JP2000079390A - Purified water production - Google Patents

Purified water production

Info

Publication number
JP2000079390A
JP2000079390A JP10357258A JP35725898A JP2000079390A JP 2000079390 A JP2000079390 A JP 2000079390A JP 10357258 A JP10357258 A JP 10357258A JP 35725898 A JP35725898 A JP 35725898A JP 2000079390 A JP2000079390 A JP 2000079390A
Authority
JP
Japan
Prior art keywords
raw water
washing
water
hollow fiber
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10357258A
Other languages
Japanese (ja)
Inventor
Masahiro Kishi
岸  正弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIKAI KAGAKU KENKYUSHO KK
Original Assignee
KIKAI KAGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIKAI KAGAKU KENKYUSHO KK filed Critical KIKAI KAGAKU KENKYUSHO KK
Priority to JP10357258A priority Critical patent/JP2000079390A/en
Priority to PCT/JP2000/001318 priority patent/WO2001066238A1/en
Publication of JP2000079390A publication Critical patent/JP2000079390A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/025Bobbin units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/12Use of permeate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an economical and safe purified water producing method. SOLUTION: In a purified water producing method using a hollow fiber type ultrafilter membrane wherein hollow fiber yarn bundless are wound around a core pipe arranged to the center part of a vertical cylindrical pressure container so as to extend in the axial direction regularily and superposedly, filter operation is total amt. filtration, Raw water is supplied to a core pipe T from the outer peripheral space W formed between the inner peripheral surface of a pressure container V1 and the outer peripheral surface of the filter bed and filtered water is taken out of the cavities of hollow fiber yarns. The washing operation of the filter bed containing the membrane surfaces of hollow fiber yarns is performed by the backward pressure washing allowing filtered water to flow from the cavities of the hollow yarn membranes to the outside and the backward washing due to raw water supplied from the core pipe T to the outer peripheral space W.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ホローファイバー
型の限外ろ過膜を用いた河川水、かん水、海水及び廃水
から浄水を製造するための方法に関する。ここで浄水と
は、原水(ろ過処理前の河川水、かん水、海水及び廃
水)からその中に含まれる不溶性の固形分(コロイドを
含む。以下、同様)が除去された水をいう。
The present invention relates to a method for producing purified water from river water, brackish water, seawater and wastewater using a hollow fiber type ultrafiltration membrane. Here, the purified water refers to water from which insoluble solids (including colloids; the same applies hereinafter) are removed from raw water (river water, brine, seawater, and wastewater before filtration).

【0002】[0002]

【従来の技術】限外ろ過膜は、粒子除去性能が高く、原
水中の粒子をほぼ完全に除去することができ、更にその
運転操作が簡便故、原水の除濁や除菌手段として工業的
に広く利用されている。
2. Description of the Related Art Ultrafiltration membranes have high particle removal performance, can almost completely remove particles in raw water, and are simple to operate. Widely used for

【0003】具体的には、上水処理における砂ろ過の代
替処理手段、かん水や海水から逆浸透膜法にて淡水を得
る際の前処理手段、及び廃水から不溶性の固形分を除去
する手段がその代表的なものである。
[0003] Specifically, there are alternative treatment means for sand filtration in water treatment, pretreatment means for obtaining fresh water from brackish water or seawater by a reverse osmosis membrane method, and means for removing insoluble solids from wastewater. This is a typical example.

【0004】この限外ろ過膜としては、その単位容積当
たりの処理量が大きいことから中空糸(ホローファイバ
ーともいう。これらの束を圧力容器内に充填したものが
一般的)が使用されることが多い。
As the ultrafiltration membrane, a hollow fiber (also referred to as a hollow fiber, generally a bundle of these bundles filled in a pressure vessel) is used because of a large throughput per unit volume. There are many.

【0005】しかしながら、従来のホローファイバー型
の限外ろ過膜を用いた装置においては、長時間ろ過を継
続すると中空糸の膜面を含む該中空糸の束からなる空間
(以下、「ろ過層」という)に汚れが付着・堆積し、所
定量のろ過水を得ようとすれば高い圧力で運転しなけれ
ばならなくなる。そして、このろ過層の汚染が更に進行
した場合、ろ過の継続が不能になる。
However, in a conventional apparatus using a hollow fiber type ultrafiltration membrane, if filtration is continued for a long time, a space composed of a bundle of hollow fibers including a membrane surface of the hollow fibers (hereinafter, referred to as a “filtration layer”) Dirt is deposited and deposited, and in order to obtain a predetermined amount of filtered water, it is necessary to operate at a high pressure. When the contamination of the filtration layer further proceeds, the filtration cannot be continued.

【0006】そこで、装置が所定の圧力上昇を示した時
点において、汚染されたろ過層を水(汚染が著しい場合
には薬品を用いることもある)にて洗浄する方策が採ら
れるが、この洗浄を行うには装置の運転、すなわちろ過
操作を中断しなければならないので、該装置の運転効率
の面からはこの洗浄頻度を少なくすると共に、洗浄に要
する時間をできるだけ短くすることが望ましい。
Therefore, when the apparatus shows a predetermined pressure rise, a measure is taken to wash the contaminated filter layer with water (chemicals may be used if the contamination is significant). Since the operation of the apparatus, i.e., the filtration operation, must be interrupted in order to perform the above, it is desirable to reduce the frequency of the washing and the time required for the washing as much as possible from the viewpoint of the operating efficiency of the apparatus.

【0007】従来システムにおいては、その方策とし
て、中空糸束の圧力容器内部における充填可能空間に対
する充填率を0.3以下に抑えてろ過層内部に侵入した
原水中の不溶性の固形分が容易にその外部に逃げ得るよ
うにすると共に、該ろ過層内部に不溶性の固形分のデポ
ジットを極力作らないという考えから該圧力容器に供給
された原水の一部を該圧力容器から抜き出し一次側(原
水供給側)に再循環することによって該一次側の流速を
上げることが行われていた(できるだけ膜面を汚染させ
ない、との考え方)。
In the conventional system, as a measure, the filling rate of the hollow fiber bundle with respect to the fillable space inside the pressure vessel is suppressed to 0.3 or less so that the insoluble solids in the raw water entering the inside of the filtration layer can be easily formed. A part of the raw water supplied to the pressure vessel is withdrawn from the pressure vessel in order to make it possible to escape to the outside and to minimize the formation of an insoluble solid deposit inside the filtration layer. Side) to increase the flow rate on the primary side (the idea of not contaminating the membrane surface as much as possible).

【0008】また、洗浄操作は、水のろ過方向とは逆の
方向からろ過水(それに塩素系薬剤を含有せしめたもの
を含む)を流す方法(逆洗)が一般的であった。
[0008] Further, the washing operation is generally a method (backwashing) in which filtered water (including a substance containing a chlorine-based agent) is flowed in a direction opposite to the direction of filtration of water.

【0009】このような従来の装置では、当然のことな
がらその単位容積当たりの処理量には限界があり、しか
も逆洗は行えば行うほどろ過水を消費するのでろ過水の
回収率が下がってしまう。また、原水の再循環は当然の
ことながら動力コストの上昇を招く。
In such a conventional apparatus, the processing amount per unit volume is naturally limited, and the more the backwashing is performed, the more the filtered water is consumed. I will. In addition, the recirculation of raw water naturally increases power costs.

【0010】更に、通常の洗浄では除去しがたい微生物
(その分泌物−不溶性の固形分−を含む。以下、特別の
断りがない限り、同様)による中空糸の膜面汚染を避け
るべく塩素系薬剤を原水に添加してろ過操作を行うこと
も行われているが、これは原水水質によってはトリハロ
メタンの生成という新たな問題を引き起こす。
[0010] Furthermore, in order to avoid contamination of the membrane surface of the hollow fiber by microorganisms (including secretions-insoluble solids-hereinafter, unless otherwise specified) which are difficult to remove by ordinary washing, chlorine-based substances are used. A filtration operation is also performed by adding a chemical to raw water, but this causes a new problem of formation of trihalomethane depending on the raw water quality.

【0011】[0011]

【発明が解決しようとする課題】本発明は、上記従来技
術の課題を解決した経済的且つ安全な浄水製造方法を提
供することを目的としてなされたものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an economical and safe method for producing purified water which solves the above-mentioned problems of the prior art.

【0012】[0012]

【課題を解決するための手段】本発明者は、従来システ
ムの圧損上昇を含む課題の要因を注意深く考察・検証す
ることにより本発明を完成するに至った。
The present inventors have completed the present invention by carefully examining and verifying the factors of the problem including the increase in pressure loss of the conventional system.

【0013】先ず、単位容積当たりの処理量であるが、
これは中空糸束の充填率を上げることで対処した。すな
わち、圧力容器の中心部にその軸方向に延伸するように
配した芯管に中空糸束を均一な目開きとなるよう規則的
且つ重畳的に巻き付けてろ過層としてなるホローファイ
バー型の限外ろ過膜を用いた。尚、『芯管に中空糸束を
均一な目開きとなるよう規則的且つ重畳的に巻き付けて
なる』とは、例えば、特公平3−14492号公報の特
許請求の範囲に開示された繊条束の巻回態様が相当す
る。尚、目開きは隣接する中空糸の径とそれらのなす空
間の空隙率とから計算にて求められるそれである。
First, the processing amount per unit volume is as follows.
This was addressed by increasing the filling rate of the hollow fiber bundle. That is, a hollow fiber bundle which is regularly and superimposedly wound around a core tube arranged in a central portion of a pressure vessel so as to extend in the axial direction thereof so as to have a uniform opening is used as a filtration layer. A filtration membrane was used. The phrase "a hollow fiber bundle is regularly and superposedly wound around a core tube so as to form a uniform opening" means, for example, a filament disclosed in the claims of Japanese Patent Publication No. 3-14492. This corresponds to a winding mode of the bundle. The aperture is a value obtained by calculation from the diameters of adjacent hollow fibers and the porosity of the space formed by the hollow fibers.

【0014】従来の考え方によれば、このような態様の
限外ろ過膜を用いるとろ過層の内部に一旦入り込んだ不
溶性の固形分(微生物及びその分泌物を含む。以下、同
様)はなかなか該層から外部に出てこないので圧損上昇
因子となるし、また密な構造自体が圧損を発生させると
いうことから好ましくない態様であるとされていたが、
前者については単なる思いこみ(要するに、従来の前処
理装置としての糸巻きカートリッジフィルターからの連
想)によるものであり、一方、後者についてはろ過操作
における通水方法及び膜面の洗浄操作の仕方に配慮する
ことによって対処可能であることを見いだしたからであ
る。
According to the conventional idea, when the ultrafiltration membrane of such an embodiment is used, the insoluble solids (including microorganisms and secretions thereof, which have once entered the inside of the filtration layer. The same applies to the following). Since it does not come out of the layer to the outside, it becomes a pressure drop increasing factor, and it has been considered that the dense structure itself is not preferable because it causes pressure loss,
The former is based on mere thoughts (in short, the association with a thread-wound cartridge filter as a conventional pretreatment device), while the latter requires consideration of the method of passing water and the method of cleaning the membrane surface in the filtration operation. It was found that it was possible to deal with it.

【0015】すなわち本発明は、竪型円筒形の圧力容器
の中心部にその軸方向に延伸するように配した芯管(そ
の壁全体に該壁を貫通する多数の孔を有すると共にその
外周面がスペーサとしてのネットにて覆われている。ま
た、該スペーサーとしては、該芯管の外周面にその軸方
向に配設された複数のリブと該リブの上端面を覆うネッ
トからなるものであってもよい)に中空糸束を均一な目
開きとなるよう規則的且つ重畳的に巻き付けてろ過層と
してなるホローファイバー型の限外ろ過膜を用いた浄水
製造方法であって、ろ過操作が、全量ろ過であること、
及び原水を該圧力容器の内周面と該ろ過層の外周面との
間に形成された外周空間から該芯管に向かって供給し、
該中空糸の内腔からろ過水を抜き出すことによって行わ
れること、そして該中空糸の膜面を含む該ろ過層の洗浄
操作が、該中空糸の内腔からその外側に向かってろ過水
を流す逆圧洗浄と、該芯管より該外周空間に向かって供
給される原水による逆流洗浄とからなる基本洗浄によっ
て行われることを特徴とする。
That is, according to the present invention, there is provided a vertical cylindrical pressure vessel having a core tube disposed at the center thereof so as to extend in the axial direction thereof. Is covered with a net as a spacer, and the spacer is composed of a plurality of ribs arranged on the outer peripheral surface of the core tube in the axial direction thereof and a net covering the upper end surface of the rib. A water filtration production method using a hollow fiber type ultrafiltration membrane that is wound regularly and superimposedly so as to form a uniform opening with a hollow fiber bundle as a filtration layer. , Total filtration,
And supplying raw water from the outer peripheral space formed between the inner peripheral surface of the pressure vessel and the outer peripheral surface of the filtration layer toward the core pipe,
The operation is performed by extracting filtered water from the lumen of the hollow fiber, and the washing operation of the filtration layer including the membrane surface of the hollow fiber flows the filtered water from the lumen of the hollow fiber toward the outside. The cleaning is performed by basic cleaning including back-pressure cleaning and back-flow cleaning with raw water supplied from the core tube toward the outer peripheral space.

【0016】本発明では、ろ過操作における原水の流れ
方向を該圧力容器の外周部から中心に向けており、しか
もろ過水を該中空糸の内腔から抜き出す方法を採ってい
るので、ろ過速度が外周部から中心に向かって低くなり
(当然、流速起因の圧損は中心に向かうほど低下する。
更に全量ろ過ゆえ該芯管近傍においては流速が“零”と
なる)、該ろ過層に入り込んだ粒子は中心部に移動せず
該ろ過層の表層部近傍に留まることになるし、一方、該
中空糸束の目開き以上の粒径を有する粗大粒子は該ろ過
層の表層部でそれ以上の侵入を阻止される(これらの捕
捉された粒子(会合したものを含む)自体が更なるろ過層
としても機能する)。したがって、適切な洗浄操作(詳
細は後述)を行えば、このような捕捉粒子による圧損上
昇には簡単に対処し得るのである。尚、該圧力容器を竪
型にて用いるのは、該ろ過層に捕捉された不溶性の固形
分を砂ろ過(下向流通水方式)のように重力に逆らう方向
に排除するのはその効率の面で得策ではないとの考えに
よる。
In the present invention, the flow direction of the raw water in the filtration operation is directed from the outer peripheral portion of the pressure vessel to the center, and the method of extracting the filtered water from the inner cavity of the hollow fiber is adopted. It decreases from the outer periphery toward the center (naturally, the pressure loss caused by the flow velocity decreases toward the center.
Further, the flow rate becomes "zero" in the vicinity of the core tube due to the total filtration, and the particles that have entered the filtration layer do not move to the center but remain in the vicinity of the surface layer of the filtration layer. Coarse particles having a particle size equal to or larger than the opening of the hollow fiber bundle are prevented from entering further at the surface layer portion of the filtration layer (these captured particles (including associated ones) themselves form additional filtration layers). Also works as). Therefore, if an appropriate washing operation (details will be described later) is performed, it is possible to easily cope with such an increase in pressure loss due to the trapped particles. Incidentally, the vertical type of the pressure vessel is used for removing the insoluble solids trapped in the filtration layer in a direction against gravity as in sand filtration (downward flowing water system) because of its efficiency. This is not a good idea.

【0017】因に、好ましい該ろ過層を構成する中空糸
束の該圧力容器内部における充填可能空間に対する充填
率は少なくとも0.5である。尚、中空糸束の目開き
は、通常値としては約100μm(該中空糸束表面にお
けるその内部への流入が阻止される不溶性固形分の粒径
として表わした値としては30〜50μmである)。
Incidentally, the filling rate of the hollow fiber bundle constituting the preferable filtration layer into the fillable space inside the pressure vessel is at least 0.5. The aperture of the hollow fiber bundle is usually about 100 μm (30 to 50 μm as a value expressed as a particle size of an insoluble solid that is prevented from flowing into the inside of the hollow fiber bundle surface). .

【0018】尚、中空糸の分画分子量を適当に選択すれ
ば微生物であっても膜面にて捕捉可能故、それによる中
空糸の膜面の汚染に対する対策をきちんと行うことがで
きれば、ろ過操作における原水への定常的な塩素系殺菌
剤の添加は必要ではない。本発明においては、前述の通
り、該対策としてのろ過層の洗浄操作を、該中空糸の内
腔からその外側に向かってろ過水を流す逆圧洗浄と、該
芯管より該圧力容器の外周空間に向かって供給される原
水による逆流洗浄ととからなる逆洗(以下、これを「基
本洗浄」という)を基本とし、必要に応じて行う空洗
(基本洗浄の後で、該芯管から該外周空間に向けて急激
に空気を流すことによる。尚、これによって排除される
該ろ過層捕捉物を含む該圧力容器内に残留していた水−
該中空糸内腔の水を除く−はろ過操作時の原水入口を介
して装置外に排出する)、又は薬洗(基本洗浄の後で、
該芯管からその中に次亜塩素酸イオンを含有せしめた原
水を該外周空間に向けて流す第1の薬洗と、該芯管から
その中に酸を含有せしめた原水を該外周区間に向けて流
す第2の薬洗からなる)を行うので、ろ過操作における
原水への塩素系殺菌剤の添加は不要である。
If the fractional molecular weight of the hollow fiber is appropriately selected, even microorganisms can be trapped on the membrane surface, and if it is possible to properly take measures against contamination of the membrane surface of the hollow fiber by that, a filtration operation is required. It is not necessary to constantly add a chlorine-based disinfectant to the raw water in the above. In the present invention, as described above, the washing operation of the filtration layer as the countermeasure is performed by back-pressure washing in which filtered water flows from the lumen of the hollow fiber toward the outside thereof, and the outer periphery of the pressure vessel from the core tube. Backwashing consisting of backwashing with raw water supplied toward the space (hereinafter referred to as "basic washing") is basically performed, and if necessary, empty washing (after the basic washing, By abruptly flowing air toward the outer peripheral space, the water remaining in the pressure vessel containing the trapped matter of the filtration layer removed by this is
Except for the water in the hollow fiber lumen,-is discharged out of the apparatus through the raw water inlet during the filtration operation), or is washed with chemicals (after the basic washing,
First chemical washing in which raw water containing hypochlorite ions therein is flown from the core tube toward the outer peripheral space, and raw water containing acids therein from the core tube is supplied to the outer peripheral section. (A second washing step), so that it is unnecessary to add a chlorine-based disinfectant to the raw water in the filtration operation.

【0019】すなわち、本発明における具体的なろ過層
の洗浄操作は、下記のステップにて行われる。 1.基本洗浄 逆圧洗浄 中空糸の内腔からろ過操作(原水は該中空糸の外表面、
すなわち膜面から該中空糸の内腔へと流れ、該膜面にて
不溶固形分の分離が行われてろ過水となる)とは逆方向
に高い差圧(該中空糸自体及びその細孔の拡張がおこ
る)にてろ過水を流す。主洗浄対象物は、該中空糸の細
孔(約7nm)に詰まった微粒子(具体的洗浄効果は「排
除」)と該中空糸の膜表面に堆積したケーキ層(具体的
洗浄効果は「剥離」)である。また、該微粒子及びケー
キ層の具体的構成物質は、金属水酸化物コロイド及び蛋
白質等の有機巨大分子である。 逆流洗浄 芯管を利用し、ろ過層の内側から外側にろ過操作(原水
は圧力容器の外周空間から芯管の方向にろ過層を横断す
るように流される)とは逆方向に原水を流す。主洗浄対
象物は、ろ過層内部に捕捉されている微粒子であるが、
勿論、先の逆圧洗浄において排除及び剥離せしめられた
微粒子及びケーキ層もこの操作にて装置系外に排出せし
められる。尚、この操作では中空糸内腔への水の移動を
行わせないのでろ過層の内側ほど流速が早く、該ろ過層
内部からの洗浄対象物の排除に資する。
That is, a specific washing operation of the filtration layer in the present invention is performed in the following steps. 1. Basic washing Back pressure washing Filtration operation from the lumen of the hollow fiber (raw water is the outer surface of the hollow fiber,
That is, a high differential pressure (the hollow fiber itself and its pores) flows in a direction opposite to the flow from the membrane surface to the lumen of the hollow fiber, insoluble solids are separated on the membrane surface to become filtered water. The filtered water is allowed to flow. The main object to be cleaned is fine particles (specific cleaning effect is “excluded”) clogged in the pores (approximately 7 nm) of the hollow fiber and a cake layer deposited on the membrane surface of the hollow fiber (specific cleaning effect is “peeling”). "). Specific constituents of the fine particles and the cake layer are organic macromolecules such as metal hydroxide colloids and proteins. Backwashing Using a core tube, the raw water flows from the inside to the outside of the filtration layer in a direction opposite to the filtration operation (the raw water flows from the outer space of the pressure vessel in the direction of the core tube so as to cross the filtration layer). The main object to be cleaned is fine particles trapped inside the filtration layer,
Needless to say, the fine particles and the cake layer removed and peeled off in the previous back pressure washing are also discharged out of the apparatus system by this operation. In this operation, since the water is not moved into the hollow fiber lumen, the flow velocity is higher inside the filtration layer, which contributes to the removal of the object to be washed from inside the filtration layer.

【0020】2.追加洗浄 空洗 芯管から圧縮空気を急激に噴出させることによってろ過
層内部に捕捉された微粒子を高速の気液混相流(圧力容
器内に残存している水と該芯管に導入される空気)にて
完全に除去し、装置系外に排除する。尚、排水を空気に
て行うので回収率が向上する。但し、その排除力はきわ
めて強力でろ過膜を損傷する恐れがあるので、その実行
は、基本洗浄及び更に必要に応じて行う後述の薬洗の結
果を見て適宜行うのがよい。 薬洗 適当なインターバルにて基本洗浄を繰り返しても、金属
水酸化物(ろ過膜でほぼ完全に除去される)の一部は膜
面に残留し、該濾過膜に捕捉された有機物とともにケー
キ層を形成する。更に中空糸の細孔内に析出した該金属
水酸化物及び該細孔内に捕捉された蛋白質等の有機巨大
分子の一部もそこに残留するので、ろ過抵抗は徐々に上
昇する。ろ過抵抗が限度以内であれば残留金属水酸化物
等のすべてを取り除く必要はないが、一旦溶解したもの
が希釈などにより再析出する危険があるため、この操作
は、それを実行する時には該金属水酸化物の除去がほぼ
完璧に行われるようにすることが肝要である。具体的な
ステップは下記の通りである。
2. Additional Washing Empty Washing The fine particles trapped in the filter layer are rapidly discharged from the core tube by rapidly blowing compressed air from the core tube so that a high-speed gas-liquid multi-phase flow (water remaining in the pressure vessel and the core tube ) And completely removed from the system. Since the drainage is performed by air, the recovery rate is improved. However, since the rejection force is extremely strong and may possibly damage the filtration membrane, it is preferable to appropriately perform the removal by observing the results of the basic cleaning and, if necessary, the chemical cleaning described below. Chemical washing Even if the basic washing is repeated at appropriate intervals, a part of the metal hydroxide (which is almost completely removed by the filtration membrane) remains on the membrane surface, and the cake layer together with the organic matter captured by the filtration membrane. To form Further, the metal hydroxide precipitated in the pores of the hollow fiber and a part of organic macromolecules such as proteins captured in the pores remain therein, so that the filtration resistance gradually increases. If the filtration resistance is within the limit, it is not necessary to remove all of the residual metal hydroxides, etc., but once dissolved, there is a risk of re-precipitation due to dilution etc. It is imperative that the hydroxide removal be performed almost perfectly. The specific steps are as follows.

【0021】A.第1の薬洗 a.次亜塩素酸イオンを含有せしめた原水を基本洗浄に
おける逆流洗浄と同様のルートで圧力容器内に導入する
(第1の通薬工程)。この操作の前に行われる逆流洗浄
とは異なり、圧力容器内に導入された次亜塩素酸イオン
含有原水は中空糸の細孔を通して該中空糸の2次側にも
導入させられる。ここで、該原水に含有せしめられる次
亜塩素酸イオンは、金属水酸化物と共働して主に膜面に
ケーキ層を形成する元凶たる有機物の酸化分解及び該有
機物の一部としての微生物の殺菌のためである。 b.該導入された次亜塩素酸イオン含有原水を該圧力容
器内に所定時間ホールドする(第1の保持工程)。この
工程の目的は、前記の有機物の酸化分解及び微生物の殺
菌をより少ない薬剤で実効あるものにするためである。 c.前記の中空糸の2次側に導入された次亜塩素酸イオ
ン含有原水を基本洗浄における逆圧洗浄と同様のルート
で流す(第1の逆圧薬洗工程)。この工程の目的は中空
糸の細孔を閉塞している有機物の排除である。 d.該次亜塩素酸イオン含有原水及び次亜塩素酸イオン
を含有せしめない原水を順番に基本洗浄の逆流洗浄と同
様のルートで流す(第1の逆流洗浄工程)。 このように、ろ過操作とは逆の方向でろ過層に薬液(次
亜塩素酸イオン含有原水)を流すことによってろ過層の
内周側(ろ過操作時の通水がろ過層の外周側から内周側
に向かってなされるので外周側に比し、その汚染度は低
い)ほど高流速のフレッシュな薬液と接触せしめられる
ことになり、より清浄なろ過面が維持されるので、全体
としてろ過性能の低下は殆どない。 A.第2の薬洗 次亜塩素酸イオンを酸に代えたことを除き第1の薬洗と
同様にしてこの操作を行う。尚、この操作の目的は金属
水酸化物の除去にあるので、該酸としては洗浄水中に所
定濃度の水素イオンを供給し得るものであればよく、具
体的には塩酸、硫酸、硝酸等の鉱酸やクエン酸等の一部
の有機酸が挙げられる(ハンドリング性及び入手の容易
さの点から塩酸を用いることが好ましい)。
A. First chemical washing a. Raw water containing hypochlorite ions is introduced into the pressure vessel through the same route as backwashing in the basic washing (first chemical passing step). Unlike the backwashing performed before this operation, the raw water containing hypochlorite ions introduced into the pressure vessel is also introduced into the secondary side of the hollow fiber through the pores of the hollow fiber. Here, the hypochlorite ion contained in the raw water cooperates with the metal hydroxide to mainly form an cake layer on the membrane surface, and oxidatively decomposes the organic matter, which is the primary cause of the microorganism. For sterilization. b. The introduced hypochlorite ion-containing raw water is held in the pressure vessel for a predetermined time (first holding step). The purpose of this step is to make the oxidative decomposition of the organic substances and the disinfection of microorganisms effective with less chemicals. c. The hypochlorite ion-containing raw water introduced into the secondary side of the hollow fiber is caused to flow along the same route as the back pressure washing in the basic washing (first back pressure washing step). The purpose of this step is to eliminate the organic matter that has blocked the pores of the hollow fiber. d. The raw water containing hypochlorite ions and the raw water not containing hypochlorite ions are sequentially flown in the same route as the backwashing of the basic washing (first backwashing step). In this way, the chemical solution (raw water containing hypochlorite ion) flows through the filtration layer in the direction opposite to the filtration operation, so that the inner side of the filtration layer (the water flowing during the filtration operation flows from the outer side of the filtration layer to the inside). (The contamination level is lower than the outer circumference side, so that it is made closer to the peripheral side.) The higher the flow rate, the more contact with the fresh chemical solution, and the cleaner filtration surface is maintained, so the overall filtration performance Is hardly reduced. A. Second chemical washing This operation is performed in the same manner as the first chemical washing except that the hypochlorite ion is replaced with an acid. Since the purpose of this operation is to remove the metal hydroxide, the acid may be any one that can supply a predetermined concentration of hydrogen ions to the washing water, and specifically, hydrochloric acid, sulfuric acid, nitric acid, etc. Some organic acids such as mineral acid and citric acid can be mentioned (it is preferable to use hydrochloric acid from the viewpoint of handling properties and availability).

【0022】本発明によれば微生物を含む膜面及びろ過
層汚染物質をほぼ完璧に除去し得るので、かん水又は海
水を原水とした逆浸透法による淡水化処理の前処理操作
として充分に使用し得る。尚、本発明にて生産されたろ
過水は当然そのまま(更なる前処理操作を要することな
く)逆浸透装置に供給することができる。また、その特
性から明らかなように、本発明のシステムは、河川水は
勿論のこと、廃水中の不溶性固形分の除去法としても当
然適用し得る。尚、説明の都合を優先し、ここまで本発
明のシステムに用いる膜が限外ろ過膜であるとして説明
してきたが、本発明の思想は使用する膜の分画分子量が
その要件ではない故、適用し得る膜としては限外ろ過膜
に限定されず、例えばMF膜やNF膜をも使用し得るも
のである。
According to the present invention, the contaminants on the membrane surface and the filtration layer containing microorganisms can be almost completely removed, so that they can be sufficiently used as a pretreatment operation for desalination treatment by reverse osmosis using brackish water or seawater as raw water. obtain. In addition, the filtered water produced by the present invention can be supplied to a reverse osmosis apparatus as it is (without requiring any further pretreatment). As is clear from the characteristics, the system of the present invention can be naturally applied to a method for removing insoluble solids in wastewater as well as river water. It should be noted that priority is given to the convenience of explanation, and the membrane used in the system of the present invention has been described as an ultrafiltration membrane, but the idea of the present invention is that the molecular weight cut-off of the membrane used is not a requirement, The applicable membrane is not limited to the ultrafiltration membrane, and may be, for example, an MF membrane or an NF membrane.

【0023】[0023]

【発明の実施の形態】以下、その実施態様の一つを示し
た図面を参照しつつ本発明を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings showing one embodiment.

【0024】図1に示したのが本発明の基本フロー(原
水から不溶性の固形分が殆ど除去された浄水を得るとい
う本来の目的のためのフロー、すなわちろ過操作時のフ
ロ−)である。ここで、符号V0は原水槽、V1は圧力
容器、V2は洗浄水タンク、V3は(圧縮空気の)空気
溜め、V4は浄水槽、Pは原水ポンプである。尚、図
中、“塩素”と表示されているものは、圧力容器:V1
の前流のそれがろ過層の洗浄操作の際のみに投入される
次亜塩素酸イオン供給源としての塩素系薬剤であり、浄
水槽:V4の後流のそれが浄水の使用先、例えば上水の
場合などに所望される蛇口での所要残留塩素濃度を満足
させるために投入される塩素系薬剤である。また、図
中、“塩酸”と表示されているものは、ろ過層の洗浄操
作の際のみに投入される酸の代表としての塩酸である。
FIG. 1 shows the basic flow of the present invention (the flow for the original purpose of obtaining purified water in which insoluble solids are almost completely removed from raw water, that is, the flow at the time of a filtration operation). Here, reference numeral V0 is a raw water tank, V1 is a pressure vessel, V2 is a washing water tank, V3 is an air reservoir (for compressed air), V4 is a clean water tank, and P is a raw water pump. In the figure, those indicated as "chlorine" are pressure vessels: V1.
It is a chlorine-based chemical as a hypochlorite ion supply source which is supplied only during the washing operation of the filtration layer, and is located in the downstream of the V4. It is a chlorine-based chemical that is introduced to satisfy the required residual chlorine concentration at the faucet that is desired in the case of water and the like. Also, in the figure, what is indicated as "hydrochloric acid" is hydrochloric acid as a representative of the acid that is introduced only during the operation of washing the filtration layer.

【0025】本発明では、原水は、原水ポンプ:Pにて
所定の圧力に高められた後、圧力容器:V1の一次側
(中空糸の外面、すなわち膜面が露出している側)に送
られる。図2に示すように、該圧力容器の内部には、中
空糸束からなる層:UF(以下、ろ過層という)がその
中心部にその軸方向に延伸するように設けられた芯管:
Tの回りに均一な目開きとなるよう規則的且つ重畳的に
巻回・保持(その表層の状態を示したのが図3であり、
ある種織布のごとき形態である)されており、一方、該
ろ過層を構成する中空糸の端部(図示では両端である
が、少なくとも一端であればよい)は仕切り:S1、S
2にて該圧力容器の内部と水密に区分された空間である
水室:V11、V12にその内腔(限外ろ過膜装置の二
次側となる)を開放しているので、該圧力容器に導入さ
れた原水は、原水入口:Iから該圧力容器内周面と該ろ
過層の外周面との間に形成された外周空間:Wに入り該
ろ過層中を各中空糸の膜面にてろ過されつつ該芯管の方
に向かって流れていく(ここで、該芯管はそれに接続す
る配管に設けられた遮断弁にて盲をされた状態におかれ
ているので、原水がこの管を介して該圧力容器の外部に
直接排出されることはない。尚、原水は該圧力容器に供
給された全量が、ろ過された水、すなわち浄水として該
水室から配管(該水室としての空間形成のための蓋:C
1、C2にその一端を連結されている)を経由して該圧
力容器の系外に排出される。この浄水は、洗浄水タン
ク:V2(このフローでは、ろ過層洗浄操作における洗
浄水の送水手段として加圧空気を使用しているので、浄
水槽:V4との間にこのタンクを設けているが、勿論、
該洗浄水の送水手段としてはポンプを使用してもよく、
その場合には、該ポンプのサクションを該浄水槽に連結
する。尚、この洗浄水タンクを個別に設けるシステム構
成は、後述するように膜面の洗浄操作における空気によ
る高速洗浄−空洗−を行うための加圧空気の空気溜めを
別途有していることもその理由の一つである)を介して
浄水槽:V4に流れ込み、そして使用先に適当な手段、
例えばポンプと配管を経由して送られる。
In the present invention, the raw water is raised to a predetermined pressure by the raw water pump: P, and then sent to the primary side of the pressure vessel V1 (the outer surface of the hollow fiber, that is, the side where the membrane surface is exposed). Can be As shown in FIG. 2, inside the pressure vessel, a core tube provided with a layer composed of a bundle of hollow fibers: UF (hereinafter, referred to as a filtration layer) is provided at the center thereof so as to extend in the axial direction thereof.
Winding and holding regularly and superimposed so as to form a uniform opening around T (FIG. 3 shows the state of the surface layer,
In this case, the ends of the hollow fibers constituting the filtration layer (both ends in the drawing, but at least one end are sufficient) are divided into S1 and S1.
The water chambers V11 and V12, which are water-tight spaces separated from the inside of the pressure vessel at 2 (V2 and V12), have their lumens (the secondary side of the ultrafiltration membrane device) opened. The raw water introduced into the filter enters an outer peripheral space: W formed between the inner peripheral surface of the pressure vessel and the outer peripheral surface of the filtration layer from the raw water inlet: I, and enters the filtration layer into the membrane surface of each hollow fiber. And flows toward the core tube while being filtered (here, since the core tube is blinded by a shut-off valve provided in a pipe connected to the core tube, The raw water is not directly discharged to the outside of the pressure vessel through a pipe, and the whole amount of the raw water supplied to the pressure vessel is filtered water, that is, purified water, and is supplied from the water chamber to a pipe (as the water chamber). For forming the space of the space: C
1, one end of which is connected to C2) and discharged out of the pressure vessel system. This purified water is supplied to a cleaning water tank: V2 (in this flow, pressurized air is used as a water supply means for the cleaning water in the filtration layer cleaning operation. ,Of course,
A pump may be used as a means for sending the washing water,
In that case, the suction of the pump is connected to the water purification tank. Incidentally, the system configuration in which the washing water tank is separately provided may have an additional air reservoir for pressurized air for performing high-speed washing with air in the washing operation of the membrane surface-empty washing-as described later. Through one of the reasons), through a water purification tank: V4, and appropriate means to the place of use,
For example, it is sent via a pump and piping.

【0026】一方、所定のろ過操作を完了すると、ろ過
層:UFは、該ろ過層の表層(外周側表面を含む外周側
の表層)及び該ろ過層の内部並びに各中空糸の膜面上及
び細孔中)に捕捉された及び/又は付着した不溶性の固
形分を除去するための洗浄操作に入る。洗浄操作は、適
当なインターバルにて定常的に行う基本洗浄と必要に応
じてそれに付け加えられる追加洗浄とからなる(その際
の水又は空気が流されるルートについては図4参照)。
On the other hand, when the predetermined filtration operation is completed, the filtration layer: UF includes the surface layer of the filtration layer (the outer surface layer including the outer peripheral surface), the inside of the filtration layer, and the membrane surface of each hollow fiber and A washing operation is performed to remove insoluble solids trapped and / or deposited in the pores). The cleaning operation includes a basic cleaning that is regularly performed at appropriate intervals and an additional cleaning that is added to the cleaning as needed (see FIG. 4 for a route through which water or air flows).

【0027】(1)基本洗浄 予め洗浄水タンクV2に貯えられたろ過水を使用する
「逆圧洗浄」と、該逆圧洗浄に引き続いて行われる、原
水を洗浄水として利用する「逆流洗浄」とから構成され
る。尚、以下の説明にて特記しない弁は、すべてその状
態が“閉”であるものとする。 1)逆圧洗浄 洗浄水タンク:V2に圧力をかけ(弁:CV5“開”。
尚、CV7は空気を必要とする操作を行う限り“開”で
あるものとする)、予め該洗浄水タンクに貯留されたろ
過水を水室:C1、C2に供給し、中空糸の内腔からそ
の外面に向けて所定の圧力(原則としてろ過差圧の3
倍、具体的には最大300〜500kPa)にて該ろ過
水を流す(弁:CV3“開”)。尚、洗浄時間は10秒
もあれば充分である。 2)逆流洗浄 芯管:Tから圧力容器:V1の外周空間:Wに向けて原
水を流す(弁:CV4及びCV3“開”、原水ポンプ:
P稼働)。尚、洗浄水量はろ過層空間容積の3倍を標準
とする。尚、この操作は、「逆圧洗浄」を複数回繰り返し
た後で行う。
(1) Basic Washing "Backwashing" using filtered water previously stored in the washing water tank V2, and "Backwashing" performed after the backwashing and using raw water as washing water. It is composed of In the following description, all valves that are not specified are assumed to be in a “closed” state. 1) Back pressure washing Wash water tank: Apply pressure to V2 (valve: CV5 "open").
Note that CV7 is assumed to be “open” as long as an operation requiring air is performed.) Then, filtered water previously stored in the washing water tank is supplied to the water chambers C1 and C2, and the lumen of the hollow fiber is supplied. A predetermined pressure (in principle, 3
The filtered water is flowed at a pressure twice (specifically, 300 to 500 kPa) (valve: CV3 “open”). Note that a cleaning time of 10 seconds is sufficient. 2) Backwashing Flow of raw water from the core tube: T to the outer peripheral space of the pressure vessel: V1: W (valve: CV4 and CV3 "open", raw water pump:
P operation). In addition, the washing water amount is three times the filtration layer space volume as a standard. This operation is performed after "backwashing" is repeated a plurality of times.

【0028】(2)追加洗浄 高速流の圧縮空気(正確には、水と空気との気液混相
流)によりろ過層にショックを与えてろ過層を洗浄する
「空洗」と、薬剤を含有せしめた原水を使用する「薬
洗」とからなる。原則として、「空洗」と「薬洗」はど
ちらか一方を前記の基本洗浄を数回行った後で行う。勿
論、必要に応じて両者をシリーズで行ってもよい。又、
「薬洗」は、使用する薬剤によって「第1の薬洗」(薬
剤:次亜塩素酸イオン放出可能な薬剤、例えば次亜塩素
酸ソーダなど)と「第2の薬洗」(薬剤:酸、例えば塩
酸等の鉱酸やクエン酸等の有機酸)とからなる(数字の
順にシリーズに行う))。 1)空洗 芯管:Tの上部から圧力容器:V1を約3barの圧縮空
気(空気溜め:V3より供給)で加圧(弁:CV6
“開”)した後、弁:CV3を開放することにより該圧
力容器内部の水を急速に排出する。尚、初期圧力:50
0kPa、排水完了時圧力:1bar維持とした場合で、数秒
の空洗でもろ過層内の流速は外周部でさえ約75m/hと
大きい(内周部では280m/h)ので洗浄能力は充分で
ある。 2)薬洗 下記のステップで構成する。尚、「第1の薬洗」と「第
2の薬洗」とは薬剤を異にするだけゆえ、「第1の薬
洗」のみ以下に説明する(第2の薬洗は、下記の説明の
第1を第2と読み替えるものとする)。 第1の通薬工程 芯管:Tから圧力容器:V1の外周空間:Wに向けて次
亜塩素酸イオンを含有せしめられた原水を流し(弁:C
V4及びCV3“開”、原水ポンプ:P稼働)、該圧力
容器の内部空間内の水が該次亜塩素酸イオン含有原水と
置換したことを確認したら原水の導入を停止する(弁:
CV4及びCV3を閉鎖、原水ポンプ:P停止)。ここ
で、次亜塩素酸イオンを原水に含有せしめるには、図1
に示すように該圧力容器に流入する原水に例えば次亜塩
素酸ソーダを所定比率で注入すればよい(濃度として
は、2〜20ppm、好ましくは5〜10ppmとする。尚、
「第2の薬洗」の場合におけるそれ(この場合にはpH)
は、それぞれ2.5〜4.0、及び2.7〜3.7であ
る)。また前記の水の置換の完了は、予め弁:CV3を
通って排出される水の中の次亜塩素酸濃度(第2の薬洗
の場合にはpHで可)が所定濃度になるまでの時間を把握
しておき、その時間をタイマーにセットすればよい。
尚、この工程においては、該次亜塩素酸イオン含有原水
を中空糸の細孔を介して洗浄水タンク:V2にも充満さ
せる(弁:CV2を一時開放し、所定時間経過後にタイ
マーで又は該洗浄水タンクに液面調節計を装着しそれか
らの信号にて閉鎖する)。 第1の保持工程 前行程の最後の状態を所定時間ホールドする(次亜塩素
酸イオンの濃度が5ppmであれば通常の水の場合5分間
で充分である。尚、「第2の薬洗」におけるそれは、pH3
で5〜10分おけば充分である)。 第1の逆圧薬洗 第1の通薬工程で予め洗浄水タンク:V2に貯留してお
いた次亜塩素酸イオン含有原水(正確には膜面を通過し
ているのでろ過水)を基本洗浄における「逆圧洗浄」と同
様のルートにて流す(弁:CV5及びCV3“開”) 第1の逆流洗浄工程 第1の通薬工程における原水のあつりょくようき:V1
への導入と同様のルートで初めに次亜塩素酸イオン含有
原水を、所定時間後に原水そのものをそれぞれ流す。こ
こで次亜塩素酸イオン含有の有無は水中にて次亜塩素酸
イオンを生成し得る薬剤、例えば次亜塩素酸ソーダ注入
ポンプ(図示せず)の稼動−停止にて行えばよい。
(2) Additional Washing “Empty washing” in which the filtration layer is shocked by high-speed compressed air (more precisely, a gas-liquid mixed phase flow of water and air) to wash the filtration layer and contains a chemical It consists of a “medicine wash” that uses the raw water that has been impregnated. As a general rule, “empty washing” and “chemical washing” are performed after performing one of the basic washings several times. Of course, both may be performed in series as needed. or,
The “dishwashing” includes “first washing” (drug: a drug capable of releasing hypochlorite ion, such as sodium hypochlorite) and “second washing” (drug: acid) , For example, a mineral acid such as hydrochloric acid or an organic acid such as citric acid). 1) Empty washing From the top of the core tube: T, pressurize the pressure vessel: V1 with compressed air of about 3 bar (air reservoir: supplied from V3) (valve: CV6).
After "opening"), the water inside the pressure vessel is rapidly drained by opening the valve: CV3. In addition, initial pressure: 50
0 kPa, pressure at the time of drainage completion: 1 bar, and even with several seconds of empty washing, the flow rate in the filtration layer is as large as about 75 m / h even at the outer periphery (280 m / h at the inner periphery), so the washing capacity is sufficient is there. 2) Chemical washing It consists of the following steps. In addition, since the "first rinsing" and the "second rinsing" have different chemicals, only the "first rinsing" will be described below (the second rinsing is described below). Shall be read as the second). First Chemical Flow Step Flow raw water containing hypochlorite ions from the core tube: T to the outer peripheral space of the pressure vessel: V1: W (valve: C
V4 and CV3 “open”, raw water pump: P operation), and when it is confirmed that the water in the internal space of the pressure vessel has been replaced with the raw water containing hypochlorite ions, the introduction of raw water is stopped (valve:
(CV4 and CV3 are closed, raw water pump: P stop). Here, in order to include hypochlorite ion in raw water, FIG.
As shown in (2), for example, sodium hypochlorite may be injected into the raw water flowing into the pressure vessel at a predetermined ratio (concentration is 2 to 20 ppm, preferably 5 to 10 ppm.
It in the case of "second chemical washing" (in this case, pH)
Are 2.5-4.0 and 2.7-3.7, respectively.) The completion of the replacement of water is determined in advance until the concentration of hypochlorous acid in the water discharged through the valve CV3 (the pH can be used in the case of the second washing) becomes a predetermined concentration. It is sufficient to know the time and set that time in the timer.
In this step, the raw water containing hypochlorite ions is also filled in the washing water tank: V2 through the pores of the hollow fiber (the valve: CV2 is temporarily opened, and after a predetermined time elapses, the timer or the timer is used). Attach a liquid level controller to the washing water tank and close it with a signal from it). First holding step The last state of the previous step is held for a predetermined time (if the concentration of hypochlorite ion is 5 ppm, 5 minutes is sufficient for ordinary water. In addition, "second chemical washing" At pH 3
5 to 10 minutes is enough). First back-pressure chemical washing Basic water based on hypochlorite ion-containing raw water (exactly filtered water because it has passed through the membrane surface) previously stored in the washing water tank: V2 in the first chemical passing process Flow through the same route as “back pressure cleaning” in cleaning (valve: CV5 and CV3 “open”) First backflow cleaning step Atmosphere of raw water in first chemical passing step: V1
First, the raw water containing hypochlorite ions is first flowed by the same route as the introduction to the raw water, and after a predetermined time, the raw water itself is flown. Here, the presence or absence of hypochlorite ions may be determined by operating and stopping a chemical capable of generating hypochlorite ions in water, for example, a sodium hypochlorite injection pump (not shown).

【0029】因に、標準的な洗浄操作(逆圧洗浄→逆流
洗浄→薬洗)の条件は、下記の通りである。 最少洗浄間隔(逆圧洗浄):1回/30分(条件とし
ては更に回収率95%以下) 最大洗浄間隔(逆圧洗浄):1回/3時間(条件とし
ては更に回収率95%以上) 逆流洗浄の頻度:少なくとも1回/逆圧洗浄4回
薬洗の頻度:少なくとも1回/12時間
The conditions of the standard washing operation (back pressure washing → backflow washing → chemical washing) are as follows. Minimum washing interval (back pressure washing): 1 time / 30 minutes (recovery rate 95% or less as condition) Maximum washing interval (back pressure washing): 1 time / 3 hours (recovery rate 95% or more as condition) Frequency of backwash: at least 1 / backwash 4 times
Frequency of washing: at least once / 12 hours

【0030】試験例−1(基本洗浄の効果の確認) 1.原水 水道水にカオリン(平均粒径:3μm)を分散させた水
(不溶性の固形分濃度:2,000ppm)を定量ポンプで
水道水に注入した(目標不溶性の固形分濃度:50〜2
50ppm)。 2.試験装置 図4参照。尚、膜モジュール(図2参照。具体的には、
東洋紡(株)製の型番:HM8AUFを使用)の詳細仕
様は下記の通り。 圧力容器の外径:5B 膜面積 :38m2 中空糸:(外径)300μm、(内径)200μm 3.試験 水温:23℃、ろ過圧力:100kPa、ろ過流量:0.
7m3/hで1時間52分間ろ過操作を行った後、下記の要
領にて洗浄操作を行った。 逆圧洗浄(洗浄水:ろ過操作で得た洗浄水タンク
(容量:5L)中の浄水。送水動力:エアタンクからの空
気−圧力:500kPa−。時間:10秒)。 逆洗(洗浄水:原水。流量:ろ過操作の1.3倍。
時間:20秒)。 4.試験結果 12サイクル運転後、不溶性の固形分収支を調べた
ところ、装置への流入不溶性の固形分の回収率は99%
以上であった(水回収率:98.0%)。 原水中の不溶性の固形分濃度を67ppm迄下げ、ろ
過操作時間を6時間に延長し、12サイクル運転した
が、ろ過装置の異常閉塞もなくまったく問題がなかった
(水回収率:99.3%)。 いずれの場合も、浄水の濁度は0.1以下であった
(濁度測定法:工業用水試験法−JIS K 0101
−の9.濁度に準拠)。
Test Example 1 (Confirmation of Basic Cleaning Effect) Raw water Water (insoluble solid content concentration: 2,000 ppm) in which kaolin (average particle size: 3 μm) is dispersed in tap water is injected into tap water by a metering pump (target insoluble solid content concentration: 50 to 2).
50 ppm). 2. Test apparatus See FIG. In addition, the membrane module (see FIG. 2. Specifically,
The detailed specifications of Toyobo Co., Ltd. model number: HM8AUF) are as follows. 2. Outer diameter of pressure vessel: 5B Membrane area: 38 m 2 Hollow fiber: (outer diameter) 300 μm, (inner diameter) 200 μm Test Water temperature: 23 ° C, Filtration pressure: 100 kPa, Filtration flow rate: 0.
After performing a filtration operation at 7 m 3 / h for 1 hour and 52 minutes, a washing operation was performed in the following manner. Back pressure washing (washing water: purified water in a washing water tank (volume: 5 L) obtained by a filtration operation. Water supply power: air from an air tank-pressure: 500 kPa-. Time: 10 seconds). Backwashing (washing water: raw water. Flow rate: 1.3 times the filtration operation.
(Time: 20 seconds). 4. Test results After 12 cycles of operation, the balance of insoluble solids was examined. The recovery rate of insoluble solids flowing into the apparatus was 99%.
(Water recovery: 98.0%). The concentration of insoluble solids in the raw water was reduced to 67 ppm, the filtration operation time was extended to 6 hours, and the system was operated for 12 cycles, but there was no problem with no abnormal blockage of the filtration device (water recovery rate: 99.3%). ). In each case, the turbidity of purified water was 0.1 or less (turbidity measurement method: industrial water test method-JIS K0101).
--9. Turbidity).

【0031】試験例−2(追加洗浄の効果の確認) 1.原水 琵琶湖の湖水を沖合い200m水深2mより採水し、そ
のまま使用した。その濁度は5、SSは16ppmであっ
た。尚、SSの大部分は有機物であった。 2.試験装置 試験例−1に同じ。 3.試験 下記の要領にて実施した。 逆圧洗浄(水温:18℃、ろ過圧力:100kPa、
ろ過流量:0.6m3/hで、30分間ろ過操作を行った
後、実施。条件は試験例−1に同じ)。 逆洗(ろ過+逆圧洗浄を4回実施した後に1回、試
験例−1と同一条件にて実施) 薬洗(第1の薬洗。逆洗2回実施した後に1回、下
記の要領にて実施) ・第1の通薬工程(洗浄水:塩素を注入した原水−有効
塩素:5ppm、通水方法:該洗浄水を中空糸の2次側に
も充満させることを除き逆洗に同じ、通水速度:ろ過操
作の0.5倍、通水時間:2分) ・第1の保持工程(保持時間:10分) ・第1の逆圧薬洗工程(洗浄水として、第1の通薬工程
時の中空糸2次側に充満せしめた洗浄水を用いることを
除き条件は逆圧洗浄に同じ) ・第1の逆流洗浄工程(条件は逆流洗浄に同じ) 4.試験結果 約1ヶ月の運転でも、ろ過流量の低下は全く認めら
れなかった。 基本洗浄のみではろ過流量が約7%低下するが、第
1の薬洗を追加することによりろ過流量がほぼ初期の状
態に回復することが確認された。 原水中のSSの構成成分がほとんど有機物であった
ため、第2の薬洗は実施する必要がなかった。
Test Example 2 (Confirmation of Effect of Additional Cleaning) Raw water Lake Biwa was sampled from 200m offshore at a depth of 2m and used as it was. Its turbidity was 5, and SS was 16 ppm. Most of the SS was organic. 2. Test equipment Same as Test example-1. 3. Test The test was performed as follows. Back pressure washing (water temperature: 18 ° C, filtration pressure: 100 kPa,
Filtration flow rate: 0.6 m 3 / h, after performing the filtration operation for 30 minutes. The conditions are the same as in Test Example-1). Backwashing (1 time after performing filtration + backpressure washing 4 times, under the same conditions as in Test Example 1) Chemical washing (1st chemical washing. Once after performing 2 times of backwashing, the following procedure・ First pass-through process (washing water: raw water with chlorine injected-available chlorine: 5 ppm, water passing method: backwashing except that the washing water is also filled on the secondary side of the hollow fiber Same, water flow rate: 0.5 times the filtration operation, water flow time: 2 minutes) • First holding step (holding time: 10 minutes) • First counter-pressure chemical washing step (first washing as washing water) 3. The conditions are the same as those for back-pressure washing except that the washing water filled on the secondary side of the hollow fiber is used during the drug passing step.)-First backwashing step (the conditions are the same as for backwashing). Test results No decrease in filtration flow rate was observed at all even after about one month of operation. It was confirmed that the filtration flow rate was reduced by about 7% with only the basic cleaning, but the filtration flow rate was almost restored to the initial state by adding the first chemical cleaning. Since the constituents of SS in the raw water were almost organic, there was no need to perform the second washing.

【0032】[0032]

【発明の効果】本発明によれば、特別な前処理を必要と
することなく、長期にわたってろ過を行うことができ、
しかも、ろ過操作において原水に塩素系薬剤の添加を必
要としないので、経済的且つ安全な浄水製造方法を提供
し得る。
According to the present invention, filtration can be performed for a long time without requiring special pretreatment,
Moreover, since it is not necessary to add a chlorine-based chemical to the raw water in the filtration operation, an economical and safe method for producing purified water can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様を示す系統図である。FIG. 1 is a system diagram showing one embodiment of the present invention.

【図2】本発明に使用される膜モジュールの一実施態様
の構造を示す断面図(芯管の軸線に沿って切断。詳細構
造は片側のみ表記)である。
FIG. 2 is a cross-sectional view (cut along the axis of the core tube. Detailed structure is shown on only one side) showing the structure of one embodiment of the membrane module used in the present invention.

【図3】本発明に使用される膜モジュールのろ過層の一
実施態様の表層を示す写真である。
FIG. 3 is a photograph showing a surface layer of one embodiment of a filtration layer of a membrane module used in the present invention.

【図4】本発明の一実施態様(膜モジュール部を拡大)
を示す系統図である。
FIG. 4 shows an embodiment of the present invention (enlarged membrane module).
FIG.

【符号の説明】[Explanation of symbols]

V0 :原水槽 V1 :圧力容器(膜モジュール) V2 :洗浄水タンク V3 :エアタンク V4 :浄水槽 P :原水ポンプ W :外周空間 T :芯管 CV1〜CV8:弁 V0: Raw water tank V1: Pressure vessel (membrane module) V2: Cleaning water tank V3: Air tank V4: Water purification tank P: Raw water pump W: Outer space T: Core pipe CV1 to CV8: Valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 65/02 520 B01D 65/02 520 65/06 65/06 Fターム(参考) 4D006 GA06 HA02 HA08 HA19 HA95 JA01A JA01B JA02B JA30A KA17 KA64 KC02 KC03 KC12 KC13 KC14 KC16 KD11 KD12 KD24 KE01Q KE03P KE07P KE11R KE12P KE13P KE15R KE16P KE22Q KE24Q KE28Q KE28R MA01 MA22 MA33 PA01 PB03 PB04 PB08 PB24 PB52 PB70 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01D 65/02 520 B01D 65/02 520 65/06 65/06 F-term (Reference) 4D006 GA06 HA02 HA08 HA19 HA95 JA01A JA01B JA02B JA30A KA17 KA64 KC02 KC03 KC12 KC13 KC14 KC16 KD11 KD12 KD24 KE01Q KE03P KE07P KE11R KE12P KE13P KE15R KE16P KE22Q KE24Q KE28Q KE28R MA01B03 P02MA03

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 竪型円筒形の圧力容器の中心部にその軸
方向に延伸するように配した芯管に中空糸束を均一な目
開きとなるよう規則的且つ重畳的に巻き付けてろ過層と
してなるホローファイバー型の限外ろ過膜を用いた浄水
製造方法であって、ろ過操作が、全量ろ過であること、
及び原水を該圧力容器の内周面と該ろ過層の外周面との
間に形成された外周空間から該芯管に向かって供給し、
該中空糸の内腔からろ過水を抜き出すことによって行わ
れること、そして該中空糸の膜面を含む該ろ過層の洗浄
操作が、該中空糸の内腔からその外側に向かってろ過水
を流す逆圧洗浄と該芯管より該外周空間に向かって供給
される原水による逆流洗浄とからなる基本洗浄によって
行われることを特徴とする方法。
1. A filter layer formed by winding a bundle of hollow fibers regularly and superposedly around a core tube arranged in the center of a vertical cylindrical pressure vessel so as to extend in the axial direction thereof so as to have uniform openings. A method for producing purified water using a hollow fiber type ultrafiltration membrane, wherein the filtration operation is 100% filtration,
And supplying raw water from the outer peripheral space formed between the inner peripheral surface of the pressure vessel and the outer peripheral surface of the filtration layer toward the core pipe,
The operation is performed by extracting filtered water from the lumen of the hollow fiber, and the washing operation of the filtration layer including the membrane surface of the hollow fiber flows the filtered water from the lumen of the hollow fiber toward the outside. The method is performed by basic cleaning comprising back pressure cleaning and back flow cleaning with raw water supplied from the core tube toward the outer peripheral space.
【請求項2】 前記のろ過層を構成する中空糸束の前記
の圧力容器内部における充填可能空間に対する充填率が
少なくとも0.5である請求項1に記載の方法。
2. The method according to claim 1, wherein a filling rate of a hollow fiber bundle constituting the filtration layer with respect to a fillable space inside the pressure vessel is at least 0.5.
【請求項3】 前記のろ過基本洗浄の後で、前記の芯管
から前記の外周空間に向けて急激に空気を流す空洗を更
に行う請求項1又は2に記載の方法。
3. The method according to claim 1, further comprising, after the filtration basic washing, an empty washing in which air is rapidly flown from the core tube toward the outer peripheral space.
【請求項4】 前記の基本洗浄の後で、前記の芯管から
その中に次亜塩素酸イオンを含有せしめた原水を前記の
外周空間に向けて流す第1の薬洗と、該芯管からその中
に酸を含有せしめた原水を該外周空間に向けて流す第2
の薬洗を更に行う請求項1又は2に記載の方法。
4. A first chemical washing in which raw water containing hypochlorite ions therein is flown from said core tube toward said outer peripheral space after said basic washing, and said core tube. From which a raw water containing an acid is flowed toward the outer peripheral space.
The method according to claim 1, further comprising washing the medicine.
【請求項5】 前記の第1の薬洗が、前記の次亜塩素酸
イオン含有原水を前記の芯管から前記の外周空間に向か
って流し、前記の圧力容器内に該次亜塩素酸イオン含有
原水を導入する第1の通薬工程と、該導入された次亜塩
素酸イオン含有原水を該圧力容器内に所定の時間とどめ
ておく第1の保持工程と、該第1の通薬工程にて中空糸
の細孔を介してろ過水側に移動せしめた該次亜塩素酸イ
オン含有原水を該中空糸の内腔側からその外側に流す第
1の逆圧薬洗工程と、該次亜塩素酸イオン含有原水を該
第1の通薬工程と同様のルートで流した後、更に次亜塩
素酸イオンを含まない原水を同ルートで流す第1の逆流
洗浄工程とからなり、前記の第2の薬洗が、前記の酸含
有原水を該芯管から該外周空間に向かって流し、該圧力
容器内に該酸含有原水を導入する第2の通薬工程と、該
導入された塩酸含有原水を該圧力容器内に所定の時間と
どめておく第2の保持工程と、該第2の通薬工程にて中
空糸の細孔を介してろ過水側に移動せしめた該酸含有原
水を該中空糸の内腔側からその外側に流す第2の逆圧薬
洗工程と、該酸含有原水を該第2の通薬工程と同様のル
ートで流した後、更に酸を含まない原水を同ルートで流
す第2の逆流洗浄工程とからなる請求項4に記載の方
法。
5. The method according to claim 1, wherein the first chemical washing causes the raw water containing hypochlorite ions to flow from the core tube toward the outer peripheral space, and the hypochlorite ions are introduced into the pressure vessel. A first pass-through step for introducing the raw water containing, a first holding step for keeping the introduced hypochlorite ion-containing raw water in the pressure vessel for a predetermined time, and a first pass-through step A first counter-pressure chemical washing step in which the hypochlorite ion-containing raw water moved to the filtered water side through the pores of the hollow fiber is passed from the inner side of the hollow fiber to the outside thereof; After flowing the raw water containing chlorite ions through the same route as the first drug passing step, further comprising a first backwashing step of flowing raw water containing no hypochlorite ions through the same route, A second chemical washing flows the acid-containing raw water from the core tube toward the outer peripheral space, and stores the acid-containing raw water in the pressure vessel. A second drug passing step of introducing water, a second holding step of keeping the introduced hydrochloric acid-containing raw water in the pressure vessel for a predetermined time, and a hollow fiber in the second drug passing step. A second counter-pressure chemical washing step in which the acid-containing raw water that has been moved to the filtered water side through the pores flows from the inner side of the hollow fiber to the outside thereof, and the acid-containing raw water is passed through the second passage. The method according to claim 4, comprising a second backwashing step in which raw water free of acid is further flown along the same route after flowing down the same route as the step.
【請求項6】 前記の第1の保持工程における次亜塩素
酸イオン含有原水のの次亜塩素酸濃度が2〜20ppmで
あり、その保持時間が2〜20分であり、前記の第2の
保持工程における酸含有原水のpHが2.5〜4.0であ
り、その保持時間が2〜20分である請求項5に記載の
方法。
6. The hypochlorite ion-containing raw water in the first holding step has a hypochlorous acid concentration of 2 to 20 ppm, a holding time of 2 to 20 minutes, and the second holding step. The method according to claim 5, wherein the pH of the acid-containing raw water in the holding step is 2.5 to 4.0, and the holding time is 2 to 20 minutes.
【請求項7】 前記の原水がかん水又は海水であり、前
記のろ過操作にて得られた浄水をそのまま逆浸透法によ
る淡水化処理の原料水として供給する請求項1乃至6の
いずれか1に記載の方法。
7. The method according to claim 1, wherein the raw water is brackish water or seawater, and the purified water obtained by the filtration operation is supplied as it is as raw water for desalination treatment by a reverse osmosis method. The described method.
JP10357258A 1998-06-30 1998-12-16 Purified water production Pending JP2000079390A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10357258A JP2000079390A (en) 1998-06-30 1998-12-16 Purified water production
PCT/JP2000/001318 WO2001066238A1 (en) 1998-06-30 2000-03-06 Method of producing purified water

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10-183605 1998-06-30
JP18360598 1998-06-30
JP10357258A JP2000079390A (en) 1998-06-30 1998-12-16 Purified water production
PCT/JP2000/001318 WO2001066238A1 (en) 1998-06-30 2000-03-06 Method of producing purified water

Publications (1)

Publication Number Publication Date
JP2000079390A true JP2000079390A (en) 2000-03-21

Family

ID=27278735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10357258A Pending JP2000079390A (en) 1998-06-30 1998-12-16 Purified water production

Country Status (2)

Country Link
JP (1) JP2000079390A (en)
WO (1) WO2001066238A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001066238A1 (en) * 1998-06-30 2001-09-13 Aquasystems Ltd. Method of producing purified water
WO2003022750A1 (en) * 2001-09-05 2003-03-20 Mitsubishi Rayon Co., Ltd. Water purification cartridge, water purifier, and method of cleaning water purifier
NL1019374C2 (en) * 2001-11-15 2003-05-16 Norit Holding N V Method for manufacturing a filter module, such a filter module, whether or not included in a filter system.
JP2003251158A (en) * 2002-03-05 2003-09-09 Toyobo Co Ltd On-line chemical cleaning method for filter membrane module
KR100430672B1 (en) * 2001-06-27 2004-05-10 (주) 세라컴 a back washing apparatus of ceramics membrane
JP2006281121A (en) * 2005-04-01 2006-10-19 Ngk Insulators Ltd Membrane filtration operating method of clarification water
JP2007505728A (en) * 2003-09-22 2007-03-15 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド Backwashing and cleaning methods
JP2007237016A (en) * 2006-03-06 2007-09-20 Daicen Membrane Systems Ltd Seawater filtering method
JP2008525165A (en) * 2004-12-24 2008-07-17 シーメンス・ウォーター・テクノロジーズ・コーポレーション Cleaning membrane filtration systems
JP2008539054A (en) * 2005-04-29 2008-11-13 シーメンス・ウォーター・テクノロジーズ・コーポレイション Chemical cleaning for membrane filters
JP2009220018A (en) * 2008-03-17 2009-10-01 Metawater Co Ltd Method and device for cleaning membrane
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
JP2015071155A (en) * 2013-10-04 2015-04-16 三菱レイヨン株式会社 Wastewater treatment method and production method of terephthalic acid
JP2015073914A (en) * 2013-10-04 2015-04-20 三菱化学株式会社 Method for treating waste water, and method for producing terephthalic acid
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
JP2017217579A (en) * 2016-06-03 2017-12-14 株式会社クラレ Hollow fiber membrane filtration device and method for cleaning the same
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
JP2020142191A (en) * 2019-03-06 2020-09-10 旭化成株式会社 Hollow fiber membrane module and filtration method of sea water using the same
JP2020533159A (en) * 2017-09-12 2020-11-19 フレゼニウス メディカル ケア ドイッチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング How to treat protein-containing suspensions or protein-containing solutions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220389A (en) * 1975-08-09 1977-02-16 Dainippon Toryo Co Ltd Process for operating a reverse osmosis or ultrafiltration device
JPH0667456B2 (en) * 1986-08-21 1994-08-31 株式会社東芝 Filtration device
JP3591618B2 (en) * 1997-06-05 2004-11-24 東洋紡績株式会社 Hollow fiber type separation membrane element
JPH11156166A (en) * 1997-11-28 1999-06-15 Mitsubishi Heavy Ind Ltd Cleaning method for hollow fiber membrane module
JP2000079390A (en) * 1998-06-30 2000-03-21 Kikai Kagaku Kenkyusho:Kk Purified water production

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001066238A1 (en) * 1998-06-30 2001-09-13 Aquasystems Ltd. Method of producing purified water
KR100430672B1 (en) * 2001-06-27 2004-05-10 (주) 세라컴 a back washing apparatus of ceramics membrane
WO2003022750A1 (en) * 2001-09-05 2003-03-20 Mitsubishi Rayon Co., Ltd. Water purification cartridge, water purifier, and method of cleaning water purifier
KR100906031B1 (en) * 2001-09-05 2009-07-02 미쯔비시 레이온 가부시끼가이샤 Water purifier
KR100905346B1 (en) * 2001-09-05 2009-07-01 미쯔비시 레이온 가부시끼가이샤 Method for cleaning water purifier
KR100862105B1 (en) * 2001-09-05 2008-10-09 미쯔비시 레이온 가부시끼가이샤 Water purification cartridge and water purifier
US7351335B2 (en) 2001-11-15 2008-04-01 Norit Proces Technologie Holding B.V. Filter module
NL1019374C2 (en) * 2001-11-15 2003-05-16 Norit Holding N V Method for manufacturing a filter module, such a filter module, whether or not included in a filter system.
WO2003041847A1 (en) * 2001-11-15 2003-05-22 Norit Holding N.V. Filter module
JP2003251158A (en) * 2002-03-05 2003-09-09 Toyobo Co Ltd On-line chemical cleaning method for filter membrane module
JP4560701B2 (en) * 2002-03-05 2010-10-13 東洋紡績株式会社 Cleaning method for membrane filter module
JP2007505728A (en) * 2003-09-22 2007-03-15 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド Backwashing and cleaning methods
KR101141514B1 (en) 2003-09-22 2012-05-08 지멘스 인더스트리, 인크. Backwash and cleaning method
JP2008525165A (en) * 2004-12-24 2008-07-17 シーメンス・ウォーター・テクノロジーズ・コーポレーション Cleaning membrane filtration systems
JP4763718B2 (en) * 2004-12-24 2011-08-31 シーメンス・ウォーター・テクノロジーズ・コーポレーション Cleaning membrane filtration systems
JP2006281121A (en) * 2005-04-01 2006-10-19 Ngk Insulators Ltd Membrane filtration operating method of clarification water
JP2008539054A (en) * 2005-04-29 2008-11-13 シーメンス・ウォーター・テクノロジーズ・コーポレイション Chemical cleaning for membrane filters
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
JP2007237016A (en) * 2006-03-06 2007-09-20 Daicen Membrane Systems Ltd Seawater filtering method
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
JP2009220018A (en) * 2008-03-17 2009-10-01 Metawater Co Ltd Method and device for cleaning membrane
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
JP2015073914A (en) * 2013-10-04 2015-04-20 三菱化学株式会社 Method for treating waste water, and method for producing terephthalic acid
JP2015071155A (en) * 2013-10-04 2015-04-16 三菱レイヨン株式会社 Wastewater treatment method and production method of terephthalic acid
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
JP2017217579A (en) * 2016-06-03 2017-12-14 株式会社クラレ Hollow fiber membrane filtration device and method for cleaning the same
JP2020533159A (en) * 2017-09-12 2020-11-19 フレゼニウス メディカル ケア ドイッチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング How to treat protein-containing suspensions or protein-containing solutions
JP7218357B2 (en) 2017-09-12 2023-02-06 フレゼニウス メディカル ケア ドイッチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for treating protein-containing suspension or protein-containing solution
JP2020142191A (en) * 2019-03-06 2020-09-10 旭化成株式会社 Hollow fiber membrane module and filtration method of sea water using the same
JP7237656B2 (en) 2019-03-06 2023-03-13 旭化成株式会社 Hollow fiber membrane module and seawater filtration method using the same

Also Published As

Publication number Publication date
WO2001066238A1 (en) 2001-09-13

Similar Documents

Publication Publication Date Title
JP2000079390A (en) Purified water production
JP3887072B2 (en) Method for cleaning hollow fiber membrane module and filtration device used in the method
JP2000271460A (en) Treating system and treatment method using spiral type membrane module
WO2006080482A1 (en) Method for manufacturing module having selectively permeable membrane and module having selectively permeable membrane
JPH11309351A (en) Washing of hollow fiber membrane module
US7422690B2 (en) Filtering system
JP2010094584A (en) Method of treating ballast water and apparatus for treating ballast water
JP2007130587A (en) Membrane filtration apparatus and method for washing membrane
JP3359687B2 (en) Cleaning method for filtration membrane module
JP2007014902A (en) Desalination apparatus and washing method of pretreatment membrane of desalination apparatus
JP2004057883A (en) Water cleaning method using external pressure type hollow fiber membrane module and apparatus therefor
JP4270644B2 (en) Operating method and cleaning method of spiral membrane element and spiral membrane module
JP5017922B2 (en) Water treatment method
WO2018159561A1 (en) Reverse osmosis treatment device and reverse osmosis treatment method
WO2011108589A1 (en) Method for washing porous membrane module, and fresh water generator
JP6530931B2 (en) Method of desalting, method of cleaning demineralizer and demineralizer
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
JP3986370B2 (en) Cleaning method for membrane filter module
JPH08141375A (en) Cleaning method for filtration film module
JP2000015062A (en) Membrane filter
JP4583557B2 (en) Operating method and cleaning method of spiral membrane element and spiral membrane module
JP2002113336A (en) Method of cleaning membrane filtration device and water treatment apparatus
JP2004130307A (en) Method for filtration of hollow fiber membrane
JPH11277062A (en) Method and apparatus for producing purified water
JP2015123436A (en) Water treatment method