JP2000268768A - Converged ion beam device - Google Patents

Converged ion beam device

Info

Publication number
JP2000268768A
JP2000268768A JP11073147A JP7314799A JP2000268768A JP 2000268768 A JP2000268768 A JP 2000268768A JP 11073147 A JP11073147 A JP 11073147A JP 7314799 A JP7314799 A JP 7314799A JP 2000268768 A JP2000268768 A JP 2000268768A
Authority
JP
Japan
Prior art keywords
defect
image
sem
wafer
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11073147A
Other languages
Japanese (ja)
Other versions
JP2000268768A5 (en
Inventor
Takeshi Onishi
毅 大西
Hidemi Koike
英巳 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11073147A priority Critical patent/JP2000268768A/en
Publication of JP2000268768A publication Critical patent/JP2000268768A/en
Publication of JP2000268768A5 publication Critical patent/JP2000268768A5/ja
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable sure evaluation and analyzation of a same fault by providing means of getting an image of an scanning electronic microscope at an observation point from an external device and of displaying the image on a screen. SOLUTION: A defect position in a wafer is detected by a defect detector and it is stored as a data file. Then, the wafer is moved to a scanning electronic microscope(SEM) for observation/element analysys of an SEM image. A specified defect 50 is selected from defect information and SEM observation is carried out. The observed SEM image is stored as image information. Thereafter, the wafer is moved to a focusing ion beam device and the stage is moved to the same position as that of the SEM observed defect. After the movement of the stage, a scanning ion microscope image is obtaied and displayed on a screen. An SIM image 101 and the SEM image 102 are displayed on an FIB control screen 100. Accordingly, the shape of defect 50 can be confirmed by either one of the images to thereby attain the object.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体ウエハに形成
された欠陥部位を高精度に分析、または、欠陥部位を含
む試料片を高精度にウエハから分離する集束イオンビー
ム装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focused ion beam apparatus for analyzing a defective portion formed on a semiconductor wafer with high accuracy or separating a specimen including the defective portion from the wafer with high accuracy.

【0002】[0002]

【従来の技術】近年、半導体素子の高機能化と低価格化
を実現するため、ウエハの大面積化とデバイス構造の微
細化が成されてきた。
2. Description of the Related Art In recent years, in order to realize higher functionality and lower cost of semiconductor elements, a larger wafer area and a finer device structure have been made.

【0003】ウエハの大面積化に関しては、現在主流の
8インチから12インチに移行されつつある。これに伴
い、ウエハ一枚当たりのチップ数も大幅に増大し、ウエ
ハ一枚の価格も非常に高価となっている。また、歩留ま
りを向上する目的で、プロセスにはプロセスモニタ用の
装置があり、例えば、欠陥検査装置では、ウエハ上の欠
陥を高速に検査し、その位置とサイズをデータファイル
にする。このデータを解析することで、プロセスのクリ
ーン度の管理が行える。
[0003] Regarding the enlargement of the area of a wafer, the current mainstream is shifting from 8 inches to 12 inches. As a result, the number of chips per wafer has greatly increased, and the price of one wafer has become extremely high. Further, for the purpose of improving the yield, the process includes a device for process monitoring. For example, a defect inspection device inspects a defect on a wafer at high speed, and stores a position and a size in a data file. By analyzing this data, the cleanliness of the process can be managed.

【0004】欠陥の個数やサイズだけでなく、その形状
や構成元素を分析する装置として走査型電子顕微鏡(Sc
anning Elwctron Microscope:以下SEMと略す)があ
り、欠陥検査装置で検出された欠陥のアドレスにステー
ジを移動し、欠陥のSEM像観察(形状観察)や電子ビ
ーム照射によって試料から放出される特性X線を検出し
て元素分析を行う。欠陥の素性をより鮮明にすること
で、不良原因の的確な判断ができるようになってきた。
As an apparatus for analyzing not only the number and size of defects but also their shapes and constituent elements, a scanning electron microscope (Sc
There is an anning elwctron microscope (hereinafter abbreviated as SEM), which moves the stage to the address of the defect detected by the defect inspection device, and observes the SEM image of the defect (shape observation) and the characteristic X-ray emitted from the sample by electron beam irradiation. And perform elemental analysis. By clarifying the nature of defects, it has become possible to accurately determine the cause of a defect.

【0005】しかし、欠陥は表面に露出したものだけで
なく、デバイス内部にまで欠陥部位が入り込んでいる場
合が多々あり、それを観察する手段として集束イオンビ
ーム(Focused Ion Beam:以下FIBと略す)を利用し
た加工観察手法が考案された。これは、見たい断面を含
む矩形領域をFIB加工し、その後ステージを傾斜して
形成された断面を観察するのである。これにより断面構
造が手軽に評価できるようになった。
[0005] However, in many cases, defects are not only those exposed on the surface, but also include defect parts even inside the device. As a means for observing the defects, a focused ion beam (hereinafter abbreviated as FIB) is used. A processing observation method using the technique was devised. In this method, a rectangular area including a cross section to be viewed is subjected to FIB processing, and then the cross section formed by tilting the stage is observed. As a result, the cross-sectional structure can be easily evaluated.

【0006】また、断面の観察に関しては、FIBカラ
ムとSEMカラムを複合化し、断面形成はFIBで行
い、断面観察はSEMで行う装置もある。この場合、断
面から放出される特性X線を検出することにより、元素
分析も可能となる。
[0006] Further, regarding the observation of the cross section, there is an apparatus in which the FIB column and the SEM column are combined, the cross section is formed by the FIB, and the cross section is observed by the SEM. In this case, elemental analysis becomes possible by detecting characteristic X-rays emitted from the cross section.

【0007】以上のように、欠陥の形状及び組成の分析
が比較的手軽に行えるようになってきたが、近年、デバ
イスの構造は更に微細化され、FIBでの断面像観察や
SEMでの像観察ではその分解能が不十分で、適切に欠陥
の評価ができない場合が出てきた。
As described above, it has become relatively easy to analyze the shape and composition of defects. However, in recent years, the structure of devices has been further miniaturized, and cross-sectional image observation using FIB and
In some cases, the resolution of images observed by SEM was insufficient and the defect could not be evaluated properly.

【0008】また、SEMを利用したX線分析では、電
子ビームの試料内での広がりにより、微少部の元素分析
ができず、欠陥の組成に関しても、適切な情報が得られ
なくなってきている。
Further, in the X-ray analysis using the SEM, the elemental analysis of a minute portion cannot be performed due to the spread of the electron beam in the sample, and it is becoming difficult to obtain appropriate information on the composition of the defect.

【0009】超高解像度の観察像と微少領域の元素分析
は透過型電子顕微鏡(TransmissionElectron Microscop
e:以下TEMと略す)を用いることで一般的に可能であ
る。ウエハからTEM試料片を分離する際、ウエハを割
らずに欠陥部位近傍のみをウエハから分離する手法が開
発されている。これは特開平5−52721号に記載されてい
る。
[0009] An ultra-high resolution observation image and elemental analysis of a minute area are obtained by a transmission electron microscope (Transmission Electron Microscop).
e: hereinafter abbreviated as TEM). When a TEM sample piece is separated from a wafer, a technique has been developed in which only the vicinity of a defective portion is separated from the wafer without breaking the wafer. This is described in JP-A-5-52721.

【0010】[0010]

【発明が解決しようとする課題】欠陥分析方法の流れと
して、例えば、欠陥検査装置にウエハを挿入して欠陥の
大きさと個数、また欠陥位置の情報を得る。次に、ウエ
ハを外観検査SEMに挿入し、先に得られた欠陥情報か
ら所望の欠陥を選択し、それに対応するアドレスにステ
ージを移動して欠陥の形状と元素分析を行う。
As a flow of the defect analysis method, for example, a wafer is inserted into a defect inspection apparatus to obtain information on the size and number of defects and the defect position. Next, the wafer is inserted into the visual inspection SEM, a desired defect is selected from the previously obtained defect information, and the stage is moved to an address corresponding to the desired defect to perform a defect shape and elemental analysis.

【0011】欠陥の断面情報が必要な場合には、ウエハ
をFIB装置に挿入し、欠陥部位の断面観察を行う。よ
り詳細な情報(欠陥のTEM像や局所元素分析情報)が
必要な場合、FIBのサンプリング機能により欠陥部位
を含む試料片をウエハから分離し、FIBにより薄壁加
工を行って試料片をTEMに挿入し、観察する。
When information on a cross section of a defect is required, the wafer is inserted into the FIB apparatus, and a cross section of the defect is observed. If more detailed information (defect TEM image or local elemental analysis information) is needed, the sample including the defect is separated from the wafer by the FIB sampling function, and thin-wall processing is performed by the FIB to convert the sample into a TEM. Insert and observe.

【0012】上記において、FIBで欠陥部位をウエハ
からサンプリングする際、欠陥検査装置で得られた欠陥
のウエハ内アドレス情報を用いて試料ステージを移動
し、FIBの光軸に所望の欠陥を移動してサンプリング
を行う。この際問題となるのが該アドレスの精度であ
る。一般的に欠陥検査装置のアドレス情報の絶対精度は
数10μmである。
In the above, when sampling a defective portion from a wafer by the FIB, the sample stage is moved by using the in-wafer address information of the defect obtained by the defect inspection apparatus, and the desired defect is moved to the optical axis of the FIB. Sampling. At this time, a problem is the accuracy of the address. Generally, the absolute accuracy of address information of a defect inspection apparatus is several tens μm.

【0013】従って、FIB装置でサンプリングする欠
陥が、欠陥検査装置で検出された所望の欠陥であるのか
どうか。また、SEMで形状分析や元素分析した欠陥で
あるのかどうかの確証が得にくい場合がある。これは特
に欠陥が上記アドレス精度内で隣接している場合に問題
となる。
Therefore, whether the defect sampled by the FIB device is a desired defect detected by the defect inspection device. In addition, it may be difficult to confirm whether or not the defect has been subjected to shape analysis or elemental analysis by SEM. This is particularly problematic when the defects are adjacent within the address accuracy described above.

【0014】本発明の課題は、外観検査装置、SEM,
FIBで確実に同一の欠陥を評価・分析する環境を提供
することにある。
An object of the present invention is to provide a visual inspection apparatus, SEM,
An object of the present invention is to provide an environment in which the same defect can be reliably evaluated and analyzed by FIB.

【0015】[0015]

【課題を解決するための手段】FIB装置にSEM像が
表示できる手段を設け、走査イオン顕微鏡(ScanningIo
n Microscope:以下SIMと略す)像とSEM像を同一
画面上で比較できるようにすることで、両者が同じ欠陥
部位を評価している確証を得ることができる。外観検査
SEMでは、欠陥の観察に伴い順次学習を行い、送られ
た欠陥位置情報と実際のステージアドレスとの適合精度
を順次向上するソフトウエアを備えている。従って、S
EMで観察された欠陥のアドレス精度は欠陥検査装置で
検出されたアドレス精度よりも高くなっている。
A means for displaying an SEM image is provided in a FIB apparatus, and a scanning ion microscope (ScanningIo) is provided.
The n Microscope (hereinafter abbreviated as SIM) image and the SEM image can be compared on the same screen, so that it can be confirmed that both evaluate the same defect site. The visual inspection SEM is provided with software that sequentially learns with the observation of a defect and sequentially improves the matching accuracy between the sent defect position information and the actual stage address. Therefore, S
The address accuracy of the defect observed by the EM is higher than the address accuracy detected by the defect inspection device.

【0016】従って、SEMとFIBとで同一仕様の試
料ステージを用い、FIBの試料アドレスを欠陥検査装
置からの情報ではなく、SEMからの情報(ソフト補正
済み)によりステージ位置を制御することにより、装置
間での欠陥位置の相互精度が更に向上する。
Therefore, by using a sample stage having the same specifications in the SEM and the FIB, and controlling the stage position based on information (software corrected) from the SEM instead of information from the defect inspection apparatus using the sample address of the FIB, Mutual accuracy of defect positions between devices is further improved.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施の形態を図を
用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は本発明の第一の実施例の構成図であ
る。
FIG. 1 is a block diagram of a first embodiment of the present invention.

【0019】FIB装置1,SEM2,外観検査装置1
1はネットワーク10を介して接続され、データの相互
転送が可能である。欠陥検査装置11には欠陥位置情報
検出手段12があり、ウエハ内欠陥の位置,大きさ等の
情報を検出し、データファイルとすることができる。
FIB device 1, SEM 2, visual inspection device 1
1 are connected via a network 10 and can transfer data mutually. The defect inspection apparatus 11 has a defect position information detecting means 12, which can detect information such as a position and a size of a defect in a wafer and can make it a data file.

【0020】SEM13には欠陥位置情報取得手段14
があり、これは欠陥検査装置11から欠陥情報を転送し
格納する機能を有する。欠陥位置ステージ移動手段15
は得られた欠陥位置情報を基に特定欠陥の位置にステー
ジを移動する機能を有する。SEM像取得手段は欠陥の
SEM像を取得し、画像データとして記憶する機能を有
する。FIB1には外部SEM情報取得手段2があり、
SEMが記憶した画像データをFIB装置に転送する機
能を有する。外部SEM画像表示手段は該転送されたS
EM画像情報をFIB装置の画面上に表示する機能を有
する。欠陥位置情報取得手段4は欠陥情報を転送し格納
する機能を有する。欠陥位置ステージ移動手段は得られ
た欠陥位置情報を基に特定欠陥の位置にステージを移動
する機能を有する。
The SEM 13 has a defect position information acquiring means 14
This has a function of transferring and storing defect information from the defect inspection apparatus 11. Defect position stage moving means 15
Has a function of moving the stage to the position of a specific defect based on the obtained defect position information. The SEM image acquiring means has a function of acquiring an SEM image of a defect and storing the acquired SEM image as image data. FIB 1 has external SEM information acquisition means 2,
It has a function of transferring the image data stored by the SEM to the FIB device. The external SEM image display means displays the transferred S
It has a function of displaying EM image information on the screen of the FIB device. The defect position information acquiring means 4 has a function of transferring and storing defect information. The defect position stage moving means has a function of moving the stage to a position of a specific defect based on the obtained defect position information.

【0021】サンプリング手段6は該欠陥を含む領域を
ウエハから分離する機能を有する。分離した試料片は該
FIB装置もしくは外部のFIB装置で薄壁加工(TE
M試料加工)を行い、該加工済みの試料をTEMにより
分析することが可能となる。ウエハ内の特定欠陥を分析
する手順を図2に示す。
The sampling means 6 has a function of separating the area containing the defect from the wafer. The separated specimen is thin-walled (TE) using the FIB device or an external FIB device.
M sample processing), and the processed sample can be analyzed by TEM. FIG. 2 shows a procedure for analyzing a specific defect in a wafer.

【0022】まずウエハの欠陥検査40を行う。欠陥検
査装置でウエハ内の欠陥位置,大きさ等を検出し、それ
らをデータファイルとして格納する。
First, a wafer defect inspection 40 is performed. A defect inspection device detects a defect position, a size, and the like in the wafer, and stores them as a data file.

【0023】次に、SEM像観察/元素分析41を行
う。ウエハをSEMに移動し、欠陥検査装置で得られた
欠陥情報の中から特定の欠陥を抽出して、その欠陥位置
にステージを移動し、SEM観察する。観察したSEM
像は画像情報として記憶される。
Next, SEM image observation / elemental analysis 41 is performed. The wafer is moved to the SEM, a specific defect is extracted from the defect information obtained by the defect inspection apparatus, the stage is moved to the defect position, and SEM observation is performed. Observed SEM
The image is stored as image information.

【0024】元素分析が必要な場合は電子線を欠陥部位
に集中的に照射し、欠陥から放出される特性X線を検出
して元素分析を行う。
When elemental analysis is required, an electron beam is intensively applied to a defect site, and characteristic X-rays emitted from the defect are detected to perform elemental analysis.

【0025】次に、ウエハをFIB装置に移動し、SE
Mで観察した欠陥と同じ位置にステージを移動する。移
動後SIM像を取得し画面表示する。また、同じ画面上
に欠陥のSEM像を表示する。これは先に延べた外部S
EM画像情報取得手段2と外部SEM画像表示手段3に
より可能となる。
Next, the wafer is moved to the FIB apparatus,
The stage is moved to the same position as the defect observed in M. After the movement, a SIM image is acquired and displayed on the screen. Also, an SEM image of the defect is displayed on the same screen. This is the external S
This is made possible by the EM image information acquisition means 2 and the external SEM image display means 3.

【0026】SIM像とSEM像を制御画面上に同時表
示した例を図3に示す。
FIG. 3 shows an example in which the SIM image and the SEM image are simultaneously displayed on the control screen.

【0027】FIB制御画面100上にSEM像102
とSIM像101が表示されている。欠陥50の形状が
どちらの画像でも確認でき、同一の欠陥を分析している
確証を得ることができる。
SEM image 102 on FIB control screen 100
And the SIM image 101 are displayed. The shape of the defect 50 can be confirmed in both images, and it can be confirmed that the same defect is analyzed.

【0028】FIB加工はSIM像上に加工領域103
を設定し、FIBをこの領域に局所照射することで可能
となる。制御画面100には欠陥番号105と欠陥位置
が表示される欠陥情報ウインドウ104がある。このF
IB制御画面を利用して試料の観察と加工領域の設定/
加工を行い、特開平5−52721号に記載されているサンプ
リング手法によりサンプリングを行う。
In the FIB processing, a processing area 103 is formed on the SIM image.
Is set, and FIB is locally irradiated to this area. The control screen 100 has a defect information window 104 in which a defect number 105 and a defect position are displayed. This F
Observation of sample and setting of processing area using IB control screen /
Processing is performed, and sampling is performed by the sampling method described in JP-A-5-52721.

【0029】サンプリング後FIB装置内で薄壁加工
(TEM試料加工43)を行う。得られた試料片をTE
Mに挿入し、TEM像観察/元素分析44を行う。
After sampling, thin wall processing (TEM sample processing 43) is performed in the FIB apparatus. The obtained sample piece is TE
M, and perform TEM image observation / elemental analysis 44.

【0030】以上の一連の流れにより、ウエハ内の特定
欠陥のTEM観察が高精度に行えるようになった。
By the above series of flows, a TEM observation of a specific defect in a wafer can be performed with high accuracy.

【0031】図4は第二の実施例における構成図であ
る。第一の実施例との違いはSEM13 に欠陥位置情報補正
手段17が装備されていること、FIB1に該補正済み
の欠陥位置情報を取得する手段が装備されていることで
ある。
FIG. 4 is a block diagram of the second embodiment. The difference from the first embodiment is that the SEM 13 is provided with a defect position information correcting means 17 and the FIB 1 is provided with a means for acquiring the corrected defect position information.

【0032】欠陥検査装置で得られる欠陥の位置情報の
精度は一般的に低く、欠陥が隣接している場合にどちら
の欠陥であるかの判断がつきにくくなる場合がある。こ
のため、SEMには欠陥位置情報の補正機能があり、複
数個の欠陥を観察するに従い学習して位置精度が順次向
上するようなしくみが作り込まれている。
The accuracy of the defect position information obtained by the defect inspection apparatus is generally low, and it may be difficult to determine which defect is adjacent when the defects are adjacent. For this reason, the SEM has a function of correcting defect position information, and a mechanism has been built in which learning is performed as a plurality of defects are observed, and the position accuracy is sequentially improved.

【0033】SEMとFIBとで同一仕様のステージを
用い、FIBのステージ移動をこのSEMで補正された
欠陥位置情報を基に行うことで、より高精度の欠陥位置
出しを行うことができた。
By using a stage having the same specifications for the SEM and the FIB and performing the FIB stage movement based on the defect position information corrected by the SEM, it was possible to locate the defect with higher precision.

【0034】[0034]

【発明の効果】本発明によれば、ウエハ内の微細な欠陥
を確実にSEM/TEM分析する事ができる。
According to the present invention, a fine defect in a wafer can be surely analyzed by SEM / TEM.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施の形態を示す構成図。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】本発明の第一の実施の形態における手順を示す
フローチャート。
FIG. 2 is a flowchart showing a procedure according to the first embodiment of the present invention.

【図3】本発明の実施の形態で使用したFIB制御画
面。
FIG. 3 is an FIB control screen used in the embodiment of the present invention.

【図4】本発明の第二の実施の形態を示す構成図。FIG. 4 is a configuration diagram showing a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…FIB装置、2…外部SEM画像情報取得手段、3
…外部SEM画像表示手段、4…欠陥位置情報取得手
段、5…欠陥位置ステージ移動手段、6…アンプリング
手段、7…補正済み欠陥位置情報取得手段、10…ネッ
トワーク、11…欠陥検査装置、12…欠陥位置情報検
出手段、13…SEM、14…欠陥位置情報取得手段、
15…欠陥位置ステージ移動手段、16…SEM画像取
得手段、17…欠陥位置情報補正手段、40…欠陥検
査、41…SEM像観察/元素分析、42…サンプリン
グ、43…TEM試料加工、44…TEM像観察/元素
分析、50…欠陥、100…FIB制御画面、101…
SIM像、102…SEM像、103…加工領域、10
4…欠陥情報表示ウインドウ、105…欠陥番号、10
6…欠陥位置X、107…欠陥位置Y。
DESCRIPTION OF SYMBOLS 1 ... FIB apparatus, 2 ... External SEM image information acquisition means, 3
... External SEM image display means, 4 ... Defect position information acquisition means, 5 ... Defect position stage moving means, 6 ... Ampling means, 7 ... Corrected defect position information acquisition means, 10 ... Network, 11 ... Defect inspection device, 12 ... Defect position information detection means, 13 ... SEM, 14 ... Defect position information acquisition means,
15: Defect position stage moving means, 16: SEM image acquisition means, 17: Defect position information correction means, 40: Defect inspection, 41: SEM image observation / elemental analysis, 42: Sampling, 43: TEM sample processing, 44: TEM Image observation / elemental analysis, 50: defect, 100: FIB control screen, 101:
SIM image, 102: SEM image, 103: processing area, 10
4 ... Defect information display window, 105 ... Defect number, 10
6: defect position X, 107: defect position Y

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/66 H01L 21/66 N Fターム(参考) 4M106 AA01 BA02 BA03 BA20 CA38 CA39 CA41 CA42 CA43 CA45 CA46 CA50 CA51 DA15 DB05 DH08 DH24 DH60 DJ23 5C001 AA03 AA05 CC04 5C033 FF04 UU03 UU04 5C034 DD06 DD09 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/66 H01L 21/66 NF term (Reference) 4M106 AA01 BA02 BA03 BA20 CA38 CA39 CA41 CA42 CA43 CA45 CA46 CA50 CA51 DA15 DB05 DH08 DH24 DH60 DJ23 5C001 AA03 AA05 CC04 5C033 FF04 UU03 UU04 5C034 DD06 DD09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくともX,Y,チルト方向にウエハ試
料を移動する試料移動手段、該試料に集束したイオンビ
ームを照射して観察もしくは加工する集束イオンビーム
加工観察手段、試料内の観察点を含む特定領域をFIB
加工を利用して該試料から分離(サンプリング)する手
段を備えた集束イオンビーム装置において、試料内の観
察点アドレス情報を外部装置から取得する手段、該アド
レス情報を基に試料ステージを駆動する試料移動手段、
該観察点の走査電子顕微鏡像を外部装置から取得する手
段、該走査電子顕微鏡像を画面上に表示する手段を備え
たことを特徴とする集束イオンビーム装置。
1. A sample moving means for moving a wafer sample at least in X, Y and tilt directions, a focused ion beam processing and observing means for irradiating a focused ion beam on the sample for observation or processing, and an observation point in the sample. FIB including specific area
In a focused ion beam apparatus provided with means for separating (sampling) from the sample using processing, means for acquiring observation point address information in the sample from an external device, and a sample for driving a sample stage based on the address information transportation,
A focused ion beam apparatus comprising: means for acquiring a scanning electron microscope image of the observation point from an external device; and means for displaying the scanning electron microscope image on a screen.
【請求項2】該SEM像と走査イオン顕微鏡像を同一画
面に表示することを特徴とする請求項1記載の集束イオ
ンビーム装置。
2. The focused ion beam apparatus according to claim 1, wherein the SEM image and the scanning ion microscope image are displayed on the same screen.
【請求項3】該アドレス情報は集束イオンビーム装置に
接続された走査型電子顕微鏡から発生した情報であるこ
とを特徴とする請求項1または2記載の集束イオンビー
ム装置。
3. The focused ion beam device according to claim 1, wherein the address information is information generated from a scanning electron microscope connected to the focused ion beam device.
JP11073147A 1999-03-18 1999-03-18 Converged ion beam device Pending JP2000268768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11073147A JP2000268768A (en) 1999-03-18 1999-03-18 Converged ion beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11073147A JP2000268768A (en) 1999-03-18 1999-03-18 Converged ion beam device

Publications (2)

Publication Number Publication Date
JP2000268768A true JP2000268768A (en) 2000-09-29
JP2000268768A5 JP2000268768A5 (en) 2005-04-07

Family

ID=13509805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11073147A Pending JP2000268768A (en) 1999-03-18 1999-03-18 Converged ion beam device

Country Status (1)

Country Link
JP (1) JP2000268768A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1355143A2 (en) * 2002-04-18 2003-10-22 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Method for the preparation of a TEM-slide
JP2005537683A (en) * 2002-08-27 2005-12-08 ケーエルエー−テンカー テクノロジィース コーポレイション Method and apparatus for endpoint detection in etching using an electron beam
JP2006506816A (en) * 2002-11-12 2006-02-23 エフ・イ−・アイ・カンパニー Defect analyzer
JP2010507783A (en) * 2006-10-20 2010-03-11 エフ・イ−・アイ・カンパニー Method and sample structure for creating S / TEM sample
JP2011198581A (en) * 2010-03-18 2011-10-06 Sii Nanotechnology Inc Composite charged-particle processing and observation apparatus
US8357913B2 (en) 2006-10-20 2013-01-22 Fei Company Method and apparatus for sample extraction and handling
CN103545231A (en) * 2013-10-21 2014-01-29 上海华力微电子有限公司 Nickel erosion flaw on-line detection method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1355143A2 (en) * 2002-04-18 2003-10-22 EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt Method for the preparation of a TEM-slide
JP4801903B2 (en) * 2002-08-27 2011-10-26 ケーエルエー−テンカー コーポレイション Method and apparatus for endpoint detection in etching using an electron beam
JP2005537683A (en) * 2002-08-27 2005-12-08 ケーエルエー−テンカー テクノロジィース コーポレイション Method and apparatus for endpoint detection in etching using an electron beam
US8249828B2 (en) 2002-11-12 2012-08-21 Fei Company Defect analyzer
JP2006506816A (en) * 2002-11-12 2006-02-23 エフ・イ−・アイ・カンパニー Defect analyzer
JP2011199323A (en) * 2002-11-12 2011-10-06 Fei Co Defect analyzer
US7987072B2 (en) 2002-11-12 2011-07-26 Fei Company Defect analyzer
US8525137B2 (en) 2006-10-20 2013-09-03 Fei Company Method for creating S/TEM sample and sample structure
JP2010507783A (en) * 2006-10-20 2010-03-11 エフ・イ−・アイ・カンパニー Method and sample structure for creating S / TEM sample
US8357913B2 (en) 2006-10-20 2013-01-22 Fei Company Method and apparatus for sample extraction and handling
US8890064B2 (en) 2006-10-20 2014-11-18 Fei Company Method for S/TEM sample analysis
US8993962B2 (en) 2006-10-20 2015-03-31 Fei Company Method and apparatus for sample extraction and handling
US9275831B2 (en) 2006-10-20 2016-03-01 Fei Company Method for S/TEM sample analysis
US9336985B2 (en) 2006-10-20 2016-05-10 Fei Company Method for creating S/TEM sample and sample structure
US9349570B2 (en) 2006-10-20 2016-05-24 Fei Company Method and apparatus for sample extraction and handling
US9581526B2 (en) 2006-10-20 2017-02-28 Fei Company Method for S/TEM sample analysis
JP2011198581A (en) * 2010-03-18 2011-10-06 Sii Nanotechnology Inc Composite charged-particle processing and observation apparatus
CN103545231A (en) * 2013-10-21 2014-01-29 上海华力微电子有限公司 Nickel erosion flaw on-line detection method

Similar Documents

Publication Publication Date Title
JP4307470B2 (en) Charged particle beam apparatus, sample processing method, and semiconductor inspection apparatus
US5777327A (en) Pattern shape inspection apparatus for forming specimen image on display apparatus
JP5059297B2 (en) Electron beam observation device
US7612337B2 (en) Focused ion beam system and a method of sample preparation and observation
US6756589B1 (en) Method for observing specimen and device therefor
KR19980070850A (en) Sample analyzer
JP5325580B2 (en) Defect observation method and apparatus using SEM
JP2005044912A (en) Inspection device of circuit pattern
JP2016156812A (en) Pattern matching using lamella of known shape for automated s/tem acquisition and measurement
JP2001127125A (en) Method and system for inspecting/analyzing defect and inspection device for semiconductor device pattern
JPWO2002075806A1 (en) Wafer inspection method, focused ion beam device, and transmitted electron beam device
JP5018868B2 (en) Sample observation method and apparatus
JP2013114854A (en) Sample observation device and marking method
JP2000268768A (en) Converged ion beam device
US6762422B2 (en) Analyzer/observer
JP3836735B2 (en) Circuit pattern inspection device
JP3383574B2 (en) Process management system and focused ion beam device
US8309922B2 (en) Semiconductor inspection method and device that consider the effects of electron beams
JP2007019270A (en) Method and device for observing defect by using microscope
JP4673278B2 (en) Wafer inspection method
JP2000067243A (en) Automatic defect information collection control method and recording medium recording automatic defect information collection control program
JP3473932B2 (en) Defect observation apparatus and method
JP4021084B2 (en) Electron microscope and inspection method
JP4230899B2 (en) Circuit pattern inspection method
JPH09139406A (en) Electron microscope system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040512

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040512

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603