JP2000263198A - Method for continuously casting molten steel - Google Patents

Method for continuously casting molten steel

Info

Publication number
JP2000263198A
JP2000263198A JP11071388A JP7138899A JP2000263198A JP 2000263198 A JP2000263198 A JP 2000263198A JP 11071388 A JP11071388 A JP 11071388A JP 7138899 A JP7138899 A JP 7138899A JP 2000263198 A JP2000263198 A JP 2000263198A
Authority
JP
Japan
Prior art keywords
molten steel
mold
spouting
side walls
short side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11071388A
Other languages
Japanese (ja)
Inventor
Satoshi Nakajima
聡 中島
Kazunari Adachi
一成 安達
Toshitane Matsukawa
敏胤 松川
Yoshinori Ueshima
好紀 植島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11071388A priority Critical patent/JP2000263198A/en
Publication of JP2000263198A publication Critical patent/JP2000263198A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the internal defect caused by enclosure of mold powder by setting the spouting quantity of molten steel so as to become the equal flowing speed at near both short side walls in a mold and pouring the molten steel into the mold from each spouting hole. SOLUTION: The immersion nozzle having the spouting holes 5 faced to both short side walls 6 in the mold, is set so as to shift this center axis in the direction along the side walls 5 from the center of the mold, and the molten steel is poured into the mold from each spouting hole 5. At this time, the spouting quantity from the immersion nozzle is decided so that the flowing speeds of the molten steel at near the short side walls 6 equal, and the molten steel is poured into the mold. In this way, periodical variation of the flow velocity on the surface of the molten steel can be restrained. As a means for adjusting the spouting quantity, e.g. the areas of the faced spouting holes 5 may be to mutually change in the immersion nozzle. That is, many immersion nozzles having different cross sectional areas of the faced spouting holes 5, are prepared and the flow velocity sensors are arranged at near both short side walls 6 in the mold, and the testing operations are executed to find the suitable immersion nozzle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶鋼の連続鋳造方
法に関する。
The present invention relates to a method for continuously casting molten steel.

【0002】[0002]

【従来の技術】鋼鋳片を大量生産するには、水冷された
筒状鋳型(平断面が矩形のものが多い)に溶鋼を連続的
に注入すると共に、外周が凝固し、内部はまだ溶融状態
にある未完の鋳片を徐々に該鋳型から抜き出しつつ冷却
する所謂「連続鋳造方法」が普及している。この連続鋳
造に際しては、溶鋼の保温及び鋳型壁との潤滑を良くす
るため、特定組成の粉状物質(モールド・パウダと称す
る)で溶鋼表面を覆うようにしている。
2. Description of the Related Art In order to mass-produce steel slabs, molten steel is continuously poured into a water-cooled cylindrical mold (often rectangular in cross section), the outer periphery solidifies, and the interior is still molten. A so-called “continuous casting method” in which an unfinished cast slab in a state is gradually extracted from the mold and cooled is widely used. During the continuous casting, the surface of the molten steel is covered with a powdery substance (referred to as mold powder) having a specific composition in order to keep the temperature of the molten steel and lubricate the mold wall.

【0003】ところで、鋳型への溶鋼の注入は、図4に
示すように、タンディッシュ1なる中間容器に貯えた溶
鋼2を、該タンディッシュ1の底部に取り付けたノズル
3を介して行われる。このノズル3は、鋳型4内で溶鋼
2に浸漬された状態になるので、浸漬ノズル3と称さ
れ、図3に示すように、その軸に対象な溶鋼2の吐出孔
5を複数個有している。そして、現在は、該浸漬ノズル
3を、短辺壁6と長辺壁7とで囲み、平断面が矩形状の
鋳型4の中心に配置し、溶鋼2が両側の短辺壁6に向か
う流れとなるよう、前記吐出孔5から溶鋼2を吐出する
のが一般的である。これにより、鋳型4内では、浸漬ノ
ズル3に対して左右対称の溶鋼流れが形成されている。
As shown in FIG. 4, molten steel is injected into a casting mold through a nozzle 3 attached to the bottom of the tundish 1 with the molten steel 2 stored in an intermediate container of the tundish 1. Since the nozzle 3 is immersed in the molten steel 2 in the mold 4, the nozzle 3 is called an immersion nozzle 3, and has a plurality of discharge holes 5 of the target molten steel 2 on its shaft as shown in FIG. 3. ing. At present, the immersion nozzle 3 is surrounded by a short side wall 6 and a long side wall 7 and arranged at the center of a mold 4 having a rectangular cross section, and the molten steel 2 flows toward the short side walls 6 on both sides. In general, the molten steel 2 is discharged from the discharge hole 5 so that As a result, a symmetric molten steel flow is formed in the mold 4 with respect to the immersion nozzle 3.

【0004】しかしながら、最近の研究によれば、かか
る左右対称な溶鋼2の流れを形成しようとしても、溶鋼
流の流速が、図2に示すように、時間に関して周期的に
変動しており、しかもその周期が左右の流れで同一でな
い(この状態を偏流という)ことが明らかになった。こ
れは、鋳片9の鋳型4からの引き抜き、溶鋼2の注入等
の影響で湯面が上下に長期の周期で振動していることに
起因する。この溶鋼2の流速が平均流速よりかなり大き
くなると、鋳型上部では、前記モールド・パウダ8が溶
鋼2中に巻き込まれ、製造した鋳片9の表面欠陥の原因
になり、鋳型下部では、溶鋼2が非金属介在物を内部に
深く浸入させた状態で凝固し、該鋳片9の内部欠陥の原
因になることも明らかになった。そのため、溶鋼2の連
続鋳造に際しては、この溶鋼表面の流速の周期変動とそ
れに伴う偏流をできるだけ小さくすることが望まれてい
た。例えば、特開平4−322858号公報は、流速セ
ンサを用いて鋳型内での溶鋼表面の偏流を検知し、その
偏流を打ち消すよう、浸漬ノズル3の位置を鋳型4の中
心から任意の位置に移動する技術を開示している。ま
た、特開平4−322859号公報は、同様にして検知
した偏流を打ち消すように、溶鋼に電磁撹拌を施す技術
を開示している。
However, according to a recent study, even if an attempt is made to form such a symmetrical flow of molten steel 2, the flow velocity of the molten steel flow fluctuates periodically with respect to time as shown in FIG. It became clear that the period was not the same for the left and right flows (this state is called drift). This is due to the fact that the molten metal surface vibrates up and down in a long-term cycle under the influence of pulling out the slab 9 from the mold 4 and pouring the molten steel 2. When the flow velocity of the molten steel 2 becomes significantly higher than the average flow velocity, the mold powder 8 is caught in the molten steel 2 at the upper part of the mold, causing surface defects of the produced slab 9, and the molten steel 2 is formed at the lower part of the mold. It was also clarified that the non-metallic inclusion solidified while deeply penetrating into the inside, causing internal defects of the slab 9. Therefore, in the continuous casting of the molten steel 2, it has been desired to minimize the periodic fluctuation of the flow velocity on the surface of the molten steel and the accompanying drift as much as possible. For example, Japanese Unexamined Patent Publication No. Hei 4-322858 discloses a method of detecting a drift on the surface of molten steel in a mold using a flow rate sensor and moving the position of the immersion nozzle 3 from the center of the mold 4 to an arbitrary position so as to cancel the drift. To disclose the technology. Further, Japanese Patent Application Laid-Open No. Hei 4-322859 discloses a technique of subjecting molten steel to electromagnetic stirring so as to cancel the drift detected in the same manner.

【0005】しかしながら、特開平4−322858号
公報記載の技術では、浸漬ノズル3の位置を周期的に移
動するための装置が必要となり、その機械的信頼性や制
御性に問題があった。また、特開平4−322859号
公報記載の技術では、攪拌装置が大がかりとなるため、
経済性の問題があった。
However, the technique described in Japanese Patent Application Laid-Open No. 4-322858 requires a device for periodically moving the position of the immersion nozzle 3, and has a problem in mechanical reliability and controllability. Further, in the technology described in Japanese Patent Application Laid-Open No. Hei 4-32859, the stirrer becomes large-scale,
There was a problem of economics.

【0006】[0006]

【発明が解決しようとする課題】本発明は、かかる事情
に鑑み、モールド・パウダ巻き込みに起因する表面欠
陥、非金属介在物及びガスの侵入に起因する内部欠陥が
従来より少ない鋳片が得られる溶鋼の連続鋳造方法を提
供することを目的としている。
SUMMARY OF THE INVENTION In view of the above circumstances, according to the present invention, a slab having less surface defects due to entrainment of mold powder, less internal defects due to nonmetallic inclusions and gas intrusion than before can be obtained. It is an object of the present invention to provide a method for continuously casting molten steel.

【0007】[0007]

【課題を解決するための手段】発明者は、上記目的を達
成するため、鋳型内溶鋼の周期的変動について研究し
た。そして、その成果を本発明に具現化した。
Means for Solving the Problems In order to achieve the above object, the inventor studied periodic fluctuations of molten steel in a mold. And the result was embodied in the present invention.

【0008】すなわち、本発明は、鋳型の両短辺壁に対
向する吐出孔を有する浸漬ノズルを、その中心軸を鋳型
の中心から長辺壁に沿う方向にずらして配置し、各吐出
孔から鋳型内に溶鋼を注入する溶鋼の連続鋳造方法にお
いて、前記溶鋼の吐出流が両短辺壁近傍で同等の流速に
なるような吐出量を設定して、各吐出孔から溶鋼を鋳型
内に注入することを特徴とする溶鋼の連続鋳造方法であ
る。
That is, according to the present invention, an immersion nozzle having discharge holes opposed to both short side walls of a mold is arranged with its central axis shifted from the center of the mold in a direction along the long side wall. In the continuous casting method of molten steel in which molten steel is injected into a mold, a discharge amount of the molten steel is set so as to have an equal flow rate near both short side walls, and molten steel is injected into the mold from each discharge hole. A continuous casting method for molten steel.

【0009】本発明によれば、溶鋼表面流速の周期変動
が従来より格段に抑制されるようになる。その結果、モ
ールド・パウダ巻き込みに起因する表面欠陥、非金属介
在物及びガスの侵入に起因する内部欠陥が少ない鋳片が
得られるようになった。
According to the present invention, the periodic fluctuation of the molten steel surface flow velocity can be suppressed much more than before. As a result, it has become possible to obtain a slab having few surface defects due to entrainment of mold powder, non-metallic inclusions and internal defects due to invasion of gas.

【0010】[0010]

【発明の実施の形態】以下、発明をなすに至った経緯を
まじえ、本発明の実施の形態を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below on the basis of the circumstances leading to the invention.

【0011】まず、発明者は、鋳型内における溶鋼表面
の周期的変動について鋭意研究した。そして、該変動
は、流れを形成する場が浸漬ノズルを中心とした左右対
称であるがために、浸漬ノズルから出た吐出流のわずか
な変動が助長されて起きると確信し、この周期変動を防
止するには、鋳型内で溶鋼の左右対称の流れをつくらな
ければ良いと考え、先行技術を捜した。
First, the inventor has studied diligently on the periodic variation of the surface of molten steel in a mold. And, since the field forming the flow is bilaterally symmetrical with respect to the immersion nozzle, it is convinced that slight fluctuation of the discharge flow from the immersion nozzle is promoted, and this fluctuation is confirmed. To prevent this, we thought that it was only necessary to create a symmetrical flow of molten steel in the mold, and searched for prior art.

【0012】その結果、左右非対称の溶鋼流れを形成す
る技術として、特開昭58−224051号公報が存在
していた。それは、複数の非対称な吐出孔を有する1本
の浸漬ノズルを鋳型の中心から長辺壁に沿う方向にずら
して配置し、鋳型内に均等に溶融金属を供給するもので
ある。しかしながら、この技術は、浸漬ノズルの位置を
ずらしたことで形成される鋳型内の左右非対象な溶鋼注
入容積に、溶鋼を均等に供給するためのものであり、溶
鋼の表面流速の周期変動を抑制するものではなかった。
As a result, Japanese Patent Application Laid-Open No. 58-224051 has existed as a technique for forming an asymmetrical molten steel flow. That is, one immersion nozzle having a plurality of asymmetric discharge holes is displaced from the center of the mold in a direction along the long side wall, and the molten metal is supplied evenly into the mold. However, this technique is to supply molten steel evenly to the left and right asymmetrical molten steel injection volume in the mold formed by shifting the position of the immersion nozzle, and to reduce the periodic fluctuation of the surface velocity of molten steel. It did not suppress.

【0013】そこで、発明者は、引き続き実験を重ね、
鋳型の両短辺壁に衝突する吐出流の流速が互いに等しく
なるようにすると、理由は定かでないが、図1に示すよ
うに、溶鋼2の表面流速の周期変動が抑制できることを
見出した。つまり、両短辺壁6の近傍での溶鋼2の流速
が等しくなるように、浸漬ノズル3からの溶鋼2の吐出
量を定めて、溶鋼2を鋳型4に注入するようにしたので
ある。
[0013] The inventor has continued the experiment.
If the velocities of the discharge streams colliding with both short side walls of the mold are made equal to each other, it is not clear why, but as shown in FIG. 1, it has been found that periodic fluctuations in the surface velocity of the molten steel 2 can be suppressed. That is, the discharge amount of the molten steel 2 from the immersion nozzle 3 is determined so that the molten steel 2 is injected into the mold 4 so that the flow velocity of the molten steel 2 near the both short side walls 6 becomes equal.

【0014】この吐出量を調整する具体的な手段は、如
何なるものであっても良いが、例えば、浸漬ノズル3の
対向する吐出孔5の面積を互いに変更することで良い。
つまり、予め、対向する吐出孔5の断面積が種々異なる
浸漬ノズル3を多数準備しておくと共に、鋳型4の両短
辺壁6近傍に溶鋼の流速センサ(図示せず)を配置し、
試験操業を行なうことで適切な浸漬ノズル3を見出すこ
とができる。また、この試験操業に代え、オフ・ライン
での水モデル実験、さらには計算的手法により決定して
も良い。
The means for adjusting the discharge amount may be any means. For example, the areas of the discharge holes 5 of the immersion nozzle 3 facing each other may be changed.
That is, a number of immersion nozzles 3 having different cross-sectional areas of the opposing discharge holes 5 are prepared in advance, and a flow sensor (not shown) of molten steel is arranged near both short side walls 6 of the mold 4.
By performing the test operation, a suitable immersion nozzle 3 can be found. Instead of this test operation, the determination may be made by an off-line water model experiment or further by a computational method.

【0015】[0015]

【実施例】断面積が互いに異なる溶鋼の吐出孔を、中心
軸に対して対向する位置に2個設けた浸漬ノズル(2孔
ノズル)を準備した。そして、これらの浸漬ノズルを、
短辺壁6の長さが、220mmで、長辺壁7の長さが1
800mmの平断面が矩形状の鋳型に配置した。配置位
置は、鋳型の中心から右側に200mmずらした位置で
ある。そして、極低炭素鋼からなる溶鋼を、平均流速
1.0m/secで前記吐出孔から連続的に吐出し、鋳
造を行なった。その際、鋳型の両短辺壁の近傍には、そ
れぞれ溶鋼の表面及び吐出流の流速を測定する流速セン
サ(浸漬棒式、丸棒が溶鋼流から受ける力をロード・セ
ルで検出し、流速に換算する)を設け、常時流速を測定
した。
EXAMPLE An immersion nozzle (two-hole nozzle) in which two discharge holes of molten steel having different cross-sectional areas were provided at positions opposed to the central axis was prepared. And these immersion nozzles,
The length of the short side wall 6 is 220 mm and the length of the long side wall 7 is 1
An 800 mm flat section was placed in a rectangular mold. The arrangement position is a position shifted by 200 mm to the right from the center of the mold. Then, molten steel made of extremely low carbon steel was continuously discharged from the discharge holes at an average flow velocity of 1.0 m / sec, and casting was performed. At this time, near the two short side walls of the mold, flow velocity sensors (immersion rod type, round bar) which measure the force received from the molten steel flow by the load cell The flow rate was constantly measured.

【0016】各浸漬ノズルでの表面流速の変動状況を、
最大流速及び最小流速で表し、表2に示す。表2より、
吐出流の両短辺壁近傍での流速がほぼ等しくなったN
o.3のノズルを使用して鋳造した場合が、最も表面流
速の変動が小さいことが明らかである。それは、2個の
吐出孔断面積が同じである従来ノズル(No.5)を使
用した場合に比べ、格段に変動が低減している。
The fluctuation of the surface flow velocity at each immersion nozzle is
The maximum flow rate and the minimum flow rate are shown in Table 2. From Table 2,
N where the flow velocities near both short side walls of the discharge flow became almost equal
o. It is clear that the variation of the surface flow velocity is smallest when casting is performed using the nozzle 3. That is, the variation is remarkably reduced as compared with the case where the conventional nozzle (No. 5) having the same two discharge hole cross-sectional areas is used.

【0017】鋳造後の鋼鋳片について、表面欠陥及び内
部欠陥の発生を調査した。その結果、表2に示すよう
に、本発明に係る連続鋳造方法の実施に相当するNo.
3ノズル使用の場合が、最も欠陥の発生指数が小さいこ
とが明らかになった。
The occurrence of surface defects and internal defects of the cast steel slab was examined. As a result, as shown in Table 2, No. corresponding to the implementation of the continuous casting method according to the present invention.
It became clear that the defect occurrence index was the smallest when three nozzles were used.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【発明の効果】以上述べたように、本発明により、溶鋼
表面流速の周期変動が従来より格段に抑制される。その
結果、パウダ巻き込みに起因する表面欠陥、非金属介在
物及びガスの侵入に起因する内部欠陥が少ない鋼鋳片が
得られるようになった。
As described above, according to the present invention, the periodic fluctuation of the surface velocity of the molten steel can be suppressed much more than before. As a result, a steel slab having few surface defects due to powder entrainment, internal defects due to nonmetallic inclusions and gas intrusion has been obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る溶鋼の連続鋳造方法を実施した時
の溶鋼表面の流速変動を示す図であり、(a)は流速変
動を、(b)はノズルの配置状況を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a flow velocity fluctuation on a molten steel surface when a continuous casting method of molten steel according to the present invention is carried out, (a) showing a flow velocity fluctuation, and (b) showing a nozzle arrangement state.

【図2】従来の溶鋼の連続鋳造方法を実施した時の溶鋼
表面の流速変動を示す図であり、(a)は流速変動を、
(b)はノズルの配置状況を示す。
FIG. 2 is a diagram showing a flow velocity fluctuation on the surface of molten steel when a conventional continuous casting method of molten steel is performed.
(B) shows the arrangement of the nozzles.

【図3】一般的な浸漬ノズルを示す斜視図である。FIG. 3 is a perspective view showing a general immersion nozzle.

【図4】一般的な溶鋼の連続鋳造を実施する状況を説明
する図である。
FIG. 4 is a diagram illustrating a situation in which continuous casting of general molten steel is performed.

【符号の説明】[Explanation of symbols]

1 タンディッシュ(中間容器) 2 溶鋼 3 浸漬ノズル(ノズル) 4 鋳型 5 吐出孔 6 短辺壁 7 長辺壁 8 モールド・パウダ 9 鋼鋳片(鋳片) Reference Signs List 1 tundish (intermediate container) 2 molten steel 3 immersion nozzle (nozzle) 4 mold 5 discharge hole 6 short side wall 7 long side wall 8 mold powder 9 steel slab (slab)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松川 敏胤 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 植島 好紀 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 Fターム(参考) 4E004 FB02 FB10 MB20 NB01 NC01 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toshitane Matsukawa 1-chome, Kawasaki-dori, Mizushima, Kurashiki-shi, Okayama Pref. Kawasaki-dori 1-chome (without address) Kawasaki Steel Corporation Mizushima Works F-term (reference) 4E004 FB02 FB10 MB20 NB01 NC01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋳型の両短辺壁に対向する吐出孔を有す
る浸漬ノズルを、その中心軸を鋳型の中心から長辺壁に
沿う方向にずらして配置し、各吐出孔から鋳型内に溶鋼
を注入する溶鋼の連続鋳造方法において、 前記溶鋼の吐出流が両短辺壁近傍で同等の流速になるよ
うな吐出量を設定して、各吐出孔から溶鋼を鋳型内に注
入することを特徴とする溶鋼の連続鋳造方法。
An immersion nozzle having discharge holes opposed to both short side walls of a mold is arranged so that a central axis thereof is shifted from a center of the mold along a long side wall, and molten steel is poured into the mold from each discharge hole. In the continuous casting method of molten steel, the discharge flow of the molten steel is set to have the same flow rate near both short side walls, and molten steel is injected from each discharge hole into the mold. Continuous casting method of molten steel.
JP11071388A 1999-03-17 1999-03-17 Method for continuously casting molten steel Withdrawn JP2000263198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11071388A JP2000263198A (en) 1999-03-17 1999-03-17 Method for continuously casting molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11071388A JP2000263198A (en) 1999-03-17 1999-03-17 Method for continuously casting molten steel

Publications (1)

Publication Number Publication Date
JP2000263198A true JP2000263198A (en) 2000-09-26

Family

ID=13459091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11071388A Withdrawn JP2000263198A (en) 1999-03-17 1999-03-17 Method for continuously casting molten steel

Country Status (1)

Country Link
JP (1) JP2000263198A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018449A (en) * 2006-07-12 2008-01-31 Kobe Steel Ltd Method for managing immersed nozzle
JP2011110603A (en) * 2009-11-30 2011-06-09 Sumitomo Metal Ind Ltd Immersion nozzle for continuous casting and continuous casting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008018449A (en) * 2006-07-12 2008-01-31 Kobe Steel Ltd Method for managing immersed nozzle
JP2011110603A (en) * 2009-11-30 2011-06-09 Sumitomo Metal Ind Ltd Immersion nozzle for continuous casting and continuous casting method

Similar Documents

Publication Publication Date Title
Cho et al. Electromagnetic effects on solidification defect formation in continuous steel casting
JP2000263198A (en) Method for continuously casting molten steel
JP2008260044A (en) Continuous casting method of steel slab for preventing breakout caused by solidification delay
JP2002301549A (en) Continuous casting method
UA51790C2 (en) Method and appliance for making slabs
JP2002018562A (en) Method for continuously casting slab and immersion nozzle
JPS6243783B2 (en)
JPH10193047A (en) Method for controlling flow of molten steel in continuous casting mold
JPH10109145A (en) Method for controlling fluidity of molten steel in continuous casting mold for steel
KR20130099334A (en) Method for producing high quality slab
KR102277295B1 (en) Continuous casting process of steel material by controlling ends of refractory in submerged entry nozzle
JP4714624B2 (en) Method of electromagnetic stirring of molten steel in mold
JPH035052A (en) Method for controlling drift of molten steel in mold for continuous casting
JP5130489B2 (en) Molten metal continuous casting apparatus and molten metal continuous casting method
JP2004098127A (en) Method for continuously casting high quality stainless steel cast slab
KR101400035B1 (en) Method for producing high quality slab
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JP2008221287A (en) Method for controlling fluidization of molten steel in die, and method for judging surface quality of continuously cast slab
RU2073585C1 (en) Method and apparatus for continuous casting of small-section bimetallic billets
KR950007172B1 (en) Ingot steel pouring nozzle and method of flux control
JPH03294053A (en) Method for controlling drift flow of molten steel in continuous casting mold
JP4492333B2 (en) Steel continuous casting method
JP2004082197A (en) Continuous casting method and sliding nozzle
RU2015809C1 (en) Method of continuous metals casting
JP2003080350A (en) Method for continuously casting high cleanliness steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060606