JP2000056265A - Optical isolator and its production - Google Patents

Optical isolator and its production

Info

Publication number
JP2000056265A
JP2000056265A JP10224122A JP22412298A JP2000056265A JP 2000056265 A JP2000056265 A JP 2000056265A JP 10224122 A JP10224122 A JP 10224122A JP 22412298 A JP22412298 A JP 22412298A JP 2000056265 A JP2000056265 A JP 2000056265A
Authority
JP
Japan
Prior art keywords
polarizer
analyzer
faraday rotator
optical isolator
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10224122A
Other languages
Japanese (ja)
Other versions
JP3862867B2 (en
Inventor
Yoshiyuki Shiono
嘉幸 塩野
Toshihiko Riyuo
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP22412298A priority Critical patent/JP3862867B2/en
Publication of JP2000056265A publication Critical patent/JP2000056265A/en
Application granted granted Critical
Publication of JP3862867B2 publication Critical patent/JP3862867B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain strong joining strength, good insertion loss and extinction ratio while preventing deterioration of optical planes by allowing the metal elements which constitute the surfaces of a Faraday rotator to interact with the metal elements included in a polarizer and an analyzer to make one body. SOLUTION: The Faraday rotator 2 consists of a garnet single crystal, and Al2O3 films 21, TiO2 films 22 and SiO2 films 23 are vapor deposited on both surfaces of the single crystal. The polarizer 1 and the analyzer 3 consist of polarizing glass containing SiO2 in the glass component. A TiO2 film 12 and a SiO2 film are vapor-deposited to form an antireflection coating on one surface of each polarizer 1 and analyzer 3. The Faraday rotator 2, polarizer 1 and analyzer 3 are cleaned, and the surface of the polarzer 1 where the thin films 12, 13 are not formed is abutted to the thin film 23 on one furface of the Faraday rotator 2, while the surface of the analyzer 3 where the thin films 32, 33 are not formed is abutted to the surface of the opposite side of the Faraday rotator 2. These elements as abutted are heated to cause interaction between Si in the thin film 23 and Si in the polarizer 1 or the like to make one body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光回路部品として
使用され、順方向には光を透過するが逆方向には透過し
ない光アイソレータおよびその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical isolator which is used as an optical circuit component and transmits light in a forward direction but does not transmit light in a reverse direction, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】光通信システムで、半導体レーザーから
発した光はレンズを介して光ファイバ端面に投影され伝
送されるが、一部の光はレンズや光ファイバの端面で表
面反射して半導体レーザーまで戻り、ノイズとなってし
まう。この戻り光を除去するために光アイソレータが使
用される。光アイソレータは、偏光子、ファラデー回転
子および検光子により構成されている。
2. Description of the Related Art In an optical communication system, light emitted from a semiconductor laser is projected onto an end face of an optical fiber via a lens and transmitted. Back up to noise. An optical isolator is used to remove this return light. The optical isolator includes a polarizer, a Faraday rotator, and an analyzer.

【0003】例えば特開平6−75189号公報には、
光学接着剤や樹脂を用いて偏光子、ファラデー回転子、
検光子を接着し一体化する光アイソレータが開示されて
いる。接着剤等で接着した光アイソレータは、耐湿性・
耐熱性が悪く、アウトガスを発生するため、光アイソレ
ータの光軸がずれたり、他の光学部品に悪影響を及ぼす
という問題があった。特開平8−146351号公報に
は、透光性の低融点ガラスで部材を接着した光アイソレ
ータが開示されている。低融点ガラスを用いた光アイソ
レータは、偏光子または検光子とファラデー回転子の屈
折率の相違による挿入損失を抑制するために施している
無反射コートが劣化し、また偏光子、検光子が偏光ガラ
スのときは、偏光ガラスが劣化するという弊害があっ
た。
For example, JP-A-6-75189 discloses that
Polarizers, Faraday rotators, and optical adhesives and resins
An optical isolator in which an analyzer is bonded and integrated is disclosed. The optical isolator bonded with an adhesive etc.
Since heat resistance is poor and outgas is generated, there has been a problem that the optical axis of the optical isolator is shifted or adversely affects other optical components. Japanese Patent Application Laid-Open No. 8-146351 discloses an optical isolator in which members are bonded with a light-transmitting low-melting glass. In optical isolators using low-melting glass, the antireflection coating applied to suppress insertion loss due to the difference in the refractive index between the polarizer or analyzer and the Faraday rotator deteriorates, and the polarizer and analyzer become polarized. In the case of glass, there was a problem that the polarizing glass deteriorated.

【0004】[0004]

【発明が解決しようとする課題】本発明は前記の課題を
解決するためなされたもので、光学接着剤、樹脂および
低融点ガラスを使用しなくても、強固な接合強度を有
し、良好な挿入損失、消光比を有しかつ光学面の劣化の
ない光学特性の優れた光アイソレータおよびその製造方
法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has a strong bonding strength without using an optical adhesive, a resin and a low melting point glass. It is an object of the present invention to provide an optical isolator having an insertion loss, an extinction ratio, and excellent optical characteristics without deterioration of an optical surface, and a method of manufacturing the same.

【0005】[0005]

【課題を解決するための手段】前記の目的を達成するた
めになされた本発明の光アイソレータは、実施例に対応
する図1および図2に示すように、金属酸化物の薄膜2
1・22・23をコートしてあるファラデー回転子2の
両表面に、各々偏光子1および検光子3が接合され、フ
ァラデー回転子2の表面の薄膜23を構成する金属元素
と、偏光子1および検光子3に含まれる金属元素とが、
相互作用して一体化されている。
The optical isolator of the present invention, which has been made to achieve the above object, has a thin film 2 of metal oxide as shown in FIGS.
A polarizer 1 and an analyzer 3 are respectively joined to both surfaces of the Faraday rotator 2 coated with 1, 22, and 23, and a metal element constituting the thin film 23 on the surface of the Faraday rotator 2 and a polarizer 1 And the metal element contained in the analyzer 3
They interact and are integrated.

【0006】光アイソレータは、ファラデー回転子2の
薄膜23を構成する金属元素と、偏光子1および検光子
2に含まれる金属元素とが各々有している水酸基が、水
クラスターを介在して相互作用している。
In the optical isolator, the hydroxyl groups of the metal elements forming the thin film 23 of the Faraday rotator 2 and the metal elements contained in the polarizer 1 and the analyzer 2 are mutually interposed via water clusters. Working.

【0007】相互作用は、ファラデー回転子2の薄膜2
3の材質がSiO2、偏光子1の材質が成分としてSiO
2を含む偏光ガラスであると、以下のように推測され
る。これらの材質のSiに水が吸着されるとSi−OH
基が生成する。図3に示すように、ファラデー回転子2
の薄膜23のSi−OH基が水クラスター4を介して偏
光子1のSi−OH基に水素結合し、ファラデー回転子
2と偏光子1とは接合する。または図4に示すように、
ファラデー回転子2の薄膜23のSi−OH基と偏光子
1のSi−OH基とが直接水素結合する。検光子3の偏
光ガラスも同様の水素結合を生ずる。
[0007] The interaction is caused by the thin film 2 of the Faraday rotator 2.
3 is made of SiO 2 , and the polarizer 1 is made of SiO 2 as a component.
It is presumed that the polarizing glass contains 2 as follows. When water is adsorbed on Si of these materials, Si-OH
A group is formed. As shown in FIG. 3, the Faraday rotator 2
The Si—OH group of the thin film 23 is hydrogen-bonded to the Si—OH group of the polarizer 1 via the water cluster 4, and the Faraday rotator 2 and the polarizer 1 are joined. Or, as shown in FIG.
The Si—OH groups of the thin film 23 of the Faraday rotator 2 and the Si—OH groups of the polarizer 1 are directly hydrogen-bonded. The polarizing glass of the analyzer 3 also generates a similar hydrogen bond.

【0008】偏光子1は偏光ガラスまたはルチルYVO
4単結晶からなる。その表面には、TiO2、SiO2の金
属酸化物から選ばれる単層または多層の薄膜12、13
からなる無反射コートを電子ビーム蒸着法により施して
もよい。検光子3も偏光子1と同様である。
The polarizer 1 is made of polarizing glass or rutile YVO.
Consists of 4 single crystals. On its surface, single-layer or multilayer thin films 12, 13 selected from metal oxides of TiO 2 and SiO 2
May be applied by an electron beam evaporation method. The analyzer 3 is similar to the polarizer 1.

【0009】ファラデー回転子2は、例えばガーネット
単結晶の磁気光学材料からなる。単結晶の両面の薄膜2
1・22・23は金属酸化物の単層または多層構造から
なる。この金属酸化物はAl23、TiO2、SiO2から
選ばれることが好ましい。薄膜21・22・23は、こ
れらの金属酸化物を、透過光が無反射となる厚さに、電
子ビーム法で蒸着されている。
The Faraday rotator 2 is made of, for example, a garnet single crystal magneto-optical material. Thin film on both sides of single crystal 2
1, 22, and 23 have a single-layer or multilayer structure of a metal oxide. This metal oxide is preferably selected from Al 2 O 3 , TiO 2 , and SiO 2 . The thin films 21, 22, and 23 are formed by evaporating these metal oxides to a thickness at which transmitted light is not reflected by an electron beam method.

【0010】本発明の光アイソレータの製造方法は、フ
ァラデー回転子2の両表面に金属酸化物の薄膜をコート
し、その両表面に各々偏光子1および検光子3を当接さ
せ、熱処理することにより薄膜23を構成する金属元素
と偏光子1および検光子3に含まれる金属元素とを相互
作用させて一体化することを特徴とする。
In the method of manufacturing an optical isolator according to the present invention, a metal oxide thin film is coated on both surfaces of a Faraday rotator 2, and a polarizer 1 and an analyzer 3 are respectively brought into contact with both surfaces and heat treatment is performed. Thus, the metal element constituting the thin film 23 and the metal element included in the polarizer 1 and the analyzer 3 are made to interact with each other to be integrated.

【0011】この熱処理を行うことによって、ファラデ
ー回転子2の表面の薄膜23を構成する金属元素と、偏
光子1および検光子3に含まれる金属元素とが相互作用
して一体化された光アイソレータが得られる。
By performing this heat treatment, the metal element forming the thin film 23 on the surface of the Faraday rotator 2 and the metal element contained in the polarizer 1 and the analyzer 3 interact and are integrated into an optical isolator. Is obtained.

【0012】この製造方法でファラデー回転子2に偏光
子1および検光子3を当接するにあたり、酸または水で
洗浄処理する。好ましくは塩酸−過酸化水素−純水の溶
液、硫酸−過酸化水素−純水の溶液、アンモニア−過酸
化水素−純水の溶液にて洗浄処理する。この洗浄処理に
よって、ファラデー回転子2の薄膜23、偏光子1、検
光子3に含まれる金属元素に均一にOH基がつくため、
相互作用し易くなる。
When the polarizer 1 and the analyzer 3 are brought into contact with the Faraday rotator 2 in this manufacturing method, they are washed with an acid or water. Preferably, the cleaning treatment is performed with a solution of hydrochloric acid-hydrogen peroxide-pure water, a solution of sulfuric acid-hydrogen peroxide-pure water, or a solution of ammonia-hydrogen peroxide-pure water. As a result of this cleaning treatment, the metal element contained in the thin film 23 of the Faraday rotator 2, the polarizer 1, and the analyzer 3 is uniformly formed with an OH group.
It becomes easier to interact.

【0013】ファラデー回転子2に偏光子1および検光
子3を当接後、熱処理するときの条件は200〜300
℃、特に好ましくは、250℃、2時間である。この条
件で得た光アイソレータは、接合強度100g/mm
以上である。この温度より高温で熱処理すると接合面強
度は大きくなる。この理由は以下のように推察される。
偏光子1がSiOを含む偏光ガラス、ファラデー回転
子2の薄膜23がSiO膜の場合、熱処理を200℃
以下で行ったとき、Si間の相互作用は図3に示すよう
な水素結合が主であり、偏光子1とファラデー回転子2
の薄膜23との表面間の距離は0.7nmである。それ
に対し、熱処理条件が700℃以下の高温になるにつれ
図4に示すような水素結合が主となり、表面間の距離は
0.35nmとなる。
After the polarizer 1 and the analyzer 3 are brought into contact with the Faraday rotator 2, the conditions for heat treatment are 200 to 300.
° C, particularly preferably 250 ° C for 2 hours. The optical isolator obtained under these conditions has a bonding strength of 100 g / mm 2
That is all. Heat treatment at a temperature higher than this temperature increases the bonding surface strength. The reason is presumed as follows.
When the polarizer 1 is a polarizing glass containing SiO 2 and the thin film 23 of the Faraday rotator 2 is a SiO 2 film, the heat treatment is performed at 200 ° C.
When performed below, the interaction between Si is mainly hydrogen bonding as shown in FIG. 3, and the polarizer 1 and the Faraday rotator 2
The distance between the surface and the thin film 23 is 0.7 nm. On the other hand, as the heat treatment condition becomes higher than 700 ° C., hydrogen bonding as shown in FIG. 4 becomes dominant, and the distance between the surfaces becomes 0.35 nm.

【0014】このような表面間の距離より大きな表面の
マイクロラフネス、すなわち鏡面の全面にみられる数μ
mの厚さむらや数十μmのそりは、表面が弾性変形する
ため、接合においては全く支障がない。
The micro-roughness of the surface larger than the distance between the surfaces, that is, several μs observed over the entire mirror surface
An uneven thickness of m or a warpage of several tens of μm has no problem in joining because the surface is elastically deformed.

【0015】本発明の熱処理条件で得た光アイソレータ
は挿入損失0.3dB以下、消光比35dB以上の良好
な光学特性を有する。しかし、この熱処理条件以上では
高温になるにつれ材質ごとの熱膨張係数による歪みが増
大し、光アイソレータの消光比が小さくなってしまう。
The optical isolator obtained under the heat treatment conditions of the present invention has good optical characteristics with an insertion loss of 0.3 dB or less and an extinction ratio of 35 dB or more. However, above the heat treatment conditions, as the temperature increases, the distortion due to the thermal expansion coefficient of each material increases, and the extinction ratio of the optical isolator decreases.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施例を図面によ
り詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0017】図1に示すように、本発明の光アイソレー
タは、偏光子1、ファラデー回転子2、検光子3が接合
されて一体化している。ファラデー回転子2は、ガーネ
ット単結晶からなる。その両面に、順にAl23膜2
1、TiO2膜22、SiO2膜23が蒸着されている。
偏光子は、偏光ガラスからなり、ガラス成分にSiO2
を含む。偏光子1の片表面にはTiO2膜12、SiO2
膜13が蒸着され、無反射コーティングとなっている。
検光子3も偏光子1と同様な構成である。
As shown in FIG. 1, in the optical isolator of the present invention, a polarizer 1, a Faraday rotator 2, and an analyzer 3 are joined and integrated. The Faraday rotator 2 is made of a garnet single crystal. Al 2 O 3 film 2 on both sides in order
1. A TiO 2 film 22 and a SiO 2 film 23 are deposited.
The polarizer is made of a polarizing glass, and SiO 2 is used as a glass component.
including. On one surface of the polarizer 1, a TiO 2 film 12, SiO 2
A film 13 is deposited to form a non-reflective coating.
The analyzer 3 has the same configuration as the polarizer 1.

【0018】このような光アイソレータは以下のように
製造される。まず、ファラデー回転子2と、偏光子1お
よび検光子3を塩酸−過酸化水素−純水の溶液、硫酸−
過酸化水素−純水の溶液、アンモニア−過酸化水素−純
水の溶液にて順に洗浄処理する。ファラデー回転子2の
一方の薄膜23に偏光子1の薄膜12、13が形成され
ていない面を当接させ、ファラデー回転子2の反対側の
面に検光子3の薄膜32、33が形成されていない面を
当接させ、250℃、2時間の熱処理する。このような
処理によりファラデー回転子2の表面の薄膜23を構成
するSiと、偏光子1および検光子3の材質に含まれる
Siとが相互作用することにより一体化する。
Such an optical isolator is manufactured as follows. First, a Faraday rotator 2, a polarizer 1 and an analyzer 3 are combined with a solution of hydrochloric acid-hydrogen peroxide-pure water, sulfuric acid-
Washing treatment is performed sequentially with a solution of hydrogen peroxide-pure water and a solution of ammonia-hydrogen peroxide-pure water. The surface of the Faraday rotator 2 on which the thin films 12 and 13 of the polarizer 1 are not formed is brought into contact with one of the thin films 23, and the thin films 32 and 33 of the analyzer 3 are formed on the opposite surface of the Faraday rotator 2. The surfaces not contacted are heat-treated at 250 ° C. for 2 hours. By such processing, Si constituting the thin film 23 on the surface of the Faraday rotator 2 and Si contained in the materials of the polarizer 1 and the analyzer 3 interact to be integrated.

【0019】以下に、本発明を適用する実施例と本発明
を適用外の比較例を示し、詳細に説明する。
Hereinafter, examples to which the present invention is applied and comparative examples in which the present invention is not applied will be shown and described in detail.

【0020】実施例1 ガーネット単結晶の表面を鏡面研磨加工で仕上げ、形状
15mm×15mm、厚さ0.5mmに切断した。その
両面に電子ビーム蒸着で順に厚さ80nmのAl2
3膜、厚さ50nmのTiO2膜、厚さ70nmのSiO
2膜の3層を形成して、ファラデー回転子とした。
Example 1 The surface of a garnet single crystal was finished by mirror polishing, and cut into a shape of 15 mm × 15 mm and a thickness of 0.5 mm. 80 nm thick Al 2 O in order on both surfaces by electron beam evaporation
3 film, 50 nm thick TiO 2 film, 70 nm thick SiO
A Faraday rotator was formed by forming three layers of two films.

【0021】偏光ガラスの表面を鏡面研磨加工で仕上
げ、形状15mm×15mm、厚さ0.5mmに切断し
た。その片面に電子ビーム蒸着で順に厚さ50nmのT
iO2膜、厚さ265nmのSiO2膜の2層を形成し
て、偏光子および検光子とした。
The surface of the polarizing glass was finished by mirror polishing and cut into a shape of 15 mm × 15 mm and a thickness of 0.5 mm. On one side, a 50 nm-thick T
Two layers of an iO 2 film and a 265 nm thick SiO 2 film were formed, and used as a polarizer and an analyzer.

【0022】偏光子、ファラデー回転子、検光子を塩
酸:過酸化水素:純水が1:1:5の溶液、硫酸:過酸
化水素:純水が1:1:5の溶液、アンモニア:過酸化
水素:純水が1:1:5の溶液にて順番に5分間ずつ洗
浄処理した。
A polarizer, a Faraday rotator, and an analyzer were prepared by using a 1: 1: 5 solution of hydrochloric acid: hydrogen peroxide: pure water, a 1: 1: 5 solution of sulfuric acid: hydrogen peroxide: pure water, and ammonia: peroxide. Washing treatment was carried out sequentially for 5 minutes with a solution of hydrogen oxide: pure water of 1: 1: 5.

【0023】ファラデー回転子の両表面に、偏光子およ
び検光子の無反射コートしていない面を当接させ、室温
で消光比が最大となるように光軸を調整した。このもの
を250℃で2時間熱処理を行った後、放冷して一体化
した。これを切断して形状2mm×2mmの光アイソレ
ータを試作した。
Both surfaces of the Faraday rotator were brought into contact with the non-reflection coated surfaces of the polarizer and the analyzer, and the optical axis was adjusted so that the extinction ratio was maximized at room temperature. This was heat-treated at 250 ° C. for 2 hours, and then allowed to cool to be integrated. This was cut to produce an optical isolator having a shape of 2 mm × 2 mm.

【0024】試作した光アイソレータの接合強度は13
6g/mmであった。挿入損失は0.19dB、消光
比は37.7dBであった。挿入損失と消光比は、波長
1.31μmで測定した。さらに接合界面と垂直の方向
から光学顕微鏡で400倍にて接合界面の状態を観察し
たところ全ての試料で面内は全て一様に観察された。
The bonding strength of the prototype optical isolator is 13
It was 6 g / mm 2 . The insertion loss was 0.19 dB and the extinction ratio was 37.7 dB. The insertion loss and the extinction ratio were measured at a wavelength of 1.31 μm. Furthermore, when the state of the bonding interface was observed at 400 times with an optical microscope from the direction perpendicular to the bonding interface, all of the samples were uniformly observed in the plane.

【0025】実施例2 偏光子および検光子にルチル単結晶を用いたこと以外
は、実施例1と同様にして光アイソレータを試作した。
接合強度は121g/mmであった。挿入損失は0.
25dB、消光比は35.9dBであった。
Example 2 An optical isolator was prototyped in the same manner as in Example 1 except that a rutile single crystal was used for the polarizer and the analyzer.
The bonding strength was 121 g / mm 2 . The insertion loss is 0.
The extinction ratio was 35.9 dB and 25 dB.

【0026】比較例1 洗浄処理はアセトン、純水で5分間行い、熱処理条件は
200、300、400℃各2時間の3条件であること
を変えた以外は実施例1と同様にして、3種類の光アイ
ソレータを試作した。3種類はいずれも接合強度は28
〜33g/mm しかなく十分な接合強度を得ることが
できなかった。挿入損失は0.18〜0.19dB、消
光比は42.2〜43.3dBであった。
Comparative Example 1 The cleaning treatment was performed with acetone and pure water for 5 minutes.
200, 300, and 400 ° C for 2 hours each
3 in the same manner as in Example 1 except that
A prototype of a solator was manufactured. All three types have a joint strength of 28
~ 33g / mm 2To obtain sufficient bonding strength
could not. The insertion loss is 0.18 to 0.19 dB,
The light ratio was 42.2 to 43.3 dB.

【0027】比較例2 熱処理温度が100℃であること以外は実施例1と同様
にして、光アイソレータを試作した。接合強度は28g
/mmしかなく十分な結合強度は得られなかった。
Comparative Example 2 An optical isolator was prototyped in the same manner as in Example 1 except that the heat treatment temperature was 100 ° C. 28g bonding strength
/ Mm 2 and sufficient bonding strength could not be obtained.

【0028】比較例3 実施例1で準備した洗浄処理済みの偏光子、ファラデー
回転子、検光子を透光性低融点ガラスで接着した。低融
点ガラスは、波長1.31μmでの屈折率が1.51で
ある。350℃、2時間の熱処理を行い接着固定し、光
アイソレータを試作した。接合強度は620g/mm
と強固な接合強度を有していた。しかし挿入損失1.8
dB、消光比30.6dBであった。光学顕微鏡400
倍にて観察したところ接合界面の荒れが観察された。
Comparative Example 3 The cleaned polarizer, Faraday rotator, and analyzer prepared in Example 1 were bonded with a light-transmitting low-melting glass. The low-melting glass has a refractive index of 1.51 at a wavelength of 1.31 μm. A heat treatment was performed at 350 ° C. for 2 hours to fix and bond the optical isolator. Bonding strength is 620 g / mm 2
And strong bonding strength. However, the insertion loss is 1.8.
The extinction ratio was 30.6 dB. Optical microscope 400
When observed at a magnification of 2, the roughness of the bonding interface was observed.

【0029】この結果、本発明の光アイソレータは、本
発明を適用外の光アイソレータに比べ、接合強度、挿入
損失および消光比が良好で、光学面の劣化がない。
As a result, the optical isolator of the present invention has better bonding strength, insertion loss, and extinction ratio than optical isolators to which the present invention is not applied, and does not deteriorate the optical surface.

【0030】[0030]

【発明の効果】以上、詳細に説明したように、本発明の
光アイソレータは、強固な接合強度を有し、光学面の劣
化が少なく、良好な挿入損失、消光比を有し光学特性が
優れている。本発明の製造方法によれば、ホルダを必要
とせず、光学接着剤、樹脂および低融点ガラスを使用し
ないため、工程数が少なく、低コストで信頼性の高い光
アイソレータを提供することが可能になる。
As described in detail above, the optical isolator of the present invention has a strong bonding strength, little deterioration of the optical surface, a good insertion loss, an excellent extinction ratio, and excellent optical characteristics. ing. ADVANTAGE OF THE INVENTION According to the manufacturing method of this invention, since a holder is not required and an optical adhesive, a resin, and a low-melting glass are not used, it is possible to provide a highly reliable optical isolator at a low cost with a small number of steps. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用する本発明の実施例の斜視図であ
る。
FIG. 1 is a perspective view of an embodiment of the present invention to which the present invention is applied.

【図2】本発明を適用する本発明の実施例の部分拡大図
である。
FIG. 2 is a partially enlarged view of an embodiment of the present invention to which the present invention is applied.

【図3】水素結合の結合状態を説明する図である。FIG. 3 is a diagram illustrating a bonding state of a hydrogen bond.

【図4】同じく水素結合の結合状態を説明する図であ
る。
FIG. 4 is a diagram illustrating a bonding state of a hydrogen bond.

【符号の説明】[Explanation of symbols]

1は偏光子、2はファラデー回転子、3は検光子、4は
水クラスター、12、22、32はTiO2膜、13、
23、33はSiO2膜、21はAl23膜である。
1 is a polarizer, 2 is a Faraday rotator, 3 is an analyzer, 4 is a water cluster, 12, 22, and 32 are TiO 2 films, 13,
23 and 33 are SiO 2 films and 21 is an Al 2 O 3 film.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 金属酸化物の薄膜をコートしてあるフ
ァラデー回転子の両表面に、各々偏光子および検光子が
接合され、該ファラデー回転子の表面の該薄膜を構成す
る金属元素と、該偏光子および該検光子に含まれる金属
元素とが相互作用して一体化されていることを特徴とす
る光アイソレータ。
A polarizer and an analyzer are bonded to both surfaces of a Faraday rotator coated with a thin film of a metal oxide, and a metal element constituting the thin film on the surface of the Faraday rotator; An optical isolator, wherein a polarizer and a metal element contained in the analyzer interact and are integrated.
【請求項2】 該ファラデー回転子の該薄膜を構成す
る金属元素と、該偏光子および該検光子に含まれる金属
元素とが各々有している水酸基が、水クラスターを介在
して相互作用していることを特徴とする請求項1に記載
の光アイソレータ。
2. A metal element constituting the thin film of the Faraday rotator and a hydroxyl group of each of the metal elements contained in the polarizer and the analyzer interact with each other via a water cluster. The optical isolator according to claim 1, wherein
【請求項3】 該偏光子および該検光子が偏光ガラス
またはルチル単結晶からなり、該ファラデー回転子の該
薄膜が金属酸化物の単層または多層構造からなることを
特徴とする請求項1に記載の光アイソレータ。
3. The method according to claim 1, wherein the polarizer and the analyzer are made of a polarizing glass or a rutile single crystal, and the thin film of the Faraday rotator is made of a metal oxide single layer or a multilayer structure. An optical isolator as described.
【請求項4】 該金属酸化物が、Al23、TiO2
SiO2から選ばれることを特徴とする請求項3に記載
の光アイソレータ。
4. The method according to claim 1, wherein the metal oxide is Al 2 O 3 , TiO 2 ,
The optical isolator of claim 3, characterized in that it is selected of SiO 2.
【請求項5】 ファラデー回転子の両表面に金属酸化
物の薄膜をコートし、その両表面に各々偏光子および検
光子を当接させ、熱処理することにより該薄膜を構成す
る金属元素と該偏光子および該検光子に含まれる金属元
素とを相互作用させて一体化することを特徴とする光ア
イソレータの製造方法。
5. A metal oxide thin film is coated on both surfaces of a Faraday rotator, a polarizer and an analyzer are brought into contact with both surfaces, and heat treatment is performed. A method for producing an optical isolator, comprising: integrating a probe and a metal element contained in the analyzer by interacting with each other.
【請求項6】 該ファラデー回転子に該偏光子および
該検光子を当接するにあたり、酸または水で処理するこ
とを特徴とする請求項5に記載の光アイソレータの製造
方法。
6. The method for manufacturing an optical isolator according to claim 5, wherein the polarizer and the analyzer are brought into contact with the Faraday rotator with an acid or water.
【請求項7】 前記熱処理を200〜300℃で行う
ことを特徴とする請求項5に記載の光アイソレータの製
造方法。
7. The method according to claim 5, wherein the heat treatment is performed at 200 to 300 ° C.
JP22412298A 1998-08-07 1998-08-07 Optical isolator and manufacturing method thereof Expired - Fee Related JP3862867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22412298A JP3862867B2 (en) 1998-08-07 1998-08-07 Optical isolator and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22412298A JP3862867B2 (en) 1998-08-07 1998-08-07 Optical isolator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000056265A true JP2000056265A (en) 2000-02-25
JP3862867B2 JP3862867B2 (en) 2006-12-27

Family

ID=16808895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22412298A Expired - Fee Related JP3862867B2 (en) 1998-08-07 1998-08-07 Optical isolator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3862867B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084232A (en) * 2001-09-12 2003-03-19 Shin Etsu Chem Co Ltd Optical device and manufacturing method for the optical device
JP2003084234A (en) * 2001-09-12 2003-03-19 Shin Etsu Chem Co Ltd Optical device and manufacturing method for the optical device
JP2003084255A (en) * 2001-09-12 2003-03-19 Shin Etsu Chem Co Ltd Optical device and method of manufacturing the same
JP2003084233A (en) * 2001-09-12 2003-03-19 Shin Etsu Chem Co Ltd Optical isolator and its manufacturing method
JP2003086417A (en) * 2001-09-12 2003-03-20 Shin Etsu Chem Co Ltd Optical device and manufacturing method therefor
WO2003093896A1 (en) 2002-05-02 2003-11-13 Corning Incorporated Optical isolators and methods of manufacturing using direct bonding
EP1443357A1 (en) * 2003-01-29 2004-08-04 Kyocera Corporation An optical isolator element, a method for producing such an element, and an optical isolator using such an element
US6791748B2 (en) 2002-05-02 2004-09-14 Corning Incorporated Optical isolators and methods of manufacture
US6806990B2 (en) 2001-11-22 2004-10-19 Shin-Etsu Chemical Co., Ltd. Optical device and method for producing optical device
US6814833B2 (en) 2001-10-26 2004-11-09 Corning Incorporated Direct bonding of articles containing silicon
US6836602B2 (en) 2001-10-26 2004-12-28 Corning Incorporated Direct bonding of optical components
DE10134157B4 (en) * 2001-07-13 2005-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultra-precise surface device and method for its manufacture
JP2009117707A (en) * 2007-11-08 2009-05-28 Mitsubishi Heavy Ind Ltd Device, and manufacturing method of device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10134157B4 (en) * 2001-07-13 2005-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultra-precise surface device and method for its manufacture
JP2003084232A (en) * 2001-09-12 2003-03-19 Shin Etsu Chem Co Ltd Optical device and manufacturing method for the optical device
JP2003084234A (en) * 2001-09-12 2003-03-19 Shin Etsu Chem Co Ltd Optical device and manufacturing method for the optical device
JP2003084255A (en) * 2001-09-12 2003-03-19 Shin Etsu Chem Co Ltd Optical device and method of manufacturing the same
JP2003084233A (en) * 2001-09-12 2003-03-19 Shin Etsu Chem Co Ltd Optical isolator and its manufacturing method
JP2003086417A (en) * 2001-09-12 2003-03-20 Shin Etsu Chem Co Ltd Optical device and manufacturing method therefor
US6949164B2 (en) 2001-10-26 2005-09-27 Corning Incorporated Direct bonding of articles containing silicon
US6814833B2 (en) 2001-10-26 2004-11-09 Corning Incorporated Direct bonding of articles containing silicon
US6836602B2 (en) 2001-10-26 2004-12-28 Corning Incorporated Direct bonding of optical components
US6806990B2 (en) 2001-11-22 2004-10-19 Shin-Etsu Chemical Co., Ltd. Optical device and method for producing optical device
US6791748B2 (en) 2002-05-02 2004-09-14 Corning Incorporated Optical isolators and methods of manufacture
JP2005524864A (en) * 2002-05-02 2005-08-18 コーニング インコーポレイテッド Optical isolator and fabrication method using direct bonding
US6950235B2 (en) 2002-05-02 2005-09-27 Corning Incorporated Optical isolators and methods of manufacture
WO2003093896A1 (en) 2002-05-02 2003-11-13 Corning Incorporated Optical isolators and methods of manufacturing using direct bonding
EP1443357A1 (en) * 2003-01-29 2004-08-04 Kyocera Corporation An optical isolator element, a method for producing such an element, and an optical isolator using such an element
US7253956B2 (en) 2003-01-29 2007-08-07 Kyocera Corporation Optical isolator element, a method for producing such an element, and an optical isolator using such an element
JP2009117707A (en) * 2007-11-08 2009-05-28 Mitsubishi Heavy Ind Ltd Device, and manufacturing method of device
US8936998B2 (en) 2007-11-08 2015-01-20 Mitsubishi Heavy Industries, Ltd. Manufcaturing method for room-temperature substrate bonding

Also Published As

Publication number Publication date
JP3862867B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
JP2000056265A (en) Optical isolator and its production
US6950235B2 (en) Optical isolators and methods of manufacture
US5546486A (en) Optical fiber end for application in an optical isolator and a method of manufacture thereof
US6535655B1 (en) Fiberoptic polarizer and method of making the same
US6791748B2 (en) Optical isolators and methods of manufacture
US20050255324A1 (en) Composite substrate material and process for producing the same
US20090294051A1 (en) Optical contacting enabled by thin film dielectric interface
JP2002321947A (en) Optical device and method for producing the same
JP2002311403A (en) Faraday rotator
JPH08146351A (en) Element for optical isolator and its production
US20030124328A1 (en) Optical device and method for producing optical device
JP2004102218A (en) Optical isolator element, its manufacturing method, and optical isolator using the same
JP2000249983A (en) Production of optical non-reciprocal device
JPS62297369A (en) Production of optical element
JP3554140B2 (en) Optical isolator element and method of manufacturing the same
JPH0542379B2 (en)
JP2003207744A (en) Method of manufacturing optical device, and optical device
JP2641238B2 (en) Polarizer
JP4903326B2 (en) Optical device and method for manufacturing optical device
JP3582913B2 (en) Manufacturing method of optical isolator
JPH0517525B2 (en)
JPS63379A (en) Manufacture of optical element
JP2003084255A (en) Optical device and method of manufacturing the same
JPH0337601A (en) Polarizing prism
JP2003270436A (en) Method for manufacturing optical device, and optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060927

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151006

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees