JP2000352609A - Diffraction grating pattern - Google Patents

Diffraction grating pattern

Info

Publication number
JP2000352609A
JP2000352609A JP11165306A JP16530699A JP2000352609A JP 2000352609 A JP2000352609 A JP 2000352609A JP 11165306 A JP11165306 A JP 11165306A JP 16530699 A JP16530699 A JP 16530699A JP 2000352609 A JP2000352609 A JP 2000352609A
Authority
JP
Japan
Prior art keywords
diffraction grating
minute
pattern
white
diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11165306A
Other languages
Japanese (ja)
Other versions
JP4013405B2 (en
Inventor
Toshitaka Toda
敏貴 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP16530699A priority Critical patent/JP4013405B2/en
Publication of JP2000352609A publication Critical patent/JP2000352609A/en
Application granted granted Critical
Publication of JP4013405B2 publication Critical patent/JP4013405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a pattern with which a preferable white display can be obtained with little influences by the changes in observation conditions by forming a minute region composed of a group of minute cells consisting of diffraction grating having the same direction and specified kinds or more kinds of different spatial frequencies in the pattern. SOLUTION: This pattern consists of a plurality of minute cells consisting of diffraction gratings arranged on the surface of a substrate, with at least one of the spatial frequency of the diffraction gratings, direction of the diffraction gratings or drawing region of the diffraction gratings being changed. The pattern has a minute region composed of a group of minute cells consisting of diffraction gratings having four or more kinds of different spatial frequencies and the same direction. For example, the diffraction gratings have d1 to d4 spatial frequencies (pitches) and the ratio of the line width of the grating represented by the white and black stripes to the grating pitch (corresponding to the peak-valley of a surface relief type diffraction grating) is almost 1:1, however, the gratings are not limited to those.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板の表面に、回
折格子からなる微小なセル(ドット)を配置することに
よって表現されるパターンに関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a pattern expressed by arranging minute cells (dots) made of a diffraction grating on the surface of a substrate.

【0002】[0002]

【従来の技術】回折格子によって構成されるパターン
は、通常の印刷技術では表現することのできない指向性
のある光沢を有することから、ディスプレイの用途や偽
造防止を目的としたセキュリティ商品に広く用いられて
おり、より多彩でオリジナリティの高いパターンを作製
することが求められている。
2. Description of the Related Art Since a pattern formed by a diffraction grating has a directional luster that cannot be expressed by ordinary printing techniques, it is widely used for display applications and security products aimed at preventing forgery. Therefore, it is required to produce a more versatile and highly original pattern.

【0003】このような要求に応じて、セル(ドット)
状の回折格子の集まりによって構成される回折格子パタ
ーンを有するディスプレイが公知である。
In response to such demands, cells (dots)
2. Description of the Related Art Displays having a diffraction grating pattern constituted by a collection of diffraction gratings are known.

【0004】尚、ディスプレイ(パターン)の構成単位
である「セル」および「ドット」は同義語として扱われ
るが、形状(輪郭)や大きさに制約を受けないニュアン
スのある用語「セル」、さらに製造物は「回折格子パタ
ーン」として、以後の説明を統一する。
[0004] Incidentally, "cell" and "dot" which are constituent units of a display (pattern) are treated as synonyms, but a nuanced term "cell" which is not restricted by shape (outline) or size, and The product will be referred to as a “diffraction grating pattern”, and the following description will be unified.

【0005】回折格子パターンを作製する方法として
は、特開昭60−156004号公報に例示されるよう
な方法が公知である。この方法は、レーザー光の2光束
干渉による微小な干渉縞(回折格子)を、そのピッチ,
方向,および光強度を変化させて、感光性フィルムに次
々と露光するものである。
[0005] As a method for producing a diffraction grating pattern, a method as exemplified in JP-A-60-156004 is known. According to this method, minute interference fringes (diffraction gratings) due to two-beam interference of laser light are formed at the pitch,
The photosensitive film is successively exposed by changing the direction and the light intensity.

【0006】一方、レーザーではなく電子ビーム露光装
置を用い、かつコンピュータ制御により、平面状の基板
が載置されたX−Yステージを移動させて、基板の表面
に、回折格子からなる複数の微小なドットを配置するこ
とにより、回折格子パターンを作製する方法も提案され
ている。上記方法は、特開平2−72320号公報や米
国特許5,058,992号に開示されている。
On the other hand, by using an electron beam exposure apparatus instead of a laser and moving the XY stage on which a planar substrate is mounted by computer control, a plurality of minute A method of producing a diffraction grating pattern by arranging various dots has also been proposed. The above method is disclosed in JP-A-2-72320 and U.S. Pat. No. 5,058,992.

【0007】回折格子パターンのパラメータとして、 (1) 回折格子の空間周波数あるいは格子間隔(格子のピ
ッチ) (2) 回折格子の方向(格子の方向) (3) 回折格子の形成領域(回折格子セルの配置) の3つがあり、(1) に応じて、定点に対してその回折格
子セルが光って見える色が変化し、(2) に応じて、その
回折格子セルが光って見える方向が変化し、(3) に応じ
て、表示パターン(絵柄)が決定される。
As parameters of the diffraction grating pattern, (1) the spatial frequency or the grating interval (grating pitch) of the diffraction grating (2) the direction of the diffraction grating (the direction of the grating) (3) the area where the diffraction grating is formed (diffraction grating cell) According to (1), the color in which the diffraction grating cell looks shiny changes with respect to the fixed point, and according to (2), the direction in which the diffraction grating cell looks shiny changes according to (2). Then, the display pattern (picture) is determined according to (3).

【0008】ところで、このような回折格子パターンで
は、視認性などの面から白色で文字などを表現すること
は非常に多く、色々な観察条件で安定した白色を提示で
きるようにすることは重要である。
By the way, in such a diffraction grating pattern, characters and the like are often expressed in white from the viewpoint of visibility and the like, and it is important to be able to present stable white under various viewing conditions. is there.

【0009】回折格子パターンで白色の表示を実現する
ために、R,G,Bの3色の波長に対応する空間周波数
を持つ3種類の回折格子セルを用いて、それらを組み合
わせたものを画素とし、白色の表示を行なう手法が公知
である。
In order to realize a white display by the diffraction grating pattern, three types of diffraction grating cells having spatial frequencies corresponding to the wavelengths of three colors of R, G, and B are used, and a combination thereof is used as a pixel. A technique for displaying white is known.

【0010】しかし、白色を表示する画素が、上記のよ
うな3種類の回折格子セルからなる場合、非常に限定さ
れた観察条件下でのみ当該画素が白色として観察可能と
なるが、その条件から若干でもずれると色付いた画素と
して観察されることになる。
However, when a pixel for displaying white is composed of the three types of diffraction grating cells as described above, the pixel can be observed as white only under very limited observation conditions. Even a slight shift will be observed as a colored pixel.

【0011】回折格子に対する照明光の波長・入射角度
と、回折格子の格子間隔とその回折格子から出射する回
折光の出射角度との関係は、以下のように説明される。
The relationship between the wavelength and the incident angle of the illumination light with respect to the diffraction grating, the grating interval of the diffraction grating, and the emission angle of the diffracted light emitted from the diffraction grating is described as follows.

【0012】図3は、回折格子セルに特定角度で波長λ
の単色光が入射した場合の、回折光を観察する状態を示
す説明図である。ここで、回折格子セル面に垂直な任意
の面において、回折格子セルによる任意の次数に対する
回折現象は以下の式で表される。 d=mλ/(sin α−sin β)
FIG. 3 shows a diffraction grating cell having a wavelength λ at a specific angle.
FIG. 4 is an explanatory diagram showing a state in which diffracted light is observed when monochromatic light is incident. Here, on an arbitrary surface perpendicular to the diffraction grating cell surface, the diffraction phenomenon for an arbitrary order by the diffraction grating cell is expressed by the following equation. d = mλ / (sin α−sin β)

【0013】上式において、dは着目した面における格
子間隔(空間周波数の逆数)、mは回折次数、αは当該
面における0次回折光(照明光の透過光あるいは正反射
光であり、図3では正反射光にあたる)の出射角度、β
は当該面における1次回折光の出射角度(回折角)であ
る。
In the above equation, d is the lattice spacing (reciprocal of the spatial frequency) on the surface of interest, m is the diffraction order, and α is the 0th-order diffracted light on the surface (transmitted light or specularly reflected light of FIG. Is the specular reflection light), β
Is the emission angle (diffraction angle) of the first-order diffracted light on the surface.

【0014】例えば、回折格子セル面をX−Y平面と
し、それに直交するX−Z平面およびY−Z平面につい
て、上式を考慮することで、3次元空間における回折光
の方向などを知ることができる。また、通常は、1次回
折光(すなわち、m=1)の場合を考える。0次回折光
の出射角度は、照明光の入射角度と同じ(透過の場
合)、もしくは符号が反転する(反射の場合)だけであ
る。
For example, the direction of a diffracted light in a three-dimensional space can be known by taking the above equation into consideration with respect to an XZ plane and a YZ plane orthogonal to the XY plane of the diffraction grating cell plane. Can be. Usually, the case of first-order diffracted light (that is, m = 1) is considered. The exit angle of the 0th-order diffracted light is the same as the incident angle of the illumination light (in the case of transmission) or only inverted in sign (in the case of reflection).

【0015】一方、通常の照明条件下、すなわち、白色
光による回折格子セルの照明を考える。図4は、回折格
子セルに特定角度で白色光が入射した場合の、回折光を
観察する状態を示す説明図である。
On the other hand, let us consider normal illumination conditions, that is, illumination of the diffraction grating cell by white light. FIG. 4 is an explanatory diagram illustrating a state in which diffracted light is observed when white light is incident on the diffraction grating cell at a specific angle.

【0016】ホログラムや回折格子では、回折光が必然
的に波長分散を伴うため、観察者は、特定の1方向から
のみ所定波長での1次回折光を視覚することができる。
そのため、図4のように、波長ごとに分散した1次回折
光が出射し、観察者の上下(回折格子の格子ベクトルの
方向)の視点移動などにより、観察される色が虹色に変
化する。同図の上側では1次回折光は赤に近い 600nm
であるのに対し、下側では青に近い 400nmである。言
い換えれば、上式における回折角βは、空間周波数の関
数であると同時に、波長の関数でもある。
In a hologram or a diffraction grating, since the diffracted light necessarily involves wavelength dispersion, an observer can see the first-order diffracted light at a predetermined wavelength only from one specific direction.
Therefore, as shown in FIG. 4, the first-order diffracted light dispersed for each wavelength is emitted, and the observed color changes to a rainbow color due to the viewpoint moving vertically (in the direction of the grating vector of the diffraction grating) of the observer. In the upper part of the figure, the first-order diffracted light is 600 nm near red.
On the other hand, on the lower side, it is 400 nm which is close to blue. In other words, the diffraction angle β in the above equation is a function of the spatial frequency as well as a function of the wavelength.

【0017】R,G,Bの3つの波長に対応する3種類
の空間周波数の回折格子セルを用いた画素により白色を
表現をしている場合でも、特定の条件(照明光の入射角
度,回折光の出射角度)においては、白色で観察される
が、この条件を少しでもずれると、白色を提示すべき部
分も色づき、別の色として観察されてしまう。この主な
原因は、回折格子によるR,G,Bの3波長の1次回折
光を使用する場合、可視波長範囲の両端に近いRとBの
波長を用いることによる。
Even when white is represented by pixels using diffraction grating cells of three types of spatial frequencies corresponding to the three wavelengths of R, G, and B, specific conditions (incident angle of illumination light, diffraction angle, (Emission angle of light) is observed in white, but if this condition is deviated even a little, the part that should present white is also colored and observed as another color. This is mainly due to the use of R and B wavelengths near both ends of the visible wavelength range when using first-order diffracted light of R, G, and B wavelengths by a diffraction grating.

【0018】このとき、入射角や回折角が変化した際、
RやBの波長を出射すべき回折格子セルからの1次回折
光のうち、実際に観察者の眼に入るのは赤外や紫外の波
長になってしまうことになる。この結果、可視波長範囲
を外れた1次回折光は認識されず、残りの2つの波長の
加法混色による表現色となるため、白色とはかけ離れて
しまう。
At this time, when the incident angle or the diffraction angle changes,
Of the first-order diffracted light from the diffraction grating cell that should emit the R and B wavelengths, the wavelength that actually enters the observer's eye is an infrared or ultraviolet wavelength. As a result, the first-order diffracted light out of the visible wavelength range is not recognized, and is expressed color by additive color mixture of the remaining two wavelengths, so that it is far from white.

【0019】図6は、上記のことを示す色度図である。
●でプロットしたR,G,Bの3波長で表現された色
(白色)に対して、観察条件が若干変化することによ
り、視覚される色が○でプロットしたR' ,G' ,B'
の3波長で表現された色にシフトする。この場合、R'
が可視波長範囲外となり、G' とB' の2波長で表現さ
れた色が視覚されることになる。
FIG. 6 is a chromaticity diagram showing the above.
With respect to the color (white) represented by the three wavelengths R, G, and B plotted by ●, the viewing color slightly changed due to slight changes in the viewing conditions, and R ′, G ′, and B ′ plotted with ○.
Shift to the color represented by the three wavelengths. In this case, R '
Is out of the visible wavelength range, and the color represented by the two wavelengths G ′ and B ′ is seen.

【0020】R,G,Bの3波長の混色で表現が可能な
のは、●でプロットした3点を頂点とする3角形の内側
全て(網がけした3角形)であるが、G' とB' の2波
長の混色で表現できるのはこの2点の線分上の点だけで
ある。
The three colors of R, G, and B can be represented by a mixture of all three insides (shaded triangles) having the vertices at the three points plotted by ●, but G ′ and B ′. Only points on these two line segments can be expressed by the two-wavelength color mixture.

【0021】「白」と認識される領域は、色度図上の中
心付近(点線の楕円状)に比較的広く分布し、3つ以上
の複数の波長の光がほぼ等しい明るさで感知されると
「白」と認識されやすい。一方、2波長のみでは極めて
限られた条件下でしか「白」と認識させることはできな
い。
The region recognized as “white” is relatively widely distributed near the center (dotted ellipse) on the chromaticity diagram, and light of three or more wavelengths is sensed with almost equal brightness. Then, it is easy to be recognized as “white”. On the other hand, only two wavelengths can be recognized as "white" only under extremely limited conditions.

【0022】実際には、1次回折光が観察される波長
が、赤外や紫外の可視波長範囲外まで行かなくても、R
の波長より長く、あるいはBの波長よりも短い波長にな
ると、人間の比視感度の著しい低下が見られるので、上
記と同様のことが起こる。従って、R,G,Bの3つの
波長に対応する3種類の空間周波数の回折格子セルによ
る白色表示では、画素は、非常に限定された状態での
み、白色として視覚されることとなる。
In practice, even if the wavelength at which the first-order diffracted light is observed does not go outside the infrared or ultraviolet visible wavelength range, the R
When the wavelength is longer than the wavelength of B or shorter than the wavelength of B, a remarkable decrease in human relative luminous efficiency is observed. Therefore, in the white display by the diffraction grating cells of three types of spatial frequencies corresponding to the three wavelengths of R, G, and B, the pixels are viewed as white only in a very limited state.

【0023】以上のように、従来の回折格子パターンで
は、白色を提示したい部分を、色々な観察条件で白色と
して認識させることが難しく、白色を含む画像などの表
現が困難であった。
As described above, in the conventional diffraction grating pattern, it is difficult to recognize a portion where white is desired to be presented as white under various observation conditions, and it is difficult to express an image including white.

【0024】[0024]

【発明が解決しようとする課題】本発明は、観察条件の
変化(波長分散)による影響が少なく、視認性などの面
から好適な「白色の表示」が実現される回折格子パター
ンを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a diffraction grating pattern which is less affected by changes in observation conditions (wavelength dispersion) and realizes a "white display" suitable from the viewpoint of visibility and the like. With the goal.

【0025】[0025]

【課題を解決するための手段】本発明では、白色を表現
する領域を構成する画素として、従来のR,G,Bに代
表される3種類よりも多い「4種類以上の異なる空間周
波数」の回折格子からなる微小セルにより構成される微
小領域を採用して、上記目的を実現する。
According to the present invention, as pixels constituting an area expressing white, "four or more different spatial frequencies", which are more than three types represented by the conventional R, G, and B, are used. The above-mentioned object is achieved by employing a minute region constituted by a minute cell composed of a diffraction grating.

【0026】すなわち、請求項1の発明は、回折格子か
らなる微小なセルが基板表面に複数配置されて構成さ
れ、回折格子の空間周波数,回折格子の方向,回折格子
の描画領域の少なくとも何れかが変化してなるパターン
において、パターン内に、それぞれの方向が等しい4種
類以上の異なる空間周波数を持つ回折格子からなる微小
なセルが集まって構成される微小領域を有することを特
徴とする。
That is, according to the first aspect of the present invention, a plurality of minute cells made of a diffraction grating are arranged on a substrate surface, and at least one of a spatial frequency of the diffraction grating, a direction of the diffraction grating, and a drawing area of the diffraction grating is provided. Is characterized in that the pattern has a minute region formed by gathering minute cells composed of diffraction gratings having four or more different spatial frequencies in the same direction in the pattern.

【0027】請求項2の発明は、微小領域を、観察条件
に応じて色変化のない白色を表現する画素とすることを
特徴とする請求項1に記載の回折格子パターンである。
According to a second aspect of the present invention, there is provided the diffraction grating pattern according to the first aspect, wherein the minute area is a pixel expressing a white color having no color change according to an observation condition.

【0028】請求項3の発明は、パターン内に、4種類
未満の異なる空間周波数を持つ回折格子からなる微小な
セルが集まって構成される領域も併せ持つことを特徴と
する請求項1または2に記載の回折格子パターンであ
る。
According to a third aspect of the present invention, there is provided a semiconductor device according to the first or second aspect, wherein the pattern also has a region formed by gathering minute cells made of diffraction gratings having less than four kinds of different spatial frequencies. It is a diffraction grating pattern of description.

【0029】請求項4の発明は、微小領域における4種
類以上の異なる空間周波数が、観察される全ての波長が
可視波長領域内に存在するような観察条件を持つ組み合
わせからなることを特徴とする請求項1〜3の何れかに
記載の回折格子パターンである。
A fourth aspect of the present invention is characterized in that four or more different spatial frequencies in the minute area are a combination having observation conditions such that all observed wavelengths are in the visible wavelength area. A diffraction grating pattern according to claim 1.

【0030】請求項5の発明は、微小領域における4種
類以上の異なる空間周波数が、観察される全ての波長が
可視波長領域内にほぼ均等に分布して存在するような観
察条件を持つ組み合わせからなることを特徴とする請求
項4に記載の回折格子パターンである。
According to a fifth aspect of the present invention, there is provided a combination of four or more different spatial frequencies in a minute area having an observation condition such that all the observed wavelengths are substantially uniformly distributed in the visible wavelength area. The diffraction grating pattern according to claim 4, wherein:

【0031】請求項6の発明は、微小領域における4種
類以上の異なる空間周波数のうち、少なくとも1種類の
空間周波数の回折格子が、可視波長領域外の波長で再生
されるような観察条件を持つ組み合わせからなることを
特徴とする請求項1〜3の何れかに記載の回折格子パタ
ーンである。
According to a sixth aspect of the present invention, there is provided an observation condition in which at least one of the four or more different spatial frequencies in the minute region is reproduced at a wavelength outside the visible wavelength region. The diffraction grating pattern according to claim 1, comprising a combination.

【0032】請求項7の発明は、微小領域における4種
類以上の異なる空間周波数の逆数が、ほぼ均等な間隔で
分布して存在するような組み合わせからなることを特徴
とする請求項1〜3の何れかに記載の回折格子パターン
である。
According to a seventh aspect of the present invention, the reciprocals of four or more different spatial frequencies in the minute area are formed in such a combination that they are distributed at substantially equal intervals. It is a diffraction grating pattern described in any one of them.

【0033】請求項8の発明は、微小領域の大きさが、
300μm以下であることを特徴とする請求項1〜7の
何れかに記載の回折格子パターンである。
According to the invention of claim 8, the size of the minute area is
The diffraction grating pattern according to claim 1, wherein the diffraction grating pattern has a thickness of 300 μm or less.

【0034】<作用>本発明の回折格子パターンに白色
光を入射すると、回折光(主として1次回折光)によ
り、「白色を表現する」微小領域が、観察条件の変化に
よる影響が少なく、広い視域から安定して白色として観
察することが可能となる。
<Operation> When white light is incident on the diffraction grating pattern of the present invention, the diffracted light (mainly the first-order diffracted light) causes a small area “expressing white” to be less affected by a change in observation conditions, and to be widely viewed. It is possible to stably observe as white from the region.

【0035】上述したように、微小領域からの1次回折
光として、3種類以上の適当な波長が同時に観察されれ
ば、十分な白色表現が可能であり、観察条件、すなわ
ち、照明光の入射角度および観察者の観察する角度(回
折光の出射角度に相当)が若干変化しても、その微小領
域からの1次回折光として、3種類以上の適当な波長が
同時に観察される状態が維持されていれば、依然として
十分な白色表現が可能となる。
As described above, if three or more appropriate wavelengths are simultaneously observed as the first-order diffracted light from the minute area, a sufficient white representation can be obtained, and the observation condition, that is, the incident angle of the illumination light Even if the angle observed by the observer (corresponding to the angle of emergence of the diffracted light) slightly changes, the state in which three or more appropriate wavelengths are simultaneously observed as the first-order diffracted light from the minute area is maintained. Then, sufficient white expression can still be achieved.

【0036】本発明では、それぞれ方向が等しい4種類
以上の異なる空間周波数を持つ回折格子からなる微小な
セルが集まって微小領域を構成するため、観察条件の変
化に伴って、そのうちの1種類の空間周波数の回折格子
セルからの1次回折光が可視波長範囲外となったとして
も、残る3種類以上の空間周波数の回折格子セルによ
り、白色表現が実現されるため、本発明の回折格子パタ
ーンでは、観察条件の変化による影響を受けずに安定し
て白色の表示が可能である。(請求項1,2)
In the present invention, minute cells composed of four or more diffraction gratings having different spatial frequencies in the same direction are gathered to constitute a minute region. Even if the first-order diffracted light from the spatial frequency diffraction grating cell is out of the visible wavelength range, white color is realized by the remaining three or more types of spatial frequency diffraction grating cells. In addition, stable white display can be achieved without being affected by changes in observation conditions. (Claims 1 and 2)

【0037】もちろん、微小領域における回折格子セル
の大きさを変えるなどの方法により、白色またはその他
の色でも、濃淡を表現することは可能である。
Of course, it is possible to express the shading even in white or other colors by a method such as changing the size of the diffraction grating cell in the minute area.

【0038】また、微小領域内に1種類の回折格子セル
等を配置してもよく、1〜3種類の回折格子による任意
の波長による色表現も混在できる。従って、微小領域を
画素として、白色を含む任意のカラー画像を表現でき
る。(請求項3)
One kind of diffraction grating cell or the like may be arranged in the minute area, and color expression by an arbitrary wavelength by one to three kinds of diffraction gratings can be mixed. Therefore, an arbitrary color image including white can be expressed by using the minute area as a pixel. (Claim 3)

【0039】4種類以上の回折格子セルの空間周波数
を、観察される全ての波長が可視波長領域内に存在する
ような観察条件を持つ組み合わせからなるようにするこ
とで、観察条件の若干の変化に対し、常に3つ以上の波
長の加法混色が利用でき、安定した白色を表現できる。
(請求項4)
By changing the spatial frequencies of four or more types of diffraction grating cells to a combination having observation conditions such that all observed wavelengths are in the visible wavelength region, slight changes in the observation conditions can be achieved. On the other hand, additive color mixture of three or more wavelengths can always be used, and stable white can be expressed.
(Claim 4)

【0040】さらには、微小領域における4種類以上の
異なる空間周波数が、観察される全ての波長が可視波長
領域内にほぼ均等に分布して存在するような観察条件を
持つ組み合わせからなるようにすることで、観察される
それぞれの回折格子セルからの回折光の波長がほぼ均等
に分布することになり、さらに安定した白色を表現でき
る。(請求項5)
Further, the four or more different spatial frequencies in the minute region are formed by a combination having observation conditions such that all the observed wavelengths are distributed almost uniformly in the visible wavelength region. As a result, the wavelengths of the diffracted light from the respective diffraction grating cells to be observed are substantially uniformly distributed, and a more stable white color can be expressed. (Claim 5)

【0041】また、微小領域における4種類以上の異な
る空間周波数のうち、少なくとも1種類の空間周波数の
回折格子が、可視波長領域外の波長で再生されるような
観察条件を持つ組み合わせからなるようにすることで、
観察条件の比較的大きな変化に対しても、3つ以上の波
長の加法混色が利用でき、多くの視点から白色で視覚す
ることが可能となる。(請求項6)
In addition, at least one of the four or more different spatial frequencies in the minute region has a diffraction grating of at least one spatial frequency in a combination having an observation condition such that the diffraction grating is reproduced at a wavelength outside the visible wavelength region. by doing,
Even for a relatively large change in viewing conditions, additive color mixture of three or more wavelengths can be used, and it is possible to view white from many viewpoints. (Claim 6)

【0042】また、微小領域における4種類以上の異な
る空間周波数の逆数が、ほぼ均等な間隔で分布して存在
するような組み合わせからなるなるようにすることで、
観察されるそれぞれの回折格子セルからの回折光の波長
がほぼ均等に分布することになり、観察条件の若干の変
化に対してのみならず比較的大きな変化に対しても、安
定した白色を実現しやすい。(請求項7)
Also, by making the reciprocals of four or more different spatial frequencies in the minute area be a combination that exists at substantially equal intervals,
The wavelength of the diffracted light from each diffraction grating cell to be observed is almost evenly distributed, achieving stable white color not only for slight changes in observation conditions but also for relatively large changes. It's easy to do. (Claim 7)

【0043】上記の何れの回折格子パターンにおいて
も、微小領域の大きさが、300μm以下であることに
より、微小領域の構造を目立たなくすることができ、一
般的な観察距離では白色を表示する画素を構成する各回
折格子セルを目立たなくすることができ、均一な白色の
提示が可能となる。白色を含んだ画像を表示する場合に
は、高品質な画像を表現できる。(請求項8)
In any of the above-described diffraction grating patterns, when the size of the minute region is 300 μm or less, the structure of the minute region can be made inconspicuous. Can be made inconspicuous, and uniform white presentation can be achieved. When displaying an image including white, a high-quality image can be expressed. (Claim 8)

【0044】[0044]

【発明の実施の形態】図1は、本発明の回折格子パター
ンの一実施形態を示す説明図であり、パターン内に「停
止」という文字(白色)を形成している。黒で表現され
る文字の周りには回折格子セルが配置してない。
FIG. 1 is an explanatory view showing an embodiment of a diffraction grating pattern according to the present invention, in which characters "stop" (white) are formed in the pattern. No diffraction grating cells are arranged around the characters represented in black.

【0045】同図の「停止」という文字の内部を拡大す
ると、左上のように4種類の異なる空間周波数を持ち、
それぞれの方向は等しい回折格子セルが微小領域に形成
され、これを画素として文字の部分が表現されている。
When the inside of the word "stop" in the figure is enlarged, there are four different spatial frequencies as shown in the upper left,
In each direction, a diffraction grating cell having the same size is formed in a minute area, and a character portion is expressed by using this as a pixel.

【0046】文字の回りの部分には、回折格子が形成さ
れていないため、照明光を本発明の回折格子パターンに
入射すると、文字の部分のみから1次回折光が出射し、
これを観察することにより、明るく光った「停止」とい
う文字が認識できる。このとき、1次回折光として微小
領域から3種類以上の可視波長が出射されていると、多
くの場合、観察像は白色として認識される。ここで、観
察条件を変化させ、照明光の入射角度を若干変化させて
も、また、観察者の視点位置を若干変化させても、観察
される像はほとんど変化しない。このように、観察条件
によらず、安定して白色を提示できることは、観察像
(文字など)の識別を容易にする。
Since no diffraction grating is formed around the character, when illumination light is incident on the diffraction grating pattern of the present invention, first-order diffraction light is emitted only from the character portion,
By observing this, the brightly lit “stop” character can be recognized. At this time, if three or more types of visible wavelengths are emitted from the minute region as the first-order diffracted light, the observed image is often recognized as white. Here, even if the observation conditions are changed and the incident angle of the illumination light is slightly changed, or if the viewpoint position of the observer is slightly changed, the observed image hardly changes. As described above, the fact that white can be stably presented regardless of observation conditions facilitates identification of an observation image (such as characters).

【0047】尚、文字と周囲とを反転させて、文字の部
分には上記の回折格子セルからなる画素を形成せず、文
字の周り(黒で表現した部分)全体に前記画素を形成す
ることにより、1次回折光を観察した際に、白地に黒で
表現された文字を認識させるようにすることも可能であ
る。
It is to be noted that the character and its surroundings are inverted so that the pixel composed of the above-mentioned diffraction grating cell is not formed in the character portion, and the pixel is formed in the entire region around the character (portion expressed in black). Accordingly, when the first-order diffracted light is observed, it is possible to recognize a character expressed in black on a white background.

【0048】図2は、白色を表示する上記の「微小領
域」を、さらに拡大して示す説明図である。同図では、
回折格子はd1 〜d4 の空間周波数(ピッチ)持ち、白
と黒で表現される格子の線幅と格子ピッチの比(表面レ
リーフ型回折格子の山−谷に相当)は、ほぼ1:1であ
るが、本発明はそれに限定されるものではない。
FIG. 2 is an explanatory diagram showing the above “micro area” for displaying white in a further enlarged manner. In the figure,
The diffraction grating has a spatial frequency (pitch) of d1 to d4, and the ratio of the line width of the grating expressed in white and black to the grating pitch (corresponding to the peak-to-valley of the surface relief type diffraction grating) is approximately 1: 1. However, the invention is not so limited.

【0049】図7は、上記の「微小領域」による光学特
性を示す色度図である。図2の微小領域は、●でプロッ
トしたA,B,C,Dの4波長で表現された色(白色)
に相当する。観察条件が若干変化することにより、視覚
される色が○でプロットしたA' ,B' ,C' ,D' の
4波長で表現された色にシフトし、A' は可視波長範囲
外(もしくはその近辺)になってしまうような条件下で
も、他の3つ(B' ,C' ,D' )の波長で表現された
色は、依然として白色のまま認識されることになる。
FIG. 7 is a chromaticity diagram showing the optical characteristics of the "micro area". The minute area in FIG. 2 is a color (white) represented by four wavelengths of A, B, C, and D plotted by ●.
Is equivalent to Due to a slight change in observation conditions, the visual color shifts to a color represented by four wavelengths A ', B', C ', and D' plotted with a circle, and A 'is outside the visible wavelength range (or Even under such a condition, the colors represented by the other three wavelengths (B ′, C ′, D ′) are still recognized as white.

【0050】尚、4種類以上の異なる空間周波数を持つ
回折格子セルのうち、少なくとも1種類の空間周波数の
回折格子が、可視波長領域外の波長で再生されるような
観察条件を持つ組み合わせからなるようにすることによ
り、1つの回折格子セルからの1次回折光の波長が可視
波長範囲を外れると同時に、別の回折格子セルからの1
次回折光が可視波長範囲内の波長となるようにすること
も可能である。この場合は、観察条件の若干の変化では
なく、比較的大きな変化に対しても、3つ以上の波長の
加法混色が利用でき、多くの視点から白色で視覚する上
で有効である。
It should be noted that, among the diffraction grating cells having four or more different spatial frequencies, at least one kind of diffraction grating having a spatial frequency is formed of a combination having an observation condition such that the diffraction grating is reproduced at a wavelength outside the visible wavelength range. By doing so, the wavelength of the first-order diffracted light from one diffraction grating cell falls outside the visible wavelength range, and
It is also possible to make the second-order diffracted light have a wavelength within the visible wavelength range. In this case, an additive color mixture of three or more wavelengths can be used not only for a slight change in the viewing conditions but also for a relatively large change, which is effective for viewing in white from many viewpoints.

【0051】また、図5に示すように、パターン内に
は、4種類未満の異なる空間周波数を持つ回折格子から
なる微小なセルが集まって構成される領域も併せ持つよ
うにしても良い。同図では、白色で表示する「停止」の
文字の周囲を、単一の空間周波数の回折格子セルで埋め
た様子を表している。これにより、例えば、文字を白
く、周りを赤く表現することも可能であるが、単一の空
間周波数の回折格子セルが配置された領域は、観察条件
の変化によって色が変わりやすくなってしまうことは明
らかである。
Further, as shown in FIG. 5, the pattern may also have a region formed by gathering minute cells made of diffraction gratings having less than four types of different spatial frequencies. The figure shows a state in which the periphery of the character "STOP" displayed in white is filled with a diffraction grating cell having a single spatial frequency. This makes it possible, for example, to render the characters white and the surroundings red, but the area where the diffraction grating cells of a single spatial frequency are arranged tends to change color due to changes in viewing conditions. Is clear.

【0052】次いで、微小領域の大きさについて考察す
る。微小領域が、観察者の眼の分解能以下の配置間隔で
並べられていれば、観察者は個々の微小領域を認識でき
ず、本発明の回折格子パターンにおいては、均一な白色
を提示できる。
Next, the size of the minute area will be considered. If the minute regions are arranged at an interval equal to or less than the resolution of the observer's eyes, the observer cannot recognize each minute region, and can present a uniform white color in the diffraction grating pattern of the present invention.

【0053】一方、回折格子パターンで画像を表現する
場合には、十分な解像度を持つ画像などの表示が可能と
なる。もちろん、観察者が若干視点移動した場合でも、
白色で表示された像はほとんど変化しない。このよう
に、画像の一部は色が変化し、視認性を上げたい部分は
安定した白色を提示することにより、色の変化で観察者
の注意を引き、白色表示部で情報を伝えるなどの効果的
な表示が可能となる。
On the other hand, when an image is represented by a diffraction grating pattern, an image having a sufficient resolution can be displayed. Of course, even if the observer moves slightly,
The image displayed in white hardly changes. In this way, a part of the image changes color, and the part that wants to increase visibility presents stable white, so that the change in color draws the observer's attention and conveys information on the white display part. Effective display becomes possible.

【0054】視力1.0の観察者が約1.0m離れて観
察する場合、回折格子セルの配置間隔は300μm程
度、また、同じ観察者が約0.3m離れて観察する場
合、回折格子セルの配置間隔は100μm程度、で、観
察者には微小領域の配置構造が認識できないことにな
り、十分均一な面を提示可能、もしくは十分な解像度を
持つ像を表示可能となる。従って、微小領域の大きさが
300μm以下であることが、均一性や解像度の十分な
表示の上で有効である。
When an observer with a visual acuity of 1.0 observes at a distance of about 1.0 m, the spacing between the diffraction grating cells is about 300 μm. When the same observer observes at a distance of about 0.3 m, the diffraction grating cell Is about 100 μm, the observer cannot recognize the arrangement structure of the minute area, and can present a sufficiently uniform surface or display an image with a sufficient resolution. Therefore, it is effective that the size of the minute region is 300 μm or less from the viewpoint of display with sufficient uniformity and resolution.

【0055】以上の説明では、4種類の異なる空間周波
数を持つ回折格子からなる微小なセルにより微小領域を
構成する場合について説明したが、これに限らず、より
多くの種類の空間周波数の異なる回折格子セルを用いて
も良い。多くの種類の空間周波数を用いると、より広い
範囲から、より安定した白色として観察可能となる。
In the above description, a case has been described in which a minute area is formed by minute cells composed of four types of diffraction gratings having different spatial frequencies. However, the present invention is not limited to this. A lattice cell may be used. When many types of spatial frequencies are used, a more stable white color can be observed from a wider range.

【0056】また、以上の説明では、回折格子セルから
の1次回折光に関して説明したが、回折格子からの2次
以上の回折光の回折効率が十分であれば、当該回折次数
の回折光でも同様の効果が得られる。
In the above description, the first-order diffracted light from the diffraction grating cell has been described. However, if the diffraction efficiency of the second-order or higher-order diffracted light from the diffraction grating is sufficient, the same applies to the diffracted light of the diffraction order. The effect of is obtained.

【0057】本発明のパターンを構成する回折格子とし
ては、表面レリーフ型を始めとする位相型回折格子,濃
度表現による振幅型回折格子などの如何なる種類の回折
格子を用いても良いが、回折効率(光の利用効率)の面
などから、ブレーズド回折格子などを用いるのが好まし
い。単なる白色の表示であれば、光の拡散を利用するこ
とも多いが、本発明では、回折格子を用いて視域を限定
できるため、より明るい白色を(特定方向に)表示する
ことが可能である。特にこの効果は、ブレーズド回折格
子のような高効率の回折格子を用いた場合に顕著であ
る。
As the diffraction grating constituting the pattern of the present invention, any type of diffraction grating such as a phase diffraction grating including a surface relief type and an amplitude type diffraction grating based on density expression may be used. From the viewpoint of (light use efficiency), it is preferable to use a blazed diffraction grating or the like. In the case of a mere white display, the diffusion of light is often used. However, in the present invention, since the viewing area can be limited by using a diffraction grating, it is possible to display brighter white (in a specific direction). is there. This effect is particularly remarkable when a highly efficient diffraction grating such as a blazed diffraction grating is used.

【0058】以上の説明では表現する画像の濃淡として
は2値の場合について説明したが、これに限らず、微小
領域の面積や微小領域内の回折格子の回折効率の変更な
どにより、濃淡を持った画像を表現することも可能であ
る。
In the above description, the density of the image to be expressed is described as being binary. However, the present invention is not limited to this. The density may vary depending on the area of the minute area or the diffraction efficiency of the diffraction grating in the minute area. It is also possible to express an image.

【0059】[0059]

【発明の効果】以上説明したように、本発明によって、
観察条件(照明光の入射角,観察方向)の変化による波
長分散に影響されず、比較的広い観察条件下で視認性な
どの面から好適な「白色の表示」が実現できる回折格子
パターンが提供される。
As described above, according to the present invention,
Provided is a diffraction grating pattern that is not affected by wavelength dispersion due to changes in observation conditions (incident angle of illumination light, observation direction) and can realize a suitable “white display” from the viewpoint of visibility and the like under relatively wide observation conditions. Is done.

【0060】[0060]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の回折格子パターンの一実施形態を示す
説明図。
FIG. 1 is an explanatory diagram showing one embodiment of a diffraction grating pattern of the present invention.

【図2】白色を表示する微小領域(図1のパターン内
で、文字「停止」を構成)を拡大して示す説明図。
FIG. 2 is an explanatory diagram showing, in an enlarged manner, a minute region displaying white (constituting a character “stop” in the pattern of FIG. 1);

【図3】回折格子セルに特定角度で波長λの単色光が入
射した場合の、回折光を観察する状態を示す説明図。
FIG. 3 is an explanatory diagram showing a state of observing diffracted light when monochromatic light having a wavelength λ is incident on a diffraction grating cell at a specific angle.

【図4】回折格子セルに特定角度で白色光が入射した場
合の、回折光を観察する状態を示す説明図。
FIG. 4 is an explanatory diagram showing a state in which diffracted light is observed when white light is incident on the diffraction grating cell at a specific angle.

【図5】本発明の回折格子パターンの他の実施形態を示
す説明図。
FIG. 5 is an explanatory view showing another embodiment of the diffraction grating pattern of the present invention.

【図6】従来技術(3種類の回折格子セル)により、回
折格子パターンで白色を表現する場合の光学特性を示す
色度図。
FIG. 6 is a chromaticity diagram showing optical characteristics in a case where white is expressed by a diffraction grating pattern according to a conventional technique (three types of diffraction grating cells).

【図7】本発明(4種類以上の回折格子セル)により、
回折格子パターンで白色を表現する場合の光学特性を示
す色度図。
FIG. 7 shows the structure of the present invention (four or more types of diffraction grating cells).
FIG. 6 is a chromaticity diagram showing optical characteristics when expressing white with a diffraction grating pattern.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】回折格子からなる微小なセルが基板表面に
複数配置されて構成され、回折格子の空間周波数,回折
格子の方向,回折格子の形成領域の少なくとも何れかが
変化してなるパターンにおいて、 パターン内に、それぞれの方向が等しい4種類以上の異
なる空間周波数を持つ回折格子からなる微小なセルが集
まって構成される微小領域を有することを特徴とする回
折格子パターン。
1. A pattern in which at least one of a spatial frequency of a diffraction grating, a direction of a diffraction grating, and a region where a diffraction grating is formed is changed. A diffraction grating pattern, characterized in that the pattern has a minute area formed by gathering minute cells made of diffraction gratings having four or more different spatial frequencies in the same direction.
【請求項2】微小領域を、観察条件に応じて色変化のな
い白色を表現する画素とすることを特徴とする請求項1
に記載の回折格子パターン。
2. The method according to claim 1, wherein the minute area is a pixel that expresses white without a color change according to an observation condition.
The diffraction grating pattern described in 1.
【請求項3】パターン内に、4種類未満の異なる空間周
波数を持つ回折格子からなる微小なセルが集まって構成
される領域も併せ持つことを特徴とする請求項1または
2に記載の回折格子パターン。
3. The diffraction grating pattern according to claim 1, wherein the pattern also has a region formed by gathering minute cells made of diffraction gratings having less than four types of different spatial frequencies. .
【請求項4】微小領域における4種類以上の異なる空間
周波数が、観察される全ての波長が可視波長領域内に存
在するような観察条件を持つ組み合わせからなることを
特徴とする請求項1〜3の何れかに記載の回折格子パタ
ーン。
4. The method according to claim 1, wherein the four or more different spatial frequencies in the minute region are a combination having observation conditions such that all the observed wavelengths are in the visible wavelength region. The diffraction grating pattern according to any one of the above.
【請求項5】微小領域における4種類以上の異なる空間
周波数が、観察される全ての波長が可視波長領域内にほ
ぼ均等に分布して存在するような観察条件を持つ組み合
わせからなることを特徴とする請求項4に記載の回折格
子パターン。
5. The method according to claim 1, wherein the four or more different spatial frequencies in the minute region are a combination having observation conditions such that all observed wavelengths are distributed almost uniformly in the visible wavelength region. The diffraction grating pattern according to claim 4, wherein
【請求項6】微小領域における4種類以上の異なる空間
周波数のうち、少なくとも1種類の空間周波数の回折格
子が、可視波長領域外の波長で再生されるような観察条
件を持つ組み合わせからなることを特徴とする請求項1
〜3の何れかに記載の回折格子パターン。
6. A diffraction grating having at least one spatial frequency among four or more different spatial frequencies in a minute region is formed of a combination having an observation condition such that the diffraction grating is reproduced at a wavelength outside the visible wavelength region. Claim 1.
4. The diffraction grating pattern according to any one of claims 1 to 3.
【請求項7】微小領域における4種類以上の異なる空間
周波数の逆数が、ほぼ均等な間隔で分布して存在するよ
うな組み合わせからなることを特徴とする請求項1〜3
の何れかに記載の回折格子パターン。
7. The combination according to claim 1, wherein reciprocals of four or more different spatial frequencies in the minute area are distributed at substantially equal intervals.
The diffraction grating pattern according to any one of the above.
【請求項8】微小領域の大きさが、300μm以下であ
ることを特徴とする請求項1〜7の何れかに記載の回折
格子パターン。
8. The diffraction grating pattern according to claim 1, wherein the size of the minute region is 300 μm or less.
JP16530699A 1999-06-11 1999-06-11 Diffraction grating pattern Expired - Fee Related JP4013405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16530699A JP4013405B2 (en) 1999-06-11 1999-06-11 Diffraction grating pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16530699A JP4013405B2 (en) 1999-06-11 1999-06-11 Diffraction grating pattern

Publications (2)

Publication Number Publication Date
JP2000352609A true JP2000352609A (en) 2000-12-19
JP4013405B2 JP4013405B2 (en) 2007-11-28

Family

ID=15809839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16530699A Expired - Fee Related JP4013405B2 (en) 1999-06-11 1999-06-11 Diffraction grating pattern

Country Status (1)

Country Link
JP (1) JP4013405B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007219551A (en) * 2007-05-18 2007-08-30 Toppan Printing Co Ltd Display composed of light scattering pattern and diffraction grating pattern
JP2009086192A (en) * 2007-09-28 2009-04-23 Toppan Printing Co Ltd Forgery prevention structure and forgery prevention sheet using the same, and method for determining authenticity of the same
JP2011133677A (en) * 2009-12-24 2011-07-07 Toppan Printing Co Ltd Blank medium, image display body, and information medium
JP2012042704A (en) * 2010-08-19 2012-03-01 Toppan Printing Co Ltd Image display body
JP2012118216A (en) * 2010-11-30 2012-06-21 Toppan Printing Co Ltd Image display body and information medium
JP2012185368A (en) * 2011-03-07 2012-09-27 Toppan Printing Co Ltd Display body and printed matter
JP2012230183A (en) * 2011-04-25 2012-11-22 Toppan Printing Co Ltd Display body and information printed matter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6834344B2 (en) * 2016-05-06 2021-02-24 凸版印刷株式会社 Display

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007219551A (en) * 2007-05-18 2007-08-30 Toppan Printing Co Ltd Display composed of light scattering pattern and diffraction grating pattern
JP2009086192A (en) * 2007-09-28 2009-04-23 Toppan Printing Co Ltd Forgery prevention structure and forgery prevention sheet using the same, and method for determining authenticity of the same
JP2011133677A (en) * 2009-12-24 2011-07-07 Toppan Printing Co Ltd Blank medium, image display body, and information medium
JP2012042704A (en) * 2010-08-19 2012-03-01 Toppan Printing Co Ltd Image display body
JP2012118216A (en) * 2010-11-30 2012-06-21 Toppan Printing Co Ltd Image display body and information medium
JP2012185368A (en) * 2011-03-07 2012-09-27 Toppan Printing Co Ltd Display body and printed matter
JP2012230183A (en) * 2011-04-25 2012-11-22 Toppan Printing Co Ltd Display body and information printed matter

Also Published As

Publication number Publication date
JP4013405B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
JP5157121B2 (en) Display and printed matter
CN101218520B (en) Grid image and method for the production thereof
CA2636488C (en) Display and labeled article
WO2009128168A1 (en) Labeling material and labeled goods item
JP2007510178A (en) Diffraction security element with halftone image
EP3748616B1 (en) Display medium, display support medium, processing device, and processing program
JP4013405B2 (en) Diffraction grating pattern
US11002892B2 (en) Difraction grating display body and labelled article
JP2008225322A (en) Optical diffraction structure having minute irregularities
JP3611879B2 (en) Method for producing diffraction grating recording medium recording color image
JP3033404B2 (en) Display with diffraction grating pattern
JP2002341809A (en) Display consisting of light scattering pattern and grating pattern
JP5205946B2 (en) Diffraction grating pattern and diffraction grating recording medium
JP4239605B2 (en) Display using diffraction grating
JP2004280010A (en) Display device having blazed diffraction grating pattern
JP2602554B2 (en) Method of manufacturing display having diffraction grating pattern
JPH0784110A (en) Display having diffraction grating pattern
CN100363783C (en) Method of forming coloured dot array diffraction image and product made wing said method
JP2003177655A (en) Display consisting of computer hologram
JP4752808B2 (en) Display consisting of light scattering pattern and diffraction grating pattern
JP2001066407A (en) Diffraction grating pattern
JPH07230005A (en) Display composed of diffraction grating device
JP2002040218A (en) Display
JP6834413B2 (en) Display and labeled items
JP3951686B2 (en) Kinoform display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees