JP2004098082A - Method for casting molten stainless steel performing electromagnetic stirring - Google Patents

Method for casting molten stainless steel performing electromagnetic stirring Download PDF

Info

Publication number
JP2004098082A
JP2004098082A JP2002260099A JP2002260099A JP2004098082A JP 2004098082 A JP2004098082 A JP 2004098082A JP 2002260099 A JP2002260099 A JP 2002260099A JP 2002260099 A JP2002260099 A JP 2002260099A JP 2004098082 A JP2004098082 A JP 2004098082A
Authority
JP
Japan
Prior art keywords
casting
mold
molten steel
molten
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002260099A
Other languages
Japanese (ja)
Inventor
Shinichi Fukunaga
福永 新一
Ryoji Nishihara
西原 良治
Hitoshi Furuta
古田 仁司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002260099A priority Critical patent/JP2004098082A/en
Publication of JP2004098082A publication Critical patent/JP2004098082A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for casting molten stainless steel performing an electromagnetic stirring by which the yield of good cast slab is improved and the cast slab excellent in the quality can stably be produced by preventing defect caused by blow hole and inclusion developed on the surface of the cast slab and inclusion defect in the inner part of the cast slab when the molten stainless steel is cast by using a vertical-bending type continuous caster. <P>SOLUTION: In the method for casting the molten stainless steel by using the vertical-bending type continuous caster, by which the molten steel in a tundish is poured into a mold through an immersion nozzle by using the bending type continuous caster having the vertical part, the molten steel poured into the mold is cast while performing the electromagnetic stirring. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、垂直曲げ型の連続鋳造機を用いてステンレス溶鋼を鋳造する際、鋳片の表面欠陥、あるいは内部欠陥などを減少して鋳片の品質を向上することができる電磁攪拌を行うステンレス溶鋼の鋳造方法に関する。
【0002】
【従来の技術】
従来、転炉や電気炉などの精錬炉で溶製されたステンレス溶鋼は、タンディッシュから浸漬ノズルを介して鋳型に鋳造され、鋳型による冷却とこの鋳型の下方に配置された冷却帯とにより冷却しながら連続して鋳造する、いわゆる連続鋳造装置を用いて鋳片を製造する方法が採用されている。(引用文献1)、(引用文献2)。しかし、ステンレス溶鋼(溶鋼)中の酸化物やスラグ等の介在物、あるいはモールドパウダー等は、鋳片の凝固過程で凝固殻(凝固シェル)に補足されて鋳片の表面欠陥になったり、製品での表面疵や加工時の割れ等を発生させる要因になっている。また、溶鋼をタンディッシュからモールド(鋳型)に注入する場合、浸漬ノズルの内部に介在物が付着して注湯量が変動したり、ノズル詰まりによる注湯の中断などが生じる。
【0003】
この浸漬ノズルの内部への介在物の付着を防止するため、浸漬ノズル中にアルゴンガスなどの不活性ガスを吹き込みながら鋳造を行っている。しかし、吹き込まれたアルゴンガスなどは、浸漬ノズルの吐出口から鋳型内に放出され、大小さまざまな直径の気泡を形成し、大きいものは浮上し、小さい微細な気泡が溶鋼の吐出流に随伴して鋳片の深部に侵入したり、凝固して厚みを増しつつある凝固シェルに補足されて気泡性の欠陥を生じる。
更に、吐出流に随伴する酸化物からなる介在物も同様に鋳片の深部に侵入し、凝固シェルに補足されたり、内部に集積帯を形成して表面あるいは内部欠陥の要因になる。
【0004】
この対策として、引用文献3に記載されているように、ステンレス溶鋼の鋳造に、垂直曲げ型の連鋳機を用いて、その鋳造条件を浸漬ノズルの吐出口の角度を上向き5°〜下向き35°とし、その浸漬深さをメニスカスから下方150〜300mmにして鋳型に注湯し、0.8〜1.8m/分の鋳造速度で鋳造を行うことにより、介在物やアルゴンガス気泡などに起因した欠陥を防止しながら高速鋳造による生産性の向上を図ることが提案されている。
【0005】
【引用文献】
(a)引用文献1(特公昭61−39144号公報)
(b)引用文献2(特開平3−174962号公報)
(c)引用文献3(特開平6−262302号公報)
【0006】
【発明が解決しようとする課題】
しかしながら、引用文献3に記載された方法では、鋳造条件である浸漬ノズルの吐出口の角度とその浸漬ノズルのメニスカスからの浸漬深さ、及び鋳造速度を特定の範囲となるようにしているが、通常の連続鋳造作業では、タンディッシュを介して浸漬ノズルから鋳型に注湯を開始する直後以降の低速域と、注湯と引き抜きが安定した安定鋳造領域と、鋳造末期の低速域となる各領域が必ず生じる。
【0007】
この引用文献3に記載された条件では、この低速域となる鋳造初期や鋳造末期、あるいは鋳造中におけるブレークアウトや軽微な設備トラブル等の減速鋳造を行う非定常部では、浸漬ノズルからの溶鋼の吐出流が少なくなるため、溶鋼の吐出流による凝固シェルの内面のシェルウォシング効果が小さくなって、凝固シェルに気泡や介在物の補足され、その量が増加して鋳片の品質を悪化させるという問題がある。
【0008】
更に、鋳造が安定している領域においても、鋳型に浸漬した浸漬ノズルの周辺部では、鋳型と浸漬ノズルとの隙間が狭くなり、溶鋼の流れに淀みを生じ、この淀み部では、溶鋼が冷却され易く温度低下やシェルウォシング効果の低下によって、凝固シェルの薄い部分(表層部)に介在物やアルゴンガス気泡が補足されてその量が増加し、鋳片の品質を悪化させて良鋳片の歩留まりが悪化すると言った問題がある。
【0009】
本発明はかかる事情に鑑みてなされたもので、垂直曲げ型の連続機を用いてステンレス溶鋼を鋳造する際に鋳片の表面に生じる気泡や介在物に起因する欠陥と、鋳片の内部の介在物欠陥を防止して良鋳片の歩留まりを高め、品質に優れた鋳片を安定して製造することができる電磁攪拌を行うステンレス溶鋼の鋳造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
前記目的に沿う本発明に係る電磁攪拌を行うステンレス溶鋼の鋳造方法は、垂直部を有する曲げ型連続鋳造機を用いてタンディッシュ内の溶鋼を浸漬ノズルを介して鋳型に注湯する垂直曲げ連鋳機を用いたステンレス溶鋼の鋳造方法において、鋳型に注湯した溶鋼を電磁攪拌しながら鋳造する。この方法により、減速鋳造鋳造を行う非定常部及び定常部にいて浸漬ノズルからの溶鋼の吐出流が減少して吐出流による凝固シェルの内面のシェルウォシング効果が低下するのを、鋳型内の溶鋼に攪拌流を形成することによって、凝固シェルの内表面のシェルウォシング効果を高め、凝固シェルに補足される気泡や介在物を除去し、品質の良好な表層を備えた鋳片を製造することができる。
【0011】
ここで、前記浸漬ノズルの吐出口の角度が上向き5度〜下向き35度で、浸漬深さを150〜300mmにして鋳造すると良い。これにより、浸漬ノズルからの吐出流が凝固シェルに当たり反転した下向流が強くなるのを抑えることができ、溶鋼に随伴した気泡や介在物が鋳片の深部に侵入するのを抑制することができる。また、反転して形成される上向流による湯面変動やパウダーの巻き込みなどを防止することができる。
【0012】
なお、浸漬ノズルの吐出口の角度を上向き5度が超えると、上向流が強くなり、この上向流によってパウダーの巻き込みが発生する。一方、吐出口の角度が下向き35度を超えると、下向流が強くなって溶鋼に随伴した気泡や介在物が鋳片の深部に侵入し、鋳片の表層や内部に気泡や介在物に起因した欠陥が生じ易くなる。また、浸漬深さが150mm未満になると、吐出流に起因する湯面変動やパウダーの巻き込みが生じる。一方、300mmよりも深くなると、下向流に随伴する気泡や介在物が増加して鋳片の内部の品質を阻害する。
【0013】
更に、前記鋳造速度を0.8〜1.8mにすると良い。これにより、吐出口からの溶鋼の吐出量を抑制し、溶鋼の吐出流を適正な流れにし、上向流に起因するパウダーの巻き込みや下向流に随伴して鋳片の深部に侵入する気泡や介在物を抑制することができる。しかも、鋳造速度を0.8〜1.8mの高速鋳造にすることにより、鋳型内のメニスカス近傍への熱供給を促進して溶鋼の温度低下によるデッケルの生成やパウダーの溶融不足によるノロカミ、ピンホール等の発生を抑制することができる。鋳造速度が0.8m未満になると、鋳造速度の低下により生産性が悪くなる。一方、鋳造速度が1.8mを超えると、吐出量が増加し、溶鋼の吐出流による湯面変動やパウダーの巻き込み、及び鋳片への気泡や介在物の侵入が深くなり、鋳片の内部欠陥の増加を招く。
【0014】
また、前記鋳型内のメニスカスの下方に溶鋼の旋回流を付与することが好ましい。これにより、鋳型の内周壁に沿った溶鋼の旋回流を形成して凝固シェルの洗浄効果をより高めることができ、凝固シェルに気泡や介在物が補足されるのを防止する。しかも、浸漬ノズルと鋳型との隙間の狭い部位で発生する溶鋼の淀みを抑制し、鋳片の表層部に発生する欠陥を抑制し、清浄な鋳片を製造することができる。
【0015】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1は、本発明の形態に係る電磁攪拌を行うステンレス溶鋼の鋳造方法に用いる連続鋳造装置の説明図、図2は、同連続鋳造装置の浸漬ノズルの断面図、図3は、鋳造速度と成品不合発生指数の関係を表すグラフである。図1に示すように、連続鋳造装置1は、ステンレス溶鋼(溶鋼)2を図しない取鍋から注湯して溜めるタンディッシュ3と、タンディッシュ3の下部に取り付けられた溶鋼2を鋳型7に注湯する浸漬ノズル4を設けている。
【0016】
更に、浸漬ノズル4の吐出口5から注湯した溶鋼2を冷却して凝固シェル6を形成する鋳型7と、その鋳型7によって冷却されて内部が溶融状態の鋳片8を支持しながら鋳片8を冷却する複数の散水ノズルを配置した支持セグメント9を備えている。鋳片8は、冷却により凝固厚みを増しながら図示しないピンチロールにより所定の速度で引き抜きが行われる。鋳型7内の溶鋼2には、メニスカス(湯面)の上にパウダー10が添加されており、吐出口5から流出した溶鋼2の熱により、その一部が溶融して溶融層を形成し、鋳型7と凝固シェルの隙間に流入して潤滑を良好にした鋳造を行っており、鋳型7の外部には、鋳型内の溶鋼2を攪拌する電磁攪拌装置11a、11bを備えている。
【0017】
浸漬ノズル4は、図2に示すように、浸漬ノズルの下部に左右対称に二つの吐出口5を有し、この吐出口5の角度Qが浸漬ノズル4の軸心xに対して上5°〜下向き35°の範囲を満たすように形成し、浸漬深さLを150〜300mmとなるようにしている。この浸漬ノズルへのアルゴンガスの供給は、図示しない浸漬ノズル4の上方に配置される上ノズルから吹き込まれる。
【0018】
次に、本発明に形態に係る連続鋳造装置1を用いて、電磁攪拌を行うステンレス溶鋼の鋳造方法について説明する。
ステンレス溶鋼(溶鋼)2をタンディッシュ3に注湯し、タンディッシュ3内の溶鋼2が20〜25トン程度溜まつた時点で、取鍋から注湯を継続しながらタンディッシュ3の底部に取り付けた浸漬ノズル4から鋳型7への注湯を開始する。そして、鋳型7内に所定の溶鋼2が注湯された時点で、一旦1分間程度ホールドした後、溶鋼2を注湯しながら鋳型7の上端より下100mm程度の位置まで溶鋼2のメニスカスを上昇させてから十分に凝固シェルを形成してダミーバーの引き抜きを開始して鋳造を行う。
【0019】
この鋳型7への注湯の状態は、鋳造を開始してから定常速度に到達するまでの間、鋳造速度が限りなく低いか、あるいは0.6トン/分未満の鋳造速度で行われるため、鋳型7の冷却によって生成する凝固シェルに溶鋼2内に混入した介在物や浸漬ノズル4内に吹き込まれたアルゴンガスの気泡等が補足される。そして、鋳片の表面欠陥が発生し、鋳片の品質を大きく阻害することになる。
一方、鋳造速度が例えば、0.8〜1.8m/分の定常の鋳造速度で鋳造中であっても、パウダー10の潤滑不良や湯面変動等によってブレークアウトの危険性が生じる場合があり、この場合には、殆ど注湯を停止した状態から0.6m/分未満の範囲での鋳造速度の調整を行う。
【0020】
更に、連々鋳造(鍋交換を行い連続して鋳造を行う)等の場合には、取鍋の交換時間のとの関係から浸漬ノズル4からの注湯量を極端に低下させて鋳造し、残溶鋼と次チャージの注湯を連続させる操業を行う必要がある。また、定常の鋳造速度で鋳造中であっても、浸漬ノズル4の左右の吐出口5の詰まりに起因した吐出流の偏流が生じ、この吐出流の偏流によって鋳型7内の流動が不安定になる。特に、浸漬ノズル4が浸漬された近傍では、浸漬ノズル4と内壁との隙間が狭くなっているため、この部位での溶鋼2の流れが低下し、鋳片8の幅方向での均一な流れが得られず、流動の変動に起因する淀みが発生し、この淀み部位の凝固シェル6に気泡や介在物が補足される等の前記した鋳造では鋳片8の品質を阻害することを知見できた。
【0021】
そして、これ等の知見を基に、高速鋳造を維持しながら、鋳造工程において必ず発生する非定常部及び定常部の前記した問題を如何に解決するかについて研究の結果、非定常部及び定常部のいずれの領域においても、積極的に溶鋼の攪拌流(旋回流)を形成し、凝固シェルの内表面を溶鋼の旋回流で洗浄することが必要であることが判った。従って、鋳型7に電磁攪拌装置11a、11bを配置し、メニスカスより下方近傍200〜350mmの範囲のいずれかに位置する電磁攪拌装置11a、11bに通電して鋳型4の内周壁を旋回する溶鋼2の流れを形成する。この旋回流によって、凝固シェルの表面を溶鋼2の流れで洗浄することができ、気泡や介在物の少ない良好な凝固シェルを形成することができる。その結果、鋳造された鋳片の品質が前記した非定常部、定常部の如何なる領域においても向上させることができた。
【0022】
更に、溶鋼2を鋳型浸漬ノズル4の吐出口5は、吐出口5からの溶鋼流が凝固シェル6に当たって反転する上向き流と下向き流が形成され、この上向き流と下向き流の状態は、吐出口5の角度によって、その強さが変化する。従って、図2に示すように、浸漬ノズル4の軸心xに対し、角度Qを上向き5度〜下向き35度の範囲になるようにし、しかも、この浸漬ノズルの浸漬深さLを150〜300mmにすることにより、過剰な上向き流や下向き流の形成を防止することができる。
【0023】
そして、メニスカス近傍への熱の適正な供給が可能となり、パウダーの溶融の促進とデッケルの生成などを抑制することができる。更に、介在物が鋳片の深部に侵入するのを抑制して、鋳片の表層や内部欠陥の発生を防止することができる。この吐出口5の角度が上向き5度より大きくなると、注湯量(トン/分)が高い場合に上向き流に起因した湯面流速の増大によるパウダー10の巻き込みを招く。一方、吐出口5の角度が下向き35度を超えると、下向き流が増大して前記した気泡や介在物が鋳片の深部に侵入し、内部に補足されて品質を悪化させる。なお、浸漬ノズル4は、一般に用いられている分割型やタンディッシュに取り付けた一体型のものを用いることができる。
【0024】
更に、浸漬ノズル4には、アルゴンガスを吹き込むことができ、その場合、浸漬ノズル4の上方に配置した上ノズルから4NL/分以下を吹き込むことにより、浸漬ノズル4の内部に介在物が付着するのを抑制し、鋳型7内の溶鋼2中に混入した介在物の浮上を促進することができる。このアルゴンガスの吹き込み量が4NL/分を超えて多くなると、アルゴンガス気泡が増加し、凝固シェル6に補足される気泡も増加して鋳片8の品質を阻害する。
【0025】
また、本実施の形態では、カーボン、シリカのいずれか、あるいは両方の含有量をゼロ又は5質量%未満にした浸漬ノズル、あるいはドロマイト成分(CaO−MgOが主成分)系等の難付着性浸漬ノズルを用いることができる。この難付着性浸漬ノズルの場合は、浸漬ノズルの内面に介在物の付着が少なく、吐出口5の詰まりが生じないので、アルゴンガスの吹き込みを行わない鋳造が可能になり、アルゴンガスに起因する気泡欠陥を防止することができるため、より好ましい結果が得られる。
【0026】
このように、前記した条件を満たすように鋳造を行うことにより、非定常部、あるいは定常部で発生する凝固シェルの表面の洗浄による清浄な凝固層の形成と、パウダーの溶融不足やデッケルの生成などを抑制し、しかも、気泡や介在物が鋳片の深部に侵入して発生する鋳片の表層や内部欠陥を防止した極めて良品質の鋳片を高歩留まりで工業的に安定して鋳造することができる。
【0027】
【実施例】
次に、本発明の一実施の形態に係る電磁攪拌を行うステンレス溶鋼の鋳造方法の実施例について説明する。
厚み250mm、幅1200mmの鋳型に、吐出口の大きさを65Фにし、その浸漬ノズルをメニスカスより下方200mmとなるように浸漬し、電磁攪拌装置に0.4Mwの出力を付与し、メニスカスの下方に鋳型の内壁に沿った溶鋼の旋回流を形成して鋳造を行った。その結果、図3に示すように、浸漬ノズルの角度を上向き5度から下向き35度にして、鋳型に電磁攪拌装置を配置して鋳型内の溶鋼に旋回流を付与する攪拌(MD−EMS)を行う場合(●)では、表面欠陥及び内部欠陥の少ない良品質の鋳片の鋳造が可能となり、成品不合格発生指数が0.22以下の極めて良好な結果が得られた。そして、この鋳片を圧延加工した鋼材の成品欠陥も少なく、品質に優れた鋼材を製造することができた。
【0028】
これに対して、浸漬ノズルの角度を上向き5度から下向き35度にして、鋳型への電磁攪拌装置を配置せず、鋳型内の溶鋼を攪拌しない場合(○)では、鋳造速度が0.7m/min未満、及び1.6m/min以上の領域において、極端に悪化しており、全体的に見ても表面、あるいは内部の欠陥に起因する成品不合格発生指数が0.3〜1.0と極めて悪くなり、バラツキも大きくなって鋳片の品質が低下した。また、前記した条件を満たす鋳造を行い、浸漬ノズル中に2NL/minのアルゴンガスを吹き込んだ場合についても本発明の場合では、気泡に起因する成品不合格発生が少なく良好な結果が得られた。
【0029】
以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の範囲である。例えば、電磁攪拌装置は、メニスカスの下方の溶鋼に旋回流を付与する場合の他に、鋳型内の溶鋼を攪拌するように配置したり、メニスカスの下方の溶鋼に旋回流を付与すると共に鋳型内の溶鋼を攪拌することを併用することができる。更に、鋳型の下方の支持セグメントに電磁攪拌装置を配置し、鋳片の未凝固部を攪拌して、凝固組織の改善やセンターポロシティの形成等の内部欠陥を防止することもできる。また、アルゴンガスの吹き込みは、浸漬ノズルあるいはタンディッシュのノズルからも吹き込むことができる。
【0030】
【発明の効果】
以上述べたように、請求項1〜4記載の電磁攪拌を行うステンレス溶鋼の鋳造方法においては、垂直部を有する曲げ型連続鋳造機を用いてタンディッシュ内の溶鋼を浸漬ノズルを介して鋳型に注湯する垂直曲げ連鋳機を用いたステンレス溶鋼の鋳造方法において、鋳型に注湯した溶鋼を電磁攪拌するので、非定常部及び定常部における凝固シェルの洗浄効果を安定して発現でき、鋳片の表面及び内部欠陥の少ない良品質の鋳片を鋳造ことができ、良鋳片の成品歩留まりを高めることができる。
【0031】
特に、請求項2記載の電磁攪拌を行うステンレス溶鋼の鋳造方法においては、前記浸漬ノズルの吐出口の角度が上向き5度〜下向き35度で、浸漬深さを100〜300mmにして鋳造するので、浸漬ノズルからの吐出流が凝固シェルに当たり反転した吐出流が強くなるのを抑えることができ、湯面変動やパウダーの巻き込みと、溶鋼に随伴した気泡や介在物が鋳片の深部に侵入するのを抑制して鋳片の品質を安定して向上することができる。
請求項3記載の電磁攪拌を行うステンレス溶鋼の鋳造方法においては、鋳造速度を0.8〜1.8mにしていることを特徴とする電磁攪拌を行うので、吐出口からの溶鋼の吐出流を適正な流れにし、鋳片の品質を高め、しかも,高い生産性の鋳造を行うことができ、製造コストの低減を図ることができる。
【0032】
請求項4記載の電磁攪拌を行うステンレス溶鋼の鋳造方法においては、鋳型内のメニスカスの下方に溶鋼の旋回流を付与するので、鋳型の内周壁に沿った旋回する流れを形成して凝固シェルの洗浄効果をより高めることができ、凝固シェルに気泡や介在物が補足されるのを確実に抑制し、しかも、浸漬ノズルと鋳型との隙間の狭い部位で発生する溶鋼の淀みを防止して淀みに起因する気泡や介在物欠陥を無くして清浄な鋳片を安定して製造することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る電磁攪拌を行うステンレス溶鋼の鋳造方法に用いる連続鋳造装置の説明図である。
【図2】連続鋳造装置浸漬ノズルの断面図である。
【図3】鋳造速度と成品不合発生指数の関係を表すグラフである。
【符号の説明】
1 連続鋳造装置
2 ステンレス溶鋼(溶鋼)
3 タンディッシュ
4 浸漬ノズル
5 吐出口
6 凝固シェル
7 鋳型
8 鋳片
9 支持セグメント
10 パウダー
11a、11b 電磁攪拌装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a stainless steel that performs electromagnetic stirring that can improve the quality of a slab by reducing surface defects or internal defects of the slab when casting molten stainless steel using a vertical bending type continuous casting machine. The present invention relates to a method for casting molten steel.
[0002]
[Prior art]
Conventionally, molten stainless steel produced in a refining furnace such as a converter or electric furnace is cast from a tundish into a mold through an immersion nozzle, and cooled by the mold and a cooling zone arranged below the mold. A method of producing a slab using a so-called continuous casting apparatus that performs continuous casting while the casting is being used. (Cited Document 1) and (Cited Document 2). However, inclusions such as oxides and slag in molten stainless steel (molten steel) or mold powder are trapped by solidified shells (solidified shells) during the solidification process of slabs, resulting in surface defects of the slabs, This is a factor that causes surface flaws and cracks during processing. In addition, when molten steel is poured from a tundish into a mold, inclusions adhere to the interior of the immersion nozzle, causing a change in the pouring amount, interruption of the pouring due to nozzle clogging, and the like.
[0003]
In order to prevent the inclusion of inclusions inside the immersion nozzle, casting is performed while blowing an inert gas such as argon gas into the immersion nozzle. However, the injected argon gas, etc., is discharged from the discharge port of the immersion nozzle into the mold, forming bubbles of various sizes, large ones float, and small fine bubbles accompany the discharge flow of molten steel. The slab may penetrate deep into the slab or become trapped by the solidified shell, which is solidifying and increasing in thickness, resulting in cellular defects.
Further, oxide inclusions accompanying the discharge flow also penetrate deep into the slab, and are caught by the solidified shell or form an accumulation zone inside, which causes surface or internal defects.
[0004]
As a countermeasure, as described in Patent Document 3, the casting condition of a molten stainless steel is adjusted by using a vertical bending type continuous caster and adjusting the casting conditions by changing the angle of the discharge port of the immersion nozzle upward from 5 ° to downward. °, the immersion depth is 150 to 300 mm below the meniscus and poured into the mold, and casting is performed at a casting speed of 0.8 to 1.8 m / min, resulting from inclusions and argon gas bubbles. It has been proposed to improve productivity by high-speed casting while preventing such defects.
[0005]
[References]
(A) Reference 1 (Japanese Patent Publication No. 61-39144)
(B) Reference 2 (Japanese Patent Application Laid-Open No. 3-174962)
(C) Reference 3 (Japanese Patent Laid-Open No. 6-262302)
[0006]
[Problems to be solved by the invention]
However, in the method described in Patent Document 3, the casting conditions such as the angle of the discharge port of the immersion nozzle and the immersion depth from the meniscus of the immersion nozzle, and the casting speed are set to be in a specific range. In normal continuous casting operation, the low-speed region immediately after pouring from the immersion nozzle into the mold through the tundish, the stable casting region where pouring and drawing are stable, and the low-speed region at the end of casting Always occurs.
[0007]
Under the conditions described in the cited document 3, in the low speed region, in the early stage of casting, at the end of casting, or in the unsteady portion where slow casting such as breakout or minor equipment trouble occurs during casting, molten steel from the immersion nozzle is Since the discharge flow is reduced, the shell-washing effect of the inner surface of the solidified shell due to the discharge flow of molten steel is reduced, bubbles and inclusions are trapped in the solidified shell, the amount of which increases, and the quality of the slab is deteriorated. There's a problem.
[0008]
Furthermore, even in a region where casting is stable, the gap between the mold and the immersion nozzle becomes narrower around the immersion nozzle immersed in the mold, causing stagnation in the flow of molten steel. The inclusions and argon gas bubbles are trapped in the thinned part (surface layer) of the solidified shell due to a decrease in temperature and a decrease in the shell washing effect. There is a problem that yield is worsened.
[0009]
The present invention has been made in view of such circumstances, and defects caused by bubbles and inclusions generated on the surface of the slab when casting molten stainless steel using a vertical bending continuous machine, and the inside of the slab An object of the present invention is to provide a method for casting stainless steel molten steel that performs electromagnetic stirring and that can prevent inclusion defects and increase the yield of good cast slabs and stably produce cast slabs of excellent quality.
[0010]
[Means for Solving the Problems]
In accordance with the present invention, there is provided a method for casting molten stainless steel with electromagnetic stirring according to the present invention, which comprises using a bending type continuous casting machine having a vertical portion to pour molten steel in a tundish into a mold through an immersion nozzle. In a method of casting molten stainless steel using a casting machine, molten steel poured into a mold is cast while being electromagnetically stirred. According to this method, the discharge flow of the molten steel from the immersion nozzle is reduced in the unsteady portion and the steady portion where the slow casting is performed, and the shell washing effect on the inner surface of the solidified shell due to the discharge flow is reduced. By forming an agitated flow, the shell washing effect on the inner surface of the solidified shell can be enhanced, bubbles and inclusions trapped in the solidified shell can be removed, and a slab with a good quality surface layer can be manufactured. it can.
[0011]
Here, it is preferable that the angle of the discharge port of the immersion nozzle is 5 degrees upward to 35 degrees downward, and the immersion depth is 150 to 300 mm for casting. As a result, it is possible to suppress the downward flow in which the discharge flow from the immersion nozzle hits the solidified shell and intensifies the downward flow, and suppresses bubbles and inclusions accompanying the molten steel from penetrating deep into the slab. it can. In addition, it is possible to prevent the fluctuation of the molten metal level due to the upward flow formed by inversion and the entrainment of the powder.
[0012]
If the angle of the discharge port of the immersion nozzle exceeds 5 degrees upward, the upward flow becomes strong, and this upward flow causes entrainment of the powder. On the other hand, when the angle of the discharge port exceeds 35 degrees downward, the downward flow becomes strong, and bubbles and inclusions accompanying the molten steel penetrate into the deep part of the slab and form bubbles and inclusions on the surface layer and inside of the slab. The resulting defects are likely to occur. On the other hand, when the immersion depth is less than 150 mm, fluctuations in the molten metal level and powder entrainment due to the discharge flow occur. On the other hand, if it is deeper than 300 mm, the number of bubbles and inclusions accompanying the downward flow increases, and the quality of the inside of the slab is impaired.
[0013]
Further, the casting speed is preferably set to 0.8 to 1.8 m. As a result, the amount of molten steel discharged from the discharge port is suppressed, the discharge flow of molten steel is adjusted to an appropriate flow, and bubbles entering the deep part of the slab accompanying powder entrainment or downward flow caused by upward flow And inclusions can be suppressed. In addition, the casting speed is set to 0.8 to 1.8 m for high-speed casting, thereby promoting heat supply to the vicinity of the meniscus in the mold to generate the deckle due to a decrease in the temperature of the molten steel and to reduce the pinching and pinching due to insufficient melting of the powder. Generation of holes and the like can be suppressed. When the casting speed is less than 0.8 m, the productivity is deteriorated due to a decrease in the casting speed. On the other hand, when the casting speed exceeds 1.8 m, the discharge rate increases, the fluctuation of the molten metal level due to the discharge flow of molten steel, the entrainment of powder, and the penetration of bubbles and inclusions into the slab become deeper, and the inside of the slab becomes This leads to an increase in defects.
[0014]
Preferably, a swirling flow of molten steel is provided below the meniscus in the mold. Thereby, the swirling flow of the molten steel along the inner peripheral wall of the mold can be formed to further enhance the cleaning effect of the solidified shell, and the solidified shell is prevented from being trapped by bubbles and inclusions. In addition, stagnation of the molten steel that occurs in a portion where the gap between the immersion nozzle and the mold is narrow is suppressed, and defects that occur in the surface layer portion of the slab are suppressed, so that a clean slab can be manufactured.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.
FIG. 1 is an explanatory view of a continuous casting apparatus used for a method of casting stainless steel with electromagnetic stirring according to an embodiment of the present invention. FIG. 2 is a sectional view of an immersion nozzle of the continuous casting apparatus. It is a graph showing the relationship of a product failure index. As shown in FIG. 1, a continuous casting apparatus 1 includes a tundish 3 for pouring and storing a molten steel (molten steel) 2 from a ladle (not shown) and a molten steel 2 attached to a lower portion of the tundish 3 in a mold 7. An immersion nozzle 4 for pouring is provided.
[0016]
Further, a mold 7 for cooling the molten steel 2 poured from the discharge port 5 of the immersion nozzle 4 to form a solidified shell 6 and a slab cooled by the mold 7 to support a slab 8 in a molten state. It has a support segment 9 in which a plurality of watering nozzles for cooling 8 are arranged. The slab 8 is drawn at a predetermined speed by a pinch roll (not shown) while increasing the solidification thickness by cooling. Powder 10 is added to the molten steel 2 in the mold 7 on the meniscus (fluid surface), and part of the molten steel 2 is melted by heat of the molten steel 2 flowing out from the discharge port 5 to form a molten layer. Casting with good lubrication is performed by flowing into the gap between the mold 7 and the solidified shell, and electromagnetic stirring devices 11a and 11b for stirring the molten steel 2 in the mold are provided outside the mold 7.
[0017]
As shown in FIG. 2, the immersion nozzle 4 has two discharge ports 5 symmetrically below the immersion nozzle, and the angle Q of the discharge ports 5 is 5 ° above the axis x of the immersion nozzle 4. It is formed so as to satisfy the range of 35 ° downward, and the immersion depth L is set to 150 to 300 mm. The supply of the argon gas to the immersion nozzle is blown from an upper nozzle arranged above the immersion nozzle 4 (not shown).
[0018]
Next, a method for casting molten stainless steel by electromagnetic stirring using the continuous casting apparatus 1 according to the embodiment of the present invention will be described.
Pour stainless steel molten steel (molten steel) 2 into tundish 3 and when molten steel 2 in tundish 3 has accumulated about 20 to 25 tons, attach it to the bottom of tundish 3 while continuing pouring from a ladle. The pouring from the dipped nozzle 4 to the mold 7 is started. When the molten steel 2 is poured into the mold 7, the molten steel 2 is temporarily held for about one minute, and then, while pouring the molten steel 2, the meniscus of the molten steel 2 is raised to a position about 100 mm below the upper end of the mold 7. After that, a solidified shell is sufficiently formed, and pulling out of the dummy bar is started to perform casting.
[0019]
The state of pouring into the mold 7 is such that the casting speed is infinitely low or the casting speed is less than 0.6 ton / min from the start of casting until the steady speed is reached. Inclusions mixed in the molten steel 2 and bubbles of argon gas blown into the immersion nozzle 4 are captured in the solidified shell generated by cooling the mold 7. Then, a surface defect of the slab occurs, which greatly impairs the quality of the slab.
On the other hand, even during casting at a steady casting speed of, for example, 0.8 to 1.8 m / min, a risk of breakout may occur due to poor lubrication of the powder 10 or fluctuation of the molten metal surface. In this case, the casting speed is adjusted within a range of less than 0.6 m / min from the state where pouring is almost stopped.
[0020]
Furthermore, in the case of continuous casting (for example, ladle replacement and continuous casting), the amount of pouring from the immersion nozzle 4 is extremely reduced due to the relation with the ladle replacement time, and casting is performed. It is necessary to carry out the operation of continuously pouring the next charge. Further, even during casting at a steady casting speed, a drift of the discharge flow occurs due to clogging of the left and right discharge ports 5 of the immersion nozzle 4, and the flow in the mold 7 becomes unstable due to the drift of the discharge flow. Become. Particularly, in the vicinity of the immersion nozzle 4 immersed, the gap between the immersion nozzle 4 and the inner wall is narrow, so that the flow of the molten steel 2 at this location is reduced, and the uniform flow of the slab 8 in the width direction is reduced. Cannot be obtained, and stagnation due to fluctuations in flow occurs, and it is found that the above-described casting, in which bubbles and inclusions are trapped in the solidified shell 6 at the stagnation portion, impairs the quality of the slab 8. Was.
[0021]
Based on these findings, the results of research on how to solve the above-mentioned problems of the unsteady part and the steady part that always occur in the casting process while maintaining high-speed casting show that the unsteady part and the steady part In any of the regions, it was found that it was necessary to positively form a stirring flow (swirl flow) of the molten steel and clean the inner surface of the solidified shell with the swirl flow of the molten steel. Therefore, the electromagnetic stirrers 11a and 11b are arranged in the mold 7, and the electromagnetic stirrers 11a and 11b located in a range of 200 to 350 mm below the meniscus are energized and the molten steel 2 which turns the inner peripheral wall of the mold 4 is energized. To form a flow. By this swirling flow, the surface of the solidified shell can be washed by the flow of the molten steel 2, and a good solidified shell with few bubbles and inclusions can be formed. As a result, the quality of the cast slab could be improved in any of the above-mentioned unsteady part and steady part.
[0022]
Further, the discharge port 5 of the nozzle 4 for immersing the molten steel 2 into the mold forms an upward flow and a downward flow in which the molten steel flow from the discharge port 5 hits the solidification shell 6 and reverses. The strength changes with the angle of 5. Therefore, as shown in FIG. 2, the angle Q is set in the range of 5 degrees upward to 35 degrees downward with respect to the axis x of the immersion nozzle 4, and the immersion depth L of the immersion nozzle is set to 150 to 300 mm. By doing so, formation of an excessive upward flow or downward flow can be prevented.
[0023]
Then, appropriate supply of heat to the vicinity of the meniscus becomes possible, and promotion of melting of the powder and generation of deckle can be suppressed. Furthermore, it is possible to suppress the inclusions from penetrating into the deep portion of the slab, and to prevent the surface layer and internal defects of the slab. When the angle of the discharge port 5 is larger than 5 degrees upward, when the pouring amount (ton / min) is high, the powder 10 is entangled due to an increase in the flow rate of the molten metal caused by the upward flow. On the other hand, when the angle of the discharge port 5 exceeds 35 degrees downward, the downward flow increases, and the above-mentioned bubbles and inclusions penetrate into the deep part of the slab, and are trapped inside to deteriorate the quality. The immersion nozzle 4 may be a commonly used split type or an integrated type attached to a tundish.
[0024]
Further, an argon gas can be blown into the immersion nozzle 4. In this case, inclusions adhere to the inside of the immersion nozzle 4 by blowing 4 NL / min or less from an upper nozzle disposed above the immersion nozzle 4. And the floating of inclusions mixed in the molten steel 2 in the mold 7 can be promoted. When the blowing amount of the argon gas exceeds 4 NL / min, the number of bubbles of the argon gas increases, and the number of bubbles captured by the solidified shell 6 also increases, thereby impairing the quality of the slab 8.
[0025]
Further, in the present embodiment, an immersion nozzle in which the content of either or both of carbon and silica is reduced to zero or less than 5% by mass, or a dolomite component (a main component of which is CaO-MgO) is used. Nozzles can be used. In the case of this hardly adhering immersion nozzle, since there is little adhesion of inclusions on the inner surface of the immersion nozzle and the clogging of the discharge port 5 does not occur, it is possible to perform casting without blowing argon gas, which is caused by argon gas. Since bubble defects can be prevented, more preferable results can be obtained.
[0026]
As described above, by performing casting so as to satisfy the above-described conditions, formation of a clean solidified layer by washing the surface of the solidified shell generated in the unsteady portion or the steady portion, insufficient melting of powder and generation of deckle Casting extremely high quality slabs with high yield and industrially stable, while preventing the surface layer and internal defects of slabs generated by bubbles and inclusions penetrating deep into the slabs be able to.
[0027]
【Example】
Next, an example of a method for casting stainless steel molten steel that performs electromagnetic stirring according to an embodiment of the present invention will be described.
In a mold having a thickness of 250 mm and a width of 1200 mm, the size of the discharge port is set to 65 °, and the immersion nozzle is immersed so as to be 200 mm below the meniscus. Casting was performed by forming a swirling flow of molten steel along the inner wall of the mold. As a result, as shown in FIG. 3, the angle of the immersion nozzle is changed from 5 degrees upward to 35 degrees downward, and an electromagnetic stirrer is arranged in the mold to provide a swirling flow to the molten steel in the mold (MD-EMS). (●), it was possible to cast a high quality cast piece with few surface defects and internal defects, and an extremely good result with a product rejection index of 0.22 or less was obtained. And the product quality of the steel material which roll-processed this slab was few, and the steel material excellent in quality was able to be manufactured.
[0028]
On the other hand, when the angle of the immersion nozzle is changed from 5 degrees upward to 35 degrees downward, the electromagnetic stirring device is not arranged in the mold, and the molten steel in the mold is not stirred (○), the casting speed is 0.7 m. / Min and in the region of 1.6 m / min or more, the product rejection index which is extremely deteriorated due to surface or internal defects as a whole is 0.3 to 1.0. And the variation became large, and the quality of the cast slab was deteriorated. Also, in the case of the present invention, when the casting satisfying the above conditions was performed and an argon gas of 2 NL / min was blown into the immersion nozzle, good rejection due to air bubbles was small and good results were obtained. .
[0029]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions without departing from the gist are within the scope of the present invention. For example, the electromagnetic stirrer may be arranged to stir the molten steel in the mold, or may be arranged to stir the molten steel in the mold, or may apply the swirl flow to the molten steel below the meniscus, in addition to the case where the swirl flow is given to the molten steel below the meniscus. Stirring of molten steel can be used together. Furthermore, an electromagnetic stirrer can be placed in the support segment below the mold to stir the unsolidified portion of the slab to prevent internal defects such as improved solidification structure and formation of center porosity. The argon gas can also be blown from a dipping nozzle or a tundish nozzle.
[0030]
【The invention's effect】
As described above, in the casting method of stainless steel molten steel that performs electromagnetic stirring according to claims 1 to 4, the molten steel in the tundish is cast into a mold through a submerged nozzle using a bending-type continuous casting machine having a vertical portion. In the casting method of molten stainless steel using a vertical bending continuous casting machine that pours molten steel, the molten steel poured into the mold is electromagnetically stirred, so that the washing effect of the solidified shell in the unsteady part and the steady part can be stably exhibited, It is possible to cast a high quality cast piece with few surface and internal defects, and to increase the product yield of the good cast piece.
[0031]
In particular, in the casting method of molten stainless steel that performs electromagnetic stirring according to claim 2, since the angle of the discharge port of the immersion nozzle is 5 degrees upward to 35 degrees downward and the immersion depth is 100 to 300 mm, the casting is performed. It is possible to prevent the discharge flow from the immersion nozzle from hitting the solidified shell and intensify the reversed discharge flow, and it is possible to prevent fluctuations in the molten metal level, entrapment of powder, and bubbles and inclusions accompanying the molten steel from entering the deep part of the slab. And the quality of the slab can be stably improved.
In the casting method of molten stainless steel for performing electromagnetic stirring according to claim 3, since the casting speed is set to 0.8 to 1.8 m, the discharge flow of molten steel from the discharge port is controlled. The flow can be made appropriate, the quality of the slab can be improved, and the casting can be performed with high productivity, and the manufacturing cost can be reduced.
[0032]
In the casting method of molten stainless steel with electromagnetic stirring according to claim 4, since the swirling flow of the molten steel is provided below the meniscus in the mold, a swirling flow is formed along the inner peripheral wall of the mold to form the solidified shell. The cleaning effect can be further improved, bubbles and inclusions are not trapped in the solidified shell, and the stagnation of molten steel that occurs at the narrow gap between the immersion nozzle and the mold is prevented. Thus, clean slabs can be stably manufactured without bubbles and inclusion defects caused by the above.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a continuous casting apparatus used in a method for casting stainless steel molten steel that performs electromagnetic stirring according to an embodiment of the present invention.
FIG. 2 is a sectional view of a continuous casting apparatus immersion nozzle.
FIG. 3 is a graph showing a relationship between a casting speed and a product inconsistency index.
[Explanation of symbols]
1 Continuous casting equipment 2 Stainless steel molten steel (molten steel)
Reference Signs List 3 tundish 4 immersion nozzle 5 discharge port 6 solidified shell 7 mold 8 slab 9 support segment 10 powder 11a, 11b electromagnetic stirring device

Claims (4)

垂直部を有する曲げ型連続鋳造機を用いてタンディッシュ内の溶鋼を浸漬ノズルを介して鋳型に注湯する垂直曲げ連鋳機を用いたステンレス溶鋼の鋳造方法において、鋳型に注湯した溶鋼を電磁攪拌することを特徴とする電磁攪拌を行うステンレス溶鋼の鋳造方法。In the casting method of stainless steel molten steel using a vertical bending continuous caster in which molten steel in a tundish is poured into a mold through a submerged nozzle using a bending type continuous casting machine having a vertical portion, the molten steel poured into the mold is A method for casting molten stainless steel that performs electromagnetic stirring, characterized by electromagnetic stirring. 請求項1記載の電磁攪拌を行うステンレス溶鋼の鋳造方法において、前記浸漬ノズルの吐出口の角度が上向き5度〜下向き35度で、浸漬深さを150〜300mmにして鋳造することを特徴とする電磁攪拌を行うステンレス溶鋼の鋳造方法。The method of claim 1, wherein the angle of the discharge port of the immersion nozzle is 5 degrees upward to 35 degrees downward, and the immersion depth is 150 to 300 mm. A method of casting stainless steel with electromagnetic stirring. 請求項1又は2記載の電磁攪拌を行うステンレス溶鋼の鋳造方法において、前記鋳造速度を0.8〜1.8mにしていることを特徴とする電磁攪拌を行うステンレス溶鋼の鋳造方法3. The casting method for molten stainless steel with electromagnetic stirring according to claim 1 or 2, wherein the casting speed is 0.8 to 1.8 m. 請求項1〜3のいずれか1項に記載の電磁攪拌を行うステンレス溶鋼の鋳造方法において、前記鋳型内のメニスカスの下方に溶鋼の旋回流を付与することを特徴とする電磁攪拌を行うステンレス溶鋼の鋳造方法。The method for casting molten stainless steel with electromagnetic stirring according to any one of claims 1 to 3, wherein a swirling flow of the molten steel is provided below the meniscus in the mold. Casting method.
JP2002260099A 2002-09-05 2002-09-05 Method for casting molten stainless steel performing electromagnetic stirring Pending JP2004098082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260099A JP2004098082A (en) 2002-09-05 2002-09-05 Method for casting molten stainless steel performing electromagnetic stirring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260099A JP2004098082A (en) 2002-09-05 2002-09-05 Method for casting molten stainless steel performing electromagnetic stirring

Publications (1)

Publication Number Publication Date
JP2004098082A true JP2004098082A (en) 2004-04-02

Family

ID=32260910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260099A Pending JP2004098082A (en) 2002-09-05 2002-09-05 Method for casting molten stainless steel performing electromagnetic stirring

Country Status (1)

Country Link
JP (1) JP2004098082A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281218A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Method for continuously casting steel
JP2008246517A (en) * 2007-03-29 2008-10-16 Jfe Steel Kk Continuous casting method for steel
JP6347864B1 (en) * 2017-03-24 2018-06-27 日新製鋼株式会社 Method for producing austenitic stainless steel slab
KR20190064593A (en) 2016-09-16 2019-06-10 닛테츠 닛신 세이코 가부시키가이샤 Continuous casting method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281218A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Method for continuously casting steel
JP4591156B2 (en) * 2005-03-31 2010-12-01 Jfeスチール株式会社 Steel continuous casting method
JP2008246517A (en) * 2007-03-29 2008-10-16 Jfe Steel Kk Continuous casting method for steel
JP4613922B2 (en) * 2007-03-29 2011-01-19 Jfeスチール株式会社 Steel continuous casting method
KR20190064593A (en) 2016-09-16 2019-06-10 닛테츠 닛신 세이코 가부시키가이샤 Continuous casting method
US10751791B2 (en) 2016-09-16 2020-08-25 Nippon Steel Stainless Steel Corporation Continuous casting method
JP6347864B1 (en) * 2017-03-24 2018-06-27 日新製鋼株式会社 Method for producing austenitic stainless steel slab
WO2018173888A1 (en) 2017-03-24 2018-09-27 日新製鋼株式会社 Method for producing austenite stainless steel slab
JP2018161667A (en) * 2017-03-24 2018-10-18 日新製鋼株式会社 Method of producing austenitic stainless steel slab
KR20200002842A (en) 2017-03-24 2020-01-08 닛테츠 스테인레스 가부시키가이샤 Manufacturing method of austenitic stainless steel slabs
US10807156B2 (en) 2017-03-24 2020-10-20 Nippon Steel Stainless Steel Corporation Method for producing austenite stainless steel slab

Similar Documents

Publication Publication Date Title
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JP2004001057A (en) Dipping nozzle for continuous casting of thin slab
JP3817209B2 (en) Continuous casting method for stainless steel slabs to prevent surface and internal defects
JP2004106021A (en) Method for casting molten stainless steel using vertical-bending type continuous caster
JP2009066603A (en) Continuous casting method for steel, and upper nozzle of continuous casting tundish
JP4203167B2 (en) Continuous casting method for molten steel
JP4553639B2 (en) Continuous casting method
JP4444034B2 (en) Immersion nozzle for continuous casting and method of pouring a mold for continuous casting using this immersion nozzle for continuous casting
JP4264291B2 (en) Steel continuous casting method
JP4448452B2 (en) Steel continuous casting method
JP6451466B2 (en) Capturing device and removal method for non-metallic inclusions in molten metal
JP4714624B2 (en) Method of electromagnetic stirring of molten steel in mold
RU2419508C2 (en) Mixer
JP7389335B2 (en) Method for producing thin slabs
JP2019115925A (en) Continuous casting method for Ti-containing steel
JP3866068B2 (en) Continuous casting method of high cleanliness steel
JP5710448B2 (en) Control method of electromagnetic stirring device in mold at the end of casting
JP4851248B2 (en) Continuous casting method of medium carbon steel using a dipping nozzle
JP2002079355A (en) Method for continuously casting steel
JP4492333B2 (en) Steel continuous casting method
JP3726692B2 (en) Continuous casting method
JPH09253807A (en) Method for continuously casting aluminum killed steel cast billet having small cross section
JP2001232449A (en) Immersed nozzle for continuous casting
JP2008030089A (en) Immersion nozzle for continuously casting molten steel and continuous casting method
JPH09168845A (en) Method for continuously casting molten metal free of inclusion and blow hole and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040902

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20050901

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Effective date: 20070823

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925

A521 Written amendment

Effective date: 20071005

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20071126

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071214