JP2000209503A - Solid state image pickup device and its video signal output device - Google Patents

Solid state image pickup device and its video signal output device

Info

Publication number
JP2000209503A
JP2000209503A JP11010022A JP1002299A JP2000209503A JP 2000209503 A JP2000209503 A JP 2000209503A JP 11010022 A JP11010022 A JP 11010022A JP 1002299 A JP1002299 A JP 1002299A JP 2000209503 A JP2000209503 A JP 2000209503A
Authority
JP
Japan
Prior art keywords
pixel
video signal
horizontal
solid
read
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11010022A
Other languages
Japanese (ja)
Other versions
JP3875423B2 (en
Inventor
Hiroshi Shimamoto
洋 島本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP01002299A priority Critical patent/JP3875423B2/en
Publication of JP2000209503A publication Critical patent/JP2000209503A/en
Application granted granted Critical
Publication of JP3875423B2 publication Critical patent/JP3875423B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate a state where every boundary of areas is conspicuous as a fixed pattern noise by outputting the partial images of areas adjacent to each other for every divided area. SOLUTION: A solid state image pickup device with which the image signals are read out of the divided areas in parallel to each other is provided with plural horizontal and/or vertical scanning circuit which reads the image signals overlapping each other out of the vertical and/or horizontal line pixel string respectively. With such a constitution, the characteristics of signal reading circuits placed in every divided area are averaged by an averaging circuit. For instance, the horizontal scanning circuits 1-4 of a MOS amplification type solid state image pickup device are driven by the horizontal start pulses which start at the same time and the vertical scanning circuits 1 and 2 are also driven by the vertical start pulses which start at the same time. The image signals which are read by these horizontal and vertical scanning circuits are outputted from the reading circuits 1-4 simultaneously with and in parallel to each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各分割領域から映
像信号が同時並列に読み出される種類の固体撮像素子に
おいて、特に、各領域の境界が目立たないようにした固
体撮像素子およびそれ用の映像信号出力装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device of the type in which video signals are simultaneously read in parallel from respective divided regions, and more particularly to a solid-state imaging device in which boundaries between regions are made inconspicuous and an image for the same. The present invention relates to a signal output device.

【0002】[0002]

【従来の技術】図5は、従来のこの種類のMOS増幅型
固体撮像素子の構成例を示している。図5において、画
素p11から画素paaまで(分割領域1)は水平走査回路
(シフトレジスタおよび選択スイッチによって構成され
る)1および垂直走査回路(シフトレジスタによって構
成される)1によって、画素p1bから画素panまで(分
割領域2)は水平走査回路2および垂直走査回路1によ
って、画素pb1から画素pnaまで(分割領域3)は水平
走査回路3および垂直走査回路2によって、そして画素
bbから画素pnnまで(分割領域4)は水平走査回路4
および垂直走査回路2によって画素の走査を行いそれぞ
れ撮像された映像信号を読み出している。
2. Description of the Related Art FIG. 5 shows an example of the configuration of a conventional MOS amplification type solid-state imaging device of this type. In FIG. 5, a pixel p 11 to a pixel p aa (divided area 1) are divided into pixels p by a horizontal scanning circuit (configured by a shift register and a selection switch) 1 and a vertical scanning circuit (configured by a shift register) 1. from 1b to the pixel p an, by (divided area 2) the horizontal scanning circuit 2 and the vertical scanning circuit 1, a pixel p b1 to the pixel p na (divided regions 3) by the horizontal scanning circuit 3 and the vertical scanning circuit 2 and the pixel, The horizontal scanning circuit 4 from p bb to pixel p nn (divided area 4)
And the vertical scanning circuit 2 scans the pixels to read out the imaged video signals.

【0003】上述のようにして、分割領域1乃至4から
同時並列に読み出された各映像信号はそれぞれ図示の読
み出し回路(増幅器およびA−D変換器からなる回路)
1乃至4を介して出力され、いったん画像メモリ(図示
しない)に記憶される。
As described above, each video signal read from the divided areas 1 to 4 simultaneously and in parallel is supplied to a read circuit (a circuit including an amplifier and an AD converter) shown in the figure.
The data is output via 1 to 4 and temporarily stored in an image memory (not shown).

【0004】[0004]

【発明が解決しようとする課題】しかし、上述した従来
のこの種類の固体撮像素子においては、各分割領域から
得られた映像信号をモニター画面上に合成するとき読み
出し回路の特性の違いにより、各領域の境界が固定パタ
ーンノイズとなって目立ち、表示画像の品質が劣化す
る。
However, in the above-described conventional solid-state image pickup device, when a video signal obtained from each divided area is synthesized on a monitor screen, the characteristics of a readout circuit are different due to the difference in characteristics. The boundaries of the regions are noticeable as fixed pattern noise, and the quality of the displayed image is degraded.

【0005】また、映像信号をデジタル信号として任意
の画素に対しその周囲の画素値を用いて演算処理(以
下、2次元画像処理という)を行う場合には、画面端部
においても画面中央部と同等の演算結果が得られるよう
にするために、最終的な有効画素領域を構成する演算結
果である出力画像に対して撮影時には1次元的または2
次元的により広い領域の映像信号(以下、のりしろ映像
と言う)を必要とするが、従来の固体撮像素子では、各
分割領域からの映像信号から直接領域境界部分ののりし
ろ映像を得ることができず、並列読み出し出力を一度フ
レームメモリ等に取り込んでから他の分割領域の映像信
号も使ってのりしろ映像を作る必要があった。
[0005] Further, when a video signal is converted into a digital signal and an arbitrary pixel is subjected to arithmetic processing (hereinafter referred to as two-dimensional image processing) using the pixel values around the pixel, the center of the screen is also located at the edge of the screen. In order to obtain an equivalent operation result, the output image, which is the operation result constituting the final effective pixel area, is one-dimensional or two-dimensional when photographing.
Although a video signal (hereinafter, referred to as "extended image") in a dimensionally wider area is required, a conventional solid-state imaging device cannot directly obtain an extended image at an area boundary portion from an image signal from each divided area. In this case, it is necessary to take the parallel readout output once into a frame memory or the like, and then use the video signals of the other divided areas to create a marginal video.

【0006】本発明の第1の目的は、従来、各分割領域
から映像信号が同時並列に読み出される種類の固体撮像
素子から得られた映像信号をモニタ画面上に合成すると
き、各領域の境界が固定パターンノイズとなって目立っ
ていたのを目立たないようにすることにある。
A first object of the present invention is to provide a conventional method for synthesizing a video signal obtained from a solid-state imaging device of a type in which a video signal is simultaneously read in parallel from each divided area on a monitor screen. Is to make it less noticeable as a fixed pattern noise.

【0007】また、本発明の第2の目的は、固体撮像素
子から得られた映像信号をデジタル信号にして2次元画
像処理を行うに際して、分割領域ごとの画面端部におい
ても画面中央部と同等の演算処理が行えるようにするこ
とにある。
A second object of the present invention is to provide a two-dimensional image processing by converting a video signal obtained from a solid-state imaging device into a digital signal, and the end of the screen for each divided area is equivalent to the center of the screen. Is to be able to perform the arithmetic processing.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明固体撮像素子は、各分割領域から映像信号が
同時並列に読み出される種類の固体撮像素子において、
前記領域の境界近傍の垂直方向の画素列および/または
水平ライン方向の画素列から互いに重複して映像信号の
読み出しを行うそれぞれ複数個の水平走査回路および/
または垂直走査回路を具えてなることを特徴とするもの
である。
In order to achieve the above object, the present invention provides a solid-state imaging device of the type in which video signals are read from each divided area simultaneously and in parallel.
A plurality of horizontal scanning circuits and / or a plurality of horizontal scanning circuits for reading video signals overlapping with each other from a vertical pixel row and / or a horizontal line row near the boundary of the region.
Alternatively, a vertical scanning circuit is provided.

【0009】また、本発明固体撮像素子は、前記複数個
の水平走査回路および/または垂直走査回路によって読
み出した映像信号のうち互いに重複する部分の一部を2
次元画像処理のためののりしろ映像に形成したことを特
徴とするものである。
The solid-state imaging device according to the present invention may further include a part of a part of the video signal read by the plurality of horizontal scanning circuits and / or the vertical scanning circuit which overlaps each other.
It is characterized in that it is formed into a marginal image for two-dimensional image processing.

【0010】また、本発明固体撮像素子用の映像信号出
力装置は、各領域の境界近傍の垂直方向の画素列および
/または水平ライン方向の画素列から互いに重複して映
像信号の読み出しを行うそれぞれ複数個の水平走査回路
および/または垂直走査回路を具えてなり各分割領域か
ら映像信号が同時並列に読み出される種類の固体撮像素
子から映像信号を出力する映像信号出力装置であって、
前記重複して映像信号の読み出しを行う領域に関して、
重複の回数に応じた平均化処理を行って映像信号を出力
するための平均化処理回路を具えてなることを特徴とす
るものである。
Further, the video signal output device for a solid-state imaging device according to the present invention performs reading of a video signal from a vertical pixel row and / or a horizontal line pixel row near the boundary of each area so as to overlap each other. A video signal output device that outputs a video signal from a solid-state imaging device of a type that includes a plurality of horizontal scanning circuits and / or vertical scanning circuits and is configured to simultaneously read video signals from respective divided regions in parallel,
Regarding the region where the video signal is read out in duplicate,
An averaging circuit for outputting an image signal by performing an averaging process in accordance with the number of duplications is provided.

【0011】[0011]

【発明の実施の形態】以下に添付図面を参照し、発明の
実施の形態に基づいて本発明を詳細に説明する。図1
は、MOS増幅型固体撮像素子に本発明を適用した固体
撮像素子の一実施形態を示している。図1において、水
平走査回路1,2,3,4は同時にスタートする水平ス
タートパルスで駆動され、垂直走査回路1,2も同時に
スタートする垂直スタートパルスで駆動され、これによ
って読み出された映像信号は読み出し回路1乃至4から
同時並列的に出力される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on embodiments of the present invention with reference to the accompanying drawings. FIG.
1 shows an embodiment of a solid-state imaging device in which the present invention is applied to a MOS amplification type solid-state imaging device. In FIG. 1, horizontal scanning circuits 1, 2, 3, and 4 are driven by horizontal start pulses that start simultaneously, and vertical scanning circuits 1 and 2 are also driven by vertical start pulses that start simultaneously. Are output from the readout circuits 1 to 4 simultaneously and in parallel.

【0012】以上のことをより詳細に説明する。水平走
査線を構成する画素p11から画素p1bまでの画素値は垂
直走査回路1と水平走査回路1によって選択的に読み出
され、読み出し回路1を通って順次に出力される。これ
と同時に同じく水平走査線を構成する画素p1aから画素
1nまでの画素値は垂直走査回路1と水平走査回路2に
よって選択的に読み出され、読み出し回路2を通って順
次に出力される。以下、同様に別(より下方)の水平走
査線を構成する画素pb1から画素pbb、および画素pba
から画素pbnの画素値も、それぞれ垂直走査回路1と水
平走査回路1および垂直走査回路1と水平走査回路2に
よって選択的に読み出されるため、1フレームの期間に
画素p11から画素p bbまでの画素値が読み出し回路1か
ら順次に出力されるときは、それと同時に1フレームの
期間に画素p1aから画素pbnまでの画素値が読み出し回
路2から順次に出力される。
The above is described in more detail. Horizontal running
Pixel p that constitutes the scanning line11From pixel p1bPixel values up to
Selective reading by direct scanning circuit 1 and horizontal scanning circuit 1
Then, they are sequentially output through the readout circuit 1. this
At the same time, the pixel p which also forms the horizontal scanning line1aFrom pixel
p1nThe pixel values up to are applied to the vertical scanning circuit 1 and the horizontal scanning circuit 2.
Therefore, they are selectively read and sequentially passed through the read circuit 2.
It is output next. Hereinafter, another (lower) horizontal run
Pixel p that constitutes the scanning lineb1From pixel pbb, And pixel pba
From pixel pbnPixel values of the vertical scanning circuit 1 and the water
For the flat scanning circuit 1 and the vertical scanning circuit 1 and the horizontal scanning circuit 2
Therefore, the data is selectively read out, so that the
Pixel p11From pixel p bbPixel values up to read circuit 1
From one frame at a time.
Pixel p during the period1aFrom pixel pbnPixel values up to
The data is sequentially output from the road 2.

【0013】このように、本発明固体撮像素子は、各領
域の境界近傍の水平方向の画素から互いに重複して映像
信号の読み出しを行う水平走査回路1と水平走査回路2
を具えている。上記において、重複している部分は、画
素p1aから画素pbbまでである。
As described above, the solid-state image pickup device according to the present invention comprises a horizontal scanning circuit 1 and a horizontal scanning circuit 2 for reading video signals overlapping with each other from horizontal pixels near the boundary of each region.
It has. In the above, portions are duplicates is from pixel p 1a to the pixel p bb.

【0014】同じことが水平走査回路3と水平走査回路
4についても言える。この場合の重複している部分は、
画素paaから画素pnbまでである。垂直走査回路1およ
び2についても、画素pa1から画素pbnまでの重複を有
している。
The same applies to the horizontal scanning circuit 3 and the horizontal scanning circuit 4. The overlapping part in this case is
Pixels from p aa to pixel p nb . The vertical scanning circuits 1 and 2 also have an overlap from the pixel p a1 to the pixel p bn .

【0015】再び、水平走査回路1と水平走査回路2に
ついて言及する。水平走査回路1は、第1列目の画素p
11、----- 、画素pa1、画素pb1に接続される線(以
下、垂直読み出し線という)から始めて、最後に第b列
目の画素p1b、----- 、画素p ab、画素pbbに接続され
る垂直読み出し線から映像信号を選択的に順次読み出す
ように走査を行う。
Again, the horizontal scanning circuit 1 and the horizontal scanning circuit 2
I will talk about The horizontal scanning circuit 1 includes a pixel p in the first column.
11, -----, pixel pa1, Pixel pb1Line connected to
Bottom, vertical readout line), and finally the b-th column
Eye pixel p1b, -----, pixel p ab, Pixel pbbConnected to
Video signals are read out sequentially from vertical readout lines
The scanning is performed as follows.

【0016】これに対して、水平走査回路2は、水平走
査回路1と同時に走査を開始し、最初に読み出す垂直読
み出し線に接続される画素は画素p1a、----- 、画素p
aa、画素pbaであるから、これら画素から映像信号を読
み出した後も、画素に読み出し前と同量の電荷が残って
いないと後で水平走査回路1による映像信号の読み出し
ができなくなる。以上から、本発明固体撮像素子は非破
壊読み出し型であることが前提となる。
On the other hand, the horizontal scanning circuit 2 starts scanning at the same time as the horizontal scanning circuit 1, and the pixels connected to the vertical readout line to be read first are the pixels p 1a ,.
Since the pixel is aa and the pixel p ba , even after the video signal is read from these pixels, the horizontal scanning circuit 1 cannot read the video signal later unless the same amount of charge remains in the pixel as before the reading. From the above, it is assumed that the solid-state imaging device of the present invention is a nondestructive readout type.

【0017】非破壊読み出し(すなわち、蓄積電荷はそ
れがリセットされるまで減少しない)であることに加
え、フレーム周期に比して水平走査期間が短いので、重
複して読み出される画素の水平走査回路1で読み出され
た時刻における光電変換による蓄積電荷量と水平走査回
路2で読み出された時刻における蓄積電荷量とは殆んど
変わらないため、重複して読み出されるそれぞれの画素
から複数回の読み出しにおいて殆んど同じ値の出力電流
が得られることになる。水平走査回路3と水平走査回路
4についても同じことが言える。
In addition to the nondestructive readout (that is, the accumulated charge does not decrease until it is reset), the horizontal scanning period is shorter than the frame period. 1 and the accumulated charge amount at the time read by the horizontal scanning circuit 2 hardly differ from each other. In reading, output currents of almost the same value are obtained. The same can be said for the horizontal scanning circuit 3 and the horizontal scanning circuit 4.

【0018】なお、垂直走査回路1および2によって選
択された水平ラインは、1フレーム期間に1回読み出し
を行った後に水平ラインごとに一斉に画素の蓄積電荷の
リセット動作を行う(ラインリセット動作)ものとす
る。具体的には、画素pa1から画素pbnまでの画素は垂
直走査回路1および2によって複数回読み出されるが、
これら重複して読み出される水平ラインは垂直走査回路
1による読み出し後にはラインリセット動作を行わず、
垂直走査回路1による読み出しの直後に行われる次のフ
レームの垂直走査回路2による読み出し後にのみライン
リセット動作を行う。そのため重複して読み出される水
平ラインについては、垂直走査回路1で読み出された時
刻における画素の蓄積時間t1は垂直走査回路2で読み
出された時刻における画素の蓄積時間t2に比べて短く
なるが、この蓄積時間の差(t2−t1)は、重複水平
ライン数の走査時間に等しいので、各垂直走査回路に接
続されている水平ライン数(本例では、互いに同一数で
あるb−1本およびn−a本)が十分多いときにはフレ
ーム周期に比して蓄積時間の差が十分に小さくなる。こ
の様子を図2(a),(b)に示している。
The horizontal lines selected by the vertical scanning circuits 1 and 2 are read once in one frame period, and thereafter, the reset operation of the accumulated charges of the pixels is performed simultaneously for each horizontal line (line reset operation). Shall be. Specifically, the pixels from the pixel p a1 to the pixel p bn but read multiple times by the vertical scanning circuit 1 and 2,
These horizontal lines that are read repeatedly do not perform a line reset operation after reading by the vertical scanning circuit 1,
The line reset operation is performed only after reading by the vertical scanning circuit 2 of the next frame performed immediately after reading by the vertical scanning circuit 1. Therefore, for the horizontal lines that are read in duplicate, the pixel accumulation time t1 at the time read by the vertical scanning circuit 1 is shorter than the pixel accumulation time t2 at the time read by the vertical scanning circuit 2. Since the difference (t2−t1) between the accumulation times is equal to the scanning time of the number of overlapping horizontal lines, the number of horizontal lines connected to each vertical scanning circuit (in this example, b−1 lines which are the same as each other) And n−a) are sufficiently large, the difference in the accumulation time is sufficiently small compared to the frame period. This situation is shown in FIGS. 2A and 2B.

【0019】以上説明したように、図1の画素構成にお
いて画素p1aから画素pbbまでの画素は読み出し回路1
および2によって、画素paaから画素pnbまでの画素は
読み出し回路3および4によって、画素pa1から画素p
bbまでの画素は読み出し回路1および3によって、そし
て画素paaから画素pbnまでの画素は読み出し回路2お
よび4によってそれぞれ一部の画素が重複して読み出さ
れることになる。
As described above, in the pixel configuration of FIG. 1, the pixels from the pixel p 1a to the pixel p bb are readout circuits 1
And 2, the pixels from the pixel p aa to the pixel p nb are read out by the readout circuits 3 and 4 from the pixels p a1 to p
Some of the pixels up to bb are read out by the readout circuits 1 and 3, and some of the pixels from the pixels p aa to p bn are read out by the read out circuits 2 and 4, respectively.

【0020】次に、読み出し信号をディジタル信号にし
たうえで、2次元画像処理を行う例について説明する。
本例としては、本発明による固体撮像素子からの並列出
力信号がアナログ−デジタル変換され画像メモリに保存
されたうえで2次元画像処理を行う場合を想定する。
Next, an example in which two-dimensional image processing is performed after converting a read signal into a digital signal will be described.
In this example, it is assumed that a parallel output signal from the solid-state imaging device according to the present invention is subjected to analog-to-digital conversion, stored in an image memory, and then subjected to two-dimensional image processing.

【0021】図3は、本例による2次元画像処理を示し
ている。図3において、縦、横の点線で分割され、その
左上部分の分割領域1に含まれる画素は画素p11から画
素paaまでであるが、読み出し回路1からは画素p11
ら画素pbbまでの画素が読み出され、デジタルデータM
11からMbbとしてメモリ1に保存され、このメモリ1に
保存されたデータに対して周囲の画素値を用いた2次元
画像処理が行われる。例えば、空間エンハンスフィルタ
を実現する場合、各画素データに対する計算式の一例は
次式で示される。 Ovw=2・Mvw−(M(v-1)w+Mv(w-1)+Mv(w+1)+M
(v+1)w)/4 ただし、Ovwは計算結果、Mvwは被計算画像データ、お
よびv,wは空間座標(vは画面上から下方に増加、w
は画面左から右方に増加)である。
FIG. 3 shows two-dimensional image processing according to the present embodiment. 3, the vertical, is divided by the horizontal dotted line, although the pixels included in the divided region 1 of the upper left portion is a pixel p 11 to the pixel p aa, from pixel p 11 to the pixel p bb from the read circuit 1 Are read out and the digital data M
11 to Mbb are stored in the memory 1, and the data stored in the memory 1 is subjected to two-dimensional image processing using surrounding pixel values. For example, when implementing a spatial enhancement filter, an example of a calculation formula for each pixel data is shown by the following formula. Ovw = 2 · Mvw− (M (v−1) w + Mv (w−1) + Mv (w + 1) + M
(v + 1) w ) / 4 where O vw is a calculation result, M vw is image data to be calculated, and v and w are spatial coordinates (v increases downward from the screen, w
Is increasing from left to right on the screen).

【0022】このように、画素データMvwに対する2次
元画像処理を行う場合、画素pvwの周りの画素データM
(v-1)w、Mv(w-1)、Mv(w+1)、M(v+1)w(それぞれ、画
素p vwに対して上、左、右、下の各画素データ)などが
必要となる。メモリに保存されたデータは分割領域1に
対して周辺に各1画素分ののりしろ映像データを含むた
め、2次元画像処理を行った結果はのりしろ映像データ
に相当する記憶領域が不要となり、データO22からOaa
としてメモリ5に保存され(図3のメモリ1に示す画素
データM2aに対してこの2次元画像処理を行うと、結果
は、O2a=2・M2a−(M1a+M2a′+M2b+M3a)/
4となって保存される)分割領域1の処理結果として直
接出力することが可能となる。
As described above, the pixel data MvwSecondary to
When performing the original image processing, the pixel pvwPixel data M around
(v-1) w, Mv (w-1), Mv (w + 1), M(v + 1) w(Each picture
Element p vwThe upper, left, right, and lower pixel data)
Required. Data stored in memory is stored in divided area 1.
On the other hand, there is a marginal video data for each pixel around.
The result of the two-dimensional image processing is the extra video data
Becomes unnecessary, and the data Otwenty twoFrom Oaa
Is stored in the memory 5 (the pixel shown in the memory 1 of FIG. 3).
Data M2aWhen this two-dimensional image processing is performed on
Is O2a= 2 · M2a− (M1a+ M2a'+ M2b+ M3a) /
4) and stored as a processing result of the divided area 1.
Direct output is possible.

【0023】なお、上述例(図1から図3に示される
例)では重複して読み出される画素を2行、2列として
説明したが、これは2行、2列に限られるわけでなく、
1行および/または1列、あるいは3行および/または
3列、さらにそれ以上でもよいことはいうまでもない。
また、分割領域の分割数も上述例の4に限られるわけで
はなく、任意の複数の分割に対して本発明を適用するこ
とができる。
In the above-described example (examples shown in FIGS. 1 to 3), the pixels that are read redundantly are described as having two rows and two columns. However, this is not limited to two rows and two columns.
It goes without saying that there may be one row and / or one column, or three rows and / or three columns, and even more.
Further, the number of divisions of the divided region is not limited to four in the above-described example, and the present invention can be applied to arbitrary plural divisions.

【0024】最後に、本発明固体撮像素子用の映像信号
出力装置について説明する。ここでは、各領域1から4
までのそれぞれから同時並列に得られる映像信号を1つ
にまとめて合成信号を形成する本発明装置について説明
する。図4は、本発明装置の一構成例を示している。図
4において、分割領域1から読み出される信号はメモリ
1のa,b,c,dの各領域に保存される。同様に、分
割領域2から読み出された信号はメモリ2のe,f,
g,hの各領域に、分割領域3から読み出された信号は
メモリ3のi,j,k,lの各領域に、分割領域4から
読み出された信号はメモリ4のm,n,o,pの各領域
にそれぞれ保存される。
Finally, a video signal output device for a solid-state imaging device according to the present invention will be described. Here, each region 1 to 4
The apparatus of the present invention for forming a composite signal by combining video signals obtained simultaneously and in parallel from each other into one will be described. FIG. 4 shows a configuration example of the device of the present invention. In FIG. 4, signals read from the divided area 1 are stored in the areas a, b, c, and d of the memory 1. Similarly, the signals read from the divided area 2 are the signals e, f,
In each of the areas g and h, the signal read from the divided area 3 is applied to each of the areas i, j, k, and l of the memory 3, and the signal read from the divided area 4 is applied to m, n, and m of the memory 4. It is stored in each area of o and p.

【0025】いま、各分割領域1,2,3,4から同時
並列に読み出しを開始するものとするとメモリ3,4の
領域i,j,m,nに保存される信号はメモリ1,2の
領域c,d,g,hに保存される信号に対して(各分割
領域の垂直走査時間)−(分割領域間の重複水平ライン
の走査時間)だけ早い読み出し信号になるため、図4で
は読み出し回路1,2の後に1フレーム分の遅延回路を
入れて時間的連続性の整合をとっている。また、メモリ
1,2の領域bとeに保存される信号は撮像素子の同じ
画素に対応する信号であるので、平均化処理後にメモリ
6の領域qの信号として保存する。同様に、メモリ1,
3の領域cとiに保存される信号は平均化処理後にメモ
リ6の領域rの、メモリ2,4の領域hとnは平均化処
理後にメモリ6の領域sの、メモリ3,4の領域lとo
は平均化処理後にメモリ6の領域tの、そしてメモリ1
から4のすべてに重複する領域d,g,j,mも同じ画
素の信号なので平均化処理後にメモリ6の領域uの信号
としてそれぞれ保存する。メモリ6のそれぞれの領域に
保存された信号は本発明映像信号出力装置による合成信
号として出力される。上記における平均化処理は、領域
d,g,j,mについては4つの分割領域に重複するの
で1/4にし、他はすべて1/2である。
Now, assuming that reading is started from each of the divided areas 1, 2, 3, and 4 simultaneously and in parallel, the signals stored in the areas i, j, m, and n of the memories 3 and 4 are Since the read signal is earlier than the signals stored in the areas c, d, g, and h by (vertical scanning time of each divided area)-(scanning time of the overlapping horizontal line between the divided areas), the read signal is read in FIG. A delay circuit for one frame is inserted after the circuits 1 and 2 to match temporal continuity. Since the signals stored in the areas b and e of the memories 1 and 2 correspond to the same pixel of the image sensor, they are stored as signals of the area q of the memory 6 after the averaging process. Similarly, memory 1,
Signals stored in areas c and i of area 3 are areas r of memory 6 after averaging processing, areas h and n of memories 2 and 4 are areas of area s of memory 6 after averaging processing and areas of memories 3 and 4 l and o
Represents the area t of the memory 6 after the averaging process and the memory 1
Since the areas d, g, j, and m overlapping with all of the elements from 4 to 4 are the same pixel signals, they are stored as signals in the area u of the memory 6 after the averaging process. The signal stored in each area of the memory 6 is output as a composite signal by the video signal output device of the present invention. In the averaging process described above, since the regions d, g, j, and m overlap four divided regions, the regions are reduced to 1/4, and all other regions are reduced to 1/2.

【0026】なお、図4に示す例では読み出し回路1乃
至4の出力(デジタル信号出力)をいったんメモリ1乃
至4に保存した後、重複部分について平均化処理を行っ
て再度メモリ6に保存するものとしたが、読み出し回路
1乃至4の出力を直接メモリ6に書き込み、重複部分に
ついてはすでに書き込まれたデータとの平均化処理を行
ってメモリ内容を更新するようにしてもよく、また、メ
モリ1乃至4から直接的に合成信号を得てもよい。以
上、いずれにしても読み出し回路の違いによる出力信号
特性の違いは平均化され、各領域間の固定パターンノイ
ズが低減される。
In the example shown in FIG. 4, the outputs (digital signal outputs) of the readout circuits 1 to 4 are temporarily stored in the memories 1 to 4, and then, the averaging process is performed on the overlapped portion, and the data is stored in the memory 6 again. However, the outputs of the read circuits 1 to 4 may be written directly into the memory 6 and the overlapping portion may be averaged with the already written data to update the memory contents. Alternatively, the synthesized signal may be directly obtained from the above-described (4) to (4). As described above, in any case, differences in output signal characteristics due to differences in readout circuits are averaged, and fixed pattern noise between regions is reduced.

【0027】[0027]

【発明の効果】本発明によれば、各分割領域から映像信
号が同時並列に読み出される種類の固体撮像素子におい
て、分割領域ごとに隣り合う領域の一部の映像を互いに
重複して出力するようにしているため、分割領域ごとに
設けられた信号読み出し回路の特性が平均化処理回路に
より平均化され、従来のように、領域間の境界部分が固
定パターンノイズとして目立つということがなくなる。
According to the present invention, in a solid-state imaging device of a type in which video signals are read out from each divided region simultaneously and in parallel, a part of the image of an adjacent region is output overlapping each other for each divided region. Therefore, the characteristics of the signal readout circuit provided for each divided area are averaged by the averaging processing circuit, so that the boundary between the areas does not become conspicuous as fixed pattern noise unlike the related art.

【0028】また、本発明によってのりしろ映像を含む
映像を出力することにより、同時並列読み出し信号をそ
のままデジタル化して2次元画像処理することが可能と
なり、これにより、画像処理の高速化や処理回路の小規
模化を図ることができる。
Further, by outputting an image including a marginal image according to the present invention, it becomes possible to digitize the simultaneous parallel readout signal as it is and perform two-dimensional image processing, thereby increasing the speed of image processing and the processing circuit. The size can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 MOS増幅型固体撮像素子に本発明を適用し
た固体撮像素子の一実施形態を示している。
FIG. 1 shows an embodiment of a solid-state imaging device in which the present invention is applied to a MOS amplification type solid-state imaging device.

【図2】 図1中の垂直走査回路1および2によって読
み出される映像信号の蓄積時間を比較して示している。
FIG. 2 shows a comparison of the accumulation time of video signals read by vertical scanning circuits 1 and 2 in FIG.

【図3】 本発明固体撮像素子からの並列出力信号に対
して行われる2次元画像処理の例を示している。
FIG. 3 shows an example of two-dimensional image processing performed on a parallel output signal from a solid-state imaging device of the present invention.

【図4】 本発明固体撮像素子用の映像信号出力装置の
一構成例を示している。
FIG. 4 shows a configuration example of a video signal output device for a solid-state imaging device according to the present invention.

【図5】 従来の領域分割並列読み出し固体撮像素子の
構成例を示している。
FIG. 5 shows a configuration example of a conventional region-divided parallel readout solid-state imaging device.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 各分割領域から映像信号が同時並列に読
み出される種類の固体撮像素子において、 前記領域の境界近傍の垂直方向の画素列および/または
水平ライン方向の画素列から互いに重複して映像信号の
読み出しを行うそれぞれ複数個の水平走査回路および/
または垂直走査回路を具えてなることを特徴とする固体
撮像素子。
1. A solid-state imaging device of a type in which video signals are read out from each divided region simultaneously and in parallel, wherein a video image is overlapped with a vertical pixel column and / or a horizontal line pixel column near a boundary of the region. A plurality of horizontal scanning circuits for reading signals and / or
Alternatively, a solid-state imaging device comprising a vertical scanning circuit.
【請求項2】 請求項1記載の固体撮像素子において、
前記複数個の水平走査回路および/または垂直走査回路
によって読み出した映像信号のうち互いに重複する部分
の一部を2次元画像処理のためののりしろ映像に形成し
たことを特徴とする固体撮像素子。
2. The solid-state imaging device according to claim 1, wherein
A solid-state imaging device, wherein a part of an overlapping part of the video signals read by the plurality of horizontal scanning circuits and / or the vertical scanning circuits is formed as a marginal image for two-dimensional image processing.
【請求項3】 各領域の境界近傍の垂直方向の画素列お
よび/または水平ライン方向の画素列から互いに重複し
て映像信号の読み出しを行うそれぞれ複数個の水平走査
回路および/または垂直走査回路を具えてなり各分割領
域から映像信号が同時並列に読み出される種類の固体撮
像素子から映像信号を出力する映像信号出力装置であっ
て、前記重複して映像信号の読み出しを行う領域に関し
て、重複の回数に応じた平均化処理を行って映像信号を
出力するための平均化処理回路を具えてなることを特徴
とする固体撮像素子用の映像信号出力装置。
3. A plurality of horizontal scanning circuits and / or vertical scanning circuits each of which reads a video signal in an overlapping manner from a vertical pixel row and / or a horizontal line pixel row near a boundary of each area. A video signal output device for outputting a video signal from a solid-state imaging device of a type in which a video signal is read out from each divided region simultaneously and in parallel, wherein the number of times of duplication is determined for the region where the video signal is read out in an overlapping manner. A video signal output device for a solid-state imaging device, comprising an averaging circuit for outputting a video signal by performing an averaging process according to the above.
JP01002299A 1999-01-19 1999-01-19 Solid-state imaging device and video signal output device therefor Expired - Fee Related JP3875423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01002299A JP3875423B2 (en) 1999-01-19 1999-01-19 Solid-state imaging device and video signal output device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01002299A JP3875423B2 (en) 1999-01-19 1999-01-19 Solid-state imaging device and video signal output device therefor

Publications (2)

Publication Number Publication Date
JP2000209503A true JP2000209503A (en) 2000-07-28
JP3875423B2 JP3875423B2 (en) 2007-01-31

Family

ID=11738784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01002299A Expired - Fee Related JP3875423B2 (en) 1999-01-19 1999-01-19 Solid-state imaging device and video signal output device therefor

Country Status (1)

Country Link
JP (1) JP3875423B2 (en)

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403100B1 (en) * 2000-10-13 2003-10-23 캐논 가부시끼가이샤 Image pickup apparatus
JP2004350265A (en) * 2003-04-28 2004-12-09 Olympus Corp Imaging apparatus
JP2006094192A (en) * 2004-09-24 2006-04-06 Canon Inc Imaging device
JP2006109050A (en) * 2004-10-05 2006-04-20 Olympus Corp Imaging device
JP2006262192A (en) * 2005-03-17 2006-09-28 Victor Co Of Japan Ltd Image device
JP2006270292A (en) * 2005-03-23 2006-10-05 Sony Corp Physical quantity distribution detecting apparatus, and physical information acquisition method, and physical information acquisition apparatus
JP2007143118A (en) * 2005-09-12 2007-06-07 Victor Co Of Japan Ltd Imaging apparatus
JP2010028856A (en) * 2009-10-30 2010-02-04 Sony Corp Imaging method and apparatus
US7692703B2 (en) 2003-04-28 2010-04-06 Olympus Corporation Image pick-up apparatus
US7746399B2 (en) 2003-04-28 2010-06-29 Olympus Corporation Image pick-up device
WO2011013548A1 (en) * 2009-07-30 2011-02-03 浜松ホトニクス株式会社 Solid-state image pickup device
US8179453B2 (en) 2004-10-29 2012-05-15 Sony Corporation Imaging method and imaging apparatus
JP2013526801A (en) * 2010-05-12 2013-06-24 ペリカン イメージング コーポレイション Architecture for imager arrays and array cameras
JP5270766B2 (en) * 2009-11-06 2013-08-21 パナソニック株式会社 Imaging device
KR101350068B1 (en) 2012-08-23 2014-01-14 삼성전자주식회사 Electronic device for outputting region of interest image
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9380191B2 (en) 2012-03-06 2016-06-28 Sony Corporation Solid-state imaging device, driving method, and electronic apparatus
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
JP2018191041A (en) * 2017-04-28 2018-11-29 キヤノン株式会社 Photoelectric conversion device and method of driving the same
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US10412314B2 (en) 2013-03-14 2019-09-10 Fotonation Limited Systems and methods for photometric normalization in array cameras
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects

Cited By (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403100B1 (en) * 2000-10-13 2003-10-23 캐논 가부시끼가이샤 Image pickup apparatus
JP2004350265A (en) * 2003-04-28 2004-12-09 Olympus Corp Imaging apparatus
US7692703B2 (en) 2003-04-28 2010-04-06 Olympus Corporation Image pick-up apparatus
US7746399B2 (en) 2003-04-28 2010-06-29 Olympus Corporation Image pick-up device
JP2006094192A (en) * 2004-09-24 2006-04-06 Canon Inc Imaging device
JP4704719B2 (en) * 2004-10-05 2011-06-22 オリンパス株式会社 Imaging device
JP2006109050A (en) * 2004-10-05 2006-04-20 Olympus Corp Imaging device
US8582002B2 (en) 2004-10-29 2013-11-12 Sony Corporation Imaging method and imaging apparatus
US8300118B2 (en) 2004-10-29 2012-10-30 Sony Corporation Imaging method and imaging apparatus
US8179453B2 (en) 2004-10-29 2012-05-15 Sony Corporation Imaging method and imaging apparatus
JP2006262192A (en) * 2005-03-17 2006-09-28 Victor Co Of Japan Ltd Image device
JP4548163B2 (en) * 2005-03-17 2010-09-22 日本ビクター株式会社 Imaging device
JP2006270292A (en) * 2005-03-23 2006-10-05 Sony Corp Physical quantity distribution detecting apparatus, and physical information acquisition method, and physical information acquisition apparatus
JP2007143118A (en) * 2005-09-12 2007-06-07 Victor Co Of Japan Ltd Imaging apparatus
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US10142560B2 (en) 2008-05-20 2018-11-27 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US11412158B2 (en) 2008-05-20 2022-08-09 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9712759B2 (en) 2008-05-20 2017-07-18 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US9576369B2 (en) 2008-05-20 2017-02-21 Fotonation Cayman Limited Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
JP5632374B2 (en) * 2009-07-30 2014-11-26 浜松ホトニクス株式会社 Solid-state imaging device
JPWO2011013548A1 (en) * 2009-07-30 2013-01-07 浜松ホトニクス株式会社 Solid-state imaging device
WO2011013548A1 (en) * 2009-07-30 2011-02-03 浜松ホトニクス株式会社 Solid-state image pickup device
US8767110B2 (en) 2009-07-30 2014-07-01 Hamamatsu Photonics K.K. Solid-state image pickup device
JP2010028856A (en) * 2009-10-30 2010-02-04 Sony Corp Imaging method and apparatus
JP5270766B2 (en) * 2009-11-06 2013-08-21 パナソニック株式会社 Imaging device
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US9936148B2 (en) 2010-05-12 2018-04-03 Fotonation Cayman Limited Imager array interfaces
KR101824672B1 (en) 2010-05-12 2018-02-05 포토네이션 케이맨 리미티드 Architectures for imager arrays and array cameras
JP2013526801A (en) * 2010-05-12 2013-06-24 ペリカン イメージング コーポレイション Architecture for imager arrays and array cameras
US10455168B2 (en) 2010-05-12 2019-10-22 Fotonation Limited Imager array interfaces
US11423513B2 (en) 2010-12-14 2022-08-23 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US11875475B2 (en) 2010-12-14 2024-01-16 Adeia Imaging Llc Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10742861B2 (en) 2011-05-11 2020-08-11 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US9866739B2 (en) 2011-05-11 2018-01-09 Fotonation Cayman Limited Systems and methods for transmitting and receiving array camera image data
US10375302B2 (en) 2011-09-19 2019-08-06 Fotonation Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US20180197035A1 (en) 2011-09-28 2018-07-12 Fotonation Cayman Limited Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata
US11729365B2 (en) 2011-09-28 2023-08-15 Adela Imaging LLC Systems and methods for encoding image files containing depth maps stored as metadata
US10019816B2 (en) 2011-09-28 2018-07-10 Fotonation Cayman Limited Systems and methods for decoding image files containing depth maps stored as metadata
US10275676B2 (en) 2011-09-28 2019-04-30 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
US10430682B2 (en) 2011-09-28 2019-10-01 Fotonation Limited Systems and methods for decoding image files containing depth maps stored as metadata
US9864921B2 (en) 2011-09-28 2018-01-09 Fotonation Cayman Limited Systems and methods for encoding image files containing depth maps stored as metadata
US10984276B2 (en) 2011-09-28 2021-04-20 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US10311649B2 (en) 2012-02-21 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US9560275B2 (en) 2012-03-06 2017-01-31 Sony Corporation Solid-state imaging device, driving method, and electronic apparatus
US9380191B2 (en) 2012-03-06 2016-06-28 Sony Corporation Solid-state imaging device, driving method, and electronic apparatus
US9210392B2 (en) 2012-05-01 2015-12-08 Pelican Imaging Coporation Camera modules patterned with pi filter groups
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US10334241B2 (en) 2012-06-28 2019-06-25 Fotonation Limited Systems and methods for detecting defective camera arrays and optic arrays
US9766380B2 (en) 2012-06-30 2017-09-19 Fotonation Cayman Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US11022725B2 (en) 2012-06-30 2021-06-01 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US9235900B2 (en) 2012-08-21 2016-01-12 Pelican Imaging Corporation Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US10380752B2 (en) 2012-08-21 2019-08-13 Fotonation Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US10462362B2 (en) 2012-08-23 2019-10-29 Fotonation Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
KR101350068B1 (en) 2012-08-23 2014-01-14 삼성전자주식회사 Electronic device for outputting region of interest image
US9214013B2 (en) 2012-09-14 2015-12-15 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9253380B2 (en) 2013-02-24 2016-02-02 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US10958892B2 (en) 2013-03-10 2021-03-23 Fotonation Limited System and methods for calibration of an array camera
US11985293B2 (en) 2013-03-10 2024-05-14 Adeia Imaging Llc System and methods for calibration of an array camera
US11272161B2 (en) 2013-03-10 2022-03-08 Fotonation Limited System and methods for calibration of an array camera
US11570423B2 (en) 2013-03-10 2023-01-31 Adeia Imaging Llc System and methods for calibration of an array camera
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US10225543B2 (en) 2013-03-10 2019-03-05 Fotonation Limited System and methods for calibration of an array camera
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9741118B2 (en) 2013-03-13 2017-08-22 Fotonation Cayman Limited System and methods for calibration of an array camera
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US10547772B2 (en) 2013-03-14 2020-01-28 Fotonation Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US9578259B2 (en) 2013-03-14 2017-02-21 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10412314B2 (en) 2013-03-14 2019-09-10 Fotonation Limited Systems and methods for photometric normalization in array cameras
US10455218B2 (en) 2013-03-15 2019-10-22 Fotonation Limited Systems and methods for estimating depth using stereo array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10542208B2 (en) 2013-03-15 2020-01-21 Fotonation Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US10638099B2 (en) 2013-03-15 2020-04-28 Fotonation Limited Extended color processing on pelican array cameras
US10674138B2 (en) 2013-03-15 2020-06-02 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US10540806B2 (en) 2013-09-27 2020-01-21 Fotonation Limited Systems and methods for depth-assisted perspective distortion correction
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US9185276B2 (en) 2013-11-07 2015-11-10 Pelican Imaging Corporation Methods of manufacturing array camera modules incorporating independently aligned lens stacks
US10767981B2 (en) 2013-11-18 2020-09-08 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US11486698B2 (en) 2013-11-18 2022-11-01 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9426361B2 (en) 2013-11-26 2016-08-23 Pelican Imaging Corporation Array camera configurations incorporating multiple constituent array cameras
US10708492B2 (en) 2013-11-26 2020-07-07 Fotonation Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10574905B2 (en) 2014-03-07 2020-02-25 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US11546576B2 (en) 2014-09-29 2023-01-03 Adeia Imaging Llc Systems and methods for dynamic calibration of array cameras
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
JP2018191041A (en) * 2017-04-28 2018-11-29 キヤノン株式会社 Photoelectric conversion device and method of driving the same
US10818026B2 (en) 2017-08-21 2020-10-27 Fotonation Limited Systems and methods for hybrid depth regularization
US11983893B2 (en) 2017-08-21 2024-05-14 Adeia Imaging Llc Systems and methods for hybrid depth regularization
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US11562498B2 (en) 2017-08-21 2023-01-24 Adela Imaging LLC Systems and methods for hybrid depth regularization
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11699273B2 (en) 2019-09-17 2023-07-11 Intrinsic Innovation Llc Systems and methods for surface modeling using polarization cues
US11982775B2 (en) 2019-10-07 2024-05-14 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11842495B2 (en) 2019-11-30 2023-12-12 Intrinsic Innovation Llc Systems and methods for transparent object segmentation using polarization cues
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
US11683594B2 (en) 2021-04-15 2023-06-20 Intrinsic Innovation Llc Systems and methods for camera exposure control
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers

Also Published As

Publication number Publication date
JP3875423B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
JP2000209503A (en) Solid state image pickup device and its video signal output device
JP2002314062A (en) Solid-state image sensing device and image sensing system
JP3970185B2 (en) Solid-state image sensor and digital camera
KR101570924B1 (en) Solid-state imaging device
JP3902525B2 (en) Image signal processing device
US20070030371A1 (en) Frame shuttering scheme for increased frame rate
JPH08242410A (en) Electronic camera that creates interlaced image from sequential scanning sensor of electronic camera
US6809770B1 (en) Imaging device and a digital camera having same
JP2004260265A (en) Pixel extracting circuit having pixel turning over function, and image pickup apparatus
JP4083437B2 (en) Imaging device
JP3123415B2 (en) Single-chip color solid-state imaging device
JP3790057B2 (en) Solid-state image sensor
JP5398610B2 (en) Solid-state electronic imaging device and operation control method thereof
JP2005192250A (en) Solid-state image pickup device
US20070153116A1 (en) Photographic device
JP3972645B2 (en) Solid-state image sensor
JP2617293B2 (en) Imaging device
JP3985123B2 (en) Drive control method for two-dimensional image sensor
JPH11341367A (en) Line sensor camera
JPH05236364A (en) High-speed photographing device
JP4426666B2 (en) Pixel data transfer method for solid-state image sensor
JPH04142183A (en) Image pickup device
JPH1176159A (en) Image forming device comprising combination of plural imaging element
JPH1146323A (en) High speed image-pickup device
JP2001086516A (en) Image pickup device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees