JP2000174543A - Antenna system and automatic train controller - Google Patents

Antenna system and automatic train controller

Info

Publication number
JP2000174543A
JP2000174543A JP10341420A JP34142098A JP2000174543A JP 2000174543 A JP2000174543 A JP 2000174543A JP 10341420 A JP10341420 A JP 10341420A JP 34142098 A JP34142098 A JP 34142098A JP 2000174543 A JP2000174543 A JP 2000174543A
Authority
JP
Japan
Prior art keywords
radio wave
antenna
lens
planar antenna
radiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10341420A
Other languages
Japanese (ja)
Inventor
Takeshi Ujiie
氏家  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP10341420A priority Critical patent/JP2000174543A/en
Publication of JP2000174543A publication Critical patent/JP2000174543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)
  • Aerials With Secondary Devices (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an antenna system where the directivity of a plane antenna is enhanced for both of radiation and incidence of a radio wave and to provide an automatic train controller mounted with the antenna system. SOLUTION: The antenna system consists of a plane antenna 10 that emits or receives a radio wave at a microwave band and a lens antenna 20 made of a dielectric material and placed on the plane antenna. The plane antenna 10 is formed on an insulation board 11 and they are contained in a vessel consisting of a box 30 and an upper cover 40. Preferably, the lens antenna 20 is formed to be a convex lens or a concaved lens by interposing a dielectric material between a curved face 21 swollen outward in the radio wave radiation direction or concaved in the direction of an aperture and a plane 22 opposed to the curved face 21. For example, the antenna system is built in a ground element of an automatic train controller and placed on a crosstie in a track and opposed the on-vehicle element in a passing train to emit a communication radio wave thereto, or the antenna system may be built in the on-vehicle element to receive a communication radio wave.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロストリッ
プアンテナ等に適したアンテナ装置に関する。特に、移
動体の位置を電波により非接触で検出する電子タブに適
したアンテナ装置に関する。
The present invention relates to an antenna device suitable for a microstrip antenna or the like. In particular, the present invention relates to an antenna device suitable for an electronic tab that detects the position of a moving object by radio waves in a non-contact manner.

【0002】[0002]

【従来の技術】一般に、列車の安全な運行管理や正確な
停止制御等を目的とした自動列車制御システムが知られ
ている。この自動列車制御システムでは、それぞれの線
区の軌道内に、走行中の列車との通信手段である地上子
を設置すると共に、それぞれの地上子に対向させて、各
地上子に対する応答手段である車上子をそれぞれの列車
に搭載してある。これら地上子および車上子内には、相
互に電波を放射または入射させるための各アンテナ装置
を内蔵してある。
2. Description of the Related Art In general, there is known an automatic train control system for the purpose of safe operation management of trains and accurate stop control. In this automatic train control system, in the track of each line section, a grounding element that is a communication means with the running train is installed, and is opposed to each grounding element, and is a response means for each grounding element. The upper child is mounted on each train. Each antenna device for mutually radiating or radiating radio waves is built in the ground child and the vehicle child.

【0003】この自動列車制御システムによれば、それ
ぞれの地上子上を各列車の車上子が通過した時に、両ア
ンテナ装置を介して通過列車との間で各種の管理情報を
通信できる。例えば、その列車の識別番号を車上子から
地上子に知らせ、いずれの列車が通過中であるか、ま
た、その通過タイミングを判別したり、その地上子上を
通過した後の経過時間に基づいて、その後の予定停止線
までの列車の制動制御を行なったりできる。
According to this automatic train control system, when the vehicle child of each train passes on each ground child, various management information can be communicated with the passing train via both antenna devices. For example, the identification number of the train is notified from the upper child to the lower child, which train is passing, and the passage timing is determined, and based on the elapsed time after passing the upper child. Thus, it is possible to control the braking of the train up to the scheduled stop line thereafter.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記アンテナ
装置には次に述べる問題点があった。例えば、前述した
列車の運行管理において、列車検知を精度よく行ないた
い場合がある。そこで、車上子の通過タイミングを各地
上子の真上で判別するため、アンテナ装置に平面アンテ
ナを用い、マイクロ波帯の電波を軌道敷設面の垂直方向
に放射および入射させる。ところが、地上子から車上子
まで一定の距離を設ける必要もあって、平面アンテナに
よる放射時の指向性が十分ではなく、特に高精度を要す
る制動制御の際には、その検出誤差の削減が求められ
た。
However, the above antenna device has the following problems. For example, in the above-mentioned train operation management, there is a case where it is desired to perform train detection with high accuracy. Therefore, in order to determine the passage timing of the vehicle child just above each ground child, a planar antenna is used for the antenna device, and a radio wave in the microwave band is radiated and incident in the vertical direction of the track laying surface. However, it is necessary to provide a certain distance from the ground child to the vehicle child, and the directivity at the time of radiation by the planar antenna is not sufficient. I was asked.

【0005】また、地上子から車上子までの距離に伴っ
て、地上子からの放射電波が広がってしまい、その一部
が車上子の平面アンテナに入射できなくなって、車上子
の入射電波の強度が低下してしまう。このため、車上子
の平面アンテナの表面積を広くしたり、入射電波の増幅
度を高めたりする必要があって、車上子の小型化や簡単
な回路構成にすることが難しく、このような問題点の除
去が重要な課題であった。
[0005] Further, with the distance from the ground child to the vehicle child, the radiated radio wave from the ground child spreads, and a part thereof cannot be incident on the planar antenna of the vehicle child. The strength of the radio wave decreases. For this reason, it is necessary to increase the surface area of the planar antenna of the vehicle body or to increase the degree of amplification of an incident radio wave, and it is difficult to reduce the size of the vehicle body and make it a simple circuit configuration. Elimination of problems was an important issue.

【0006】そこで、本発明の目的は、電波の放射や入
射にかかわらず平面アンテナの指向性を向上させたアン
テナ装置を提供することにある。
An object of the present invention is to provide an antenna device in which the directivity of a planar antenna is improved irrespective of radiation or incidence of radio waves.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明の請求項1では、放射電波を発射し又は入射
電波を受けるため、絶縁性の基板面に設けた平面アンテ
ナと、この平面アンテナの面上に形成した誘電体の電波
レンズとからなる。
According to a first aspect of the present invention, there is provided a planar antenna provided on an insulating substrate surface for emitting a radiated radio wave or receiving an incident radio wave. It consists of a dielectric radio wave lens formed on the surface of the antenna.

【0008】請求項1に係る発明によれば、マイクロ波
帯の電波を電波レンズに通し、その誘電体中で電波を収
束させながら外部に放射させ、又は到来した電波を誘電
体中で発散させながら平面アンテナに入射させる。
According to the first aspect of the present invention, a radio wave in a microwave band is passed through a radio wave lens, and the radio wave is emitted to the outside while converging the radio wave in the dielectric, or the incoming radio wave is diverged in the dielectric. While making it incident on the planar antenna.

【0009】請求項2では、絶縁性の基板面に設けた放
射電波の平面アンテナ、及びこの平面アンテナの面上に
形成した誘電体の凸レンズ型電波レンズと、絶縁性の基
板面に設けた入射電波の平面アンテナ、及びこの平面ア
ンテナの面上に形成した誘電体の凹レンズ型電波レンズ
とからなる。これによれば、凸レンズ型電波レンズによ
って、放射電波を収束させると共に、凹レンズ型電波レ
ンズによって、入射電波を発散させることができる。
According to a second aspect of the present invention, there is provided a planar antenna for radiated radio waves provided on the insulating substrate surface, a dielectric convex lens type radio wave lens formed on the surface of the planar antenna, and an incident radio wave lens provided on the insulating substrate surface. It consists of a radio wave planar antenna and a dielectric concave lens type radio wave lens formed on the plane of the planar antenna. According to this, the radiated radio wave can be converged by the convex lens type radio wave lens, and the incident radio wave can be diverged by the concave lens type radio wave lens.

【0010】請求項3では、請求項1又は請求項2記載
のアンテナ装置を地上子又は車上子に内蔵した自動列車
制御装置であることを特徴とする。これによれば、地上
子及び車上子相互間で検知電波を収束又は発散させなが
ら位置検知できる。
According to a third aspect of the present invention, there is provided an automatic train control device in which the antenna device according to the first or second aspect is incorporated in a ground child or a vehicle child. According to this, the position can be detected while converging or diverging the detection radio wave between the ground child and the vehicle child.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態を添付図に基
づいて以下に説明する。図1は本発明に係るアンテナ装
置の一例を説明する断面図である。このアンテナ装置1
は、マイクロ波帯の電波を放射又は入射させる平面アン
テナ10と、この平面アンテナ10上に設けた電波レン
ズ20とから構成したもので、この平面アンテナ10を
絶縁性の基板11面上に形成し、これらを箱体30と上
蓋40からなる容器内に収納したものである。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a sectional view illustrating an example of an antenna device according to the present invention. This antenna device 1
Is composed of a planar antenna 10 for radiating or entering microwave band radio waves and a radio wave lens 20 provided on the planar antenna 10. The planar antenna 10 is formed on an insulating substrate 11 surface. These are housed in a container consisting of the box 30 and the upper lid 40.

【0012】例えば、自動列車制御装置では、構内無線
局や特定小電力無線局の移動体識別装置(例えばマイク
ロ波トランスポンダ)による位置検知に用い、このアン
テナ装置1を地上子に内蔵して軌道わきの敷石上や枕木
上等に設置し、通過列車の車上子に対向させて検知電波
を放射させる。また、車上子に内蔵して列車の乗務員乗
降ステップ下部に取り付け、地上子からの検知電波を入
射させてもよい。
For example, in an automatic train control device, the antenna device 1 is used for position detection by a mobile identification device (for example, a microwave transponder) of a premises radio station or a specific low-power radio station. It is installed on paving stones, sleepers, etc., and emits detection radio waves facing the upper car of the passing train. Alternatively, the radio wave may be incorporated in the upper arm and attached to the lower part of the step of getting on and off the crew of the train, and the detection radio wave from the ground arm may be incident.

【0013】この他にも、駐車場の停止位置や高速道路
の料金所等で車両識別用の電子タグとして用いてもよ
く、その場合には、アンテナ装置1を車両に対向させて
建物の壁面や床面、また、通路の路面に埋め込んだり、
通路上方から吊り下げたりでき、更に、車両自体に搭載
させて用いてもよい。
In addition, it may be used as an electronic tag for identifying a vehicle at a stop position of a parking lot, a tollgate on a highway, or the like. Or on the floor, or in the passageway,
It can be hung from above the aisle, and may be mounted on the vehicle itself.

【0014】その放射電波または入射電波には円偏波の
ものを用い、周囲の一般電波による混信を避けるが、縦
または横方向の直線偏波のものを用いて、アンテナ装置
1の付加回路を簡単な構成にしてもよい。以下、主とし
て円偏波の場合について述べる。
The radiated radio wave or the incident radio wave is of a circular polarization, and interference by surrounding general radio waves is avoided. However, the additional circuit of the antenna device 1 is formed by using a vertical or horizontal linearly polarized wave. A simple configuration may be used. Hereinafter, the case of circular polarization will be mainly described.

【0015】図2は図1に示すアンテナ装置の平面図
で、その容器から上蓋を取り除いた状態を示す。平面ア
ンテナ10は、導電性の金属箔を円偏波に適した円形に
切り取って、公知のプリント配線技術により基板11上
に形成したものであり、その円形の中心で交わる2本の
直交軸上に、図示しない給電点を設けてある。
FIG. 2 is a plan view of the antenna device shown in FIG. 1, showing a state in which an upper lid is removed from the container. The planar antenna 10 is formed by cutting a conductive metal foil into a circle suitable for circularly polarized waves and forming it on a substrate 11 by a known printed wiring technique, and is formed on two orthogonal axes intersecting at the center of the circle. Is provided with a feeding point (not shown).

【0016】電波レンズ20は、電波の放射方向に向け
て外方に膨らんだ曲面21と、これに対向させた平面2
2とで挟んで凸レンズ状に成形した誘電体からなる凸レ
ンズ型電波レンズである。そして、その平面22を平面
アンテナ10の開口面に対向させ、凸レンズの光軸を平
面アンテナ10の中心に一致させてある。この他にも、
開口面に向けて内方に凹んだ曲面21と、平面22とで
挟んだ凹レンズ状の凹レンズ型電波レンズであってもよ
い。
The radio wave lens 20 has a curved surface 21 bulging outward in the direction of radio wave radiation and a flat surface 2 facing the curved surface 21.
2 is a convex lens type radio wave lens made of a dielectric formed into a convex lens shape sandwiched between the two. The plane 22 is made to face the opening surface of the flat antenna 10, and the optical axis of the convex lens is aligned with the center of the flat antenna 10. Besides this,
A concave lens type radio wave lens having a concave lens shape sandwiched between a curved surface 21 concaved inward toward the opening surface and a flat surface 22 may be used.

【0017】電波レンズ20の材質としては、屋外での
耐候性、耐環境性が高いものを選び、地上子を屋外に設
置して外気にさらしても、風雨や雪氷、日照等から平面
アンテナ10を保護できると共に、成形加工等が行ない
易い合成または天然樹脂やゴム等が望ましい。これによ
って、平面アンテナ10を覆うレドームの機能を兼備で
き、一般の屋外アンテナに付き物のレドームを指向性の
向上に転用できたことになる。例えば、FRP(繊維強
化樹脂)が望ましく、また、PBT(ポリブチレンテレ
フタレート)であれば、機械油等に対する耐溶剤性、耐
化学性を高くできると共に、より割れに強いグレードの
ものも選び得る。
As the material of the radio wave lens 20, a material having high weather resistance and high environmental resistance is selected. Even when the ground antenna is installed outdoors and exposed to the outside air, the flat antenna 10 is protected from the wind, rain, snow and ice, sunshine and the like. It is desirable to use a synthetic or natural resin, rubber, or the like that can protect the resin and can be easily formed. As a result, the function of the radome that covers the planar antenna 10 can be provided, and the radome attached to a general outdoor antenna can be diverted for improving the directivity. For example, FRP (fiber reinforced resin) is desirable, and if it is PBT (polybutylene terephthalate), a grade that can increase the solvent resistance and chemical resistance to machine oil and the like and is more resistant to cracking can be selected.

【0018】加えて、マイクロ波帯の放射電波による比
誘電率Er1が5以下のものであれば、放射電波を減衰さ
せ過ぎない。また、例えば比誘電率Er1が2.1未満で
あっても、4フッ化エチレンを用いたのでは内部気泡が
多くなると思われ、凸レンズ形状としての機械的な強度
が保ち難くなる。このため、比誘電率が公称3.4であ
る前述したFRPが好ましい。
In addition, if the relative permittivity Er1 of the microwave band radiated radio wave is 5 or less, the radiated radio wave is not excessively attenuated. Further, for example, even if the relative dielectric constant Er1 is less than 2.1, the use of ethylene tetrafluoride seems to increase the number of internal bubbles, making it difficult to maintain the mechanical strength of the convex lens shape. For this reason, the above-mentioned FRP having a relative dielectric constant of nominally 3.4 is preferable.

【0019】更に、その曲面形状や大きさを、放射電波
または入射電波の検出試験に基づいて、球面、楕円、放
物面等から任意に選定できる。その際の試験条件には、
地上子から車上子までの平均距離、平面アンテナ10の
面積、電波の放射強度、採用した材質による透過電波の
減衰量、車上子の検出感度等があり、これらを実際の用
途に合わせて設定しておけばよい。
Further, the shape and size of the curved surface can be arbitrarily selected from a spherical surface, an ellipse, a parabolic surface, etc. based on a detection test of a radiated radio wave or an incident radio wave. The test conditions at that time include:
There are the average distance from the ground child to the vehicle child, the area of the planar antenna 10, the radiation intensity of the radio wave, the amount of attenuation of the transmitted radio wave by the adopted material, the detection sensitivity of the vehicle child, etc. Just set it.

【0020】容器には、図示しない送信機から同軸ケー
ブルが導かれ、その末端部の心線を基板11のスルーホ
ールに通し、更に平面アンテナ10の各給電点に接続す
る必要がある。このため容器の箱体30に、基板11に
向けて開口させた凹部31を設け、この凹部31内に、
同軸ケーブル末端部と基板11との接続部品やインピー
ダンス整合回路等を収納する。
A coaxial cable is guided from a transmitter (not shown) to the container, and the core wire at the end of the coaxial cable needs to be passed through a through hole of the substrate 11 and further connected to each feed point of the planar antenna 10. For this purpose, a concave portion 31 opened toward the substrate 11 is provided in the box 30 of the container.
It houses a connection component between the end of the coaxial cable and the substrate 11, an impedance matching circuit, and the like.

【0021】また、アンテナ装置1を車上子に用いたと
き、電波に対する列車車体の効果が不十分な場合には、
平面アンテナ10と反対側の基板11裏面に十分な面積
のグランドプレーンを設けてもよい。これに対して地上
子の場合は、直接に大地の影響を受けることができる。
なお、アンテナ装置1を容器内に組み立てた後に、箱体
30の下端部を、図示しない固定具を介して軌道の枕木
上に固定させる。
When the effect of the train body on radio waves is insufficient when the antenna device 1 is used as a vehicle upper body,
A ground plane having a sufficient area may be provided on the back surface of the substrate 11 opposite to the plane antenna 10. On the other hand, a ground child can be directly affected by the earth.
After assembling the antenna device 1 in the container, the lower end portion of the box 30 is fixed on the railroad tie through a fixture (not shown).

【0022】また、箱体30の上端周縁部と、容器の上
蓋40の下端周縁部とにそれぞれ段部32,42を設
け、上蓋40の段部42を箱体30の段部32に嵌め込
ませて密閉度を高めると共に、容器の組み立てを容易に
させる。これら箱体30および上蓋40の材質として、
外部からの衝撃に耐え得る素材のものを選ぶ必要があ
り、特に、箱体30の材質には、平面アンテナ10や基
板11等の電気部品を外部環境から保護するため、耐候
性、耐環境性が高い素材を選ぶことが望ましい。
Steps 32 and 42 are provided on the upper edge of the box 30 and the lower edge of the upper lid 40 of the container, respectively, and the step 42 of the upper lid 40 is fitted into the step 32 of the box 30. To increase the degree of sealing and facilitate assembly of the container. As the material of the box 30 and the upper lid 40,
It is necessary to select a material that can withstand an external impact. In particular, the material of the box body 30 is to protect the electric components such as the flat antenna 10 and the substrate 11 from the external environment, so that the weather resistance and the environmental resistance It is desirable to select a material with a high level.

【0023】容器の上蓋40には、前述した電波レンズ
20の曲面21に向けて開口した凹部41を設け、その
形状を電波レンズ20の曲面21の外形に合せ、蓋体4
0を箱体30に被せたとき電波レンズ20、平面アンテ
ナ10および基板11を容器内で位置ずれさせないもの
に形成する。
The upper lid 40 of the container is provided with a concave portion 41 opened toward the curved surface 21 of the above-described radio wave lens 20, and its shape is adjusted to the outer shape of the curved surface 21 of the radio wave lens 20.
The radio wave lens 20, the planar antenna 10 and the substrate 11 are formed so as not to be displaced in the container when 0 is put on the box 30.

【0024】このように、電波レンズが位置ずれや外的
な衝撃等に耐え得るものであれば、必ずしも上蓋40を
設けた構成にしなくてもよい。また、以上の他にも、電
波レンズ20と上蓋40とを一体に形成させてもよく、
これによって、平面アンテナ10を基板11上にプリン
ト配線する工程と、容器の成形工程とを区別すれば、容
易に製造管理を行なうことができる。続いて、アンテナ
装置1の作用について説明する。
As described above, the configuration in which the upper cover 40 is not necessarily provided as long as the radio wave lens can withstand displacement or an external impact. Further, in addition to the above, the radio wave lens 20 and the upper lid 40 may be integrally formed,
Thus, if the process of printing and wiring the planar antenna 10 on the substrate 11 is distinguished from the process of forming the container, manufacturing control can be easily performed. Next, the operation of the antenna device 1 will be described.

【0025】図3は図1に示す電波レンズの電波の収束
作用を説明する図である。電波レンズ20は、その平面
22を平面アンテナ10の開口面に貼り合わせた構成で
あるから、この平面22に放射電波E1,E2,E3が
垂直に照射され、その波面W1が平面22に対して平行
になると考えてよい。このため、それぞれの放射電波E
1,E2,E3が電波レンズ10内に入射すると、その
位相を誘電体の比誘電率に従って一様に送らせながら、
電波レンズ10内を曲面21に向けて伝搬していく。
FIG. 3 is a view for explaining the convergence of radio waves by the radio wave lens shown in FIG. Since the radio wave lens 20 has a configuration in which the plane 22 is bonded to the opening surface of the planar antenna 10, the plane 22 is irradiated with radiated radio waves E1, E2, and E3 vertically, and the wave front W1 is moved with respect to the plane 22. You can think of them as being parallel. Therefore, each radiated radio wave E
When E1, E2, and E3 enter the radio wave lens 10, the phases thereof are uniformly transmitted according to the dielectric constant of the dielectric.
The light propagates through the radio wave lens 10 toward the curved surface 21.

【0026】続いて、各放射電波E1,E2,E3が曲
面21から出射すると、空気中の比誘電率Er2が誘電体
の比誘電率Er1より小さいため、先の位相遅れが解消し
て空気中の比誘電率Er2に従いながら空気中を伝搬して
いく。このとき、電波レンズ20の周縁部に入射した各
放射電波E1,E3が、電波レンズ20の光軸に沿った
放射電波E2より早く空気中に出射できるため、その
後、光軸上の放射電波E2が曲面21に達するまでは、
各放射電波E1,E3が先行して空気中を伝搬する。
Subsequently, when the radiated radio waves E1, E2 and E3 are emitted from the curved surface 21, the relative dielectric constant Er2 in the air is smaller than the relative dielectric constant Er1 of the dielectric substance. While propagating in the air while following the relative dielectric constant Er2. At this time, the radiated radio waves E1 and E3 incident on the peripheral edge of the radio wave lens 20 can be emitted into the air earlier than the radiated radio wave E2 along the optical axis of the radio wave lens 20. Until reaches the curved surface 21,
Each of the radiated radio waves E1 and E3 propagates in the air in advance.

【0027】言い換えると、周縁部の各放射電波E1,
E3に比べて光軸上の放射電波E2の位相が相対的に遅
れる。つまり、周縁部と光軸上との各放射電波E1,E
2およびE3,E2(同時に平面アンテナ10を発した
電波)によって、ホイヘンスの原理に基づく2つの波面
W2またはW3を仮定すれば、それぞれの波面W2,W
3が電波レンズ20の光軸に向って内方に傾くことにな
る。このとき、各波面W2,W3の進行方向はその法線
方向であるため、各放射電波E1,E2,E3が内方に
収束して所定の焦点位置で結ばれる。
In other words, each radiated radio wave E1,
The phase of the radiated radio wave E2 on the optical axis is relatively delayed as compared with E3. In other words, the radiated radio waves E1, E at the periphery and on the optical axis
Assuming two wavefronts W2 or W3 based on Huygens' principle by E2 and E3 and E2 (radio waves simultaneously emitted from the planar antenna 10), the respective wavefronts W2 and W3
3 is inclined inward toward the optical axis of the radio wave lens 20. At this time, since the traveling directions of the wavefronts W2 and W3 are the normal directions, the radiated radio waves E1, E2 and E3 converge inward and are formed at a predetermined focal position.

【0028】図4は図1に示すアンテナ装置を2種類組
み合わせた一使用例を説明する図である。なお、一部ハ
ッチングを省略してある。この使用例では、凸レンズ型
電波レンズ20を枕木上の地上子に内蔵し、凹レンズ型
電波レンズ120を列車に搭載した車上子に内蔵して、
地上子から車上子に検知電波を放射しながら自動列車制
御を行なっている。
FIG. 4 is a diagram for explaining an example of use in which two types of the antenna devices shown in FIG. 1 are combined. Note that hatching is partially omitted. In this use example, the convex lens type radio wave lens 20 is built in the ground child on the sleeper, and the concave lens type radio wave lens 120 is built in the car upper mounted on the train.
Automatic train control is performed while radiating the detected radio waves from the ground child to the vehicle child.

【0029】一般に、平面アンテナ10の周縁部では、
電波の回折作用を無視できないため、その開口面から遠
ざかると共に放射電波の電界強度が弱まってしまう。し
かし、このように凸レンズ状の電波レンズ20を平面ア
ンテナ10前方に設ければ、その周縁部での回折成分E
11,E31を含めて各放射電波E12,E21,E3
2を車上子に向けて収束させることができる。つまり、
開口面から離れた位置でも所望の電界強度を保つため、
このような検知電波により精度良く位置検知を行なうこ
とができる。
Generally, at the periphery of the planar antenna 10,
Since the diffraction effect of the radio wave cannot be ignored, the electric field strength of the radiated radio wave weakens as the distance from the aperture increases. However, if the convex lens-shaped radio wave lens 20 is provided in front of the planar antenna 10 as described above, the diffraction component E at the peripheral edge thereof is obtained.
Radiated radio waves E12, E21, E3 including E11, E31
2 can be converged toward the upper child. That is,
In order to maintain the desired electric field strength even at a position away from the opening surface,
Position detection can be performed with high accuracy using such detection radio waves.

【0030】また、その車上子には、以上のような凸レ
ンズ状の電波レンズ20の代わりに、凹レンズ状の別の
電波レンズ120を同様にして平面アンテナ10上に設
けてある。そして、地上子から、各放射電波E12,E
21,E32を収束させつつ放射し、この別の電波レン
ズ120に入射させて発散させながら、車上子の平面ア
ンテナ10で受ける構成である。
Further, instead of the above-described radio lens 20 having a convex lens shape, another radio lens 120 having a concave lens shape is provided on the planar antenna 10 in the same manner as the above-described vehicle upper arm. Then, from the ground child, each radiated radio wave E12, E
21 and E32 are radiated while being converged, and are incident on this another radio wave lens 120 to be diverged, while being received by the planar antenna 10 of the vehicle.

【0031】しかし、収束させた各放射電波E11,E
21,E31の電界強度が、一般に光軸との直交面内で
一様ではなく、その周縁部の放射電波E12,E32の
方が光軸上の放射電波E21よりも強まることが知られ
ている。また、電波レンズ20の曲面外形によっては縁
面収差が生じ、その結果、入射電波に位相歪が生じるこ
とも考えられる。
However, the converged radiation waves E11, E
It is known that the electric field intensities of E21 and E31 are generally not uniform in a plane orthogonal to the optical axis, and that the radiated radio waves E12 and E32 at the periphery thereof are stronger than the radiated radio wave E21 on the optical axis. . Further, depending on the outer shape of the curved surface of the radio wave lens 20, an edge aberration may occur, and as a result, a phase distortion may occur in the incident radio wave.

【0032】ところが、前述した使用例によれば、車上
子のアンテナ装置100に内蔵した凹レンズ状の電波レ
ンズ120によって、凸レンズ状の電波レンズ20によ
る収差等が生じても、これを補正してから平面アンテナ
10で各放射電波E12,E21,E32を受けられ
る。従って、地上子からの検知電波を位相歪なく受信さ
せることができる。
However, according to the above-described use example, even if the concave lens-shaped radio wave lens 120 built in the antenna device 100 of the vehicle body causes the aberration or the like caused by the convex lens-shaped radio wave lens 20, the aberration is corrected. , The radiated radio waves E12, E21, and E32 can be received by the planar antenna 10. Therefore, it is possible to receive the detected radio wave from the ground antenna without phase distortion.

【0033】図5は本発明に係る別のアンテナ装置の一
例を説明する断面図、図6はその平面図で、容器の上蓋
を取り除いた状態を示す。この別のアンテナ装置200
では、前述した円板状の平面アンテナ10の代わりに、
金属箔を矩形に切り取った形状の別の平面アンテナ21
0を設けると共に、凸レンズ状断面の回転体からなる電
波レンズ20の代わりに、蒲鉾型の凸レンズ状に形成し
た別の電波レンズ220を設ける。また、前述した上蓋
40の代わりに、この電波レンズ220の外形に対応さ
せた形状の凹部241を有する別の上蓋240を設けた
他は、先のアンテナ装置1と同様である。
FIG. 5 is a cross-sectional view illustrating an example of another antenna device according to the present invention, and FIG. 6 is a plan view of the antenna device, showing a state where an upper lid of the container is removed. This another antenna device 200
Then, instead of the disk-shaped planar antenna 10 described above,
Another planar antenna 21 having a shape obtained by cutting a metal foil into a rectangle
0, and another radio wave lens 220 formed in a semi-cylindrical convex lens shape is provided instead of the radio wave lens 20 formed of a rotating body having a convex lens-shaped cross section. The antenna device 1 is the same as the antenna device 1 except that an upper cover 240 having a concave portion 241 corresponding to the outer shape of the radio wave lens 220 is provided instead of the above-described upper cover 40.

【0034】この別のアンテナ装置200によれば、別
の電波レンズ220における蒲鉾型形状の対象軸と直交
する方向の直線偏波の電波のみを収束させる用途に適し
ている。例えば、平面アンテナ210の矩形平面の一辺
に平行な縦または横方向のいずれか一方に沿って蒲鉾型
形状の対象軸を設けると、この別の電波レンズ220に
よって、平面アンテナ210からの放射電波を図面の左
右方向にのみ収束させて、放射電波の左右方向への回折
や発散のみを抑えることができる。
This alternative antenna device 200 is suitable for the purpose of converging only linearly polarized radio waves in a direction orthogonal to the target axis of the semi-cylindrical shape in another radio wave lens 220. For example, if a target axis of a semi-cylindrical shape is provided along one of the vertical and horizontal directions parallel to one side of the rectangular plane of the planar antenna 210, the radio wave lens 220 can radiate radio waves from the planar antenna 210. By converging only in the left-right direction of the drawing, only diffraction and divergence of the radiated radio wave in the left-right direction can be suppressed.

【0035】そして、この別のアンテナ装置200に対
向配置させて、別の電波レンズ220の蒲鉾型形状の曲
面部に対応させた谷形状の凹レンズ状の電波レンズを設
け、この凹レンズ状の電波レンズを介して別のアンテナ
装置200からの放射電波を受ければよい。これによっ
て、その谷形状の対象軸に沿った方向の直線偏波のみを
発散させて前記放射電波を入射できるため、例えば、前
述した地上子からの検知電波を位相差なく受信させるこ
とができる。
A valley-shaped concave lens-shaped radio lens corresponding to the semicylindrical curved surface portion of another radio wave lens 220 is provided so as to face the another antenna device 200, and the concave lens-shaped radio wave lens is provided. Radiated radio waves from another antenna device 200 may be received. With this, the radiated radio wave can be made incident by diverging only the linearly polarized wave in the direction along the target axis of the valley shape. For example, the detected radio wave from the above-described ground element can be received without a phase difference.

【0036】更に、例えば、平面アンテナ210を縦長
の帯状に形成し、マイクロストリップアンテナをプリン
ト基板上に形成してもよく、この場合、帯状の平面アン
テナ210に対し、電波レンズ220による収束作用を
効率的に実現できる。加えて、電波レンズ220や上蓋
240を形成する際、その外形や凹部241形状を形成
するための加工が容易になる。
Further, for example, the planar antenna 210 may be formed in a vertically long band shape, and the microstrip antenna may be formed on a printed circuit board. It can be realized efficiently. In addition, when forming the radio wave lens 220 and the upper lid 240, processing for forming the outer shape and the shape of the concave portion 241 becomes easy.

【0037】図7は本発明に係る更に別のアンテナ装置
の一例を説明する断面図、図8は同じく平面図で、容器
の上蓋を取り除いた状態を示す。この更に別のアンテナ
装置300では、前述した円形の平面アンテナ10を2
つ組み合わせて設けると共に、凸レンズ型電波レンズ3
21に付加して凹レンズ型電波レンズ322を並べた並
列型の電波レンズ320を設けた。
FIG. 7 is a cross-sectional view for explaining an example of still another antenna device according to the present invention, and FIG. 8 is a plan view of the same, showing a state where an upper lid of the container is removed. In this still another antenna device 300, the above-mentioned circular planar antenna 10 is
And a convex lens type radio wave lens 3
A parallel radio wave lens 320 in which a concave lens type radio wave lens 322 is arranged in addition to 21 is provided.

【0038】加えて、前述した上蓋40の代わりに、こ
の電波レンズ320の外形に対応させた形状の凹部34
1を有する更に別の上蓋340を設け、それぞれの平面
アンテナ10,10に対応させて2つの凹部31,31
を有する別の箱体330を設けた他は、先のアンテナ装
置1と同様である。これによれば、このアンテナ装置3
00を前述した地上子と車上子とに内蔵して相互に検知
電波を送受信できる。
In addition, instead of the above-described upper lid 40, a concave portion 34 having a shape corresponding to the outer shape of the radio wave lens 320 is provided.
1 is provided, and two concave portions 31, 31 corresponding to the respective planar antennas 10, 10 are provided.
This is the same as the antenna device 1 except that another box body 330 having According to this, the antenna device 3
00 is built in the above-mentioned ground child and vehicle child, so that the detection radio wave can be mutually transmitted and received.

【0039】つまり、例えば地上子では、図面左の平面
アンテナ10から放射電波を車上子に向けて放射し、車
上子の図面右の平面アンテナ10で受ける構成である。
従って、この更に別のアンテナ装置300によれば、地
上子と車上子との相互通信において、放射電波の収束お
よび発散に伴う前述した作用効果を、双方ともに同時に
実現させることができる。
That is, for example, the ground antenna has a configuration in which a radiated radio wave is radiated from the planar antenna 10 on the left side of the drawing toward the vehicle upper child and received by the planar antenna 10 on the right side of the vehicle upper child drawing.
Therefore, according to this still another antenna device 300, in the mutual communication between the ground child and the vehicle child, both of the above-described effects resulting from the convergence and divergence of the radiated radio waves can be simultaneously realized.

【0040】この他にも、平面アンテナ10と電波レン
ズ20との組み合わせを複数組設け、これら複数組みに
よって電波を集合的に放射させる構成でも、または入射
させる構成にしてもよく、この場合、その集合構成によ
り更に指向性を向上できる。
In addition, a plurality of combinations of the planar antenna 10 and the radio wave lens 20 may be provided, and a configuration may be adopted in which the plurality of combinations collectively radiate radio waves or in which radio waves are incident. The directivity can be further improved by the collective configuration.

【0041】[0041]

【発明の効果】本発明は上記構成により次の効果を発揮
する。請求項1では、電波レンズによって、放射電波を
収束させ、また入射電波を発散させるため、平面アンテ
ナによる送信または受信の指向性を向上できる。従っ
て、ある程度の距離を隔てた送受信においても、放射電
波の電界強度を十分に保つことができる。
According to the present invention, the following effects are exhibited by the above configuration. According to the first aspect, since the radiated radio wave is converged and the incident radio wave is diverged by the radio wave lens, the directivity of transmission or reception by the planar antenna can be improved. Therefore, even in transmission and reception at a certain distance, the electric field strength of the radiated radio wave can be sufficiently maintained.

【0042】請求項2では、放射電波の収束と同時に入
射電波の発散を行なうため、例えば、2つのアンテナ装
置を対向させれば、これら収束作用と発散作用による検
知電波への影響を相殺できる。
According to the second aspect, since the incident radio wave is diverged simultaneously with the convergence of the radiated radio wave, if two antenna devices are opposed to each other, the influence of the convergence action and the divergence action on the detected radio wave can be offset.

【0043】請求項3では、地上子と車上子との離隔距
離に妨げられないため、実用的な自動列車制御に役立た
せることができる。
According to the third aspect, since the distance between the ground child and the vehicle child is not hindered, it can be used for practical automatic train control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るアンテナ装置の一例を説明する断
面図
FIG. 1 is a cross-sectional view illustrating an example of an antenna device according to the present invention.

【図2】図1に示すアンテナ装置の平面図FIG. 2 is a plan view of the antenna device shown in FIG. 1;

【図3】図1に示す電波レンズの電波収束作用を説明す
る図
FIG. 3 is a view for explaining the radio wave convergence action of the radio wave lens shown in FIG. 1;

【図4】図1に示すアンテナ装置を2種類組み合わせた
一使用例を説明する図
FIG. 4 is a view for explaining one usage example in which two types of the antenna devices shown in FIG. 1 are combined;

【図5】本発明に係る別のアンテナ装置の一例を説明す
る断面図
FIG. 5 is a cross-sectional view illustrating an example of another antenna device according to the present invention.

【図6】図5に示すアンテナ装置の平面図FIG. 6 is a plan view of the antenna device shown in FIG. 5;

【図7】本発明に係る更に別のアンテナ装置の一例を説
明する断面図
FIG. 7 is a cross-sectional view illustrating an example of still another antenna device according to the present invention.

【図8】図7に示すアンテナ装置の平面図FIG. 8 is a plan view of the antenna device shown in FIG. 7;

【符号の説明】[Explanation of symbols]

1,100,200,300…アンテナ装置、10,2
10…平面アンテナ、11,311…基板、20,12
0,220,320…電波レンズ、21…曲面、22…
平面、30,330…箱体、31,41…凹部、32,
42…段部、40,240,340…上蓋。
1,100,200,300 ... antenna device, 10,2
10: Planar antenna, 11, 311: Substrate, 20, 12
0, 220, 320 ... radio wave lens, 21 ... curved surface, 22 ...
Plane, 30, 330 ... box, 31, 41 ... recess, 32,
42 ... step, 40, 240, 340 ... top lid.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 放射電波を発射し又は入射電波を受ける
ため、絶縁性の基板面に設けた平面アンテナと、 この平面アンテナの面上に形成した誘電体の電波レンズ
とからなるアンテナ装置。
An antenna device comprising: a planar antenna provided on an insulating substrate surface for emitting a radiated radio wave or receiving an incident radio wave; and a dielectric radio wave lens formed on the surface of the planar antenna.
【請求項2】 絶縁性の基板面に設けた放射電波の平面
アンテナ、及びこの平面アンテナの面上に形成した誘電
体の凸レンズ型電波レンズと、 絶縁性の基板面に設けた入射電波の平面アンテナ、及び
この平面アンテナの面上に形成した誘電体の凹レンズ型
電波レンズとからなるアンテナ装置。
2. A planar antenna for radiated radio waves provided on an insulative substrate surface, a dielectric convex lens type radio wave lens formed on the surface of the planar antenna, and a plane for incident radio waves provided on an insulative substrate surface. An antenna device comprising an antenna and a dielectric concave lens type radio wave lens formed on the surface of the planar antenna.
【請求項3】 請求項1又は請求項2記載のアンテナ装
置を地上子又は車上子に内蔵したものであることを特徴
とする自動列車制御装置。
3. An automatic train control device, wherein the antenna device according to claim 1 or 2 is built in a ground child or a vehicle child.
JP10341420A 1998-12-01 1998-12-01 Antenna system and automatic train controller Pending JP2000174543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10341420A JP2000174543A (en) 1998-12-01 1998-12-01 Antenna system and automatic train controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10341420A JP2000174543A (en) 1998-12-01 1998-12-01 Antenna system and automatic train controller

Publications (1)

Publication Number Publication Date
JP2000174543A true JP2000174543A (en) 2000-06-23

Family

ID=18345943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10341420A Pending JP2000174543A (en) 1998-12-01 1998-12-01 Antenna system and automatic train controller

Country Status (1)

Country Link
JP (1) JP2000174543A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189046A (en) * 2000-12-20 2002-07-05 Mitsubishi Electric Corp Measurement method for antenna
JP2003168920A (en) * 2001-11-29 2003-06-13 Nippon Telegr & Teleph Corp <Ntt> Millimeter wave wireless communication system package with aligned lens
JP2003315438A (en) * 2002-04-26 2003-11-06 Hitachi Ltd Radar sensor
JP2007518325A (en) * 2004-01-15 2007-07-05 エリクソン エービー Coating for microwave antenna
JP2007267217A (en) * 2006-03-29 2007-10-11 Fujitsu Component Ltd Antenna system
JP2008089614A (en) * 2007-12-27 2008-04-17 Hitachi Ltd Radar sensor
WO2008117664A1 (en) * 2007-03-26 2008-10-02 Hamamatsu Photonics K.K. Terahertz antenna module
JP2009044308A (en) * 2007-08-07 2009-02-26 Denso Wave Inc Rfid tag reader
JP2014134447A (en) * 2013-01-10 2014-07-24 Nippon Steel & Sumitomo Metal Microwave distance measurement apparatus
US9160055B2 (en) 2012-12-12 2015-10-13 Kabushiki Kaisha Toshiba Wireless device
US9178269B2 (en) 2011-07-13 2015-11-03 Kabushiki Kaisha Toshiba Wireless apparatus
US9184492B2 (en) 2010-09-24 2015-11-10 Kabushiki Kaisha Toshiba Radio device
JP2016121959A (en) * 2014-12-25 2016-07-07 株式会社日本自動車部品総合研究所 Radar device and cover member
JP2016125883A (en) * 2014-12-26 2016-07-11 株式会社日本自動車部品総合研究所 Rader system and cover member
WO2016136927A1 (en) * 2015-02-27 2016-09-01 古河電気工業株式会社 Antenna apparatus
JP2016219996A (en) * 2015-05-19 2016-12-22 パナソニックIpマネジメント株式会社 Antenna device, radio communication device, and radar device
US9543641B2 (en) 2011-07-13 2017-01-10 Kabushiki Kaisha Toshiba Wireless apparatus
WO2017199479A1 (en) * 2016-05-16 2017-11-23 パナソニックIpマネジメント株式会社 Antenna device, radio wave sensor, and bibcock device having same
JP2019508939A (en) * 2016-01-22 2019-03-28 ケーエムダブリュ・インコーポレーテッド Antenna integrated base station apparatus for mobile communication network and antenna fixed equipment
JP2020008474A (en) * 2018-07-10 2020-01-16 古河電気工業株式会社 Antenna device and radar apparatus
US10705347B2 (en) * 2018-05-30 2020-07-07 Apple Inc. Wafer-level high aspect ratio beam shaping
US11201669B2 (en) 2018-05-30 2021-12-14 Apple Inc. Systems and methods for adjusting movable lenses in directional free-space optical communication systems for portable electronic devices
US11303355B2 (en) 2018-05-30 2022-04-12 Apple Inc. Optical structures in directional free-space optical communication systems for portable electronic devices
US11549799B2 (en) 2019-07-01 2023-01-10 Apple Inc. Self-mixing interference device for sensing applications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262703A (en) * 1989-04-03 1990-10-25 Yamatake Honeywell Co Ltd Microstrip antenna provided with radome
JPH02288404A (en) * 1989-04-27 1990-11-28 Murata Mfg Co Ltd Antenna equipment
JPH07110375A (en) * 1993-10-13 1995-04-25 Opt Kk Object detection sensor using dielectric lens
JPH09199936A (en) * 1996-01-18 1997-07-31 Murata Mfg Co Ltd Dielectric lens device
JPH09311181A (en) * 1996-05-23 1997-12-02 Denso Corp Radar equipment for vehicle
JPH1070512A (en) * 1996-06-17 1998-03-10 Harness Sogo Gijutsu Kenkyusho:Kk Optical head for on vehicle optical beacon

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02262703A (en) * 1989-04-03 1990-10-25 Yamatake Honeywell Co Ltd Microstrip antenna provided with radome
JPH02288404A (en) * 1989-04-27 1990-11-28 Murata Mfg Co Ltd Antenna equipment
JPH07110375A (en) * 1993-10-13 1995-04-25 Opt Kk Object detection sensor using dielectric lens
JPH09199936A (en) * 1996-01-18 1997-07-31 Murata Mfg Co Ltd Dielectric lens device
JPH09311181A (en) * 1996-05-23 1997-12-02 Denso Corp Radar equipment for vehicle
JPH1070512A (en) * 1996-06-17 1998-03-10 Harness Sogo Gijutsu Kenkyusho:Kk Optical head for on vehicle optical beacon

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002189046A (en) * 2000-12-20 2002-07-05 Mitsubishi Electric Corp Measurement method for antenna
JP2003168920A (en) * 2001-11-29 2003-06-13 Nippon Telegr & Teleph Corp <Ntt> Millimeter wave wireless communication system package with aligned lens
JP2003315438A (en) * 2002-04-26 2003-11-06 Hitachi Ltd Radar sensor
JP2007518325A (en) * 2004-01-15 2007-07-05 エリクソン エービー Coating for microwave antenna
JP2007267217A (en) * 2006-03-29 2007-10-11 Fujitsu Component Ltd Antenna system
WO2008117664A1 (en) * 2007-03-26 2008-10-02 Hamamatsu Photonics K.K. Terahertz antenna module
US8294106B2 (en) 2007-03-26 2012-10-23 Hamamatsu Photonics K.K. Terahertz antenna module
JP2009044308A (en) * 2007-08-07 2009-02-26 Denso Wave Inc Rfid tag reader
JP2008089614A (en) * 2007-12-27 2008-04-17 Hitachi Ltd Radar sensor
US9184492B2 (en) 2010-09-24 2015-11-10 Kabushiki Kaisha Toshiba Radio device
US9543641B2 (en) 2011-07-13 2017-01-10 Kabushiki Kaisha Toshiba Wireless apparatus
US9178269B2 (en) 2011-07-13 2015-11-03 Kabushiki Kaisha Toshiba Wireless apparatus
US9160055B2 (en) 2012-12-12 2015-10-13 Kabushiki Kaisha Toshiba Wireless device
JP2014134447A (en) * 2013-01-10 2014-07-24 Nippon Steel & Sumitomo Metal Microwave distance measurement apparatus
JP2016121959A (en) * 2014-12-25 2016-07-07 株式会社日本自動車部品総合研究所 Radar device and cover member
JP2016125883A (en) * 2014-12-26 2016-07-11 株式会社日本自動車部品総合研究所 Rader system and cover member
US11637366B2 (en) 2014-12-26 2023-04-25 Denso Corporation Cover member having plurality of faces, and radar apparatus provided with the cover member
US10680318B2 (en) 2015-02-27 2020-06-09 Furukawa Electric Co., Ltd. Antenna apparatus
WO2016136927A1 (en) * 2015-02-27 2016-09-01 古河電気工業株式会社 Antenna apparatus
JP2016219996A (en) * 2015-05-19 2016-12-22 パナソニックIpマネジメント株式会社 Antenna device, radio communication device, and radar device
JP2019508939A (en) * 2016-01-22 2019-03-28 ケーエムダブリュ・インコーポレーテッド Antenna integrated base station apparatus for mobile communication network and antenna fixed equipment
JPWO2017199479A1 (en) * 2016-05-16 2019-03-28 パナソニックIpマネジメント株式会社 Antenna apparatus, radio wave sensor and water faucet apparatus provided with the same
WO2017199479A1 (en) * 2016-05-16 2017-11-23 パナソニックIpマネジメント株式会社 Antenna device, radio wave sensor, and bibcock device having same
US10705347B2 (en) * 2018-05-30 2020-07-07 Apple Inc. Wafer-level high aspect ratio beam shaping
US11201669B2 (en) 2018-05-30 2021-12-14 Apple Inc. Systems and methods for adjusting movable lenses in directional free-space optical communication systems for portable electronic devices
US11303355B2 (en) 2018-05-30 2022-04-12 Apple Inc. Optical structures in directional free-space optical communication systems for portable electronic devices
US11870492B2 (en) 2018-05-30 2024-01-09 Apple Inc. Optical structures in directional free-space optical communication systems for portable electronic devices
JP2020008474A (en) * 2018-07-10 2020-01-16 古河電気工業株式会社 Antenna device and radar apparatus
JP7145665B2 (en) 2018-07-10 2022-10-03 古河電気工業株式会社 Antenna device and radar device
US11549799B2 (en) 2019-07-01 2023-01-10 Apple Inc. Self-mixing interference device for sensing applications

Similar Documents

Publication Publication Date Title
JP2000174543A (en) Antenna system and automatic train controller
US6937184B2 (en) Millimeter wave radar
CN109478726B (en) Antenna and radar system including polarization rotation layer
KR102401876B1 (en) Adaptive polarimetric radar architecture for autonomous driving
US20180321367A1 (en) Waveguide device, slot array antenna, and radar, radar system, and wireless communication system including the slot array antenna
CA2350317C (en) Antenna apparatus and electronic toll collection system and electronic toll collection method using the same
US7109938B2 (en) Tapered slot feed for an automotive radar antenna
JP7283482B2 (en) Antenna module and vehicle
US7187334B2 (en) Patch array feed for an automotive radar antenna
JPH08250915A (en) Conductive-layer including glass for car
CN1140505A (en) Integrated retroreflective electronic display
CN101239604A (en) Electronic vehicle registration
JP7108930B2 (en) Antenna device and in-vehicle light device
CN105098378A (en) Radar antenna assembly
CN103579783B (en) Vehicle-mounted reading and writing device antenna
Wang et al. Low-profile antenna with elevated toroid-shaped radiation for on-road reader of RFID-enabled vehicle registration plate
JP3882373B2 (en) In-vehicle radar system antenna
KR101519875B1 (en) Microstrip patch array antenna with flat-top and low side lobe beam pattern
US11848695B2 (en) Systems and methods for mitigating multipath radio frequency interference
JP2000174531A (en) Antenna system and automatic train controller
GB2352334A (en) Conclealed slot antenna for vehicle
KR101833038B1 (en) A vehicle radar antenna system for preventing collision
Zalabsky et al. Omnidirectional Antenna for Smart Railway Crossings
PL184543B1 (en) Communication system employing a narro-flux coherent beam
KR102252950B1 (en) Wide-angle radome structure for having matching layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060829