JPH11156166A - Cleaning method for hollow fiber membrane module - Google Patents

Cleaning method for hollow fiber membrane module

Info

Publication number
JPH11156166A
JPH11156166A JP32752797A JP32752797A JPH11156166A JP H11156166 A JPH11156166 A JP H11156166A JP 32752797 A JP32752797 A JP 32752797A JP 32752797 A JP32752797 A JP 32752797A JP H11156166 A JPH11156166 A JP H11156166A
Authority
JP
Japan
Prior art keywords
hollow fiber
water
valve
purified water
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32752797A
Other languages
Japanese (ja)
Inventor
Hideo Iwahashi
英夫 岩橋
Masahiko Nagai
正彦 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP32752797A priority Critical patent/JPH11156166A/en
Publication of JPH11156166A publication Critical patent/JPH11156166A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cleaning method for a hollow fiber membrane module for removing fine particles and the like efficiently. SOLUTION: Purified water is introduced into hollow fibers 14 from a purified water line C reversely to the introduction time of water for purification, and the outer surfaces of hollow fibers are cleaned to release turbid matters adhered to the hollow fibers. Waste water is drained from a hollow fiber layer 13 through a core tube 12 and a raw water inlet nozzle 11. After the reverse pressure cleaning is completed, a raw water valve 21 and a purified water valve 22 are closed and a waste water blow valve 23 is opened. Then a high pressure air feed valve 4 is opened quickly to introduce forcibly compressed air stored in an air tank 20 from the nozzle 11 into a membrane separation device 3 to drain water in the membrane separation device 3. The feed valve 24 is closed in said state, and then the valve is opened quickly to introduce compressed air into a module shockingly. Air is passed through the nozzle 11, the core tube 12, the hollow fiber layer 13 and an outer peripheral space 15 and discharged from the waste water blow valve 23 through a concentrated water outlet nozzle 16.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】水処理用膜モジュール(逆浸
透膜、限外ろ過膜、精密ろ過膜などに汎用されている中
空糸膜)の外部表面の洗浄による汚染除去方法に関す
る。
The present invention relates to a method for removing contamination by washing the outer surface of a water treatment membrane module (a hollow fiber membrane generally used for a reverse osmosis membrane, an ultrafiltration membrane, a microfiltration membrane, etc.).

【0002】[0002]

【従来の技術】従来の膜モジュールの洗浄方法は、化学
薬品による洗浄、加圧空気による洗浄及び空気バブリン
グによる洗浄など、種々の方法がある。このうち、中空
糸膜の外側の汚泥の除去に対しては、例えば、特開昭5
7−53204号に弗化水素酸アンモニウムを含有する
水溶液を用いることにより、洗浄を行う方法が開示され
ており、膜の外部を水などにより逆洗浄にすることにつ
いては、特開平3−114号に、ケース内を空にした状
態で、透過側から逆圧を加えて逆洗する洗浄方法が開示
されている。また、空気バブリングによる洗浄方法に対
しては、特開平2−95422号に開示され、この方法
は、筒状ケース内に中空糸膜束を収納し、筒状ケースの
上端側から下端側に向けて原液を流通させ、かつ、同下
端部からケース内に気泡を導入して、比較的少量の気体
でモジュールの洗浄を図っている。
2. Description of the Related Art There are various conventional methods for cleaning a membrane module, such as cleaning with a chemical agent, cleaning with pressurized air, and cleaning with air bubbling. Among them, the removal of sludge outside the hollow fiber membrane is described in, for example,
Japanese Patent Application Laid-Open No. 3-114 discloses a method for performing cleaning by using an aqueous solution containing ammonium hydrofluorate in Japanese Patent Application Laid-Open No. 3-114. Further, there is disclosed a cleaning method in which a back pressure is applied by applying a back pressure from the permeation side while the inside of the case is empty. A cleaning method using air bubbling is disclosed in Japanese Patent Application Laid-Open No. 2-95422. In this method, a hollow fiber membrane bundle is housed in a cylindrical case, and is directed from the upper end to the lower end of the cylindrical case. The module is washed with a relatively small amount of gas by allowing the undiluted solution to flow and introducing bubbles into the case from the lower end.

【0003】加圧空気を用い、一気に目詰まり物を排出
する方法については、特開平7−289860号に開示
され、この方法は、空気スクラビングを行った後、容器
内を加圧した状態で排水を行うことにより、洗浄時間、
洗浄間隔、洗浄空気量等の最適化を図り、洗浄時間を短
縮している。また、膜の内部から水により付着物を除去
する方法については、特開平4−161232号に開示
され、透過液の流れとは逆方向に洗浄液を通過させてい
る。膜の内部から空気を圧送して行う洗浄については、
特開平6−23246号に開示され、この方法は、洗浄
工程前に膜表面を混相流で洗浄し、さらに逆流による洗
浄を行うことにより、混相流による膜表面汚染物の除去
および目詰り物を膜表面に浮き出させ、次の逆流で膜の
洗浄を完全に行なうようにしている。
[0003] A method for discharging the clogged material at a stretch by using pressurized air is disclosed in Japanese Patent Application Laid-Open No. Hei 7-289860. This method involves performing air scrubbing and then discharging water while pressurizing the inside of a container. The cleaning time,
The cleaning time and the cleaning time are optimized by optimizing the cleaning interval and the amount of cleaning air. Further, a method for removing deposits from the inside of the membrane with water is disclosed in JP-A-4-161232, in which the cleaning liquid is passed in the opposite direction to the flow of the permeated liquid. For cleaning performed by pumping air from inside the membrane,
This method is disclosed in Japanese Patent Application Laid-Open No. Hei 6-23246. This method comprises cleaning a membrane surface with a multiphase flow before a cleaning step, and further performing backwashing to remove contaminants on the membrane surface by the multiphase flow and reduce clogging. The film is raised on the surface of the film, and the film is completely washed by the next reverse flow.

【0004】[0004]

【発明が解決しようとする手段】しかしながら、これら
の方法では、中空糸繊維が粗密度でないと、モジュール
に流入した粒子の排出が不十分となるため、装置の大型
化ができず、経済的でなかった。また、モジュールの高
密度を必要とする逆浸透装置などでは、洗浄が不可能な
ため、高度な前処理を必要としていた。本発明は上記課
題に鑑みてなされたもので、前処理が不要で、装置の大
型化ができる中空糸膜モジュールの洗浄方法を提供する
ことを目的とする。
However, in these methods, unless the hollow fiber fibers have a coarse density, the particles flowing into the module are not sufficiently discharged, so that the size of the apparatus cannot be increased. Did not. Further, in a reverse osmosis device or the like that requires a high density of modules, washing cannot be performed, so that advanced pretreatment is required. The present invention has been made in view of the above problems, and has as its object to provide a method for cleaning a hollow fiber membrane module that does not require a pretreatment and can increase the size of an apparatus.

【0005】[0005]

【課題を解決するための手段】上記目的は、中空糸によ
って中空糸層を形成し、中空糸の中空糸膜の外側から原
水を通し、該原水を浄化水にする浄化装置において、上
記中空糸層に含まれた原水をできるだけ排除したのち、
環状の中空糸層の中央または外周の半径方向から、急激
な圧縮空気を流し、中空糸層に滞留している微粒子等の
浮遊固形分を中空糸層から移動または排出する中空糸膜
モジュールの洗浄方法によって達成される。
The object of the present invention is to provide a purification apparatus in which a hollow fiber layer is formed by hollow fibers, raw water is passed from outside the hollow fiber membrane of the hollow fibers, and the raw water is purified water. After removing as much as possible the raw water contained in the formation,
Washing of a hollow fiber membrane module in which sudden compressed air is flowed from the center or outer radius of the annular hollow fiber layer to move or discharge suspended solids such as fine particles staying in the hollow fiber layer from the hollow fiber layer. Achieved by the method.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態による
中空糸膜モジュールの洗浄方法について、図面を参照し
ながら説明する。図1は、原水を浄化するための水浄化
装置30の浄化通水時における基本フローを示す。この
水浄化装置30は、主とする装置類が、上流側(浄化通
水時における原水の流れの上流側をいう。以下同じ)か
ら原水貯槽1、膜分離装置3、浄化水貯槽4の順に接続
されている。原水貯槽1と膜分離装置3の管路間には、
原水ラインAからの原水を、上流側の原水貯槽1から膜
分離装置3へ供給するための給水ポンプ2が接続され、
浄化水貯槽4の後流側(浄化通水時における原水の流れ
の後流側をいう。以下同じ)には、浄化水ポンプ5が接
続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for cleaning a hollow fiber membrane module according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a basic flow of the water purification device 30 for purifying raw water when water is purified. In the water purification device 30, the main devices are arranged in the order of the raw water storage tank 1, the membrane separation device 3, and the purified water storage tank 4 from the upstream side (the upstream side of the flow of the raw water at the time of purified water flow; the same applies hereinafter). It is connected. Between the raw water storage tank 1 and the pipeline of the membrane separation device 3,
A feedwater pump 2 for supplying raw water from the raw water line A from the raw water storage tank 1 on the upstream side to the membrane separation device 3 is connected,
A purified water pump 5 is connected to the downstream side of the purified water storage tank 4 (the downstream side of the flow of the raw water during the purified water flow. The same applies hereinafter).

【0007】本実施の形態では、原水ラインAからの原
水は、一旦原水貯槽1に貯められ、凝集やろ過などの前
処理を施すことなく、そのまま給水ポンプ2によって膜
分離装置3に供給される。但し、給水ポンプ2及び膜分
離装置3の物理的損傷を招くおそれのあるときは、異物
の流入を防止するため、ストレーナ(図示せず)などを
給水ポンプ2の上流側に設けてもよい。原水は、膜分離
装置3内に供給されると、濃縮水ラインBと浄化水ライ
ンCに分離され、濃縮水ラインBの濃縮水はブローされ
る。浄化水ラインCの浄化水は後流側の浄化水貯槽4に
一旦貯溜され、浄化水ポンプ5によって適宜、送水され
る。
In the present embodiment, the raw water from the raw water line A is temporarily stored in a raw water storage tank 1 and supplied to the membrane separation device 3 by the water supply pump 2 without any pretreatment such as coagulation or filtration. . However, when there is a possibility that the water supply pump 2 and the membrane separation device 3 may be physically damaged, a strainer (not shown) or the like may be provided on the upstream side of the water supply pump 2 in order to prevent inflow of foreign matter. When the raw water is supplied into the membrane separation device 3, the raw water is separated into a concentrated water line B and a purified water line C, and the concentrated water in the concentrated water line B is blown. The purified water in the purified water line C is temporarily stored in a purified water storage tank 4 on the downstream side, and is appropriately supplied by a purified water pump 5.

【0008】図2は、図1に示した膜分離装置3とその
周辺機器の詳細を示す。膜分離装置3は3重構造になっ
ており、内部から芯管12、モジュール管25そして、
膜分離装置3の容器が設けられている。芯管12は円筒
状であり、その壁部に原水が通過できる細孔が多数開い
ており、モジュール管25もまた円筒状で、その壁部に
原水が通過できる細孔が多数開いている。膜分離装置3
には、図面に1つだけ例示している中空糸14を多数束
ねて環状形にした中空糸層13が配設され、中空糸層1
3内に設けられた芯管12は、上流側の原水入口ノズル
11に連通している。原水入口ノズル11は、図1に示
す給水ポンプ2に、原水弁21を介在して管路により接
続され、また、原水弁21と原水入口ノズル11との間
の管路には、圧縮空気が供給されている高圧エアタンク
20が、洗浄用高圧空気ラインDによって、高圧空気供
給弁24を介在して接続されている。
FIG. 2 shows details of the membrane separation device 3 shown in FIG. 1 and its peripheral devices. The membrane separation device 3 has a triple structure, and the core tube 12, the module tube 25, and
A container for the membrane separation device 3 is provided. The core tube 12 has a cylindrical shape, and its wall has many pores through which raw water can pass. The module tube 25 also has a cylindrical shape, and its wall has many pores through which raw water can pass. Membrane separation device 3
Is provided with a hollow fiber layer 13 formed by bundling a large number of hollow fibers 14 illustrated only in the drawing into an annular shape.
The core pipe 12 provided in the inside 3 communicates with the raw water inlet nozzle 11 on the upstream side. The raw water inlet nozzle 11 is connected to the feed water pump 2 shown in FIG. 1 by a pipe via a raw water valve 21, and compressed air is supplied to a pipe between the raw water valve 21 and the raw water inlet nozzle 11. The high-pressure air tank 20 being supplied is connected by a high-pressure air line D for cleaning via a high-pressure air supply valve 24.

【0009】中空糸層13の周部には、これと膜分離装
置3の容器壁部との間に、モジュール外周空間15が設
けられ、このモジュール外周空間15は濃縮水出口ノズ
ル16と連通している。濃縮水出口ノズル16は、洗浄
排水ラインEと、濃縮水ラインBに分岐され、洗浄排水
ラインEには排水ブロー弁23が接続され、濃縮水ライ
ンBには、圧力を所定に保持するための固定抵抗17が
接続されている。中空糸層13の中空糸14の内部は、
浄化水溜18を介在して浄化水ノズル19に連通し、浄
化水ノズル19は、浄化水弁22を介在して図1に示す
浄化水貯槽4に接続されている。
A module outer space 15 is provided around the hollow fiber layer 13 between the hollow fiber layer 13 and the container wall of the membrane separator 3. The module outer space 15 communicates with a concentrated water outlet nozzle 16. ing. The concentrated water outlet nozzle 16 is branched into a cleaning drainage line E and a concentrated water line B, a drainage blow valve 23 is connected to the cleaning drainage line E, and the concentrated water line B is used to maintain a predetermined pressure. The fixed resistor 17 is connected. The inside of the hollow fiber 14 of the hollow fiber layer 13 is
The purified water nozzle 19 communicates with the purified water nozzle 19 via the purified water reservoir 18, and is connected to the purified water storage tank 4 shown in FIG.

【0010】本発明に係る中空糸膜モジュールの洗浄方
法は、主として次の3工程で行なわれる。 第1の工程:逆圧洗浄工程 図2において、浄化通水時、原水は原水ラインAから芯
管12を通って中空糸14の外側から中空糸14内に入
た後、浄化水溜18に流入し、浄化水ノズル1から浄化
水ラインCを通り、浄化水貯槽4へ送られる。一方、中
空糸14内に入らない原水は、モジュール外周空間15
を通って濃縮水出口ノズル16から排出される。逆圧洗
浄工程時には、これとは逆に浄化水ラインCより浄化水
を中空糸14の内部に入れ、ポンプの圧力により中空糸
外部に排出させ、中空糸外表面を洗浄し、中空糸表面に
付着している汚濁物を剥離させることによって、中空糸
入口部も逆方向から洗浄される。中空糸槽13から芯管
12を通過した浄化水は、原水入口ノズル11を経由
し、再び浄化水ラインCへ戻してもよい。この操作にお
ける排水は通常の濃縮水の流れの通り中空糸14、中空
糸層13、モジュール外周空間15を通って、濃縮水出
口ノズル16を経由し、洗浄排水ラインEより外部へ排
出される。また、この方法は、通常の中空糸膜を使用す
る膜分離装置で実施されているもので、浄化水に次亜塩
素尿酸ソーダや酸などを添加すれば、更に、洗浄効果は
向上する。
The method for cleaning a hollow fiber membrane module according to the present invention is mainly performed in the following three steps. First step: back pressure washing step In FIG. 2, at the time of purified water flow, raw water enters the hollow fiber 14 from the outside of the hollow fiber 14 through the core pipe 12 from the raw water line A, and then flows into the purified water reservoir 18. Then, the water is sent from the purified water nozzle 1 through the purified water line C to the purified water storage tank 4. On the other hand, raw water that does not enter the hollow fiber 14 is
Through the concentrated water outlet nozzle 16. In the reverse pressure washing step, on the contrary, purified water is introduced into the hollow fiber 14 from the purified water line C, discharged to the outside of the hollow fiber by the pressure of the pump, and the outer surface of the hollow fiber is washed. By peeling off the adhered contaminants, the hollow fiber inlet is also washed from the opposite direction. The purified water that has passed through the core tube 12 from the hollow fiber tank 13 may return to the purified water line C again via the raw water inlet nozzle 11. The drainage in this operation passes through the hollow fiber 14, the hollow fiber layer 13, the module outer space 15 as usual in the flow of the concentrated water, passes through the concentrated water outlet nozzle 16, and is discharged to the outside from the washing drainage line E. In addition, this method is carried out in a membrane separation device using a normal hollow fiber membrane. If sodium hypochlorite or acid is added to purified water, the cleaning effect is further improved.

【0011】第2工程:ショック排水 逆圧洗浄終了後、原水弁21および浄化水弁22を閉
じ、排水ブロー弁23を開ける。この状態で、高圧空気
供給弁24を急に開くことにより、高圧エアタンク20
に貯溜されている圧力7〜10Kg/cm2 Gの圧縮空
気を、原水入口ノズル11から芯管12を通って膜分離
装置3内に圧入する。すると、モジュール内の水は、排
水ブロー弁23を通じて、洗浄排水ラインEへ急速に排
出される。モジュール内の水の排出は、10〜20秒後
に完了するので、高圧空気供給弁24を閉じて、そのま
ま放置してモジュール内の圧力を大気圧と等しくする。
Second step: Shock drainage After the back pressure washing, the raw water valve 21 and the purified water valve 22 are closed, and the drainage blow valve 23 is opened. In this state, by rapidly opening the high pressure air supply valve 24, the high pressure air tank 20 is opened.
Compressed air having a pressure of 7 to 10 Kg / cm 2 G stored in the membrane separation device 3 is passed through the raw water inlet nozzle 11 through the core tube 12. Then, the water in the module is quickly discharged to the cleaning drain line E through the drain blow valve 23. Since the discharge of water in the module is completed after 10 to 20 seconds, the high-pressure air supply valve 24 is closed and left as it is to make the pressure in the module equal to the atmospheric pressure.

【0012】第3工程:ショック空洗 次いで、上記の状態で、高圧空気供給弁24を急に開
き、圧縮空気をショック的にモジュール内に導入する。
空気は原水入口ノズル11、芯管12、中空糸層13、
モジュール外周空間15を通過し、濃縮水出口ノズル1
6を経由して排水ブロー弁23から排出される。このと
きの空気は中空糸層の半径方向に流れる傾向を示し、空
気速度は、0.1〜1m/secとなり、中空糸層13
に残留する浮遊固形物を移動または排出させる。この操
作を数回繰り返し、高圧エアタンク20の圧力が2kg
/cm2 G程度に低下するまで継続する。
Third step: Shock wash Next, in the above state, the high-pressure air supply valve 24 is suddenly opened, and compressed air is introduced into the module in a shock-like manner.
The air is supplied from a raw water inlet nozzle 11, a core tube 12, a hollow fiber layer 13,
After passing through the module outer space 15, the concentrated water outlet nozzle 1
6 and is discharged from the drain blow valve 23. At this time, the air tends to flow in the radial direction of the hollow fiber layer, and the air velocity becomes 0.1 to 1 m / sec.
Move or remove suspended solids remaining in the vessel. This operation is repeated several times, and the pressure of the high-pressure air tank 20 becomes 2 kg.
/ Cm 2 G.

【0013】膜分離装置の運転状況は、次のとおりであ
る。図3は、高密度(空隙率50%)な中空糸を用い
て、浮遊固形分5ppmを含む原水を浄化した場合に、
モジュールの通水時の圧力損失を示したものである。図
3の前半は、ショック空洗を行わずに洗浄したもので、
後半はショック空洗を適用して行ったものである。モジ
ュールおよびエレメント空洗条件などは、表1に示すと
おりである。
The operating conditions of the membrane separation device are as follows. FIG. 3 shows a case where raw water containing 5 ppm of suspended solids was purified using high-density (porosity 50%) hollow fibers.
It shows the pressure loss when passing water through the module. In the first half of FIG. 3, the cleaning was performed without performing the shock emptying.
In the second half, shock emptying was applied. Table 1 shows the conditions for washing the module and the element.

【0014】[0014]

【表1】 [Table 1]

【0015】以上から明らかなように、半径方向に空気
を流すと圧力損失の上昇が抑制され、効果が大きいこと
が立証された。なお、表1中のエレメントの外形とは、
中空糸槽13の外形である。
As is apparent from the above, it has been proved that when air is flowed in the radial direction, an increase in pressure loss is suppressed and the effect is large. The outer shape of the element in Table 1 is
This is the outer shape of the hollow fiber tank 13.

【0016】以上、本発明の実施の形態について説明し
たが、勿論、本発明はこれに限定されることなく本発明
の技術的思想に基いて種々の変形が可能である。例え
ば、上記実施の形態では、圧縮空気を中空糸層13の内
部の芯管12側から中空糸層13へ圧送したが、モジュ
ール外周空間15側から芯管12側に圧送してもよい。
また、上記実施の形態では、第1の工程〜第3の工程を
経て中空糸膜モジュールの洗浄を行ったが、第1の工程
である逆圧洗浄工程を省略しても、十分に中空糸層から
微粒子等を除去することができる。膜分離装置3は、浄
化通水時の原水の流れを中空糸層13の内部に供給した
が、原水をモジュール外周空間15、すなわち、中空糸
層13の外周側から供給し、濃縮水を中空糸層13の芯
管12側に排出するようにしてもよい。
Although the embodiments of the present invention have been described above, the present invention is, of course, not limited thereto, and various modifications can be made based on the technical concept of the present invention. For example, in the above embodiment, the compressed air is pressure-fed from the core tube 12 side inside the hollow fiber layer 13 to the hollow fiber layer 13, but may be pressure-fed from the module outer peripheral space 15 side to the core tube 12 side.
Further, in the above embodiment, the hollow fiber membrane module was washed through the first to third steps. However, even if the first step, the back pressure washing step, was omitted, the hollow fiber membrane module could be sufficiently washed. Fine particles and the like can be removed from the layer. The membrane separation device 3 supplies the flow of the raw water at the time of purification water supply to the inside of the hollow fiber layer 13, but supplies the raw water from the module outer peripheral space 15, that is, the outer peripheral side of the hollow fiber layer 13, and supplies the concentrated water to the hollow fiber layer 13. The yarn layer 13 may be discharged to the core tube 12 side.

【0017】[0017]

【発明の効果】中空糸層の原水をできるだけ排除したの
ち、中空糸層の中央または外周の半径方向から、急激な
圧縮空気を流しているので、中空糸層から微粒子等の浮
遊固形分を移動または排出することができる。また、中
空糸繊維が高密度でも、モジュールに流入した粒子の排
出ができ、装置の大型化ができるようになった。
According to the present invention, after the raw water in the hollow fiber layer is removed as much as possible, rapid compressed air is flown from the center or the outer periphery of the hollow fiber layer, so that the suspended solids such as fine particles move from the hollow fiber layer. Or can be drained. Further, even if the hollow fiber density is high, the particles flowing into the module can be discharged, and the size of the device can be increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による中空糸膜モジュール
の洗浄方法が適用される水浄化装置の概略系統図であ
る。
FIG. 1 is a schematic system diagram of a water purification apparatus to which a method for cleaning a hollow fiber membrane module according to an embodiment of the present invention is applied.

【図2】中空糸膜モジュールの洗浄が行われる膜分離装
置及びその周辺を表す系統図である。
FIG. 2 is a system diagram showing a membrane separation device for cleaning a hollow fiber membrane module and its periphery.

【図3】本発明の実施の形態による中空糸膜モジュール
の洗浄方法で洗浄を行った水浄化装置の運転状況を示し
た線図である。
FIG. 3 is a diagram showing an operation state of a water purification device that has been cleaned by a method for cleaning a hollow fiber membrane module according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 原水貯槽 2 給水ポンプ 3 膜分離装置 4 浄化水貯槽 5 浄化水ポンプ 11 原水入口ノズル 12 芯管 13 中空糸層 14 中空糸 15 モジュール外周空間 16 濃縮水出口ノズル 17 固定抵抗 18 浄化水溜 19 浄化水ノズル 20 高圧エアタンク 21 原水弁 22 浄化水弁 23 排水ブロー弁 24 高圧空気供給弁 30 水浄化装置 A 原水ライン B 濃縮水ライン C 浄化水ライン D 洗浄用高圧空気ライン E 洗浄排水ライン DESCRIPTION OF SYMBOLS 1 Raw water storage tank 2 Feed water pump 3 Membrane separation device 4 Purified water storage tank 5 Purified water pump 11 Raw water inlet nozzle 12 Core tube 13 Hollow fiber layer 14 Hollow fiber 15 Module outer space 16 Concentrated water outlet nozzle 17 Fixed resistance 18 Purified water reservoir 19 Purified water Nozzle 20 High pressure air tank 21 Raw water valve 22 Purified water valve 23 Drainage blow valve 24 High pressure air supply valve 30 Water purification device A Raw water line B Concentrated water line C Purified water line D High pressure air line for cleaning E Cleaning drainage line

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 中空糸をもって中空糸層を形成し、中空
糸の中空糸膜の外側から原水を通し、中空糸膜によって
原水を浄化水にする浄化装置において、上記中空糸層に
含まれた原水をできるだけ排除したのち、中空糸層の中
央または外周から、急激な圧縮空気を流し、中空糸層に
滞留している微粒子等の浮遊固形分を中空糸層から移動
または排出することを特徴とする中空糸膜モジュールの
洗浄方法。
1. A purification apparatus in which a hollow fiber layer is formed with a hollow fiber, raw water is passed from outside the hollow fiber membrane of the hollow fiber, and the raw water is purified water by the hollow fiber membrane. After removing raw water as much as possible, abrupt compressed air is flowed from the center or outer periphery of the hollow fiber layer to move or discharge suspended solids such as fine particles remaining in the hollow fiber layer from the hollow fiber layer. Method for cleaning hollow fiber membrane modules.
【請求項2】 上記中空糸の中空糸膜の内側から予め浄
化水を流し、中空糸に付着する微粒子を浄化水で除去す
るとともに、微粒子を浄化水の潤滑により滑り易くして
から、上記中空糸層の中央または外周の半径方向から、
急激に圧縮空気を流すことを特徴とする請求項1に記載
の中空糸膜モジュールの洗浄方法。
2. Purifying water is passed from the inside of the hollow fiber membrane of the hollow fiber in advance to remove fine particles adhering to the hollow fiber with the purified water and lubricate the fine particles by lubricating the purified water. From the radial direction of the center or outer circumference of the yarn layer,
The method for cleaning a hollow fiber membrane module according to claim 1, wherein the compressed air is rapidly flowed.
JP32752797A 1997-11-28 1997-11-28 Cleaning method for hollow fiber membrane module Pending JPH11156166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32752797A JPH11156166A (en) 1997-11-28 1997-11-28 Cleaning method for hollow fiber membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32752797A JPH11156166A (en) 1997-11-28 1997-11-28 Cleaning method for hollow fiber membrane module

Publications (1)

Publication Number Publication Date
JPH11156166A true JPH11156166A (en) 1999-06-15

Family

ID=18200106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32752797A Pending JPH11156166A (en) 1997-11-28 1997-11-28 Cleaning method for hollow fiber membrane module

Country Status (1)

Country Link
JP (1) JPH11156166A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1046419A1 (en) * 1999-04-22 2000-10-25 Delphin Umwelttechnik GmbH Filter apparatus for physical elimination of germs, suspended particles and solids from water
WO2001066238A1 (en) * 1998-06-30 2001-09-13 Aquasystems Ltd. Method of producing purified water
JP2006272200A (en) * 2005-03-30 2006-10-12 Toyobo Engineering Kk Method for operating emergency water purifying apparatus and emergency water purifying apparatus using it
USRE42669E1 (en) 1995-08-11 2011-09-06 Zenon Technology Partnership Vertical cylindrical skein of hollow fiber membranes and method of maintaining clean fiber surfaces
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
CN106040008A (en) * 2016-08-02 2016-10-26 华兰生物工程重庆有限公司 Cleaning method of purification ultrafilter
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42669E1 (en) 1995-08-11 2011-09-06 Zenon Technology Partnership Vertical cylindrical skein of hollow fiber membranes and method of maintaining clean fiber surfaces
WO2001066238A1 (en) * 1998-06-30 2001-09-13 Aquasystems Ltd. Method of producing purified water
US6383385B1 (en) 1999-04-22 2002-05-07 Delphin Filtertechnik Gmbh Filter unit for the physical elimination of microbes, suspended matter and solids from water
EP1046419A1 (en) * 1999-04-22 2000-10-25 Delphin Umwelttechnik GmbH Filter apparatus for physical elimination of germs, suspended particles and solids from water
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
JP2006272200A (en) * 2005-03-30 2006-10-12 Toyobo Engineering Kk Method for operating emergency water purifying apparatus and emergency water purifying apparatus using it
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
CN106040008A (en) * 2016-08-02 2016-10-26 华兰生物工程重庆有限公司 Cleaning method of purification ultrafilter

Similar Documents

Publication Publication Date Title
JPH11156166A (en) Cleaning method for hollow fiber membrane module
EP1704911B1 (en) Method for cleaning a separation membrane in a membrane bioreactor system
JP2000317276A (en) Filtering device
JPH06292820A (en) Membrane separation device
JP3615918B2 (en) Method and apparatus for cleaning reverse osmosis membrane module
JP4840285B2 (en) Cleaning method for submerged membrane module
JP2709026B2 (en) Membrane separation device and cleaning method thereof
JP2004057883A (en) Water cleaning method using external pressure type hollow fiber membrane module and apparatus therefor
JPH09131517A (en) Hollow fiber membrane module and method for using the same
JP3440684B2 (en) Filtration device and method for cleaning filtration device
JP3943748B2 (en) Cleaning method for membrane filtration equipment
JPH11342320A (en) Operation of hollow fiber membrane module
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
JP2585879Y2 (en) Membrane separation device
JPH08299767A (en) Method for washing backward pressurized hollow-fiber membrane module
JP3856376B2 (en) Water treatment device and its operation method
JP4156984B2 (en) Cleaning method for separation membrane module
JP2009233504A (en) Method of cleaning dipping-type membrane module and cleaner for dipping-type membrane module as well as dipping-type membrane filter using the same
JP3430385B2 (en) Cleaning method of membrane
JP2000084377A (en) Removal of membrane contaminated substance for tubular membrane device
JP2004130205A (en) Method and apparatus for backwashing filter membrane with ozone-containing water
JP2015123436A (en) Water treatment method
JP3453695B2 (en) Oil-water separator
JP2000325758A (en) Method for cleaning separation member module
JP3539147B2 (en) Filtration device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106