-03-17 株式会社半導体エネルギー研究所 Electronic apparatus
US9577016B2 (en) 2001-11-09 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8154015B2 (en) 2001-11-09 2012-04-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device including thin film transistor
US10680049B2 (en) 2001-11-09 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US10461140B2 (en) 2001-11-09 2019-10-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
KR100920316B1 (en) * 2001-11-09 2009-10-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting device
JP2019082698A (en) * 2001-11-09 2019-05-30 株式会社半導体エネルギー研究所 Light-emitting device
US9054199B2 (en) 2001-11-09 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2003208110A (en) * 2001-11-09 2003-07-25 Semiconductor Energy Lab Co Ltd Light emitting device
US7723721B2 (en) 2001-11-09 2010-05-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having TFT
US8648338B2 (en) 2001-11-09 2014-02-11 Semiconductor Energy Laboratory Co., Ltd. Light emitting device comprising an organic compound layer
JP2018019084A (en) * 2001-11-09 2018-02-01 株式会社半導体エネルギー研究所 Light-emitting device
US9905624B2 (en) 2001-11-09 2018-02-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US11063102B2 (en) 2001-11-09 2021-07-13 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2018106182A (en) * 2001-11-09 2018-07-05 株式会社半導体エネルギー研究所 Light-emitting device
JP2018097383A (en) * 2001-11-09 2018-06-21 株式会社半導体エネルギー研究所 Light-emitting device
JP6306808B1 (en) * 2001-11-09 2018-04-04 株式会社半導体エネルギー研究所 Light emitting device
US8324618B2 (en) 2001-11-09 2012-12-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP2007041612A (en) * 2002-01-18 2007-02-15 Semiconductor Energy Lab Co Ltd Light emission device and electronic equipment
JP4490403B2 (en) * 2002-01-18 2010-06-23 株式会社半導体エネルギー研究所 Light emitting device
US10978613B2 (en) 2002-01-18 2021-04-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP2016177304A (en) * 2002-01-18 2016-10-06 株式会社半導体エネルギー研究所 Light-emitting device
US8723760B2 (en) 2002-01-18 2014-05-13 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP2004047446A (en) * 2002-05-15 2004-02-12 Semiconductor Energy Lab Co Ltd Light emitting device and manufacturing method thereof
KR100968512B1 (en) * 2002-05-15 2010-07-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light emitting device and method for manufacturing the same
US7723179B2 (en) 2002-05-15 2010-05-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method for manufacturing the same
US7948170B2 (en) 2003-02-24 2011-05-24 Ignis Innovation Inc. Pixel having an organic light emitting diode and method of fabricating the pixel
US10163996B2 (en) 2003-02-24 2018-12-25 Ignis Innovation Inc. Pixel having an organic light emitting diode and method of fabricating the pixel
JP2006518864A (en) * 2003-02-24 2006-08-17 イグニス イノベーション インコーポレーテッド Pixel with organic light emitting diode and method for making the pixel
US10089929B2 (en) 2003-09-23 2018-10-02 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
US9472138B2 (en) 2003-09-23 2016-10-18 Ignis Innovation Inc. Pixel driver circuit with load-balance in current mirror circuit
USRE45291E1 (en) 2004-06-29 2014-12-16 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
USRE47257E1 (en) 2004-06-29 2019-02-26 Ignis Innovation Inc. Voltage-programming scheme for current-driven AMOLED displays
KR100594865B1 (en) 2004-08-10 2006-06-30 엘지.필립스 엘시디 주식회사 The organic electro-luminescence device and method for fabricating of the same
US9153172B2 (en) 2004-12-07 2015-10-06 Ignis Innovation Inc. Method and system for programming and driving active matrix light emitting device pixel having a controllable supply voltage
US9373645B2 (en) 2005-01-28 2016-06-21 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US8659518B2 (en) 2005-01-28 2014-02-25 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US9728135B2 (en) 2005-01-28 2017-08-08 Ignis Innovation Inc. Voltage programmed pixel circuit, display system and driving method thereof
US7709838B2 (en) 2005-10-17 2010-05-04 Samsung Electronics Co., Ltd. Thin film transistor array panel
US7883921B2 (en) 2005-10-17 2011-02-08 Samsung Electronics Co., Ltd. Thin film transistor array panel and manufacturing method thereof
US9633597B2 (en) 2006-04-19 2017-04-25 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US8743096B2 (en) 2006-04-19 2014-06-03 Ignis Innovation, Inc. Stable driving scheme for active matrix displays
US10453397B2 (en) 2006-04-19 2019-10-22 Ignis Innovation Inc. Stable driving scheme for active matrix displays
US10127860B2 (en) 2006-04-19 2018-11-13 Ignis Innovation Inc. Stable driving scheme for active matrix displays
CN100433361C (en) * 2006-07-10 2008-11-12 友达光电股份有限公司 Organic electroluminescence structure
KR101422164B1 (en) * 2007-01-10 2014-07-22 소니 주식회사 Semiconductor device and display device
WO2008084697A1 (en) * 2007-01-10 2008-07-17 Sony Corporation Semiconductor device and display device
CN101595567A (en) * 2007-01-10 2009-12-02 索尼株式会社 Semiconductor device and display unit
JP2008171907A (en) * 2007-01-10 2008-07-24 Sony Corp Semiconductor device and display device
JP4591451B2 (en) * 2007-01-10 2010-12-01 ソニー株式会社 Semiconductor device and display device
US10467955B2 (en) 2008-01-21 2019-11-05 Sony Corporation Electroluminescent display panel and electronic apparatus
US10217405B2 (en) 2008-01-21 2019-02-26 Sony Corporation Electroluminescent display panel and electronic apparatus
US9001011B2 (en) 2008-01-21 2015-04-07 Sony Corporation Electroluminescent display panel and electronic apparatus
US8633875B2 (en) 2008-01-21 2014-01-21 Sony Corporation Electroluminescent display panel and electronic apparatus
US8698707B2 (en) 2008-01-21 2014-04-15 Sony Corporation Electroluminescent display panel and electronic apparatus
JP2009175198A (en) * 2008-01-21 2009-08-06 Sony Corp El display panel and electronic apparatus
US8462287B2 (en) 2008-08-28 2013-06-11 Sharp Kabushiki Kaisha Active matrix substrate and display device using the same
WO2010024161A1 (en) * 2008-08-28 2010-03-04 シャープ株式会社 Active matrix substrate and display device using same
JP2011075946A (en) * 2009-09-30 2011-04-14 Casio Computer Co Ltd Transistor, display device, electronic device, and method for manufacturing transistor
US10685627B2 (en) 2009-11-12 2020-06-16 Ignis Innovation Inc. Stable fast programming scheme for displays
US9818376B2 (en) 2009-11-12 2017-11-14 Ignis Innovation Inc. Stable fast programming scheme for displays
JP2010157514A (en) * 2010-01-29 2010-07-15 Sony Corp El display panel and electronic device
US10249237B2 (en) 2011-05-17 2019-04-02 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9606607B2 (en) 2011-05-17 2017-03-28 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9134825B2 (en) 2011-05-17 2015-09-15 Ignis Innovation Inc. Systems and methods for display systems with dynamic power control
US9224954B2 (en) 2011-08-03 2015-12-29 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US9070775B2 (en) 2011-08-03 2015-06-30 Ignis Innovations Inc. Thin film transistor
US8901579B2 (en) 2011-08-03 2014-12-02 Ignis Innovation Inc. Organic light emitting diode and method of manufacturing
US10079269B2 (en) 2011-11-29 2018-09-18 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US9385169B2 (en) 2011-11-29 2016-07-05 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US9818806B2 (en) 2011-11-29 2017-11-14 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10453904B2 (en) 2011-11-29 2019-10-22 Ignis Innovation Inc. Multi-functional active matrix organic light-emitting diode display
US10380944B2 (en) 2011-11-29 2019-08-13 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US9934725B2 (en) 2013-03-08 2018-04-03 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9952698B2 (en) 2013-03-15 2018-04-24 Ignis Innovation Inc. Dynamic adjustment of touch resolutions on an AMOLED display
JP2013214085A (en) * 2013-06-04 2013-10-17 Semiconductor Energy Lab Co Ltd Display divice
CN103647028A (en) * 2013-12-19 2014-03-19 京东方科技集团股份有限公司 Array substrate, manufacturing method thereof and display device
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
US9831462B2 (en) 2013-12-25 2017-11-28 Ignis Innovation Inc. Electrode contacts
US10997901B2 (en) 2014-02-28 2021-05-04 Ignis Innovation Inc. Display system
US10176752B2 (en) 2014-03-24 2019-01-08 Ignis Innovation Inc. Integrated gate driver
US9842889B2 (en) 2014-11-28 2017-12-12 Ignis Innovation Inc. High pixel density array architecture
US10170522B2 (en) 2014-11-28 2019-01-01 Ignis Innovations Inc. High pixel density array architecture
JP2015187735A (en) * 2015-05-08 2015-10-29 株式会社ジャパンディスプレイ Display unit
US10410579B2 (en) 2015-07-24 2019-09-10 Ignis Innovation Inc. Systems and methods of hybrid calibration of bias current
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10204540B2 (en) 2015-10-26 2019-02-12 Ignis Innovation Inc. High density pixel pattern
US9853097B2 (en) 2015-11-27 2017-12-26 Lg Display Co., Ltd. Organic light emitting diode display including pixel having shielding electrode
EP3174099A1 (en) * 2015-11-27 2017-05-31 LG Display Co., Ltd. Organic light emitting diode display
US10586491B2 (en) 2016-12-06 2020-03-10 Ignis Innovation Inc. Pixel circuits for mitigation of hysteresis
US10714018B2 (en) 2017-05-17 2020-07-14 Ignis Innovation Inc. System and method for loading image correction data for displays
US11025899B2 (en) 2017-08-11 2021-06-01 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
US11792387B2 (en) 2017-08-11 2023-10-17 Ignis Innovation Inc. Optical correction systems and methods for correcting non-uniformity of emissive display devices
US10971078B2 (en) 2018-02-12 2021-04-06 Ignis Innovation Inc. Pixel measurement through data line
US11847976B2 (en) 2018-02-12 2023-12-19 Ignis Innovation Inc. Pixel measurement through data line
CN112786670A (en) * 2021-01-11 2021-05-11 武汉华星光电半导体显示技术有限公司 Array substrate, display panel and manufacturing method of array substrate
CN112786670B (en) * 2021-01-11 2022-07-29 武汉华星光电半导体显示技术有限公司 Array substrate, display panel and manufacturing method of array substrate

Also Published As

Publication number Publication date
JP4337171B2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
JP4337171B2 (en) Display device
US11569325B2 (en) Display device, method of manufacturing the same, and electronic apparatus
US11404516B2 (en) Method for manufacturing a display device
US10418430B2 (en) Display device
US6501448B1 (en) Electroluminescence display device with improved driving transistor structure
KR100830981B1 (en) Organic light emitting diode display
KR100823199B1 (en) Organic light emitting diode display
KR100834346B1 (en) an active matrix organic electroluminescence display device
EP2450869B1 (en) Active matrix substrate and organic el display device
CN107068712B (en) High brightness organic light emitting diode display
JP2002175029A (en) Semiconductor device and display device
KR20090046053A (en) Organic light emitting display and method of driving the same
US11563067B2 (en) Display device with improved aperture ratio and transmissivity
US10340327B2 (en) Display device
KR20190068878A (en) Electroluminescent display device
KR101928407B1 (en) Organic electro-luminescence display and manufacturing method thereof
KR20090042485A (en) Organic light emitting display and method of driving the same
KR100627284B1 (en) Organic electro luminescent display panel
US10923536B2 (en) Organic el display device and method of manufacturing organic el display device
JP2005215609A (en) Unit circuit, electro-optical device, and electronic equipment
KR101493223B1 (en) Organic light emitting display
KR100782322B1 (en) an active matrix organic electroluminescence display and a manufacturing method of the same
US20240138240A1 (en) Light-emitting display device
US10903443B2 (en) Organic EL display device
KR100627358B1 (en) Organic electro luminescent display panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120710

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130710

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees