JP2000136745A - Air-fuel ratio control device for engine - Google Patents

Air-fuel ratio control device for engine

Info

Publication number
JP2000136745A
JP2000136745A JP10313356A JP31335698A JP2000136745A JP 2000136745 A JP2000136745 A JP 2000136745A JP 10313356 A JP10313356 A JP 10313356A JP 31335698 A JP31335698 A JP 31335698A JP 2000136745 A JP2000136745 A JP 2000136745A
Authority
JP
Japan
Prior art keywords
air
amount
fuel ratio
fuel
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10313356A
Other languages
Japanese (ja)
Other versions
JP3725713B2 (en
Inventor
Tatsuji Miyata
達司 宮田
Ikurou Nozu
育朗 野津
Naoya Harayama
直也 原山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP31335698A priority Critical patent/JP3725713B2/en
Publication of JP2000136745A publication Critical patent/JP2000136745A/en
Application granted granted Critical
Publication of JP3725713B2 publication Critical patent/JP3725713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the control precision of an air-fuel ratio control device for an engine. SOLUTION: This device includes a mixture amount calculating means 51 for calculating a mixture amount Gm in response to an engine rotating speed Ne, a manifold pressure Pb and a manifold temperature Tb, a target air-fuel ratio calculating means 52 for calculating a target air-fuel ratio OBJ in response to an operated condition and a basic fuel injection amount calculating means 55 for calculating a basic fuel injection amount Gf-FF in response to the mixture amount Gm and the target air-fuel ratio OBJ.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エンジンの空燃比
制御装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an air-fuel ratio control device for an engine.

【0002】[0002]

【従来の技術】燃料としてCNG(圧縮天然ガス)等を
用いるエンジンにあっては、スロットルバルブより上流
側の吸気通路に気体燃料を供給して、燃料と吸気の混合
をはかるようになっている(例えば実開平7−1413
5号公報参照)。
2. Description of the Related Art In an engine using CNG (compressed natural gas) or the like as fuel, gaseous fuel is supplied to an intake passage upstream of a throttle valve to mix fuel and intake air. (For example, 7-1413
No. 5).

【0003】従来、この種のCNGエンジンの空燃比制
御装置は、ガソリンエンジンと同様に、エアフロメータ
を介して吸入空気量Gaを検出し、吸入空気量Gaとエン
ジン回転数Neから基本燃料噴射量を算出するようにな
っている。
Conventionally, this type of CNG engine air-fuel ratio control device detects an intake air amount Ga via an air flow meter, as in a gasoline engine, and calculates a basic fuel injection amount from the intake air amount Ga and the engine speed Ne. Is calculated.

【0004】しかし、大型エンジンの場合、大量の吸入
空気量Gaをエアフロメータを介して直接検出すること
が難しいため、スロットルバルブ開度とエンジン回転数
Neおよび吸気マニフォールド圧力等から算出するもの
がある。
However, in the case of a large engine, since it is difficult to directly detect a large amount of intake air Ga via an air flow meter, there is an engine which calculates the intake air amount Ga from the throttle valve opening, the engine speed Ne, the intake manifold pressure, and the like. .

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うな従来のCNGエンジンの空燃比制御装置にあって
は、気体燃料がスロットルバルブより上流側に供給され
るため、気体燃料を含む混合気の状態から吸気量を正確
に算出することが難しく、空燃比の制御精度を高められ
ないという問題点があった。
However, in such a conventional air-fuel ratio control device for a CNG engine, since the gaseous fuel is supplied to the upstream side of the throttle valve, the state of the air-fuel mixture containing the gaseous fuel is increased. It is difficult to accurately calculate the intake air amount from the engine, and the control accuracy of the air-fuel ratio cannot be improved.

【0006】本発明は上記の問題点を鑑みてなされたも
のであり、エンジンの空燃比制御装置において、制御精
度を高めることを目的とする。
The present invention has been made in view of the above problems, and has as its object to enhance control accuracy in an air-fuel ratio control device for an engine.

【0007】[0007]

【課題を解決するための手段】第1の発明は、吸気通路
のスロットルバルブより上流側に噴射される気体燃料量
を運転状態に応じて調節するエンジンの空燃比制御装置
に適用する。
The first invention is applied to an air-fuel ratio control device for an engine that adjusts the amount of gaseous fuel injected upstream of a throttle valve in an intake passage in accordance with an operation state.

【0008】そして、エンジン回転数Neを検出するエ
ンジン回転数検出手段と、スロットルバルブより下流側
のマニフォールド圧力Pbを検出するマニフォールド圧
力検出手段と、スロットルバルブより下流側のマニフォ
ールド温度Tbを検出するマニフォールド温度検出手段
と、エンジン回転数Neとマニフォールド圧力Pbおよ
びマニフォールド温度Tbに応じて混合気量Gmを算出す
る混合気量算出手段と、運転状態に応じて目標空燃比λ
OBJを算出する目標空燃比算出手段と、混合気量Gmと目
標空燃比λOBJに応じて燃料噴射量を算出する燃料噴射
量算出手段とを備えるものとした。
An engine speed detecting means for detecting the engine speed Ne, a manifold pressure detecting means for detecting a manifold pressure Pb downstream of the throttle valve, and a manifold for detecting a manifold temperature Tb downstream of the throttle valve. Temperature detection means, air-fuel mixture calculation means for calculating an air-fuel mixture Gm according to the engine speed Ne, the manifold pressure Pb and the manifold temperature Tb, and a target air-fuel ratio λ according to the operating state.
A target air-fuel ratio calculating means for calculating the OBJ and a fuel injection amount calculating means for calculating the fuel injection amount in accordance with the air-fuel mixture Gm and the target air-fuel ratio λOBJ are provided.

【0009】第2の発明は、第1の発明において、吸気
マニフォールド圧力Pbとエンジン回転数Neに応じて
混合気量補正係数K1を算出する混合気量補正係数算出
手段を備え、前記燃料噴射量算出手段は吸気マニフォー
ルド圧力Pbと吸気マニフォールド温度Tbおよび混合
気量補正係数K1に応じて吸入混合気量Gmを算出するも
のとした。
[0009] The second invention is the first invention, comprising a mixture amount correction coefficient calculating means for calculating the air-fuel mixture amount correction coefficient K 1 depending on the intake manifold pressure Pb and the engine speed Ne, the fuel injection the amount calculating means is assumed to calculate the intake mixture weight Gm in accordance with the intake manifold pressure Pb intake manifold temperature Tb and mixture amount correction coefficient K 1.

【0010】第3の発明は、第1または第2の発明にお
いて、混合気の空燃比を検出する空燃比検出手段と、混
合気の空燃比を目標空燃比λOBJに近づけるように燃料
噴射量を補正する空燃比補正量Δλを算出する空燃比補
正量算出手段と、空燃比補正量Δλに応じて吸入混合気
量学習値Gm_LNを算出する混合気量学習手段と、混合気
量Gmを吸入混合気量学習値Gm_LNに応じて補正する混
合気量補正手段とを備えるものとした。
[0010] In a third aspect based on the first or second aspect, the air-fuel ratio detecting means for detecting the air-fuel ratio of the air-fuel mixture and the fuel injection amount such that the air-fuel ratio of the air-fuel mixture approaches the target air-fuel ratio λOBJ. Air-fuel ratio correction amount calculating means for calculating an air-fuel ratio correction amount Δλ to be corrected; air-fuel ratio learning means for calculating an air-fuel ratio learning value Gm_LN according to the air-fuel ratio correction amount Δλ; It is provided with an air-fuel mixture correction means for correcting according to the air-flow learning value Gm_LN.

【0011】第4の発明は、吸気通路のスロットルバル
ブより上流側に噴射される気体燃料量を運転状態に応じ
て調節するエンジンの空燃比制御装置に適用する。
The fourth invention is applied to an air-fuel ratio control device for an engine that adjusts the amount of gaseous fuel injected upstream of a throttle valve in an intake passage in accordance with an operation state.

【0012】そして、エンジン回転数Neを検出するエ
ンジン回転数検出手段と、スロットルバルブより下流側
のマニフォールド圧力Pbを検出するマニフォールド圧
力検出手段と、スロットルバルブより下流側のマニフォ
ールド温度Tbを検出するマニフォールド温度検出手段
と、エンジン回転数Neとマニフォールド圧力Pbおよ
びマニフォールド温度Tbに応じて燃料を含まない吸入
空気量Gaを算出する吸入空気量算出手段と、運転状態
に応じて目標空燃比λOBJを算出する目標空燃比算出手
段と、吸入空気量Gaと目標空燃比λOBJに応じて燃料噴
射量を算出する燃料噴射量算出手段とを備えるものとし
た。
An engine speed detecting means for detecting an engine speed Ne, a manifold pressure detecting means for detecting a manifold pressure Pb downstream of the throttle valve, and a manifold for detecting a manifold temperature Tb downstream of the throttle valve. Temperature detection means, intake air amount calculation means for calculating an intake air amount Ga containing no fuel according to the engine speed Ne, the manifold pressure Pb and the manifold temperature Tb, and a target air-fuel ratio λOBJ according to the operating state. A target air-fuel ratio calculating means and a fuel injection amount calculating means for calculating a fuel injection amount according to the intake air amount Ga and the target air-fuel ratio λOBJ are provided.

【0013】第5の発明は、第1の発明において、吸気
マニフォールド圧力Pbとエンジン回転数Neに応じて
吸入空気量補正係数K1を算出する吸入空気量補正係数
算出手段を備え、前記燃料噴射量算出手段は吸気マニフ
ォールド圧力Pbと吸気マニフォールド温度Tbおよび
吸入空気量補正係数K1に応じて吸入空気量Gaを算出す
るものとした。
[0013] The fifth invention is the first invention, comprises an intake air amount correction coefficient calculating means for calculating the intake air amount correction coefficient K 1 depending on the intake manifold pressure Pb and the engine speed Ne, the fuel injection the amount calculating means is assumed to calculate the intake air amount Ga in accordance with the intake manifold pressure Pb intake manifold temperature Tb and the intake air amount correction coefficient K 1.

【0014】第6の発明は、第1または第2の発明にお
いて、混合気の空燃比を検出する空燃比検出手段と、混
合気の空燃比を目標空燃比λOBJに近づけるように燃料
噴射量を補正する空燃比補正量Δλを算出する空燃比補
正量算出手段と、空燃比補正量Δλに応じて吸入空気量
学習値Ga_LNを算出する吸入空気量学習手段と、吸入空
気量Gaを吸入空気量学習値Ga_LNに応じて補正する吸
入空気量補正手段とを備えるものとした。
In a sixth aspect based on the first or second aspect, the air-fuel ratio detecting means for detecting the air-fuel ratio of the air-fuel mixture and the fuel injection amount are adjusted so that the air-fuel ratio of the air-fuel mixture approaches the target air-fuel ratio λOBJ. An air-fuel ratio correction amount calculating means for calculating an air-fuel ratio correction amount Δλ to be corrected, an intake air amount learning means for calculating an intake air amount learning value Ga_LN according to the air-fuel ratio correction amount Δλ, and an intake air amount Ga Intake air amount correction means for correcting according to the learning value Ga_LN is provided.

【0015】[0015]

【発明の作用および効果】第1の発明において、エンジ
ン回転数Neとマニフォールド圧力Pbおよびマニフォ
ールド温度Tbに応じて気体燃料を含む混合気量Gmを正
確に算出し、空燃比の制御精度を高められる。この結
果、排気の浄化がはかれるとともに、エンジンの出力向
上、燃費の低減がはかれる。
According to the first aspect of the present invention, the air-fuel ratio control accuracy can be improved by accurately calculating the mixture amount Gm containing gaseous fuel in accordance with the engine speed Ne, the manifold pressure Pb and the manifold temperature Tb. . As a result, the exhaust gas can be purified, the output of the engine can be improved, and the fuel consumption can be reduced.

【0016】第2の発明において、混合気量補正係数K
1を用いて混合気量Gmを算出する精度を高められる。
In the second invention, the air-fuel mixture correction coefficient K
The accuracy of calculating the mixed gas amount Gm by using 1 can be improved.

【0017】第3の発明において、空燃比補正量Δλに
応じて混合気量Gmを学習することにより、センサ類の
バラツキ等に起因して混合気量Gmの算出精度が悪化す
ることを防止し、空燃比フィードバック制御の応答性を
維持できる。
In the third aspect, by learning the mixture amount Gm according to the air-fuel ratio correction amount Δλ, it is possible to prevent the calculation accuracy of the mixture amount Gm from deteriorating due to variations in sensors and the like. In addition, the responsiveness of the air-fuel ratio feedback control can be maintained.

【0018】第4の発明において、エンジン回転数Ne
とマニフォールド圧力Pbおよびマニフォールド温度Tb
に応じて気体燃料を含まない吸入空気量Gaを正確に算
出し、空燃比の制御精度を高められる。この結果、排気
の浄化がはかれるとともに、エンジンの出力向上、燃費
の低減がはかれる。
In the fourth invention, the engine speed Ne
, Manifold pressure Pb and manifold temperature Tb
Thus, the intake air amount Ga not including the gaseous fuel can be accurately calculated, and the control accuracy of the air-fuel ratio can be improved. As a result, the exhaust gas can be purified, the output of the engine can be improved, and the fuel consumption can be reduced.

【0019】第5の発明において、吸入空気量補正係数
1を用いて吸入空気量Gaを算出する精度を高められ
る。
[0019] In the fifth invention, it enhances the accuracy of calculating the intake air amount Ga with the intake air amount correction coefficient K 1.

【0020】第6の発明において、空燃比補正量Δλに
応じて吸入空気量Gaを学習することにより、センサ類
のバラツキ等に起因して吸入空気量Gaの算出精度が悪
化することを防止し、空燃比フィードバック制御の応答
性を維持できる。
In the sixth aspect, learning of the intake air amount Ga in accordance with the air-fuel ratio correction amount Δλ prevents the calculation accuracy of the intake air amount Ga from being deteriorated due to variations in sensors and the like. In addition, the responsiveness of the air-fuel ratio feedback control can be maintained.

【0021】[0021]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0022】図1に示すように、エンジン1は各シリン
ダの吸気弁が開かれるのに伴って吸気通路2から各シリ
ンダに混合気を吸入し、この混合気をピストンで圧縮し
て、点火プラグで着火燃焼させ、排気弁が開かれるのに
伴って排気が排気通路3に排出され、これらの各行程が
連続して繰り返される。排気通路3の途中には触媒31
が設置され、排気を浄化するようになっている。
As shown in FIG. 1, the engine 1 draws an air-fuel mixture into each cylinder from an intake passage 2 as an intake valve of each cylinder is opened, compresses the air-fuel mixture with a piston, and generates a spark plug. And the exhaust gas is discharged to the exhaust passage 3 as the exhaust valve is opened, and these steps are repeated continuously. In the middle of the exhaust passage 3, a catalyst 31 is provided.
Is installed to purify the exhaust.

【0023】図において、21は吸気を吸気通路2に取
り入れるエアクリーナである。エアクリーナ21から吸
気通路2に取り入れられた吸気は、ターボチャージャの
コンプレッサ22、インタークーラ23、スロットルバ
ルブ24等を通過して各シリンダに分配される。吸気通
路2のスロットルバルブ24より上流側には、燃料を噴
射する燃料噴射ノズル4が設けられ、燃料の輸送経路を
長くとることにより吸気と燃料の混合が十分に行われる
ようになっている。
In FIG. 1, reference numeral 21 denotes an air cleaner for taking intake air into the intake passage 2. The intake air taken into the intake passage 2 from the air cleaner 21 passes through the compressor 22, the intercooler 23, the throttle valve 24, etc. of the turbocharger and is distributed to each cylinder. A fuel injection nozzle 4 for injecting fuel is provided on the upstream side of the throttle valve 24 in the intake passage 2, and the intake path and the fuel are sufficiently mixed by extending the fuel transport path.

【0024】図において、10は燃料供給源として高圧
ガス燃料(CNG等)が充填される燃料ボンベである。
燃料ボンベ10に貯蔵されるガス燃料は、燃料供給通路
9を通って燃料噴射ノズル4に供給される。燃料供給通
路9の途中には、手動式遮断バルブ11、燃料圧センサ
12、電磁式遮断バルブ13、燃料圧を所定値まで減圧
するガスレギュレータ14、燃料温度センサ15、燃料
噴射ノズル4から噴射される燃料量を調節するガス制御
バルブ17が介装される。
In FIG. 1, reference numeral 10 denotes a fuel cylinder filled with high-pressure gas fuel (CNG or the like) as a fuel supply source.
The gas fuel stored in the fuel cylinder 10 is supplied to the fuel injection nozzle 4 through the fuel supply passage 9. In the middle of the fuel supply passage 9, fuel is injected from a manual shutoff valve 11, a fuel pressure sensor 12, an electromagnetic shutoff valve 13, a gas regulator 14 for reducing the fuel pressure to a predetermined value, a fuel temperature sensor 15, and a fuel injection nozzle 4. A gas control valve 17 for adjusting the amount of fuel to be supplied is interposed.

【0025】図において、5はガス制御バルブ17の開
度を調節して燃料噴射ノズル4から噴射される燃料量を
制御するコントロールユニットである。コントロールユ
ニット5は、エンジン冷却水温度を検出する冷却水温セ
ンサ41と、クランク角センサ42で検出されるエンジ
ン回転数Ne、スロットルバルブ24より下流側の吸気
マニフォールド圧力Pbを検出する吸気圧センサ43、
スロットルバルブ24より下流側の吸気マニフォールド
温度Tbを検出する吸気温センサ44、排気中の酸素濃
度を検出するO2センサ32からの信号を入力し、混合
気が目標空燃比λOBJとなるようにガス制御バルブ17
の駆動パルス幅Duty_outを算出する。ガス制御バルブ1
7は駆動パルス幅Duty_outに応じてその開度が変化して
燃料噴射ノズル4から噴射される燃料量を調節する。
In the figure, reference numeral 5 denotes a control unit for controlling the amount of fuel injected from the fuel injection nozzle 4 by adjusting the opening of the gas control valve 17. The control unit 5 includes a cooling water temperature sensor 41 for detecting an engine cooling water temperature, an engine speed Ne detected by a crank angle sensor 42, an intake pressure sensor 43 for detecting an intake manifold pressure Pb downstream of the throttle valve 24,
Signals are input from an intake air temperature sensor 44 for detecting the intake manifold temperature Tb downstream of the throttle valve 24 and an O 2 sensor 32 for detecting the oxygen concentration in the exhaust gas, and the gas is supplied so that the mixture becomes the target air-fuel ratio λOBJ. Control valve 17
Is calculated. Gas control valve 1
Numeral 7 changes the opening degree according to the drive pulse width Duty_out to adjust the amount of fuel injected from the fuel injection nozzle 4.

【0026】ところで、従来の小型エンジンの場合、吸
入空気量を直接検出するエアフロメータを備えている
が、大型エンジン1の場合、大量の吸入空気量をエアフ
ロメータを介して直接検出することが難しい。
By the way, in the case of a conventional small engine, an air flow meter for directly detecting the intake air amount is provided, but in the case of the large engine 1, it is difficult to directly detect a large amount of intake air via the air flow meter. .

【0027】そこで、本実施の形態ではスロットルバル
ブ24より下流側の吸気マニフォールド圧力Pbと吸気
マニフォールド温度Tbおよびエンジン回転数Neに応
じて吸入混合気量Gmを算出する構成とする。
Therefore, in the present embodiment, the intake air-fuel mixture amount Gm is calculated in accordance with the intake manifold pressure Pb, the intake manifold temperature Tb, and the engine speed Ne downstream of the throttle valve 24.

【0028】コントロールユニット5は、図2のブロッ
ク図に示すように、吸気マニフォールド圧力Pbと吸気
マニフォールド温度Tbおよびエンジン回転数Neに応
じて吸入混合気量Gmを算出する吸入混合気量算出手段
51と、負荷信号として吸気マニフォールド圧力Pbと
エンジン回転数Neに応じて目標空燃比λOBJを算出す
る目標空燃比算出手段52と、エンジン冷却水温に応じ
て目標空燃比の補正値マップから検索して算出する手段
49と、この補正値によりエンジン冷却水温に応じて目
標空燃比を補正する手段53と、吸入混合気量Gmと目
標空燃比λOBJに応じて基本燃料噴射量Gf_FFを算出す
る基本燃料噴射量算出手段55と、基本燃料噴射量Gf_
FFをテーブルに基づいてガス制御バルブ17の駆動パル
ス幅Duty_ffに変換する駆動パルス幅算出手段56とを
備える。圧縮天然ガス(CNG)を燃料として用いる場
合、理論空燃比を16.8とすると、基本燃料噴射量Gf
_FFは、次式で計算される。
As shown in the block diagram of FIG. 2, the control unit 5 calculates the intake air-fuel mixture amount Gm according to the intake manifold pressure Pb, the intake manifold temperature Tb, and the engine speed Ne. And a target air-fuel ratio calculating means 52 for calculating a target air-fuel ratio λOBJ according to the intake manifold pressure Pb and the engine speed Ne as load signals, and a target air-fuel ratio correction value map according to the engine coolant temperature. Means 49, means 53 for correcting the target air-fuel ratio according to the engine cooling water temperature based on the correction value, and basic fuel injection amount Gf_FF for calculating the basic fuel injection amount Gf_FF according to the intake air-fuel mixture Gm and the target air-fuel ratio λOBJ. The calculating means 55 and the basic fuel injection amount Gf_
A drive pulse width calculating means 56 for converting FF into a drive pulse width Duty_ff of the gas control valve 17 based on a table. In the case of using compressed natural gas (CNG) as fuel, assuming that the stoichiometric air-fuel ratio is 16.8, the basic fuel injection amount Gf
_FF is calculated by the following equation.

【0029】 Gf_FF=Gm/(16.8×λOBJ+1) …(1) なお、液化ガス(LPG)を燃料として用いる場合、理論
空燃比を15.3とすると、基本燃料噴射量Gf_FFは、
次式で計算される。
Gf_FF = Gm / (16.8 × λOBJ + 1) (1) When liquefied gas (LPG) is used as fuel, if the stoichiometric air-fuel ratio is 15.3, the basic fuel injection amount Gf_FF is
It is calculated by the following equation.

【0030】 Gf_FF=Gm/(15.3×λOBJ+1) …(2) そして O2センサ32からの信号をλ値に変換する手
段54と、目標空燃比λOBJに対する検出された空燃比
λとの誤差を算出する手段57と、この誤差に応じて基
本燃料量補正量ΔλをPID演算により求める基本燃料
量補正量算出手段58と、基本燃料量補正量Δλをテー
ブルに基づいてガス制御バルブ17に変換する駆動パル
ス幅補正量算出手段59と、駆動パルス幅補正量Duty_F
B_Rateにより駆動パルス幅Duty_ffを補正して燃料噴射
弁駆動手段50への出力Duty_outを次式で算出する手段
60を備える。
Gf_FF = Gm / (15.3 × λOBJ + 1) (2) Then, a means 54 for converting the signal from the O 2 sensor 32 into a λ value, and an error between the target air-fuel ratio λOBJ and the detected air-fuel ratio λ , A basic fuel amount correction amount calculating means 58 for obtaining a basic fuel amount correction amount Δλ by PID calculation according to the error, and converting the basic fuel amount correction amount Δλ to the gas control valve 17 based on a table. Drive pulse width correction amount calculating means 59, and the drive pulse width correction amount Duty_F
There is provided a means 60 for correcting the drive pulse width Duty_ff by B_Rate and calculating the output Duty_out to the fuel injector driving means 50 by the following equation.

【0031】 Duty_out=(1+Duty_FB_Rate/100)×Duty_ff …(3) 図3は吸入混合気量Gmを算出するロジックを示すブロ
ック図である。これについて説明すると、吸気マニフォ
ールド圧力Pbとエンジン回転数Neに応じて混合気量
補正係数K1をマップにより検索して算出する混合気量
補正係数算出手段61と、吸気マニフォールド圧力Pb
と吸気マニフォールド温度Tbおよび混合気量補正係数
1に応じて吸入混合気量推定値Gm‘を次式で算出する
吸入混合気量推定値算出手段62とを備える。
Duty_out = (1 + Duty_FB_Rate / 100) × Duty_ff (3) FIG. 3 is a block diagram showing a logic for calculating the intake air-fuel mixture Gm. When this is described, the air-fuel mixture amount correction coefficient calculating means 61 for calculating by searching a map for the air-fuel mixture amount correction coefficient K 1 depending on the intake manifold pressure Pb and the engine speed Ne, the intake manifold pressure Pb
And a intake manifold temperature Tb and mixture weight corrected intake mixture estimated value Gm 'in accordance with the coefficient K 1 calculated by the following equation intake mixture amount estimation value calculating means 62 and.

【0032】 Gm‘= K1×Pb×Ne/(Tb+273.15) …(4) ところで、こうして算出される吸入混合気量推定値Gm
‘は、吸気圧センサ43、吸気温センサ44のバラツキ
等に起因して算出精度が悪化すると、駆動パルス幅補正
量Duty_FB_Rateの値が大きくなってしまい、空燃比フィ
ードバック制御の応答性が悪化する。
Gm ′ = K 1 × Pb × Ne / (Tb + 273.15) (4) By the way, the estimated intake air-fuel mixture amount Gm calculated in this way.
When the calculation accuracy is deteriorated due to variations in the intake pressure sensor 43 and the intake air temperature sensor 44, the value of the drive pulse width correction amount Duty_FB_Rate increases, and the responsiveness of the air-fuel ratio feedback control deteriorates.

【0033】そこで、空燃比補正量Δλに応じて混合気
量Gmを学習するため、吸気マニフォールド圧力Pbと
エンジン回転数Neに応じて吸入混合気量学習値Gm_LN
を記憶するマップを設定し、駆動パルス幅補正量Duty_F
B_Rateに応じて吸入混合気量学習値Gm_LNを算出し、こ
の吸入混合気量学習値Gm_LNに応じて吸入混合気量推定
値Gm‘を補正する構成とする。
Therefore, in order to learn the air-fuel mixture amount Gm according to the air-fuel ratio correction amount Δλ, the intake air-fuel mixture learning value Gm_LN according to the intake manifold pressure Pb and the engine speed Ne.
Drive pulse width correction amount Duty_F
The intake air-fuel mixture learning value Gm_LN is calculated according to B_Rate, and the intake air-fuel mixture estimated value Gm ′ is corrected according to the intake air-fuel mixture learning value Gm_LN.

【0034】具体的には図3に示すように、空燃比フィ
ードバック制御中において、エンジン1の燃焼状態が安
定する所定の条件が成立したときに吸入混合気量Gmの
学習実行条件を判定する学習実行条件判定手段63と、
学習の許可時に駆動パルス幅補正量Duty_FB_Rateに応じ
て吸入混合気量学習値Gm_の補正格子点値を算出する補
正格子点値学習値算出手段64とを備える。一つの格子
点学習値Gm_LEARN(Ne(I),Pb(J))は、K4を重み係数、
理論空燃比を16.8とすると、駆動パルス幅補正量Dut
y_FB_Rate、基本燃料噴射量Gf_FF、目標空燃比λOBJに
応じて次式で計算される。
More specifically, as shown in FIG. 3, during the air-fuel ratio feedback control, when a predetermined condition for stabilizing the combustion state of the engine 1 is satisfied, a learning determination condition for learning the intake air-fuel mixture Gm is determined. Execution condition determining means 63;
And a correction grid point value learning value calculation means 64 for calculating a correction grid point value of the intake air-fuel mixture learning value Gm_ according to the drive pulse width correction amount Duty_FB_Rate when the learning is permitted. One grid point learning value Gm_LEARN (Ne (I), Pb (J)) is obtained by setting K 4 to a weighting factor,
Assuming that the stoichiometric air-fuel ratio is 16.8, the drive pulse width correction amount Dut
It is calculated according to the following equation according to y_FB_Rate, basic fuel injection amount Gf_FF, and target air-fuel ratio λOBJ.

【0035】 Gm_LEARN(Ne(I),Pb(J))=Gm_LEARN(Ne(I),Pb(J))×(1−K4)+Gf_FF×λOBJ ×(Duty_FB_Rate/100)×16.8×K4 …(5) こうして他の三格子点も同様に計算され、算出された4
つのGm_LEARN(Ne(I),Pb(J)),(Ne(I+1),Pb(J)),(Ne
(I),Pb(J+1)),(Ne(I+1),Pb(J+1))を更新する。ここ
では重み係数K4を例えば1/8とするが、重み係数K4
を適度に大きくすることにより、オーバーシュートを抑
えて制御応答性を高められる。
Gm_LEARN (Ne (I), Pb (J)) = Gm_LEARN (Ne (I), Pb (J)) × (1−K 4 ) + Gf_FF × λOBJ × (Duty_FB_Rate / 100) × 16.8 × K 4 (5) Thus, the other three lattice points are similarly calculated, and the calculated 4
Gm_LEARN (Ne (I), Pb (J)), (Ne (I + 1), Pb (J)), (Ne
(I), Pb (J + 1)) and (Ne (I + 1), Pb (J + 1)) are updated. Here, the weight coefficient K 4 is set to, for example, 8, but the weight coefficient K 4
Is appropriately increased, overshoot can be suppressed and control responsiveness can be improved.

【0036】そして、マップに記憶された補正格子点値
に応じて吸気マニフォールド圧力Pbとエンジン回転数
Neに応じて吸入混合気量学習値Gm_LNを面補間により
算出する手段65と、吸入混合気量学習値Gm_LNを制限
処理する手段66と、吸入混合気量学習値Gm_LNを吸入
混合気量推定値Gm‘に加算して吸入混合気量Gmを算出
する手段67とを備える。
Means 65 for calculating the intake manifold pressure Pb according to the corrected grid point value stored in the map and the intake air-fuel mixture learning value Gm_LN according to the engine speed Ne by surface interpolation; There is provided means 66 for restricting the learning value Gm_LN, and means 67 for calculating the intake air-fuel mixture Gm by adding the intake air-fuel mixture learning value Gm_LN to the estimated intake air-fuel mixture Gm '.

【0037】以上のように構成され、エンジン回転数N
eとマニフォールド圧力Pbとマニフォールド温度Tbお
よび混合気量補正係数K1に応じて気体燃料を含む混合
気量Gmを算出することにより、空燃比の制御精度を高
められる。この結果、排気の浄化がはかれるとともに、
エンジンの出力向上、燃費の低減がはかれる。
With the above configuration, the engine speed N
by calculating the air-fuel mixture amount Gm containing gaseous fuel in response to e and manifold pressure Pb and the manifold temperature Tb and mixture amount correction coefficient K 1, it enhances the control accuracy of the air-fuel ratio. As a result, while purifying the exhaust,
The engine output is improved and fuel consumption is reduced.

【0038】そして、吸入混合気量学習値Gm_LNを吸入
混合気量推定値Gm‘に加算して吸入混合気量Gmを算出
して、空燃比補正量Δλに応じて混合気量Gmを学習す
ることにより、吸気圧センサ43、吸気温センサ44の
バラツキ等に起因して算出精度が悪化することを回避
し、駆動パルス幅補正量Duty_FB_Rateの値を小さくし、
空燃比フィードバック制御の応答性を維持できる。
Then, the intake air-fuel mixture learning value Gm_LN is added to the intake air-fuel mixture estimated value Gm ′ to calculate the intake air-fuel mixture Gm, and the air-fuel mixture Gm is learned according to the air-fuel ratio correction amount Δλ. By doing so, it is possible to avoid the calculation accuracy from deteriorating due to variations in the intake pressure sensor 43 and the intake temperature sensor 44, and reduce the value of the drive pulse width correction amount Duty_FB_Rate,
The responsiveness of the air-fuel ratio feedback control can be maintained.

【0039】次に他の実施の形態について説明する。本
実施の形態ではスロットルバルブ24より下流側の吸気
マニフォールド圧力Pbと吸気マニフォールド温度Tb
およびエンジン回転数Neに応じて吸入空気量Gaを算
出する構成とする。
Next, another embodiment will be described. In the present embodiment, the intake manifold pressure Pb and the intake manifold temperature Tb downstream of the throttle valve 24 are provided.
And the intake air amount Ga is calculated in accordance with the engine speed Ne.

【0040】コントロールユニット5は、図4のブロッ
ク図に示すように、吸気マニフォールド圧力Pbと吸気
マニフォールド温度Tbおよびエンジン回転数Neに応
じて吸入空気量Gaを算出する吸入空気量算出手段71
と、負荷信号として吸気マニフォールド圧力Pbとエン
ジン回転数Neに応じて目標空燃比λOBJを算出する目
標空燃比算出手段72と、吸入空気量Gaと目標空燃比
λOBJに応じて基本燃料噴射量Gf_FFを算出する基本燃
料噴射量算出手段75と、基本燃料噴射量Gf_FFをテー
ブルに基づいてガス制御バルブ17の駆動パルス幅Duty
_ffに変換する駆動パルス幅算出手段76とを備える。
圧縮天然ガス(CNG)を燃料として用いる場合、理論空
燃比を16.8とすると、基本燃料噴射量Gf_FFは、次
式で計算される。
As shown in the block diagram of FIG. 4, the control unit 5 calculates the intake air amount Ga according to the intake manifold pressure Pb, the intake manifold temperature Tb, and the engine speed Ne.
And a target air-fuel ratio calculating means 72 for calculating a target air-fuel ratio λOBJ according to the intake manifold pressure Pb and the engine speed Ne as load signals, and a basic fuel injection amount Gf_FF according to the intake air amount Ga and the target air-fuel ratio λOBJ. Based on the table, the basic fuel injection amount calculating means 75 for calculating the basic fuel injection amount calculating means 75 and the driving pulse width Duty of the gas control valve 17 based on the table.
_ff, a driving pulse width calculating means 76 for converting the driving pulse width into _ff.
When using compressed natural gas (CNG) as fuel, assuming a stoichiometric air-fuel ratio of 16.8, the basic fuel injection amount Gf_FF is calculated by the following equation.

【0041】 Gf_FF=Ga/(16.8×λOBJ) …(6) なお、液化ガス(LPG)を燃料として用いる場合、理論
空燃比を15.3とすると、基本燃料噴射量Gf_FFは、
次式で計算される。
Gf_FF = Ga / (16.8 × λOBJ) (6) When liquefied gas (LPG) is used as fuel, if the stoichiometric air-fuel ratio is 15.3, the basic fuel injection amount Gf_FF is
It is calculated by the following equation.

【0042】 Gf_FF=Ga/(15.3×λOBJ) …(7) そして O2センサ32からの信号をλ値に変換する手
段74と、目標空燃比λOBJに対する検出された空燃比
λとの誤差を算出する手段77と、この誤差に応じて基
本燃料量補正量ΔλをPID演算により求める基本燃料
量補正量算出手段78と、基本燃料量補正量Δλをテー
ブルに基づいてガス制御バルブ17に変換する駆動パル
ス幅補正量算出手段79と、駆動パルス幅補正量Duty_F
B_Rateにより駆動パルス幅Duty_ffを補正して燃料噴射
弁駆動手段70への出力Duty_outを次式で算出する手段
80を備える。
Gf_FF = Ga / (15.3 × λOBJ) (7) Then, a means 74 for converting the signal from the O 2 sensor 32 into a λ value and an error between the target air-fuel ratio λOBJ and the detected air-fuel ratio λ 77, a basic fuel amount correction amount Δλ for obtaining a basic fuel amount correction amount Δλ by PID calculation in accordance with the error, and a basic fuel amount correction amount Δλ converted to the gas control valve 17 based on a table. Drive pulse width correction amount calculating means 79, and a drive pulse width correction amount Duty_F
There is provided a means 80 for correcting the drive pulse width Duty_ff by B_Rate and calculating the output Duty_out to the fuel injector driving means 70 by the following equation.

【0043】 Duty_out=(1+Duty_FB_Rate/100)×Duty_ff …(8) 図5は吸入空気量Gaを算出するロジックを示すブロッ
ク図である。これについて説明すると、吸気マニフォー
ルド圧力Pbとエンジン回転数Neに応じて吸入空気量
補正係数K1をマップにより検索して算出する吸入空気
量補正係数算出手段81と、吸気マニフォールド圧力P
bと吸気マニフォールド温度Tbおよび吸入空気量補正
係数K1に応じて吸入空気量推定値Ga‘を次式で算出す
る吸入空気量推定値算出手段82とを備える。
Duty_out = (1 + Duty_FB_Rate / 100) × Duty_ff (8) FIG. 5 is a block diagram showing a logic for calculating the intake air amount Ga. When this is described, and the intake air amount correction coefficient calculating means 81 for calculating by searching a map for intake air amount correction coefficient K 1 depending on the intake manifold pressure Pb and the engine speed Ne, the intake manifold pressure P
b and the intake manifold temperature Tb and the intake air quantity estimation value Ga according to the intake air amount correction coefficient K 1 'and a intake air quantity estimation value calculating means 82 for calculating the following equation.

【0044】 Ga‘= K1×Pb×Ne/(Tb+273.15) …(9) ところで、こうして算出される吸入空気量推定値Ga
‘は、吸気圧センサ43、吸気温センサ44のバラツキ
等に起因して算出精度が悪化すると、駆動パルス幅補正
量Duty_FB_Rateの値が大きくなってしまい、空燃比フィ
ードバック制御の応答性が悪化する。
Ga ′ = K 1 × Pb × Ne / (Tb + 273.15) (9) By the way, the intake air estimated value Ga calculated in this way.
When the calculation accuracy is deteriorated due to variations in the intake pressure sensor 43 and the intake air temperature sensor 44, the value of the drive pulse width correction amount Duty_FB_Rate increases, and the responsiveness of the air-fuel ratio feedback control deteriorates.

【0045】そこで、空燃比補正量Δλに応じて吸入空
気量Gaを学習するため、吸気マニフォールド圧力Pb
とエンジン回転数Neに応じて吸入空気量学習値Ga_LN
を記憶するマップを設定し、駆動パルス幅補正量Duty_F
B_Rateに応じて吸入空気量学習値Ga_LNを算出し、この
吸入空気量学習値Ga_LNに応じて吸入空気量推定値Ga
‘を補正する構成とする。
Therefore, in order to learn the intake air amount Ga according to the air-fuel ratio correction amount Δλ, the intake manifold pressure Pb
Learning value Ga_LN according to the engine speed Ne and the engine speed Ne.
Drive pulse width correction amount Duty_F
The intake air amount learning value Ga_LN is calculated according to B_Rate, and the intake air amount estimation value Ga is calculated according to the intake air amount learning value Ga_LN.
'Is corrected.

【0046】具体的には図5に示すように、空燃比フィ
ードバック制御中において、エンジン1の燃焼状態が安
定する所定の条件が成立したときに吸入空気量Gaの学
習実行条件を判定する学習実行条件判定手段83と、学
習の許可時に駆動パルス幅補正量Duty_FB_Rateに応じて
吸入空気量学習値Ga_の補正格子点値を算出する補正格
子点値学習値算出手段84とを備える。一つの格子点学
習値Ga_LEARN(Ne(I),Pb(J))は、K4を重み係数、理論
空燃比を16.8とすると、駆動パルス幅補正量Duty_FB
_Rate、基本燃料噴射量Gf_FF、目標空燃比λOBJに応じ
て次式で計算される。
Specifically, as shown in FIG. 5, during the air-fuel ratio feedback control, when a predetermined condition for stabilizing the combustion state of the engine 1 is satisfied, a learning execution condition for determining a learning execution condition for the intake air amount Ga is determined. A condition determining unit 83 and a corrected grid point value learning value calculating unit 84 that calculates a corrected grid point value of the intake air amount learning value Ga_ according to the drive pulse width correction amount Duty_FB_Rate when the learning is permitted. Assuming that K 4 is a weight coefficient and the stoichiometric air-fuel ratio is 16.8, the drive pulse width correction amount Duty_FB is one lattice point learning value Ga_LEARN (Ne (I), Pb (J)).
_Rate, the basic fuel injection amount Gf_FF, and the target air-fuel ratio λOBJ are calculated by the following equations.

【0047】 Ga_LEARN(Ne(I),Pb(J))=Ga_LEARN(Ne(I),Pb(J))×(1−K4)+Gf_FF×λOBJ ×(Duty_FB_Rate/100)×16.8×K4 …(10) こうして他の三格子点も同様に計算され、算出された4
つのGa_LEARN(Ne(I),Pb(J)),(Ne(I+1),Pb(J)),(Ne
(I),Pb(J+1)),(Ne(I+1),Pb(J+1))を更新する。
Ga_LEARN (Ne (I), Pb (J)) = Ga_LEARN (Ne (I), Pb (J)) × (1−K 4 ) + Gf_FF × λOBJ × (Duty_FB_Rate / 100) × 16.8 × K 4 (10) In this way, the other three lattice points are similarly calculated, and the calculated 4
Ga_LEARN (Ne (I), Pb (J)), (Ne (I + 1), Pb (J)), (Ne
(I), Pb (J + 1)) and (Ne (I + 1), Pb (J + 1)) are updated.

【0048】そして、マップに記憶された補正格子点値
に応じて吸気マニフォールド圧力Pbとエンジン回転数
Neに応じて吸入空気量学習値Ga_LNを面補間により算
出する手段85と、吸入空気量学習値Ga_LNを制限処理
する手段86と、吸入空気量学習値Ga_LNを吸入空気量
推定値Ga‘に加算して吸入空気量Gaを算出する手段8
7とを備える。
Means 85 for calculating the intake manifold pressure Pb according to the corrected grid point value stored in the map and the intake air amount learning value Ga_LN according to the engine speed Ne by surface interpolation; Means 86 for limiting processing of Ga_LN, and means 8 for calculating intake air amount Ga by adding intake air amount learning value Ga_LN to intake air amount estimation value Ga ′.
7 is provided.

【0049】以上のように構成され、エンジン回転数N
eとマニフォールド圧力Pbとマニフォールド温度Tbお
よび吸入空気量補正係数K1に応じて気体燃料を含む吸
入空気量Gaを算出することにより、空燃比の制御精度
を高められる。この結果、排気の浄化がはかれるととも
に、エンジンの出力向上、燃費の低減がはかれる。
The engine rotation speed N is constructed as described above.
by calculating the intake air amount Ga containing gaseous fuel in response to e and manifold pressure Pb and the manifold temperature Tb and the intake air amount correction coefficient K 1, it enhances the control accuracy of the air-fuel ratio. As a result, the exhaust gas can be purified, the output of the engine can be improved, and the fuel consumption can be reduced.

【0050】そして、吸入空気量学習値Ga_LNを吸入空
気量推定値Ga‘に加算して吸入空気量Gaを算出して、
空燃比補正量Δλに応じて吸入空気量Gaを学習するこ
とにより、吸気圧センサ43、吸気温センサ44のバラ
ツキ等に起因して算出精度が悪化することを回避し、駆
動パルス幅補正量Duty_FB_Rateの値を小さくし、空燃比
フィードバック制御の応答性を維持できる。
Then, the intake air amount Ga is calculated by adding the intake air amount learning value Ga_LN to the intake air amount estimated value Ga ′.
By learning the intake air amount Ga according to the air-fuel ratio correction amount Δλ, it is possible to avoid the calculation accuracy from deteriorating due to variations in the intake pressure sensor 43 and the intake temperature sensor 44, and to calculate the drive pulse width correction amount Duty_FB_Rate. , The response of the air-fuel ratio feedback control can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示すシステム図。FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】同じく燃料噴射量を制御するためのブロック
図。
FIG. 2 is a block diagram for controlling a fuel injection amount.

【図3】同じく吸入混合気量を算出するためのブロック
図。
FIG. 3 is a block diagram for calculating an intake air-fuel mixture amount;

【図4】他の実施の形態において燃料噴射量を制御する
ためのブロック図。
FIG. 4 is a block diagram for controlling a fuel injection amount in another embodiment.

【図5】同じく吸入空気量を算出するためのブロック
図。
FIG. 5 is a block diagram for calculating an intake air amount.

【符号の説明】[Explanation of symbols]

5 コントロールユニット 17 ガス制御バルブ 32 O2センサ 42 クランク角センサ 43 吸気圧センサ 44 吸気温センサ 51 吸入混合気量算出手段 52 目標空燃比算出手段 55 基本燃料噴射量算出手段 58 基本燃料量補正量算出手段 63 学習実行条件判定手段 64 補正格子点値学習値算出手段 67 吸入混合気量算出手段 71 吸入空気量算出手段 72 目標空燃比算出手段 75 基本燃料噴射量算出手段 78 基本燃料量補正量算出手段 83 学習実行条件判定手段 84 補正格子点値学習値算出手段 87 吸入空気量算出手段Reference Signs List 5 control unit 17 gas control valve 32 O 2 sensor 42 crank angle sensor 43 intake pressure sensor 44 intake temperature sensor 51 intake air-fuel mixture amount calculation means 52 target air-fuel ratio calculation means 55 basic fuel injection amount calculation means 58 basic fuel amount correction amount calculation Means 63 Learning execution condition determination means 64 Corrected lattice point value learning value calculation means 67 Intake air-fuel mixture amount calculation means 71 Intake air amount calculation means 72 Target air-fuel ratio calculation means 75 Basic fuel injection amount calculation means 78 Basic fuel amount correction amount calculation means 83 learning execution condition determination means 84 corrected lattice point value learning value calculation means 87 intake air amount calculation means

フロントページの続き (72)発明者 原山 直也 埼玉県上尾市大字壱丁目一番地 日産ディ ーゼル工業株式会社内 Fターム(参考) 3G092 AA01 AB08 BA04 BB02 BB03 DE01S DF06 DG09 EA06 EB02 EB03 EB06 EB10 EC02 EC05 FA01 FA06 FA24 HA01Z HA04Z HA05Z HA11Z HB01X HB03Z HB04Z HD05X HD05Z HE01Z HE03Z HE08Z 3G301 HA01 HA22 JA01 JA02 JA03 JA20 LB01 LB06 LC02 MA01 MA12 MA13 NA03 NA04 NA05 NA06 NB02 NB05 NC06 ND02 ND22 ND25 ND27 ND41 PA01Z PA07Z PA10Z PA17Z PB01Z PB08Z PD02A PD02Z PE01Z PE03Z PE08Z Continuing on the front page (72) Inventor Naoya Harayama F-term in Nissan Diesel Industry Co., Ltd., 1st place, Ochome, Saio, Saitama Prefecture 3G092 AA01 AB08 BA04 BB02 BB03 DE01S DF06 DG09 EA06 EB02 EB03 EB06 EB10 EC02 EC05 FA01 FA06 FA24 HA01Z HA04Z HA05Z HA11Z HB01X HB03Z HB04Z HD05X HD05Z HE01Z HE03Z HE08Z 3G301 HA01 HA22 JA01 JA02 JA03 JA20 LB01 LB06 LC02 MA01 MA12 MA13 NA03 NA04 NA05 NA06 NB02 NB05 NC06 ND02 ND22 ND25 ND27 ND41 PA01Z PA07Z PA10Z PA17Z PB01Z PB08Z PD02A PD02Z PE01Z PE03Z PE08Z

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】吸気通路のスロットルバルブより上流側に
噴射される気体燃料量を運転状態に応じて調節するエン
ジンの空燃比制御装置において、 エンジン回転数Neを検出するエンジン回転数検出手段
と、 スロットルバルブより下流側のマニフォールド圧力Pb
を検出するマニフォールド圧力検出手段と、 スロットルバルブより下流側のマニフォールド温度Tb
を検出するマニフォールド温度検出手段と、 エンジン回転数Neとマニフォールド圧力Pbおよびマ
ニフォールド温度Tbに応じて混合気量Gmを算出する混
合気量算出手段と、 運転状態に応じて目標空燃比λOBJを算出する目標空燃
比算出手段と、 混合気量Gmと目標空燃比λOBJに応じて燃料噴射量を算
出する燃料噴射量算出手段と、 を備えたことを特徴とするエンジンの空燃比制御装置。
1. An engine air-fuel ratio control device for adjusting an amount of gaseous fuel injected upstream of a throttle valve in an intake passage in accordance with an operation state, comprising: an engine speed detecting means for detecting an engine speed Ne; Manifold pressure Pb downstream of throttle valve
Pressure detection means for detecting the pressure, and a manifold temperature Tb downstream of the throttle valve
, An air-fuel mixture amount calculating means for calculating an air-fuel mixture Gm according to the engine speed Ne, the manifold pressure Pb and the manifold temperature Tb, and a target air-fuel ratio λOBJ according to the operating state. An air-fuel ratio control device for an engine, comprising: a target air-fuel ratio calculating unit; and a fuel injection amount calculating unit that calculates a fuel injection amount according to a mixture amount Gm and a target air-fuel ratio λOBJ.
【請求項2】吸気マニフォールド圧力Pbとエンジン回
転数Neに応じて混合気量補正係数K1を算出する混合
気量補正係数算出手段を備え、 前記燃料噴射量算出手段は吸気マニフォールド圧力Pb
と吸気マニフォールド温度Tbおよび混合気量補正係数
1に応じて吸入混合気量Gmを算出することを特徴とす
る請求項1に記載のエンジンの空燃比制御装置。
2. A comprising a mixture amount correction coefficient calculating means for calculating the air-fuel mixture amount correction coefficient K 1 depending on the intake manifold pressure Pb and the engine speed Ne, is the fuel injection amount calculating means intake manifold pressure Pb
An intake manifold temperature Tb and mixture amount correction coefficient air-fuel ratio control system for an engine according to claim 1, characterized in that to calculate the intake mixture weight Gm according to K 1.
【請求項3】混合気の空燃比を検出する空燃比検出手段
と、 混合気の空燃比を目標空燃比λOBJに近づけるように燃
料噴射量を補正する空燃比補正量Δλを算出する空燃比
補正量算出手段と、 空燃比補正量Δλに応じて吸入混合気量学習値Gm_LNを
算出する混合気量学習手段と、 混合気量Gmを吸入混合気量学習値Gm_LNに応じて補正
する混合気量補正手段と、 を備えたことを特徴とする請求項1または2に記載のエ
ンジンの空燃比制御装置。
3. An air-fuel ratio detecting means for detecting an air-fuel ratio of an air-fuel mixture, and an air-fuel ratio correction for calculating an air-fuel ratio correction amount Δλ for correcting a fuel injection amount such that the air-fuel ratio of the air-fuel mixture approaches a target air-fuel ratio λOBJ. An air-fuel ratio learning means for calculating an intake air-fuel mixture learning value Gm_LN according to the air-fuel ratio correction amount Δλ; and an air-fuel mixture correcting the air-fuel mixture Gm according to the intake air-fuel mixture learning value Gm_LN. The air-fuel ratio control device for an engine according to claim 1 or 2, further comprising: a correction unit.
【請求項4】吸気通路のスロットルバルブより上流側に
噴射される気体燃料量を運転状態に応じて調節するエン
ジンの空燃比制御装置において、 エンジン回転数Neを検出するエンジン回転数検出手段
と、 スロットルバルブより下流側のマニフォールド圧力Pb
を検出するマニフォールド圧力検出手段と、 スロットルバルブより下流側のマニフォールド温度Tb
を検出するマニフォールド温度検出手段と、 エンジン回転数Neとマニフォールド圧力Pbおよびマ
ニフォールド温度Tbに応じて燃料を含まない吸入空気
量Gaを算出する吸入空気量算出手段と、 運転状態に応じて目標空燃比λOBJを算出する目標空燃
比算出手段と、 吸入空気量Gaと目標空燃比λOBJに応じて燃料噴射量を
算出する燃料噴射量算出手段と、 を備えたことを特徴とするエンジンの空燃比制御装置。
4. An engine air-fuel ratio control device for adjusting an amount of gaseous fuel injected upstream of a throttle valve in an intake passage in accordance with an operation state, an engine speed detecting means for detecting an engine speed Ne; Manifold pressure Pb downstream of throttle valve
Pressure detection means for detecting the pressure, and a manifold temperature Tb downstream of the throttle valve
Temperature detection means for detecting an intake air amount, an intake air amount calculation means for calculating an intake air amount Ga containing no fuel according to the engine speed Ne, the manifold pressure Pb and the manifold temperature Tb, and a target air-fuel ratio according to the operating state. An air-fuel ratio control device for an engine, comprising: target air-fuel ratio calculating means for calculating λOBJ; and fuel injection amount calculating means for calculating a fuel injection amount according to the intake air amount Ga and the target air-fuel ratio λOBJ. .
【請求項5】吸気マニフォールド圧力Pbとエンジン回
転数Neに応じて吸入空気量補正係数K1を算出する吸
入空気量補正係数算出手段を備え、 前記燃料噴射量算出手段は吸気マニフォールド圧力Pb
と吸気マニフォールド温度Tbおよび吸入空気量補正係
数K1に応じて吸入空気量Gaを算出することを特徴とす
る請求項4に記載のエンジンの空燃比制御装置。
5. comprising an intake air amount correction coefficient calculating means for calculating the intake air amount correction coefficient K 1 depending on the intake manifold pressure Pb and the engine speed Ne, is the fuel injection amount calculating means intake manifold pressure Pb
An intake manifold temperature Tb and the intake air amount correction air-fuel ratio control system for an engine according to claim 4, depending on the coefficients K 1 and calculates the intake air amount Ga.
【請求項6】混合気の空燃比を検出する空燃比検出手段
と、 混合気の空燃比を目標空燃比λOBJに近づけるように燃
料噴射量を補正する空燃比補正量Δλを算出する空燃比
補正量算出手段と、 空燃比補正量Δλに応じて吸入空気量学習値Ga_LNを算
出する吸入空気量学習手段と、 吸入空気量Gaを吸入空気量学習値Ga_LNに応じて補正
する吸入空気量補正手段と、 を備えたことを特徴とする請求項4または5に記載のエ
ンジンの空燃比制御装置。
6. An air-fuel ratio detecting means for detecting an air-fuel ratio of an air-fuel mixture, and an air-fuel ratio correction calculating an air-fuel ratio correction amount Δλ for correcting a fuel injection amount so as to bring the air-fuel ratio of the air-fuel mixture closer to a target air-fuel ratio λOBJ. Amount calculation means, intake air amount learning means for calculating intake air amount learning value Ga_LN according to air-fuel ratio correction amount Δλ, and intake air amount correction means for correcting intake air amount Ga according to intake air amount learning value Ga_LN The air-fuel ratio control device for an engine according to claim 4 or 5, further comprising:
JP31335698A 1998-11-04 1998-11-04 Engine air-fuel ratio control device Expired - Fee Related JP3725713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31335698A JP3725713B2 (en) 1998-11-04 1998-11-04 Engine air-fuel ratio control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31335698A JP3725713B2 (en) 1998-11-04 1998-11-04 Engine air-fuel ratio control device

Publications (2)

Publication Number Publication Date
JP2000136745A true JP2000136745A (en) 2000-05-16
JP3725713B2 JP3725713B2 (en) 2005-12-14

Family

ID=18040281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31335698A Expired - Fee Related JP3725713B2 (en) 1998-11-04 1998-11-04 Engine air-fuel ratio control device

Country Status (1)

Country Link
JP (1) JP3725713B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10213341A1 (en) * 2002-03-26 2003-10-09 Deutz Ag Controlling ratio of fuel gas and air supplied to gas engine, relates air mass flowrate, desired mixture flow rate and engine power
CN103912393A (en) * 2013-01-07 2014-07-09 通用汽车环球科技运作有限责任公司 Intake Runner Temperature Determination Systems And Methods
CN110761921A (en) * 2019-11-28 2020-02-07 安阳工学院 Method for controlling fuel gas injection amount of injection valve engine with mixer
CN112523882A (en) * 2020-11-09 2021-03-19 广西玉柴机器股份有限公司 Fuel control device and fuel control method of gas engine air inlet pressure closed loop

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10213341A1 (en) * 2002-03-26 2003-10-09 Deutz Ag Controlling ratio of fuel gas and air supplied to gas engine, relates air mass flowrate, desired mixture flow rate and engine power
CN103912393A (en) * 2013-01-07 2014-07-09 通用汽车环球科技运作有限责任公司 Intake Runner Temperature Determination Systems And Methods
CN103912393B (en) * 2013-01-07 2016-09-21 通用汽车环球科技运作有限责任公司 Air inlet runner temperature measuring system and method
CN110761921A (en) * 2019-11-28 2020-02-07 安阳工学院 Method for controlling fuel gas injection amount of injection valve engine with mixer
CN110761921B (en) * 2019-11-28 2023-10-31 安阳工学院 Method for controlling fuel gas injection quantity of injection valve engine with mixer
CN112523882A (en) * 2020-11-09 2021-03-19 广西玉柴机器股份有限公司 Fuel control device and fuel control method of gas engine air inlet pressure closed loop

Also Published As

Publication number Publication date
JP3725713B2 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
US6805095B2 (en) System and method for estimating and controlling cylinder air charge in a direct injection internal combustion engine
US5157920A (en) Method of and an apparatus for controlling the air-fuel ratio of an internal combustion engine
EP0478120B1 (en) Method and apparatus for inferring barometric pressure surrounding an internal combustion engine
US20100211295A1 (en) Fuel admission control unit to control a diesel engine
US5168700A (en) Method of and an apparatus for controlling the air-fuel ratio of an internal combustion engine
US6481423B2 (en) Dynamic EGR concentration estimation method for a motor vehicle engine
JPH01244138A (en) Fuel injection control device for engine for automobile
JP3063400B2 (en) Air-fuel ratio control device for internal combustion engine
US6725149B2 (en) Electronic control device for internal combustion engine
US20090157282A1 (en) Air-Fuel Ratio Control Apparatus by Sliding Mode Control of Engine
JP2000136745A (en) Air-fuel ratio control device for engine
US4662339A (en) Air-fuel ratio control for internal combustion engine
US6837223B2 (en) Internal combustion engine purge flow rate controlling apparatus and method
US4730594A (en) Air fuel ratio control system for an internal combustion engine with an improved open loop mode operation
KR0161699B1 (en) Air fuel ratio controller for internal combustion engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JP2841001B2 (en) Air-fuel ratio feedback control device for internal combustion engine
US4646699A (en) Method for controlling air/fuel ratio of fuel supply for an internal combustion engine
JPS62203952A (en) Electronic control device of internal combustion engine
JP2512726Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2808214B2 (en) Air-fuel ratio control device for internal combustion engine with evaporative fuel control device
JP2001248480A (en) Air-fuel ratio control device for engine
JPH01155046A (en) Electronic control fuel injection system for internal combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JP2767345B2 (en) Fuel supply control device for internal combustion engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees