JP2000026119A - Article having transparent electrically conductive oxide thin film and its manufacture - Google Patents

Article having transparent electrically conductive oxide thin film and its manufacture

Info

Publication number
JP2000026119A
JP2000026119A JP10194731A JP19473198A JP2000026119A JP 2000026119 A JP2000026119 A JP 2000026119A JP 10194731 A JP10194731 A JP 10194731A JP 19473198 A JP19473198 A JP 19473198A JP 2000026119 A JP2000026119 A JP 2000026119A
Authority
JP
Japan
Prior art keywords
thin film
substrate
article
conductive oxide
laser ablation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10194731A
Other languages
Japanese (ja)
Inventor
Hiromichi Ota
裕道 太田
Kiyoshi Morita
清 森田
Masahiro Orita
政寛 折田
Hideo Hosono
秀雄 細野
Hiroshi Kawazoe
博司 川副
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP10194731A priority Critical patent/JP2000026119A/en
Publication of JP2000026119A publication Critical patent/JP2000026119A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture the article having excellent electric conductivity and superior transparency throughout the entire visible ray region by providing the article with a transparent conductive oxide thin film which is formed on a substrate with a laser ablation method using a zinc-indium based oxide as a material of a target. SOLUTION: In the manufacture of this article, a transparent conductive oxide thin film is formed on at least one surface of a substrate in at least a part of the surface by a laser ablation method using a zinc-indium based oxide target which consists of a material represented by the formula ZnxMyInzO(x+3y/2+3z/2) (M is at least any one element of Al and Ga; the ratio x:y is 0.2:1 to 8:1; and the ratio z:y is 0.4:1 to 1.4:1), wherein: the formation of the thin film is performed in an oxygen atmosphere having an about 1×10-6 to 100 Pa oxygen partial pressure; also as the laser, a laser beam of any wavelength in the range of the ultraviolet region to the infrared region can be used and the laser beam intensity used at the time of performing laser beam irradiation is about 0.0001 to 1,000 J/cm2.pulse; and as a material of the substrate, any organic or inorganic material can be used and the substrate temp. used is about 0 to 1,000 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、亜鉛−インジウム
系の導電性酸化物薄膜を有する物品及びこの物品の導電
性酸化物薄膜をレーザーアブレーション法により形成す
る製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an article having a zinc-indium-based conductive oxide thin film and a method for producing the conductive oxide thin film of the article by a laser ablation method.

【0002】本発明の物品が有する薄膜は、優れた電気
伝導性を有するのみならず、可視域全域での透明性にも
優れるので、有機EL用基板、光透過性が必要なディスプ
レイのカラーフィルター用基板や太陽電池用の電極等と
して特に有用である。また、本発明の製造方法は、ター
ゲットとして用いた酸化物と組成ずれが少なく、c軸配
向した結晶性の亜鉛−インジウム系の導電性酸化物薄膜
を製造できる方法である。
[0002] The thin film of the article of the present invention not only has excellent electric conductivity, but also has excellent transparency in the entire visible range, so that it can be used as a substrate for an organic EL or a color filter for a display requiring light transmission. It is particularly useful as a substrate for a battery or an electrode for a solar cell. Further, the production method of the present invention is a method capable of producing a crystalline zinc-indium-based conductive oxide thin film having little composition deviation from the oxide used as the target and having c-axis orientation.

【0003】[0003]

【従来技術】可視光線領域で透明でかつ電気伝導性を有
するいわゆる透明導電性材料は、液晶ディスプレイ、EL
ディスプレイなどの各種パネル型ディスプレイや太陽電
池の透明電極として用いられる。
2. Description of the Related Art So-called transparent conductive materials which are transparent in the visible light region and have electrical conductivity are known as liquid crystal displays, ELs.
It is used as a transparent electrode of various panel-type displays such as displays and solar cells.

【0004】透明導電性材料としては、金属酸化物半導
体が一般に用いられ、スズをドープした酸化インジウム
(ITO)を始めとして、種々提案されている。なかで
も、パネル型ディスプレイ用の透明電極としてはITOが
よく用いられてきた。しかし、近年パネル型ディスプレ
イの大型化と高精細化が進み、ITOの有する抵抗率では
不十分な場合が増えてきている。即ち、大型のディスプ
レイでは透明電極の端と端との距離が長くなるため、端
点間の抵抗値を高めてしまう。また、高精細化は電極の
幅を狭めるために端点間の抵抗値を高めてしまう。一般
に、端点間の抵抗値を低くするためには電極の厚みを大
きくすればよい。ところが、ITO電極の場合、厚みを大
きくすると黄色に着色し、透明性が損なわれる。ITOで
は波長450nm以下の光が間接遷移により吸収される現象
があるからである。電極の厚みが小さい場合、これはほ
とんど気にならない。しかし電極の厚みが大きくなる
と、人間の目に明らかに認識されるようになる。このた
め、従来、透明電極用材料として実用されているITOで
は、透明性と電気伝導性とをともに満足する大型または
高精細の透明電極を得ることはできなかった。このよう
な理由から、可視領域の450nm以下の短波長領域でも透
明性があり、かつ導電性の高い材料の開発が課題となっ
ていた。
As a transparent conductive material, a metal oxide semiconductor is generally used, and various proposals have been made, including tin-doped indium oxide (ITO). In particular, ITO has been frequently used as a transparent electrode for panel-type displays. However, in recent years, panel displays have become larger and have higher definition, and the resistivity of ITO is often insufficient. That is, in a large-sized display, the distance between the ends of the transparent electrode becomes long, so that the resistance value between the end points is increased. In addition, higher definition increases the resistance value between the end points in order to reduce the width of the electrode. Generally, in order to reduce the resistance value between the end points, the thickness of the electrode may be increased. However, in the case of the ITO electrode, if the thickness is increased, the electrode is colored yellow and the transparency is impaired. This is because ITO has a phenomenon in which light having a wavelength of 450 nm or less is absorbed by indirect transition. When the thickness of the electrode is small, this is hardly noticeable. However, as the thickness of the electrodes increases, they become clearly recognized by the human eye. For this reason, it has not been possible to obtain a large-sized or high-definition transparent electrode satisfying both transparency and electric conductivity in ITO conventionally used as a material for a transparent electrode. For these reasons, development of a material that is transparent and has high conductivity even in the short wavelength region of 450 nm or less in the visible region has been an issue.

【0005】そこで本発明者らは、YbFe2Od型構造を有
し、一般式ZnxMyInzO(x+3y/2+3z/2)- d(式中、Mはアル
ミニウム及びガリウムのうち少なくとも一つの元素であ
り、比率(x:y)が0.2:1〜8:1の範囲であり、比率
(z:y)が0.4〜1.4:1の範囲であり、かつ酸素欠損量d
が0を越え、(x+3y/2+3z/2)の1x10-1倍の範囲である)
で表される酸化物及び同様の基本構造を有する酸化物
が、ITO薄膜(Inに対してSnを5mol%含む)と比較し、45
0nm以下の短波長領域における透明性が高く、かつ電気
伝導率が同等またはそれ以上である新規の透明導電性材
料であることを見いだした(例えば、特開平8-295514号
参照)。
[0005] The present inventors have YbFe2Od structure, general formula Zn x M y In z O ( x + 3y / 2 + 3z / 2) - d ( wherein, M is one of aluminum and gallium At least one element, the ratio (x: y) is in the range of 0.2: 1 to 8: 1, the ratio (z: y) is in the range of 0.4 to 1.4: 1, and the oxygen deficiency amount d
Is greater than 0 and in the range of 1x10 -1 times (x + 3y / 2 + 3z / 2)
And an oxide having a similar basic structure were compared with the ITO thin film (containing 5 mol% of Sn with respect to In),
It has been found that this is a novel transparent conductive material having high transparency in the short wavelength region of 0 nm or less and having the same or higher electric conductivity (for example, see Japanese Patent Application Laid-Open No. 8-295514).

【0006】上記一般式ZnxMyInzO(x+3y/2+3z/2)-dで表
される酸化物は、透明導電性薄膜として電極などに使用
される。このような薄膜は、通常数十〜数百nmの膜厚に
調製されるが、このような薄膜であっても高い電気伝導
度を示すことが要求される。そこで本発明者らは、一般
式ZnxMyInzO(x+3y/2+3z/2)-dで表される酸化物からなる
薄膜であって、より高い電気伝導度を示す導電性酸化物
薄膜、そのような導電性酸化物薄膜を有するディスプレ
イ、ELディスプレイ及び太陽電池などに利用できる物品
を見いだし、別途特許出願した(特開平10-45496号)。
[0006] the general formula Zn x M y In z O ( x + 3y / 2 + 3z / 2) oxide represented by -d is used, for example, the electrode as a transparent conductive thin film. Such a thin film is usually prepared to have a thickness of several tens to several hundreds of nm, but even such a thin film is required to exhibit high electric conductivity. Therefore, the present inventors have found that a thin film made of an oxide represented by the general formula Zn x M y In z O (x + 3y / 2 + 3z / 2) -d , An article that can be used for a conductive oxide thin film, a display having such a conductive oxide thin film, an EL display, a solar cell, and the like, was filed separately (Japanese Patent Application Laid-Open No. 10-45496).

【0007】さらに一般式ZnxMyInzO(x+3y/2+3z/2)-d
示される酸化物からなる導電性酸化物薄膜を配向性制御
基板上または基板上の配向性制御膜上に有する物品であ
ってZnOに代わる入手または生産が容易な配向性制御基
板または配向性制御膜を用いて、より大面積とすること
が可能な物品を提供し、別途特許出願した(特願平10
−18479号)。
Furthermore the general formula Zn x M y In z O ( x + 3y / 2 + 3z / 2) on the orientation control board conductive oxide thin film comprising an oxide represented by -d or orientation of the substrate By using an orientation control substrate or an orientation control film that is easy to obtain or produce in place of ZnO and that has an article on the control film, an article that can have a larger area is provided. Japanese Patent Application 10
-18479).

【0008】一般にこのような透明導電性薄膜は、薄膜
法により製造することができる。薄膜法の代表的なもの
として、CVD法、スプレー法、真空蒸着法、イオンプレ
ーティング法、MBE法、スパッタリング法、ゾルゲル
法、噴霧熱分解法などが挙げられる。さらにCVD法とし
ては、熱CVD法、プラズマCVD法、MOCVD法、光CVDなどを
挙げることができる。CVD法やスプレー法のような化学
的手法は、真空蒸着法やスパッタリング法のような物理
的手法に比べて設備は簡単であり、大型基板の作製に適
している。さらに、反応促進や特性安定化のために乾燥
や焼成の行程を行うときには、350〜500℃の熱処理を必
要とするので、ガラス基板上に直接製造する場合には適
している。
Generally, such a transparent conductive thin film can be manufactured by a thin film method. Representative examples of the thin film method include a CVD method, a spray method, a vacuum evaporation method, an ion plating method, an MBE method, a sputtering method, a sol-gel method, and a spray pyrolysis method. Further, examples of the CVD method include a thermal CVD method, a plasma CVD method, an MOCVD method, and a photo CVD method. Chemical methods such as the CVD method and the spray method have simpler facilities than physical methods such as the vacuum evaporation method and the sputtering method and are suitable for manufacturing large substrates. Furthermore, when a drying or firing step is performed for accelerating the reaction or stabilizing the characteristics, a heat treatment at 350 to 500 ° C. is required, so that it is suitable for directly manufacturing on a glass substrate.

【0009】物理的手法は、成膜時の基板温度を、150
〜300℃という低温とすることができるため、薄膜をガ
ラス基板上に直接製造する場合だけでなく、各種下地層
の上に製造する場合にも適している。なかでもスパッタ
リング法は生産性が高く、大面積基板にも均一に成膜で
きるなどの点で特に優れている。
The physical method is to increase the substrate temperature during film formation by 150
Since the temperature can be as low as 300 ° C., it is suitable not only when a thin film is manufactured directly on a glass substrate, but also when it is manufactured on various underlayers. Among them, the sputtering method is particularly excellent in terms of high productivity and uniform deposition on a large-area substrate.

【0010】[0010]

【発明が解決しようとする課題】ところが上記の従来技
術は、つぎのような問題点を有している。スパッタリン
グ法では、ターゲットをプラズマによりスパッタするた
め、元素によるスパッタ率の違いにより組成がすれやす
い。例えばInGaZnO4薄膜をスパッタリング法を用いて製
造する場合、スパッタリングターゲットの組成をInGaZn
O4としたのでは、目的とする薄膜は得られない。スパッ
タリングターゲットとしてIn1.79Ga1.00Zn3.98Oy焼結体
を用い、さらに反応系内の酸素分圧を制御して成膜を行
うことにより始めてInGaZnO4組成の薄膜が得られる。こ
れは、Zn及びIn成分のスパッタ率がGaに比べ小さいこと
に起因している。また、スパッタリング法により作製さ
れる薄膜は、上記のようにスパッタリングされた粒子の
組成が不均一であり、不均一粒成長が起こる傾向があ
り、そのため、粒度分布幅が大きくなる。その場合、ス
パッタリング法により作製される薄膜は、単結晶性が低
く、格子欠陥も多く、かつ450〜800nmにおける可視光
線透過率も相対的に低いという問題があった。
However, the above-mentioned prior art has the following problems. In the sputtering method, since the target is sputtered by plasma, the composition is liable to change due to a difference in sputtering rate depending on the element. For example, when manufacturing an InGaZnO 4 thin film using a sputtering method, the composition of the sputtering target is changed to InGaZn
O 4 and was of a can not be obtained a thin film of interest. A thin film of the InGaZnO 4 composition can be obtained only by forming a film by using an In 1.79 Ga 1.00 Zn 3.98 O y sintered body as a sputtering target and further controlling the oxygen partial pressure in the reaction system. This is because the sputtering rates of Zn and In components are smaller than that of Ga. Further, the thin film produced by the sputtering method has a non-uniform composition of the particles sputtered as described above, and tends to cause non-uniform grain growth, and therefore, the particle size distribution width is large. In that case, the thin film produced by the sputtering method has problems that the single crystallinity is low, the number of lattice defects is large, and the visible light transmittance at 450 to 800 nm is relatively low.

【0011】そこで本発明の目的は、単結晶性が高く、
かつ格子欠陥も少ない、表面抵抗率が低く、かつ450〜8
00nmにおける可視光線透過率に優れた亜鉛−インジウ
ム系酸化物系の導電性薄膜を有する物品を提供すること
にある。さらに本発明の目的は、薄膜組成がターゲット
組成と良く一致するため製造が容易であり、かつ表面抵
抗率が低く、かつ基板を含めた450〜800nmにおける可
視光線透過率に優れた亜鉛−インジウム系酸化物系の導
電性薄膜を有する物品を製造する方法を提供することに
ある。
Therefore, an object of the present invention is to provide a compound having high single crystallinity.
With few lattice defects, low surface resistivity, and 450 ~ 8
An object of the present invention is to provide an article having a zinc-indium oxide-based conductive thin film having excellent visible light transmittance at 00 nm. Further, an object of the present invention is to provide a zinc-indium-based alloy which is easy to manufacture because the thin film composition is in good agreement with the target composition, has a low surface resistivity, and has an excellent visible light transmittance at 450 to 800 nm including the substrate. An object of the present invention is to provide a method for manufacturing an article having an oxide-based conductive thin film.

【0012】[0012]

【課題を解決するための手段】本発明は、亜鉛−インジ
ウム系酸化物をターゲットとして、レーザーアブレーシ
ョン法により、基板の少なくとも一方の面の少なくとも
一部に導電性酸化物薄膜を形成することを含む導電性酸
化物薄膜を有する物品の製造方法に関する。さらに本発
明は、上記製造方法により形成された導電性酸化物薄膜
を有する物品に関する。
SUMMARY OF THE INVENTION The present invention comprises forming a conductive oxide thin film on at least a part of at least one surface of a substrate by a laser ablation method using a zinc-indium oxide as a target. The present invention relates to a method for manufacturing an article having a conductive oxide thin film. Further, the present invention relates to an article having a conductive oxide thin film formed by the above-mentioned manufacturing method.

【0013】製造方法 本発明の導電性酸化物薄膜を有する物品の製造方法は、
亜鉛−インジウム系酸化物をターゲットとして、レーザ
ーアブレーション法により、基板の少なくとも一方の面
の少なくとも一部に導電性酸化物薄膜を形成することを
含むものである。特に、本発明の製造方法は、導電性酸
化物薄膜の形成に、レーザーアブレーション法を用いる
ことを特徴とする。
[0013]Production method  The method for producing an article having the conductive oxide thin film of the present invention includes:
Laser targeting zinc-indium oxide
-At least one side of the substrate by ablation method
Forming a conductive oxide thin film on at least a part of
Including. In particular, the production method of the present invention
Laser ablation method for forming oxide thin film
It is characterized by the following.

【0014】レーザーアブレーション法とは、レーザー
光によるアブレーション過程を経て薄膜を合成する手法
であり、近年、スパッタリング法に代わる手法として注
目されつつある。アブレーションとは強力な光のエネル
ギーを照射された物体の表面で急激な発熱と光化学反応
の両方が起き、成分が爆発的に気化する現象である。レ
ーザーアブレーションによる成膜の特徴としては、
(1)高融点薄膜の合成が容易、(2)原料加熱源が不
要な清浄雰囲気下での成膜が可能、(3)成膜室内のガ
ス分圧のバリエーションが広い、(4)ターゲットと膜
との組成ずれが小さい、(5)膜組成をデジタル的に制
御できる、などが挙げられる。
The laser ablation method is a method of synthesizing a thin film through an ablation process using a laser beam, and has recently been receiving attention as an alternative to the sputtering method. Ablation is a phenomenon in which both rapid heat generation and photochemical reaction occur on the surface of an object irradiated with strong light energy, and components explosively vaporize. As a feature of film formation by laser ablation,
(1) Easy to synthesize a high melting point thin film, (2) Film formation is possible in a clean atmosphere that does not require a raw material heating source, (3) Wide variation of gas partial pressure in the film formation chamber, (4) Target and (5) The film composition can be digitally controlled, and the like.

【0015】レーザーアブレーション法は、イットリウ
ム・バリウム・銅酸化物(略称YBCO)に代表される高温
超伝導体酸化物薄膜、ストロンチウム・チタン酸化物
(SrTiO3)などの誘電体酸化物薄膜を製造する方法とし
て10年ほど前から利用されている薄膜製造方法の一つ
である。
In the laser ablation method, a high-temperature superconductor oxide thin film represented by yttrium / barium / copper oxide (abbreviated as YBCO) and a dielectric oxide thin film such as strontium / titanium oxide (SrTiO 3 ) are manufactured. This is one of the thin film manufacturing methods used for about 10 years.

【0016】レーザーアブレーション法は、スパッタリ
ング法に比べて減圧度が低く、反応系内の酸素分圧を高
くできるため、酸素量(キャリア濃度)が特性大きく影
響する高温超伝導体薄膜の作製に特に有利である。高温
超伝導体、なかでもYBCOは酸素を引き止めておく力が弱
く、キャリア不足になりがちである。通常は試料を酸素
中で穏やかに加熱するアニールという後処理を加える
が、反応系で薄膜化と酸素量の制御を完了させるプロセ
スのほうが勝る。
In the laser ablation method, the degree of pressure reduction is lower than that of the sputtering method, and the oxygen partial pressure in the reaction system can be increased. It is advantageous. High-temperature superconductors, especially YBCO, have a weak ability to retain oxygen and tend to be short of carriers. Usually, a post-treatment called annealing, in which the sample is gently heated in oxygen, is added, but a process in which the reaction system completes thinning and control of the amount of oxygen is superior.

【0017】酸化物結晶はすべて、1原子層から数原子
層の層状格子(分子層)に分解できることを考えると、
分子層を再構成する技術の開発は新物質や新機能の組織
的探索の手段となる。
Considering that all oxide crystals can be decomposed into a layer lattice (molecular layer) of one atomic layer to several atomic layers,
The development of techniques for reconstructing molecular layers is a means of systematic search for new materials and new functions.

【0018】近年、レーザーアブレーションによる透明
酸化物導電体である酸化インジウム(IO)薄膜やITO薄
膜の作製に関する報告がなされている。(例えば、IO:
E.J.Tarsa, J.H.English, J.S.Speck, Appl. Phys. Let
t. 62(1993)2332.、ITO:J.P.Zheng, H.S.Kwok, Thin S
olid Films 232(1993)99.など) しかしIO、ITO以外の透明導電体薄膜の製造例はなく、Z
nxMyInzO(x+3y/2+3z/2 )-dに関しても成膜例は報告され
ていない。
In recent years, there have been reports on the production of indium oxide (IO) thin films and ITO thin films which are transparent oxide conductors by laser ablation. (For example, IO:
EJTarsa, JHEnglish, JSSpeck, Appl.Phys.Let
t. 62 (1993) 2332. ITO: JPZheng, HSKwok, Thin S
olid Films 232 (1993) 99.) However, there is no production example of a transparent conductive thin film other than IO and ITO.
n x M y In z O ( x + 3y / 2 + 3z / 2) Film Formation Example has not been reported with regard -d.

【0019】本発明者らは、レーザーアブレーション法
によりInGaZnO4薄膜を試作した。その結果、薄膜の組成
ずれがターゲット組成から5%以内であり、レーザーアブ
レーション法によれば、スパッタリング法のような従来
法に比べ結晶性の高い薄膜が得られることが分かった。
さらに、レーザーアブレーション法により作製された薄
膜は、表面抵抗率が低く、基板を含めた450〜800
nmにおける可視光線透過率も高いことが判明し、この
ような知見に基づき発明を完成させた。レーザーアブレ
ーション法では限られた表面を瞬時に気化するので、In
GaZnO4のような蒸気圧の高い金属酸化物、例えば酸化亜
鉛の複合酸化物薄膜を作製する場合においてもスパッタ
リング法のような組成ずれがない薄膜を製造することが
できると考えられる。
The present inventors prototyped an InGaZnO 4 thin film by a laser ablation method. As a result, the composition deviation of the thin film was within 5% of the target composition, and it was found that the laser ablation method could provide a thin film having higher crystallinity than a conventional method such as a sputtering method.
Furthermore, the thin film produced by the laser ablation method has a low surface resistivity,
The visible light transmittance in nm was also found to be high, and the invention was completed based on such knowledge. In the laser ablation method, a limited surface is instantaneously vaporized.
It is considered that even when a metal oxide having a high vapor pressure such as GaZnO 4 , for example, a composite oxide thin film of zinc oxide is manufactured, a thin film having no composition deviation such as a sputtering method can be manufactured.

【0020】本発明の製造方法においては、亜鉛−イン
ジウム系酸化物をターゲットとして用いる。ターゲット
として用いる亜鉛−インジウム系酸化物は、アルミニウ
ム及び/又はガリウムをさらに含む酸化物であることが
できる。上記亜鉛−インジウム系酸化物ターゲットは、
例えば、下記の組成を有する酸化物であることができ
る。一般式ZnxMyInzO(x+3y/2+3z/2)(式中、Mはアルミ
ニウム及びガリウムのうち少なくとも一つの元素であ
り、比率(x:y)が0.2:1〜8:1の範囲であり、比率
(z:y)が0.4〜1.4:1の範囲である)で表される酸化
物(1)。一般式ZnxMyInzO(x+3y/2+3z/2)(式中、Mは
アルミニウム及びガリウムのうち少なくとも一つの元素
であり、比率(x:y)が0.2:1〜8:1の範囲であり、比
率(z:y)が0.4〜1.4:1の範囲である)で表され、か
つZn、M及びInのうち少なくとも一種の元素の一部が他
の元素で置換されており、Znと置換される元素は原子価
が2価以上であり、M及びInと置換される元素は原子価が
3価以上である酸化物(2)。
In the production method of the present invention, a zinc-indium oxide is used as a target. The zinc-indium oxide used as the target may be an oxide further containing aluminum and / or gallium. The zinc-indium oxide target,
For example, it can be an oxide having the following composition. General formula Zn x M y In z O (x + 3y / 2 + 3z / 2) (where M is at least one element of aluminum and gallium, and the ratio (x: y) is 0.2: 1 to 8) : 1 and the ratio (z: y) is in the range of 0.4 to 1.4: 1). General formula Zn x M y In z O (x + 3y / 2 + 3z / 2) (where M is at least one element of aluminum and gallium, and the ratio (x: y) is 0.2: 1 to 8) : 1 and the ratio (z: y) is in the range of 0.4 to 1.4: 1), and at least a part of at least one element of Zn, M and In is replaced with another element. Elements substituted with Zn have a valence of 2 or more, and elements substituted with M and In have a valence of
An oxide (2) having three or more valences.

【0021】酸化物(2)では、酸素欠損を導入するこ
と以外に、金属イオンの一部を別の金属イオンで置換す
ることによりキャリア電子が伝導帯に注入されて、導電
性を発現させることができる。
In the oxide (2), a carrier electron is injected into a conduction band by substituting a part of a metal ion with another metal ion in addition to introducing an oxygen vacancy, thereby exhibiting conductivity. Can be.

【0022】Znは2価の元素であり、これと置換可能
な元素は、原子価が2価以上の元素である。原子価が高
い元素程少量の置換で、より大きいキャリア注入量を与
えることが可能である。置換可能な元素の原子価は通常
2価、3価、4価、5価又は6価である。原子価が2価
以上の元素としては、例えば、Be、Mg、Ca、S
r、Ba、Cd、Al、Si、Sc、Ti、V、Cr、
Mn、Fe、Co、Ni、Zn、Ga、Ge、Y、Z
r、Nb、Mo、Tc、Ru、Rh、Pd、In、S
n、Sb、La、Ce、Pr、Nd、Pm、Sm、E
u、Gd、Tb、Dy、Ho、Er、Tm、Yb、L
u、Hf、Ta、W、Re、Os、Ir、Pt、Tl、
Pb、Bi、Poを挙げることができる。
Zn is a divalent element, and an element which can be substituted with Zn is an element having a valence of 2 or more. Higher valence elements can provide greater carrier injection with less substitution. The valence of the replaceable element is usually divalent, trivalent, tetravalent, pentavalent or hexavalent. Examples of the element having a valence of 2 or more include Be, Mg, Ca, and S.
r, Ba, Cd, Al, Si, Sc, Ti, V, Cr,
Mn, Fe, Co, Ni, Zn, Ga, Ge, Y, Z
r, Nb, Mo, Tc, Ru, Rh, Pd, In, S
n, Sb, La, Ce, Pr, Nd, Pm, Sm, E
u, Gd, Tb, Dy, Ho, Er, Tm, Yb, L
u, Hf, Ta, W, Re, Os, Ir, Pt, Tl,
Pb, Bi, and Po can be mentioned.

【0023】Mで表されるA1及びGa、並びにInは
3価の元素であり、これらと置換可能な元素は、原子価
が3価以上の元素である。原子価が高い元素程少量の置
換で、より大きいキャリア注入量を与えることが可能で
ある。置換可能な元素の原子価は通常3価、4価、5価
又は6価である。原子価が3価以上の元素としては、例
えば、Al、Si、Sc、Ti、V、Cr、Mn、F
e、Co、Ni、Ga、Ge、Y、Zr、Nb、Mo、
Tc、Ru、Rh、Pd、In、Sn、Sb、La、C
e、Pr、Nd、Pm、Sm、Eu、Gd、Tb、D
y、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、
Re、Os、Ir、Pt、Tl、Pb、Bi、Poを挙
げることができる。尚、置換する元素の種類によっては
可視領域の光を吸収する性質を有するものもある。そこ
で、置換元素の置換量は、可視領域の光の平均透過率が
70%以上、好ましくは80%以上、より好ましくは9
0%以上となるように選ぶことが適当である。
A1, Ga, and In represented by M are trivalent elements, and the elements that can be substituted with these are elements having a valence of three or more. Higher valence elements can provide greater carrier injection with less substitution. The valence of the replaceable element is usually trivalent, tetravalent, pentavalent or hexavalent. Examples of the element having a valence of 3 or more include Al, Si, Sc, Ti, V, Cr, Mn, and F.
e, Co, Ni, Ga, Ge, Y, Zr, Nb, Mo,
Tc, Ru, Rh, Pd, In, Sn, Sb, La, C
e, Pr, Nd, Pm, Sm, Eu, Gd, Tb, D
y, Ho, Er, Tm, Yb, Lu, Hf, Ta, W,
Re, Os, Ir, Pt, Tl, Pb, Bi and Po can be mentioned. Some of the elements to be substituted have a property of absorbing light in the visible region. Therefore, the substitution amount of the substitution element is such that the average transmittance of light in the visible region is 70% or more, preferably 80% or more, and more preferably 9% or more.
It is appropriate to select so as to be 0% or more.

【0024】尚、上記酸化物は、酸素欠損を有するもの
でも有しないものであってもよい。本発明の製造方法で
は後述するように、基板温度や雰囲気中の酸素分圧等を
制御することで、形成される薄膜中の酸素欠損量dをコ
ントロールすることができる。本発明の製造方法では、
形成される薄膜の組成が、ターゲットの密度により変化
することは殆どない。但し、レーザーパルス照射による
ターゲットのダメージを考慮すると、ターゲットとして
用いる酸化物は、相対密度が好ましくは40%以上であ
り、さらに好ましくは70%以上である。また、形成され
る薄膜の組成はターゲットとのずれは少なく、多くても
5%であることから、ターゲット組成は、所望の薄膜組成
と同一とすることができる。但し、必要により、ターゲ
ット組成を変更することはできる。
The oxide may or may not have oxygen deficiency. In the manufacturing method of the present invention, the amount of oxygen deficiency d in the formed thin film can be controlled by controlling the substrate temperature, the oxygen partial pressure in the atmosphere, and the like, as described later. In the production method of the present invention,
The composition of the formed thin film hardly changes depending on the density of the target. However, in consideration of damage to the target due to laser pulse irradiation, the oxide used as the target has a relative density of preferably 40% or more, more preferably 70% or more. In addition, the composition of the formed thin film has little deviation from the target,
Since it is 5%, the target composition can be the same as the desired thin film composition. However, the target composition can be changed if necessary.

【0025】本発明の製造方法では、レーザーアブレー
ション法による導電性酸化物薄膜の形成を酸素雰囲気中
で行うことが、結晶性と透明性に優れた薄膜を形成する
ことができるという観点から適当である。雰囲気中の酸
素分圧は、例えば、1×10 −6〜100Paの範囲、
好ましくは1×10−3〜1Paの範囲とすることがで
きる。薄膜形成装置内の酸素分圧の制御は、通常、マス
フローコントローラーにより純粋な酸素ガスを流通させ
ることで制御できるが、特に、レーザーアブレーション
装置内に設置したラジカル銃により行うことが、見掛け
の酸素圧を高めるという観点から適当である。尚、ラジ
カル銃とは活性化された気体分子を生成し、基板に照射
するための装置である。
In the manufacturing method of the present invention, the laser abrasion
Of conductive oxide thin film by oxygen method in oxygen atmosphere
To form a thin film with excellent crystallinity and transparency
It is appropriate from the viewpoint that it can be performed. Acid in the atmosphere
The elementary partial pressure is, for example, 1 × 10 -6~ 100Pa range,
Preferably 1 × 10-3In the range of ~ 1Pa
Wear. Control of the oxygen partial pressure in the thin film forming apparatus is usually performed by mass
Flow pure oxygen gas through the flow controller
Can be controlled by laser ablation.
What can be done with the radical gun installed in the device is apparent
This is appropriate from the viewpoint of increasing the oxygen pressure of the oil. In addition,
A cal gun generates activated gas molecules and irradiates the substrate
It is a device for performing.

【0026】本発明の製造方法のレーザーアブレーショ
ン法に用いるレーザーとしては、紫外域から赤外域のい
ずれの波長、すなわち0.19〜11μm 、望ましくは0.19〜
0.3μm が可能であり、連続発振又はパルス発振のいず
れの方式を採用することができる。レーザー照射時のレ
ーザー強度は、0.0001〜1000J/ cm2・パルス、望ましく
は0.1〜100J/cm2・パルスである。基板温度は0〜1000
℃、望ましくは25〜600℃である。
The laser used in the laser ablation method of the production method of the present invention may be any wavelength from the ultraviolet region to the infrared region, that is, 0.19 to 11 μm, preferably 0.19 to 11 μm.
0.3 μm is possible, and either continuous oscillation or pulse oscillation can be employed. Laser intensity at the time of laser irradiation, 0.0001~1000J / cm 2 · pulse, and desirably 0.1~100J / cm 2 · pulse. Substrate temperature is 0 to 1000
° C, desirably 25 to 600 ° C.

【0027】本発明の製造方法において、薄膜堆積用基
板としては、有機材料、無機材料のいずれを用いても良
い。薄膜の物性を考慮して決定される基板温度に応じ
て、基板材料は、基板温度が基板の融点以下の温度とな
るようなな材料から適宜選択できる。本発明の製造方法
によれば、基板材料の種類によらず、均質な薄膜が製造
できる。例えば、ガラスなどの無機材料や樹脂などの有
機材料基体を挙げることができる。特に電極に使用する
場合、これらの基板は、透明な基板であることが適当で
ある。
In the manufacturing method of the present invention, any of an organic material and an inorganic material may be used as the thin film deposition substrate. In accordance with the substrate temperature determined in consideration of the physical properties of the thin film, the substrate material can be appropriately selected from materials having a substrate temperature equal to or lower than the melting point of the substrate. According to the manufacturing method of the present invention, a uniform thin film can be manufactured regardless of the type of the substrate material. For example, an inorganic material such as glass or an organic material substrate such as a resin can be used. In particular, when used for electrodes, these substrates are suitably transparent substrates.

【0028】ガラス基板は、液晶ディスプレイなどに多
く用いられる。可視領域における透明性が高く、平坦性
の優れたガラスを用いることが好ましい。樹脂基板とし
ては、例えば、ポリエステル基板、PMMA(ポリメチルメ
タクリレート)基板などが挙げられる。樹脂基板は、ガ
ラス基板に比べて軽量であること、薄いこと、形状の自
由度が高いことなどを活かした多くの用途が検討されて
いる。カラー液晶ディスプレイには、可視領域における
透明性が高いこと、平坦性に優れること以外に、加工
性、耐衝撃性、耐久性、組立プロセスへの適合性などを
考慮して用いることが好ましい。
Glass substrates are often used for liquid crystal displays and the like. It is preferable to use glass having high transparency in the visible region and excellent flatness. Examples of the resin substrate include a polyester substrate and a PMMA (polymethyl methacrylate) substrate. Many uses of resin substrates are being studied, taking advantage of being lighter, thinner, and more flexible in shape than glass substrates. It is preferable to use a color liquid crystal display in consideration of workability, impact resistance, durability, suitability for an assembly process, and the like, in addition to high transparency in a visible region and excellent flatness.

【0029】本発明の製造方法によれば、金属酸化物の
欠陥が少ない薄膜が製造できるため結晶性が高く、スパ
ッタリング法に比べ基板上に堆積する粒子のサイズが極
めて原子に近いことから平滑性にも優れている。また、
酸素欠損、すなわちキャリア濃度は成膜時の酸素圧を調
節することで制御可能であり、キャリア電子の量が1×1
018/cm3〜1×1022/cm3の範囲になるよう制御することが
適当である。尚、スパッタリング法と同様に成膜後にア
ニール処理、加熱還元処理を行うことでさらにキャリア
導入することが可能である。
According to the manufacturing method of the present invention, a thin film having few defects of metal oxides can be manufactured, so that the crystallinity is high. Is also excellent. Also,
Oxygen deficiency, that is, the carrier concentration can be controlled by adjusting the oxygen pressure during film formation, and the amount of carrier electrons is 1 × 1
It is appropriate to control so as to be in the range of 0 18 / cm 3 to 1 × 10 22 / cm 3 . Note that carriers can be further introduced by performing an annealing treatment and a heat reduction treatment after film formation as in the case of the sputtering method.

【0030】本発明の製造方法では、2個以上のターゲ
ットを交互にレーザーアブレーション成膜することによ
り薄膜をヘテロエピタキシャル成長させることで、所望
の薄膜を形成することもできる。
In the manufacturing method of the present invention, a desired thin film can be formed by heteroepitaxially growing a thin film by alternately forming two or more targets by laser ablation.

【0031】前述したように、酸化物結晶はすべて、1
原子層から数原子層の層状格子(分子層)に分解できる
ことを考えると、分子層を再構成する技術の開発は新物
質や新機能の組織的探索の手段となる。例えばInGaZnO4
の場合、3種類の原子層から構成された一種の超格子で
ある。したがってIn2O3と(ZnGa)O2.5層の静電的相互作
用や格子サイズの整合性を考慮しつつ、分子層を正確に
積層する技術を開発すれば、原子の一部を置換してキャ
リア生成を促し(原子価制御)、キャリア生成層とキャ
リア移動層を分離することも可能になる。原子価制御に
より生成した導電性キャリアが不純物イオンによって散
乱されることなくキャリア移動層に流れ込み、キャリア
移動層で電気伝導が起こることになる。さらに層の組み
合わせを変えることによって、系統的に新物質の可能性
を検討できる。さらに、このような酸化物の原子層ある
いは分子層ごとの薄膜堆積技術の開発は、人工的に設計
した結晶格子の合成とそれによる新物性、現象の探索を
も可能にする。
As mentioned above, all oxide crystals are 1
Considering that the atomic layer can be decomposed into a layered lattice (molecular layer) of several atomic layers, the development of a technology for reconstructing the molecular layer is a means of systematic search for new substances and new functions. For example, InGaZnO 4
Is a kind of superlattice composed of three kinds of atomic layers. Therefore, if we develop a technology to accurately stack molecular layers while taking into account the electrostatic interaction and lattice size consistency between In 2 O 3 and (ZnGa) O 2.5 layers, it is possible to replace some of the atoms Carrier generation is promoted (valence control), and the carrier generation layer and the carrier transfer layer can be separated. The conductive carriers generated by the valence control flow into the carrier moving layer without being scattered by the impurity ions, and electric conduction occurs in the carrier moving layer. Furthermore, by changing the combination of layers, the possibility of a new substance can be systematically examined. Further, the development of a thin film deposition technique for each atomic layer or molecular layer of an oxide enables synthesis of an artificially designed crystal lattice and search for new physical properties and phenomena thereby.

【0032】本発明の製造方法では、レーザーアブレー
ション法により、2個以上のターゲットを交互にレーザ
ーアブレーション成膜することにより薄膜をヘテロエピ
タキシャル成長させることができる。これにより、原子
層あるいは分子層ごとの堆積が可能となり、いわゆる原
子層成長あるいは分子層成長が可能である。例えばInGa
ZnO4薄膜を成膜する場合、In2O3と(ZnGa)O2.5の2つの
ターゲットを用いて交互にレーザーアブレーション成膜
することにより、ヘテロエピタキシャル成長したInGaZn
O4薄膜を作製することができる。特にInGaZnO4の場合に
は、キャリア電子の移動層とキャリア電子の生成層に結
晶構造を分割して考えることができる(例えば、Jpn.
J. Appl. Phys. Vol. 34 (1995) pp. L1550−L1552 Par
t 2, No.11B, 15 November 1995)ので、この点でも特
に本発明のレーザーアブレーション法を用いた製造方法
は他の薄膜作製法に比べ有利である。ヘテロエピタキシ
ャル成長させる原子層あるいは分子層の制御はレーザー
照射時間、酸素圧力、レーザー出力によって容易に制御
可能である。また、ターゲットの組成と組合せを適宜選
択することで、多種にわたる酸化物薄膜を形成すること
ができる。
In the manufacturing method of the present invention, a thin film can be heteroepitaxially grown by alternately forming two or more targets by laser ablation by laser ablation. Thereby, deposition can be performed for each atomic layer or molecular layer, and so-called atomic layer growth or molecular layer growth can be performed. For example, InGa
When a ZnO 4 thin film is formed, heteroepitaxially grown InGaZn is formed by alternately performing laser ablation film formation using two targets of In 2 O 3 and (ZnGa) O 2.5.
O 4 thin films can be produced. In particular, in the case of InGaZnO 4 , the crystal structure can be divided into a moving layer for carrier electrons and a generating layer for carrier electrons (for example, Jpn.
J. Appl. Phys. Vol. 34 (1995) pp. L1550−L1552 Par
t 2, No. 11B, 15 November 1995), the manufacturing method using the laser ablation method of the present invention is more advantageous than other thin film manufacturing methods. The control of the atomic layer or molecular layer for heteroepitaxial growth can be easily controlled by the laser irradiation time, oxygen pressure, and laser output. In addition, by appropriately selecting the composition and combination of the targets, various types of oxide thin films can be formed.

【0033】本発明の製造方法では、レーザーアブレー
ション法により形成された導電性酸化物薄膜に陽イオン
を注入することもできる。 陽イオンを注入することに
よりキャリア電子が伝導帯に注入されて、導電性を発現
させることができる。
In the manufacturing method of the present invention, cations can be implanted into the conductive oxide thin film formed by the laser ablation method. By injecting cations, carrier electrons are injected into the conduction band, so that conductivity can be exhibited.

【0034】注入される陽イオンは、酸化物の結晶構造
を破壊することなく、固溶できるものであれば特に制限
はない。但し、イオン半径の小さいイオンの方が結晶格
子中に固溶しやすい傾向があり、イオン半径が大きくな
る程、結晶構造を破壊し易くなる傾向がある。上記のよ
うな陽イオンとしては、例えば、H、Li、Be、B、
C、Na、Mg、Al、Si、K、Ca、Sc、Ti、
V、Cr、Mn、Fe、Co、Ni、Cu、Zn、G
a、Ge、Y、Zr、Nb、Mo、Tc、Ru、Rh、
Pd、Ag、Cd、In、Sn、Sb、Cs、Ba、L
a、Ce、Pr、Nd、Pm、Sm、Eu、Gd、T
b、Dy、Ho、Er、Tm、Yb、Lu、Hf、T
a、W、Re、Os、Ir、Pt、Au、Hg、Tl、
Pb、Biを挙げることができる。
The cations to be implanted are not particularly limited as long as they can form a solid solution without destroying the crystal structure of the oxide. However, ions having a small ionic radius tend to form a solid solution in the crystal lattice, and the larger the ionic radius, the more likely the crystal structure is broken. As the above cations, for example, H, Li, Be, B,
C, Na, Mg, Al, Si, K, Ca, Sc, Ti,
V, Cr, Mn, Fe, Co, Ni, Cu, Zn, G
a, Ge, Y, Zr, Nb, Mo, Tc, Ru, Rh,
Pd, Ag, Cd, In, Sn, Sb, Cs, Ba, L
a, Ce, Pr, Nd, Pm, Sm, Eu, Gd, T
b, Dy, Ho, Er, Tm, Yb, Lu, Hf, T
a, W, Re, Os, Ir, Pt, Au, Hg, Tl,
Pb and Bi can be mentioned.

【0035】陽イオンの注入には、イオン注入法を用い
る。イオン注入法は、固体内に不純物を導入する手段と
して超大規模集積回路製造工程等に用いられているもの
をそのまま用いることができる。注入さるべき陽イオン
の元素をイオン化して数十keV以上に加速し、酸化物
中に打ち込むことで、行うことができる。また、陽イオ
ンの注入量は、キャリア電子の量が1×1018/cm3〜1×10
22/cm3の範囲になるように、酸素欠損量dも考慮して適
宜選択することができる。
For ion implantation, ion implantation is used. In the ion implantation method, a method used for manufacturing a super-large-scale integrated circuit or the like can be used as it is as a means for introducing impurities into a solid. This can be performed by ionizing the cation element to be implanted, accelerating it to tens of keV or more, and implanting it into an oxide. The amount of cation implantation is such that the amount of carrier electrons is 1 × 10 18 / cm 3 to 1 × 10
The range of 22 / cm 3 can be appropriately selected in consideration of the oxygen deficiency d.

【0036】本発明の製造方法によれば、ターゲット組
成と膜組成とのずれが5%以内であり、表面抵抗率が低
く、基板を含めた450〜800nmにおける可視光線透過率
が高い一般式ZnxMyInzO(x+3y/2+3z/2)-dで示される酸化
物からなる透明導電性酸化物薄膜を有する物品を製造す
ることができる。
According to the manufacturing method of the present invention, the deviation between the target composition and the film composition is within 5%, the surface resistivity is low, and the visible light transmittance at 450 to 800 nm including the substrate is high. it can be produced x M y in z O (x + 3y / 2 + 3z / 2) article having a transparent conductive oxide thin film comprising an oxide represented by -d.

【0037】導電性酸化物薄膜を有する物品 本発明の物品は、上記本発明の製造方法により得られ
る、基板の少なくとも一方の面の少なくとも一部に導電
性酸化物薄膜を有する物品であって、前記導電性酸化物
薄膜が、亜鉛−インジウム系酸化物であって、レーザー
アブレーション法により形成されたものである。上記亜
鉛−インジウム系酸化物は、アルミニウム及び/又はガ
リウムをさらに含むことができる。アルミニウム及びガ
リウムが共存する場合、アルミニウムとガリウムの比率
には特に制限はない。但し、アルミニウムの比率が増え
ると結晶化温度が高くなる傾向がある。ガリウムの比率
が増えると結晶化温度が低くなる傾向がある。
[0037]Article having conductive oxide thin film  The article of the present invention is obtained by the production method of the present invention.
Conductive on at least a part of at least one surface of the substrate
An article having a conductive oxide thin film, wherein the conductive oxide
The thin film is a zinc-indium oxide, and the laser
It is formed by an ablation method. Above
The lead-indium oxide is made of aluminum and / or gas.
It may further include lium. Aluminum and steel
Aluminum and gallium ratio if coexisting
Is not particularly limited. However, the ratio of aluminum increases
Then, the crystallization temperature tends to increase. Gallium ratio
Increases, the crystallization temperature tends to decrease.

【0038】さらに、導電性酸化物薄膜は、以下の組成
を有するものであることができる。一般式ZnxMyInzO
(x+3y/2+3z/2)-d(式中、Mはアルミニウム及びガリウム
のうち少なくとも一つの元素であり、比率(x:y)が0.
2:1〜8:1の範囲であり、比率(z:y)が0.4〜1.4:1
の範囲であり、かつ酸素欠損量dが0を越え、(x+3y/2+3
z/2)の1x10-1倍の範囲である)で表される酸化物
(3)。一般式ZnxMyInzO(x+3y/2+3z/2)-d(式中、Mは
アルミニウム及びガリウムのうち少なくとも一つの元素
であり、比率(x:y)が0.2:1〜8:1の範囲であり、比
率(z:y)が0.4〜1.4:1の範囲であり、かつ酸素欠損
量dが0を越え、(x+3y/2+3z/2)の1x10-1倍の範囲であ
る)で表され、かつZn、M及びInのうち少なくとも一種
の元素の一部が他の元素で置換されており、Znと置換さ
れる元素は原子価が2価以上であり、M及びInと置換され
る元素は原子価が3価以上である酸化物(4)。一般式Z
nxMyInzO(x+3y/2+3z/2)-d(式中、Mはアルミニウム及び
ガリウムのうち少なくとも一つの元素であり、比率(x:
y)が0.2:1〜8:1の範囲であり、比率(z:y)が0.4〜
1.4:1の範囲であり、かつ酸素欠損量dが0を越え、(x+
3y/2+3z/2)の1x10-1倍の範囲である)で表される酸化
物に、陽イオンを注入した酸化物(5)。
Further, the conductive oxide thin film may have the following composition. Formula Zn x M y In z O
(x + 3y / 2 + 3z / 2) -d (where M is at least one element of aluminum and gallium, and the ratio (x: y) is 0.
It is in the range of 2: 1 to 8: 1, and the ratio (z: y) is 0.4 to 1.4: 1.
And the oxygen deficiency d exceeds 0, (x + 3y / 2 + 3
(3/2) which is in the range of 1 × 10 −1 times of z / 2). In the general formula Zn x M y In z O ( x + 3y / 2 + 3z / 2) -d ( wherein, M is at least one element selected from aluminum and gallium, the ratio (x: y) of 0.2: 1 88: 1, the ratio (z: y) is in the range of 0.4 to 1.4: 1, and the oxygen deficiency d exceeds 0, and 1 × 10 − of (x + 3y / 2 + 3z / 2). And a part of at least one of Zn, M and In is replaced by another element, and the element to be replaced with Zn has a valence of 2 or more. There is an oxide (4) in which the element substituted with M and In has a valence of 3 or more. General formula Z
n x M y In z O ( x + 3y / 2 + 3z / 2) -d ( wherein, M is at least one element selected from aluminum and gallium, the ratio (x:
y) is in the range of 0.2: 1 to 8: 1, and the ratio (z: y) is 0.4 to
1.4: 1 and the oxygen deficiency d exceeds 0, (x +
3y / 2 + 3z / 2) 1 × 10 −1 times)), and cations are implanted into the oxide (5).

【0039】上記導電性酸化物薄膜中のキャリア電子の
量は、1×1018/cm3〜1×1022/cm3の範囲であることが適
当である。キャリア電子の量が1×1018/cm3より
小さければ、充分な電気伝導率が得られず、1×1022
/cm3より大きければプラズマ振動による吸収が可視
領域に現れて透明性が劣化する。キャリア電子の量は、
好ましくは1×1019/cm3〜5×1021/cm3の範
囲である。尚、キャリア電子の量は、例えば、ファンデ
アパウ法電気伝導率測定装置により測定することができ
る。
It is appropriate that the amount of carrier electrons in the conductive oxide thin film is in the range of 1 × 10 18 / cm 3 to 1 × 10 22 / cm 3 . If the amount of carrier electrons is smaller than 1 × 10 18 / cm 3 , sufficient electric conductivity cannot be obtained and 1 × 10 22
If it is larger than / cm 3, the absorption due to the plasma vibration appears in the visible region, and the transparency is deteriorated. The amount of carrier electrons is
Preferably, it is in the range of 1 × 10 19 / cm 3 to 5 × 10 21 / cm 3 . The amount of carrier electrons can be measured by, for example, a van der Pauw electrical conductivity measuring device.

【0040】上記酸化物(3)においては、酸素欠損量d
を上記範囲とすることで、キャリア電子の量を上記範囲
とすることができる。上記酸化物(4)において、Zn、
M及びInと置換される元素は前述の製造方法の説明にお
いて記載したとおりである。また、キャリア電子の量
は、例えば、1×1018/cm3〜1×1022/cm3の範囲になるよ
うに、酸素欠損量d並びにZn、M及びInの元素の置換量が
選ばれる。また、上記酸化物(5)において、注入され
るイオンは前述の製造方法の説明において記載したとお
りである。また、キャリア電子の量は、例えば、1×10
18/cm3〜1×1022/cm3の範囲になるように、酸素欠損量d
並びに陽イオンの注入量が選ばれる。
In the oxide (3), the oxygen deficiency d
Is within the above range, the amount of carrier electrons can be within the above range. In the oxide (4), Zn,
Elements to be substituted for M and In are as described in the above description of the production method. In addition, the amount of carrier electrons is, for example, an oxygen deficiency amount d and a substitution amount of Zn, M, and In elements are selected so as to be in a range of 1 × 10 18 / cm 3 to 1 × 10 22 / cm 3. . In the oxide (5), the ions to be implanted are as described in the above description of the manufacturing method. The amount of carrier electrons is, for example, 1 × 10
The oxygen deficiency amount d should be in the range of 18 / cm 3 to 1 × 10 22 / cm 3
In addition, the amount of cation implantation is selected.

【0041】さらに本発明の物品は、導電性酸化物薄膜
(イオン注入前の薄膜)が、無機または有機材料の基板
上に、上記酸化物の(00n)面(但し、nは自然数)が実
質的に配向するように形成されたものであることもでき
る。基板材料は、前述の製造方法の説明において記載し
たとおりである。
Further, in the article of the present invention, the conductive oxide thin film (thin film before ion implantation) has a (00n) plane (where n is a natural number) of the above oxide on a substrate made of an inorganic or organic material. It may be formed so as to be oriented vertically. The substrate material is as described in the above description of the manufacturing method.

【0042】薄膜またはその前駆体が、上記製造方法で
説明したように、2つのターゲットを用いて交互にレー
ザーアブレーション成膜することによるヘテロエピタキ
シャル成長で作製したものであることもできる。
The thin film or its precursor may be formed by heteroepitaxial growth by alternately performing laser ablation film formation using two targets, as described in the above manufacturing method.

【0043】本発明の物品は、基板が可視光領域で実質
的に透明であり、電極や液晶ディスプレイ、ELディスプ
レイまたは太陽電池に用いることができる。この透明導
電膜を光透過性が必要なディスプレイや太陽電池用の電
極等として用いると、素子の長寿命化に大きな効果があ
る。
The article of the present invention has a substrate which is substantially transparent in the visible light region and can be used for electrodes, liquid crystal displays, EL displays or solar cells. When this transparent conductive film is used as an electrode for a display or a solar cell or the like that requires light transmissivity, there is a great effect on extending the life of the element.

【0044】[0044]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、適宜変更して実施することが可能なもので
ある。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples, and can be implemented with appropriate modifications.

【0045】実施例1 In2O3(高純度化学研究所(株)社製、純度99.9%)、Ga
2O3(高純度化学研究所(株)社製、純度99.99%)、及
びZnO(高純度化学研究所(株)社製、純度99.99%)各
粉末を、混合粉末中の含有金属元素の比率が表1の値に
なるように秤量した。秤量した粉末を容量500mlのポリ
アミド容器に直径2mmのジルコニアビーズ200gを加えブ
リッツジャパン社製遊星ボールミル装置を用いて1時間
湿式混合した。分散媒にはエタノールを用いた。各混合
粉をアルミナるつぼ中、大気中、1000℃で5時間仮焼し
た後、再び遊星ボールミル装置を用いて1時間解砕処理
した。このようにして調製した仮焼粉体を一軸加圧成形
によって直径20mmの円盤状に成形し、大気中、1550℃で
2時間焼成して焼結体を得た。得られた焼結体表面を#80
0のダイヤモンド研磨板を用いて研磨し、平滑表面とし
てレーザーアブレーション用ターゲットとした。
Example 1 In 2 O 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%), Ga
2 O 3 (high purity chemical laboratory Co., Ltd., purity 99.99%) and ZnO (high purity chemical laboratory Co., Ltd., purity 99.99%) powder were mixed with the metal element contained in the mixed powder. The weight was weighed so that the ratio became the value shown in Table 1. The weighed powder was mixed with 200 g of zirconia beads having a diameter of 2 mm in a polyamide container having a capacity of 500 ml and wet-mixed for 1 hour using a planetary ball mill manufactured by Blitz Japan. Ethanol was used as a dispersion medium. Each of the mixed powders was calcined in an alumina crucible in the atmosphere at 1000 ° C. for 5 hours, and then subjected to a crushing treatment again using a planetary ball mill for 1 hour. The calcined powder thus prepared was formed into a disk shape having a diameter of 20 mm by uniaxial pressure molding, and was heated at 1550 ° C. in the atmosphere.
It was fired for 2 hours to obtain a sintered body. # 80 on the obtained sintered body surface
Polishing was performed using a diamond polishing plate of No. 0, and a target for laser ablation was formed as a smooth surface.

【0046】レーザーアブレーション用ターゲットをタ
ーゲットホルダー(インコネル製)に、石英ガラス基板
を基板ホルダーにそれぞれ装着し、装置内部に導入した
後、減圧ポンプを用いて所定真空度になるまで装置内部
を排気した。次に成膜後の膜の均一性を高めるためにタ
ーゲットホルダー及び基板ホルダーを回転させた。成膜
時の基板温度は400℃である。成膜後の膜の結晶性を向
上させる目的で酸素ガス(20CCM)を導入し、酸素分圧
を高めた。この時の全圧は0.77Paであった。この条件で
エキシマレーザーパルス(5Hz、4J/cm2)を照射して30
分間成膜し、IGZO薄膜を作製した。得られた膜を蛍光X
線により分析した結果、その組成は、In99Ga101Zn97O
396であった。さらに、XRDによって結晶性を調べたとこ
ろ、(009)面の回折ピークが観察され、配向膜となって
いることが確かめられた。上記膜の導電性を4探針法に
よって測定したところ、280S/cmであった。さらに得ら
れた膜の分光透過率を測定した結果、吸収端は386nmで
あった。
A target for laser ablation was mounted on a target holder (manufactured by Inconel), and a quartz glass substrate was mounted on the substrate holder. After being introduced into the apparatus, the inside of the apparatus was evacuated using a vacuum pump until a predetermined degree of vacuum was reached. . Next, the target holder and the substrate holder were rotated in order to improve the uniformity of the formed film. The substrate temperature during film formation is 400 ° C. Oxygen gas (20 CCM) was introduced to improve the crystallinity of the formed film, and the oxygen partial pressure was increased. The total pressure at this time was 0.77 Pa. Irradiate an excimer laser pulse (5 Hz, 4 J / cm 2 ) under these conditions.
The IGZO thin film was formed for a minute. Fluorescent X
As a result of analysis by a line, the composition was In 99 Ga 101 Zn 97 O
It was 396 . Further, when the crystallinity was examined by XRD, a diffraction peak on the (009) plane was observed, and it was confirmed that the film was an oriented film. The conductivity of the film was measured by a four-probe method and found to be 280 S / cm. Further, as a result of measuring the spectral transmittance of the obtained film, the absorption edge was 386 nm.

【0047】実施例2 実施例1記載の方法でレーザーアブレーション用ターゲ
ットを作製した。レーザーアブレーション用ターゲット
をターゲットホルダーに、石英ガラス基板を基板ホルダ
ーにそれぞれ装着し、装置内部に導入した後、減圧ポン
プを用いて所定真空度になるまで装置内部を排気した。
次に成膜後の膜の均一性を高めるためにターゲットホル
ダー及び基板ホルダーを回転させた。成膜時の基板温度
は400℃である。成膜後の膜の結晶性を向上させる目的
で酸素ガス(20CCM)を導入し、さらにラジカルガン(R
F出力50W)を用いて見かけの酸素分圧を高めた。この時
の全圧は0.77Paであった。この条件でエキシマレーザー
パルス(5Hz、4J/cm 2)を照射して30分間成膜し、IGZO
薄膜を作製した。得られた膜を蛍光X線により分析した
結果、その組成は、In98Ga100Zn98O395であった。さら
に、XRDによって結晶性を調べたところ、(009)面の回折
ピークが観察され、配向膜となっていることが確かめら
れた。上記膜の導電性を4探針法によって測定したとこ
ろ、285S/cmであった。さらに得られた膜の分光透過率
を測定した結果、吸収端は386nmであった。
Example 2 A target for laser ablation was prepared by the method described in Example 1.
Was prepared. Laser ablation target
As a target holder and a quartz glass substrate as a substrate holder
After installing them in the
The inside of the apparatus was evacuated to a predetermined degree of vacuum using a pump.
Next, in order to improve the uniformity of the deposited film,
The holder and the substrate holder were rotated. Substrate temperature during film formation
Is 400 ° C. Purpose of improving the crystallinity of the film after film formation
To introduce oxygen gas (20CCM)
The apparent oxygen partial pressure was increased using F output (50 W). At this time
Was 0.77 Pa. Excimer laser under these conditions
Pulse (5Hz, 4J / cm Two) To form a film for 30 minutes.
A thin film was prepared. The resulting membrane was analyzed by X-ray fluorescence
As a result, its composition is In98Ga100Zn98O395Met. Further
Then, when the crystallinity was examined by XRD, diffraction of the (009) plane
A peak was observed and it was confirmed that the film was oriented.
Was. The conductivity of the above film was measured by the four probe method.
285 S / cm. Further, the spectral transmittance of the obtained film
As a result of the measurement, the absorption edge was 386 nm.

【0048】実施例3 In2O3(高純度化学研究所(株)社製、純度99.9%)、及
びGa2O3(高純度化学研究所(株)社製、純度99.99%)
とZnO(高純度化学研究所(株)社製、純度99.99%)粉
末のモル比1:1の混合粉末をそれぞれ一軸加圧成形によっ
て直径20mmの円盤状に成形し、大気中、1300℃で2時間
焼成してIn2O3焼結体及び(ZnGa)O2.5焼結体を得た。得
られた焼結体表面を#800のダイヤモンド研磨板を用いて
研磨し、平滑表面としてそれぞれレーザーアブレーショ
ン用ターゲットとした。レーザーアブレーション用ター
ゲットをターゲットホルダーに、石英ガラス基板を基板
ホルダーにそれぞれ装着し、装置内部に導入した後、減
圧ポンプを用いて所定真空度になるまで装置内部を排気
した。次に成膜後の膜の均一性を高めるためにターゲッ
トホルダー及び基板ホルダーを回転させた。成膜時の基
板温度は400℃である。成膜後の膜の結晶性を向上させ
る目的で酸素ガス(20CCM)を導入し、見かけの酸素分
圧を高めた。この時の全圧は0.77Paであった。この条件
でエキシマレーザーパルス(5Hz、4J/cm2)を照射してI
n2O3、(ZnGa)O2.5ターゲットを10パルスごとに入れ替え
ながら30分間成膜し、IGZO薄膜を作製した。得られた膜
を蛍光X線により分析した結果、その組成は、In96Ga100
Zn99O393であった。上記膜の導電性を4探針法によって
測定したところ、305S/cmであった。さらに得られた膜
の分光透過率を測定した結果、吸収端は388nmであっ
た。
Example 3 In 2 O 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%) and Ga 2 O 3 (manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.99%)
And ZnO (High Purity Chemical Laboratory Co., Ltd., purity 99.99%) mixed powders with a molar ratio of 1: 1 were formed into discs with a diameter of 20 mm by uniaxial pressing, respectively, at 1300 ° C in air. By firing for 2 hours, an In 2 O 3 sintered body and a (ZnGa) O 2.5 sintered body were obtained. The surface of the obtained sintered body was polished using a # 800 diamond polishing plate, and each of the surfaces was used as a target for laser ablation as a smooth surface. The target for laser ablation was mounted on the target holder, and the quartz glass substrate was mounted on the substrate holder, respectively, and introduced into the apparatus. Then, the inside of the apparatus was evacuated using a vacuum pump until a predetermined degree of vacuum was reached. Next, the target holder and the substrate holder were rotated in order to improve the uniformity of the formed film. The substrate temperature during film formation is 400 ° C. Oxygen gas (20 CCM) was introduced to improve the crystallinity of the film after the film formation, and the apparent oxygen partial pressure was increased. The total pressure at this time was 0.77 Pa. Under these conditions, an excimer laser pulse (5 Hz, 4 J / cm 2 )
A film was formed for 30 minutes while replacing the n 2 O 3 and (ZnGa) O 2.5 targets every 10 pulses, to produce an IGZO thin film. As a result of analyzing the obtained film by fluorescent X-ray, the composition was In 96 Ga 100
Zn 99 O 393 . The conductivity of the film was measured by a four-probe method, and was 305 S / cm. Further, as a result of measuring the spectral transmittance of the obtained film, the absorption edge was 388 nm.

【0049】[0049]

【表1】 [Table 1]

【0050】比較例1 石英ガラス基板上にRFマグネトロンスパッタリングによ
り、InGaZnO4焼結体をターゲットとして、RF出力200W、
Ar:O2=18:2、圧力6×10-3Torr、基板温度500℃の条件
下で厚さ200nmの薄膜を形成した。得られた膜を蛍光X線
により分析した結果、その組成は、Zn26Ga100In56O260
であった。さらに、XRDによって結晶性を調べたとこ
ろ、(009)面の回折ピークが観察され、配向膜となって
いることが確かめられた。上記膜の導電性を4探針法に
よって測定したところ、240S/cmであった。さらに得ら
れた膜の分光透過率を測定した結果、吸収端は384nmで
あった。
Comparative Example 1 An RF output of 200 W and a target of InGaZnO 4 sintered body were formed on a quartz glass substrate by RF magnetron sputtering.
A thin film having a thickness of 200 nm was formed under the conditions of Ar: O 2 = 18: 2, a pressure of 6 × 10 −3 Torr, and a substrate temperature of 500 ° C. As a result of analyzing the obtained film by X-ray fluorescence, the composition was Zn 26 Ga 100 In 56 O 260
Met. Furthermore, when the crystallinity was examined by XRD, a diffraction peak on the (009) plane was observed, and it was confirmed that the film was an oriented film. The conductivity of the film was measured by a four-probe method and found to be 240 S / cm. Further, as a result of measuring the spectral transmittance of the obtained film, the absorption edge was 384 nm.

【0051】比較例2 石英ガラス基板上にRFマグネトロンスパッタリングによ
り、In179Ga100Zn398O 826焼結体をターゲットとして、R
F出力200W、Ar:O2=18:2、圧力6×10-3Torr、基板温度
500℃の条件下で厚さ200nmの薄膜を形成した。得られた
膜を蛍光X線により分析した結果、その組成は、In99Ga
100Zn98O396であった。さらに、XRDによって結晶性を調
べたところ、(009)面の回折ピークが観察され、配向膜
となっていることが確かめられた。上記膜の導電性を4
探針法によって測定したところ、280S/cmであった。さ
らに得られた膜の分光透過率を測定した結果、吸収端は
385nmであった。
Comparative Example 2 RF magnetron sputtering was performed on a quartz glass substrate.
In179Ga100Zn398O 826With the sintered body as the target, R
F output 200W, Ar: OTwo= 18: 2, pressure 6 × 10-3Torr, substrate temperature
A thin film having a thickness of 200 nm was formed at 500 ° C. Got
As a result of analyzing the film by fluorescent X-ray, the composition was In99Ga
100Zn98O396Met. Furthermore, the crystallinity is adjusted by XRD.
As a result, the diffraction peak of the (009) plane was observed,
It was confirmed that it was. The conductivity of the above film is 4
It was 280 S / cm when measured by the probe method. Sa
As a result of measuring the spectral transmittance of the obtained film, the absorption edge was
It was 385 nm.

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】[0054]

【表4】 [Table 4]

【0055】[0055]

【発明の効果】本発明によれば、薄膜組成がターゲット
組成と良く一致するため製造が容易であり、かつ表面抵
抗率が低く、かつ基板を含めた450〜800nmにおける可
視光線透過率に優れた亜鉛−インジウム系酸化物系の導
電性薄膜を有する物品を製造する方法を提供することが
できる。さらに、本発明によれば、単結晶性が高く、か
つ格子欠陥も少ない、表面抵抗率が低く、かつ450〜800
nmにおける可視光線透過率に優れた亜鉛−インジウム
系酸化物系の導電性薄膜を有する物品を提供することが
できる。本発明の物品である透明導電膜を、例えば、光
透過性が必要なディスプレイや太陽電池用の電極等とし
て用いると、素子の長寿命化に大きな効果がある。
According to the present invention, the thin film composition is well matched with the target composition, so that the production is easy, the surface resistivity is low, and the visible light transmittance at 450 to 800 nm including the substrate is excellent. A method for manufacturing an article having a zinc-indium oxide-based conductive thin film can be provided. Furthermore, according to the present invention, the single crystallinity is high, the number of lattice defects is small, the surface resistivity is low, and 450 to 800
An article having a zinc-indium oxide-based conductive thin film having excellent visible light transmittance in nm can be provided. When the transparent conductive film, which is an article of the present invention, is used as, for example, an electrode for a display or a solar cell that requires light transmission, there is a great effect on extending the life of the element.

フロントページの続き (72)発明者 折田 政寛 東京都新宿区中落合2丁目7番5号 ホー ヤ株式会社内 (72)発明者 細野 秀雄 神奈川県横浜市長津田町4259 東京工業大 学応用セラミックス研究所内 (72)発明者 川副 博司 神奈川県横浜市長津田町4259 東京工業大 学応用セラミックス研究所内 Fターム(参考) 4K029 AA08 BA44 BA45 BA49 BA50 BC09 BD01 CA02 DB05 DB20 DC05 Continuing from the front page (72) Inventor Masahiro Orita 2-7-5 Nakaochiai, Shinjuku-ku, Tokyo Inside Hoya Co., Ltd. (72) Inventor Hideo Hosono 4259 Nagatsuda-cho, Yokohama City, Kanagawa Prefecture In-house Ceramics Research Laboratory, Tokyo Institute of Technology (72) Inventor Hiroshi Kawasoe 4259 Nagatsuda-cho, Yokohama-shi, Kanagawa Prefecture F-term in the Institute of Applied Ceramics, Tokyo Institute of Technology 4K029 AA08 BA44 BA45 BA49 BA50 BC09 BD01 CA02 DB05 DB20 DC05

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 亜鉛−インジウム系酸化物をターゲット
として、レーザーアブレーション法により、基板の少な
くとも一方の面の少なくとも一部に導電性酸化物薄膜を
形成することを含む導電性酸化物薄膜を有する物品の製
造方法。
1. An article having a conductive oxide thin film including forming a conductive oxide thin film on at least a portion of at least one surface of a substrate by a laser ablation method using a zinc-indium oxide as a target. Manufacturing method.
【請求項2】 亜鉛−インジウム系酸化物がアルミニウ
ム及び/又はガリウムをさらに含む酸化物である請求項
1に記載の製造方法。
2. The method according to claim 1, wherein the zinc-indium oxide is an oxide further containing aluminum and / or gallium.
【請求項3】 亜鉛−インジウム系酸化物ターゲット
が、一般式ZnxMyInzO(x+3y /2+3z/2)(式中、Mはアルミ
ニウム及びガリウムのうち少なくとも一つの元素であ
り、比率(x:y)が0.2:1〜8:1の範囲であり、比率
(z:y)が0.4〜1.4:1の範囲である)で表される酸化
物である請求項1または2に記載の製造方法。
3. A zinc - indium-based oxide target is the general formula Zn x M y In z O ( x + 3y / 2 + 3z / 2) ( wherein, M represents at least one element of aluminum and gallium Wherein the ratio (x: y) is in the range of 0.2: 1 to 8: 1 and the ratio (z: y) is in the range of 0.4 to 1.4: 1). 2. The production method according to 2.
【請求項4】 亜鉛−インジウム系酸化物ターゲット
が、一般式ZnxMyInzO(x+3y /2+3z/2)(式中、Mはアルミ
ニウム及びガリウムのうち少なくとも一つの元素であ
り、比率(x:y)が0.2:1〜8:1の範囲であり、比率
(z:y)が0.4〜1.4:1の範囲である)で表され、かつZ
n、M及びInのうち少なくとも一種の元素の一部が他の元
素で置換されており、Znと置換される元素は原子価が2
価以上であり、M及びInと置換される元素は原子価が3価
以上である酸化物である請求項1または2に記載の製造
方法。
4. A zinc - indium-based oxide target is the general formula Zn x M y In z O ( x + 3y / 2 + 3z / 2) ( wherein, M represents at least one element of aluminum and gallium And the ratio (x: y) is in the range of 0.2: 1 to 8: 1 and the ratio (z: y) is in the range of 0.4 to 1.4: 1), and Z
At least one element of n, M, and In is partially replaced with another element, and the element to be replaced with Zn has a valence of 2
3. The method according to claim 1, wherein the element having a valence of 3 or more and being substituted with M and In is an oxide having a valence of 3 or more. 4.
【請求項5】 レーザーアブレーション法による導電性
酸化物薄膜の形成を酸素雰囲気中で行う請求項1〜4の
いずれか1項に記載の製造方法。
5. The manufacturing method according to claim 1, wherein the conductive oxide thin film is formed by a laser ablation method in an oxygen atmosphere.
【請求項6】 レーザーアブレーション装置内に設置し
たラジカル銃により、装置内部の酸素分圧を制御する請
求項5に記載の製造方法。
6. The production method according to claim 5, wherein the oxygen partial pressure inside the laser ablation apparatus is controlled by a radical gun installed in the apparatus.
【請求項7】 レーザーアブレーション法により形成さ
れた導電性酸化物薄膜に陽イオンを注入する請求項1〜
6のいずれか1項に記載の製造方法。
7. The method according to claim 1, wherein cations are implanted into the conductive oxide thin film formed by the laser ablation method.
7. The production method according to any one of 6.
【請求項8】 レーザーアブレーション法が、レーザー
発振として連続発振またはパルス発振を用い、レーザー
波長0.19〜11μm、レーザー照射時のレーザー強度0.000
1〜1000J/ cm2・パルス、基板温度0〜1000℃の条件で行
われる請求項1〜7のいずれか1項に記載の製造方法。
8. The laser ablation method uses continuous oscillation or pulse oscillation as laser oscillation, a laser wavelength of 0.19 to 11 μm, and a laser intensity of 0.000 during laser irradiation.
The method according to any one of claims 1 to 7, wherein the method is performed under the conditions of 1 to 1000 J / cm 2 · pulse and a substrate temperature of 0 to 1000 ° C.
【請求項9】 2個以上のターゲットを交互にレーザー
アブレーション成膜することにより薄膜をヘテロエピタ
キシャル成長させる請求項1〜8のいずれか1項に記載
の製造方法。
9. The manufacturing method according to claim 1, wherein the thin film is heteroepitaxially grown by alternately forming two or more targets by laser ablation.
【請求項10】 請求項1〜9のいずれか1項に記載の
製造方法により形成された導電性酸化物薄膜を有する物
品。
10. An article having a conductive oxide thin film formed by the production method according to claim 1. Description:
【請求項11】 導電性酸化物薄膜中のキャリア電子の
量が1×1018/cm3〜1×10 22/cm3の範囲である請求項10
に記載の物品。
11. The method of claim 11, wherein carrier electrons in the conductive oxide thin film
1 × 1018/cmThree~ 1 × 10 twenty two/cmThreeClaim 10
Articles described in.
【請求項12】 基板が無機または有機材料からなり、
かつ該基板上に形成された導電性酸化物薄膜の(00n)
面(但し、nは自然数)が実質的に配向している請求項
10または11に記載の物品。
12. The substrate is made of an inorganic or organic material,
And (00n) of the conductive oxide thin film formed on the substrate.
The article according to claim 10 or 11, wherein the faces (where n is a natural number) are substantially oriented.
【請求項13】 基板が可視光領域で実質的に透明であ
り、電極として用いられる請求項10〜12のいずれか
1項に記載の物品。
13. The article according to claim 10, wherein the substrate is substantially transparent in a visible light region, and is used as an electrode.
【請求項14】 液晶ディスプレイ、ELディスプレイま
たは太陽電池に用いられる請求項10〜12のいずれか
1項に記載の物品。
14. The article according to claim 10, which is used for a liquid crystal display, an EL display, or a solar cell.
JP10194731A 1998-07-09 1998-07-09 Article having transparent electrically conductive oxide thin film and its manufacture Pending JP2000026119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10194731A JP2000026119A (en) 1998-07-09 1998-07-09 Article having transparent electrically conductive oxide thin film and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10194731A JP2000026119A (en) 1998-07-09 1998-07-09 Article having transparent electrically conductive oxide thin film and its manufacture

Publications (1)

Publication Number Publication Date
JP2000026119A true JP2000026119A (en) 2000-01-25

Family

ID=16329305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10194731A Pending JP2000026119A (en) 1998-07-09 1998-07-09 Article having transparent electrically conductive oxide thin film and its manufacture

Country Status (1)

Country Link
JP (1) JP2000026119A (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079037A1 (en) * 2003-03-04 2004-09-16 Nikko Materials Co., Ltd. Sputtering target and process for producing the same, thin film for optical information recording medium and process for producing the same
JP2005120396A (en) * 2003-10-14 2005-05-12 Toyota Central Res & Dev Lab Inc Method of manufacturing transparent conductive film
JPWO2003101158A1 (en) * 2002-05-29 2005-09-29 旭硝子株式会社 Substrate with transparent conductive film and organic EL element
JP2006299412A (en) * 2005-03-25 2006-11-02 Bridgestone Corp METHOD FOR FORMING In-Ga-Zn-O FILM
WO2006137199A1 (en) 2005-06-23 2006-12-28 Nippon Mining & Metals Co., Ltd. Sputtering target and thin film for optical information recording medium
JP2007045902A (en) * 2005-08-09 2007-02-22 Canon Inc Oxide, light emitting element and display device
WO2007119830A1 (en) * 2006-04-14 2007-10-25 Showa Denko K.K. Semiconductor light emitting element, method for fabricating semiconductor light emitting element and lamp
WO2007125814A1 (en) * 2006-04-26 2007-11-08 Mitsubishi Materials Corporation ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME
WO2009084537A1 (en) * 2007-12-27 2009-07-09 Nippon Mining & Metals Co., Ltd. Process for producing thin film of a-igzo oxide
EP2096188A1 (en) 2006-12-13 2009-09-02 Idemitsu Kosan Co., Ltd. Sputtering target and oxide semiconductor film
JP2010153802A (en) * 2008-11-20 2010-07-08 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
JP2011003856A (en) * 2009-06-22 2011-01-06 Fujifilm Corp Thin-film transistor, and method of manufacturing thin-film transistor
JP2011146698A (en) * 2009-12-18 2011-07-28 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
JP2011214136A (en) * 2010-03-15 2011-10-27 Mitsubishi Materials Corp Vapor deposition material for forming thin film, thin film sheet having the thin film, and laminated sheet
EP2503019A1 (en) * 2009-11-19 2012-09-26 Idemitsu Kosan Co., Ltd. In-Ga-Zn-O-BASED OXIDE SINTERED BODY SPUTTERING TARGET WITH EXCELLENT STABILITY DURING LONG-TERM DEPOSITION
JP2013035740A (en) * 2010-12-17 2013-02-21 Semiconductor Energy Lab Co Ltd Oxide material and semiconductor device
JP2013077858A (en) * 2009-11-13 2013-04-25 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2013102189A (en) * 2009-11-28 2013-05-23 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US8492758B2 (en) 2009-09-24 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US8530285B2 (en) 2009-12-28 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8570070B2 (en) 2009-10-30 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
US8603841B2 (en) 2010-08-27 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Manufacturing methods of semiconductor device and light-emitting display device
US8624245B2 (en) 2009-12-04 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8629438B2 (en) 2010-05-21 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8633480B2 (en) 2009-11-06 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor with a crystalline region and manufacturing method thereof
JP2014025147A (en) * 2012-06-22 2014-02-06 Semiconductor Energy Lab Co Ltd Sputtering target and method for using the same
US8664097B2 (en) 2010-09-13 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8664036B2 (en) 2009-12-18 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8669556B2 (en) 2010-12-03 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8674354B2 (en) 2010-02-05 2014-03-18 Semiconductor Energy Laboratory Co., Ltd. Display device with an oxide semiconductor including a crystal region
US8698138B2 (en) 2009-11-28 2014-04-15 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film on amorphous insulating surface
US8728883B2 (en) 2010-11-30 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8748881B2 (en) 2009-11-28 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8748215B2 (en) 2009-11-28 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
US8753928B2 (en) 2011-03-11 2014-06-17 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US8772768B2 (en) 2010-12-28 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing
US8779432B2 (en) 2011-01-26 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8809870B2 (en) 2011-01-26 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8809852B2 (en) 2010-11-30 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor element, semiconductor device, and method for manufacturing the same
US8829512B2 (en) 2010-12-28 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8835917B2 (en) 2010-09-13 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US8841163B2 (en) 2009-12-04 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device comprising oxide semiconductor
US8866138B2 (en) 2009-12-04 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US8871565B2 (en) 2010-09-13 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8901552B2 (en) 2010-09-13 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Top gate thin film transistor with multiple oxide semiconductor layers
US8916867B2 (en) 2011-01-20 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor element and semiconductor device
US8941112B2 (en) 2010-12-28 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9006803B2 (en) 2011-04-22 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing thereof
US9082663B2 (en) 2011-09-16 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9184296B2 (en) 2011-03-11 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having c-axis aligned portions and doped portions
US9209092B2 (en) 2011-01-26 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with a wide-gap semiconductor layer on inner wall of trench
US9218966B2 (en) 2011-10-14 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US9240488B2 (en) 2009-12-18 2016-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9306072B2 (en) 2009-10-08 2016-04-05 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor layer and semiconductor device
JP2016085970A (en) * 2014-10-23 2016-05-19 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, display device, electronic device, and illuminating device
US9443984B2 (en) 2010-12-28 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2017085172A (en) * 2009-12-28 2017-05-18 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9673336B2 (en) 2011-01-12 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9680028B2 (en) 2011-10-14 2017-06-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9741860B2 (en) 2011-09-29 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9911858B2 (en) 2010-12-28 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9935202B2 (en) 2009-09-16 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device comprising oxide semiconductor layer
US11177792B2 (en) 2010-08-06 2021-11-16 Semiconductor Energy Laboratory Co., Ltd. Power supply semiconductor integrated memory control circuit

Cited By (205)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003101158A1 (en) * 2002-05-29 2005-09-29 旭硝子株式会社 Substrate with transparent conductive film and organic EL element
EP2006412A1 (en) 2003-03-04 2008-12-24 Nippon Mining & Metals Co., Ltd. Sputtering target and process for producing the same, thin film for optical information recording medium and process for producing the same
EP1602746A1 (en) * 2003-03-04 2005-12-07 Nikko Materials Company, Limited Sputtering target and process for producing the same, thin film for optical information recording medium and process for producing the same
EP1602746A4 (en) * 2003-03-04 2006-07-05 Nikko Materials Co Ltd Sputtering target and process for producing the same, thin film for optical information recording medium and process for producing the same
WO2004079037A1 (en) * 2003-03-04 2004-09-16 Nikko Materials Co., Ltd. Sputtering target and process for producing the same, thin film for optical information recording medium and process for producing the same
JP2005120396A (en) * 2003-10-14 2005-05-12 Toyota Central Res & Dev Lab Inc Method of manufacturing transparent conductive film
JP4513117B2 (en) * 2003-10-14 2010-07-28 株式会社豊田中央研究所 Method for producing transparent conductive film
JP2006299412A (en) * 2005-03-25 2006-11-02 Bridgestone Corp METHOD FOR FORMING In-Ga-Zn-O FILM
JP4650315B2 (en) * 2005-03-25 2011-03-16 株式会社ブリヂストン Method for forming In-Ga-Zn-O film
WO2006137199A1 (en) 2005-06-23 2006-12-28 Nippon Mining & Metals Co., Ltd. Sputtering target and thin film for optical information recording medium
JP2007045902A (en) * 2005-08-09 2007-02-22 Canon Inc Oxide, light emitting element and display device
KR100988143B1 (en) 2006-04-14 2010-10-18 쇼와 덴코 가부시키가이샤 Semiconductor light emitting element, method for fabricating semiconductor light emitting element and lamp
WO2007119830A1 (en) * 2006-04-14 2007-10-25 Showa Denko K.K. Semiconductor light emitting element, method for fabricating semiconductor light emitting element and lamp
US8334200B2 (en) 2006-04-14 2012-12-18 Showa Denko K.K. Semiconductor light-emitting device, method of manufacturing semiconductor light-emitting device, and lamp
JP2008088544A (en) * 2006-04-26 2008-04-17 Mitsubishi Materials Corp ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME
WO2007125814A1 (en) * 2006-04-26 2007-11-08 Mitsubishi Materials Corporation ZnO DEPOSITION MATERIAL AND ZnO FILM FORMED OF SAME
US8636927B2 (en) 2006-04-26 2014-01-28 Mitsubishi Materials Corporation ZnO deposition material and ZnO film formed of the same
US8784700B2 (en) 2006-12-13 2014-07-22 Idemitsu Kosan Co., Ltd. Sputtering target and oxide semiconductor film
EP2096188A1 (en) 2006-12-13 2009-09-02 Idemitsu Kosan Co., Ltd. Sputtering target and oxide semiconductor film
KR101228160B1 (en) * 2007-12-27 2013-01-30 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Process for producing thin film of a-igzo oxide
JP5345952B2 (en) * 2007-12-27 2013-11-20 Jx日鉱日石金属株式会社 Method for producing a-IGZO oxide thin film
TWI410509B (en) * 2007-12-27 2013-10-01 Jx Nippon Mining & Metals Corp A-IGZO oxide film
JPWO2009084537A1 (en) * 2007-12-27 2011-05-19 Jx日鉱日石金属株式会社 Method for producing a-IGZO oxide thin film
US8148245B2 (en) 2007-12-27 2012-04-03 Jx Nippon Mining & Metals Corporation Method for producing a-IGZO oxide thin film
WO2009084537A1 (en) * 2007-12-27 2009-07-09 Nippon Mining & Metals Co., Ltd. Process for producing thin film of a-igzo oxide
JP2018191013A (en) * 2008-11-20 2018-11-29 株式会社半導体エネルギー研究所 Transistor
US9893200B2 (en) 2008-11-20 2018-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9252288B2 (en) 2008-11-20 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10403763B2 (en) 2008-11-20 2019-09-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8643011B2 (en) 2008-11-20 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2010153802A (en) * 2008-11-20 2010-07-08 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
JP2011003856A (en) * 2009-06-22 2011-01-06 Fujifilm Corp Thin-film transistor, and method of manufacturing thin-film transistor
US9935202B2 (en) 2009-09-16 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device comprising oxide semiconductor layer
US8492758B2 (en) 2009-09-24 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US10418491B2 (en) 2009-09-24 2019-09-17 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US9214563B2 (en) 2009-09-24 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US9318617B2 (en) 2009-09-24 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US9853167B2 (en) 2009-09-24 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US9306072B2 (en) 2009-10-08 2016-04-05 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor layer and semiconductor device
US9722086B2 (en) 2009-10-30 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
US8570070B2 (en) 2009-10-30 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device
US11107838B2 (en) 2009-11-06 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Transistor comprising an oxide semiconductor
US11107840B2 (en) 2009-11-06 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device comprising an oxide semiconductor
US20210288079A1 (en) 2009-11-06 2021-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10249647B2 (en) 2009-11-06 2019-04-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device comprising oxide semiconductor layer
US9093544B2 (en) 2009-11-06 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11776968B2 (en) 2009-11-06 2023-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor layer
US10868046B2 (en) 2009-11-06 2020-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device applying an oxide semiconductor
US8633480B2 (en) 2009-11-06 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor with a crystalline region and manufacturing method thereof
US10056494B2 (en) 2009-11-13 2018-08-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8742544B2 (en) 2009-11-13 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10516055B2 (en) 2009-11-13 2019-12-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11456385B2 (en) 2009-11-13 2022-09-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2015084457A (en) * 2009-11-13 2015-04-30 株式会社半導体エネルギー研究所 Semiconductor device
US9219162B2 (en) 2009-11-13 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10944010B2 (en) 2009-11-13 2021-03-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11955557B2 (en) 2009-11-13 2024-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2013077858A (en) * 2009-11-13 2013-04-25 Semiconductor Energy Lab Co Ltd Semiconductor device
EP2503019A4 (en) * 2009-11-19 2014-06-04 Idemitsu Kosan Co In-Ga-Zn-O-BASED OXIDE SINTERED BODY SPUTTERING TARGET WITH EXCELLENT STABILITY DURING LONG-TERM DEPOSITION
EP2503019A1 (en) * 2009-11-19 2012-09-26 Idemitsu Kosan Co., Ltd. In-Ga-Zn-O-BASED OXIDE SINTERED BODY SPUTTERING TARGET WITH EXCELLENT STABILITY DURING LONG-TERM DEPOSITION
US10347771B2 (en) 2009-11-28 2019-07-09 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
JP2013201447A (en) * 2009-11-28 2013-10-03 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US9520287B2 (en) 2009-11-28 2016-12-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having stacked oxide semiconductor layers
US8748215B2 (en) 2009-11-28 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
US8748881B2 (en) 2009-11-28 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8765522B2 (en) 2009-11-28 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
US9887298B2 (en) 2009-11-28 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8698138B2 (en) 2009-11-28 2014-04-15 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film on amorphous insulating surface
US11710795B2 (en) 2009-11-28 2023-07-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor with c-axis-aligned crystals
US9214520B2 (en) 2009-11-28 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10079310B2 (en) 2009-11-28 2018-09-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including stacked oxide semiconductor material
US10263120B2 (en) 2009-11-28 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device and method for manufacturing liquid crystal display panel
US9368640B2 (en) 2009-11-28 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Transistor with stacked oxide semiconductor films
US11133419B2 (en) 2009-11-28 2021-09-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2013102189A (en) * 2009-11-28 2013-05-23 Semiconductor Energy Lab Co Ltd Method for manufacturing semiconductor device
US10608118B2 (en) 2009-11-28 2020-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10490420B2 (en) 2009-12-04 2019-11-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10109500B2 (en) 2009-12-04 2018-10-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10861983B2 (en) 2009-12-04 2020-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor layer containing a c-axis aligned crystal
US10840268B2 (en) 2009-12-04 2020-11-17 Semiconductor Energy Laboratories Co., Ltd. Display device and electronic device including the same
US10714358B2 (en) 2009-12-04 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9324881B2 (en) 2009-12-04 2016-04-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10505049B2 (en) 2009-12-04 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device has an oxide semiconductor layer containing a c-axis aligned crystal
US11342464B2 (en) 2009-12-04 2022-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising first and second insulating layer each has a tapered shape
US8624245B2 (en) 2009-12-04 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9721811B2 (en) 2009-12-04 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device having an oxide semiconductor layer
US8957414B2 (en) 2009-12-04 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising both amorphous and crystalline semiconductor oxide
US8866138B2 (en) 2009-12-04 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US11456187B2 (en) 2009-12-04 2022-09-27 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor-device
US10014415B2 (en) 2009-12-04 2018-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device has an oxide semiconductor layer containing a C-axis aligned crystal
US8927349B2 (en) 2009-12-04 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9991286B2 (en) 2009-12-04 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US11728349B2 (en) 2009-12-04 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US8841163B2 (en) 2009-12-04 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device comprising oxide semiconductor
US9240467B2 (en) 2009-12-04 2016-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11728437B2 (en) 2009-12-04 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor layer containing a c-axis aligned crystal
US11923204B2 (en) 2009-12-04 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device comprising oxide semiconductor
US9735284B2 (en) 2009-12-04 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor
US9721971B2 (en) 2009-12-04 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the same
US10453964B2 (en) 2009-12-18 2019-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9728651B2 (en) 2009-12-18 2017-08-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9240488B2 (en) 2009-12-18 2016-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8664036B2 (en) 2009-12-18 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9034104B2 (en) 2009-12-18 2015-05-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device comprising single- and multi-component oxide semiconductor layers
JP2011146698A (en) * 2009-12-18 2011-07-28 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US9391095B2 (en) 2009-12-18 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9378980B2 (en) 2009-12-18 2016-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10797054B2 (en) 2009-12-28 2020-10-06 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
US8686425B2 (en) 2009-12-28 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10141425B2 (en) 2009-12-28 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9054134B2 (en) 2009-12-28 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US11424246B2 (en) 2009-12-28 2022-08-23 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
US8530285B2 (en) 2009-12-28 2013-09-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2017085172A (en) * 2009-12-28 2017-05-18 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9859401B2 (en) 2009-12-28 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US11469255B2 (en) 2010-02-05 2022-10-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10615179B2 (en) 2010-02-05 2020-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9202923B2 (en) 2010-02-05 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor
US8878180B2 (en) 2010-02-05 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11749686B2 (en) 2010-02-05 2023-09-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9991288B2 (en) 2010-02-05 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8674354B2 (en) 2010-02-05 2014-03-18 Semiconductor Energy Laboratory Co., Ltd. Display device with an oxide semiconductor including a crystal region
US9728555B2 (en) 2010-02-05 2017-08-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11101295B2 (en) 2010-02-05 2021-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2011214136A (en) * 2010-03-15 2011-10-27 Mitsubishi Materials Corp Vapor deposition material for forming thin film, thin film sheet having the thin film, and laminated sheet
US9601602B2 (en) 2010-05-21 2017-03-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9142648B2 (en) 2010-05-21 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8629438B2 (en) 2010-05-21 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11677384B2 (en) 2010-08-06 2023-06-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit with semiconductor layer having indium, zinc, and oxygen
US11177792B2 (en) 2010-08-06 2021-11-16 Semiconductor Energy Laboratory Co., Ltd. Power supply semiconductor integrated memory control circuit
US8603841B2 (en) 2010-08-27 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Manufacturing methods of semiconductor device and light-emitting display device
US10586869B2 (en) 2010-09-13 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8901552B2 (en) 2010-09-13 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Top gate thin film transistor with multiple oxide semiconductor layers
US9685562B2 (en) 2010-09-13 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US9252248B2 (en) 2010-09-13 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device comprising oxide semiconductor layer
US11715800B2 (en) 2010-09-13 2023-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US9040396B2 (en) 2010-09-13 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US10910499B2 (en) 2010-09-13 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US10615283B2 (en) 2010-09-13 2020-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US8871565B2 (en) 2010-09-13 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9105668B2 (en) 2010-09-13 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9117919B2 (en) 2010-09-13 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8664097B2 (en) 2010-09-13 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9324877B2 (en) 2010-09-13 2016-04-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US8835917B2 (en) 2010-09-13 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US9343584B2 (en) 2010-09-13 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8728883B2 (en) 2010-11-30 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9634082B2 (en) 2010-11-30 2017-04-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9281358B2 (en) 2010-11-30 2016-03-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8809852B2 (en) 2010-11-30 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor element, semiconductor device, and method for manufacturing the same
US8669556B2 (en) 2010-12-03 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10916663B2 (en) 2010-12-03 2021-02-09 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US10103277B2 (en) 2010-12-03 2018-10-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film
US9331208B2 (en) 2010-12-03 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US9711655B2 (en) 2010-12-03 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US8680522B2 (en) 2010-12-03 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US8994021B2 (en) 2010-12-03 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US11217702B2 (en) 2010-12-17 2022-01-04 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
JP2013035740A (en) * 2010-12-17 2013-02-21 Semiconductor Energy Lab Co Ltd Oxide material and semiconductor device
US10079309B2 (en) 2010-12-17 2018-09-18 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
US9368633B2 (en) 2010-12-17 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
US11049977B2 (en) 2010-12-17 2021-06-29 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
US11688810B2 (en) 2010-12-17 2023-06-27 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
JP2016028451A (en) * 2010-12-17 2016-02-25 株式会社半導体エネルギー研究所 Oxide semiconductor film
US9911858B2 (en) 2010-12-28 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10886414B2 (en) 2010-12-28 2021-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11923249B2 (en) 2010-12-28 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9337321B2 (en) 2010-12-28 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10714625B2 (en) 2010-12-28 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8829512B2 (en) 2010-12-28 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9443984B2 (en) 2010-12-28 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11430896B2 (en) 2010-12-28 2022-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9520503B2 (en) 2010-12-28 2016-12-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9129997B2 (en) 2010-12-28 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11670721B2 (en) 2010-12-28 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8772768B2 (en) 2010-12-28 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing
US9099498B2 (en) 2010-12-28 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10522692B2 (en) 2010-12-28 2019-12-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9306076B2 (en) 2010-12-28 2016-04-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8941112B2 (en) 2010-12-28 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9673336B2 (en) 2011-01-12 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US10170633B2 (en) 2011-01-12 2019-01-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8916867B2 (en) 2011-01-20 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor element and semiconductor device
US9337347B2 (en) 2011-01-20 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor element and semiconductor device
US9917206B2 (en) 2011-01-20 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor element and semiconductor device
US9209092B2 (en) 2011-01-26 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with a wide-gap semiconductor layer on inner wall of trench
US9761588B2 (en) 2011-01-26 2017-09-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a wide-gap semiconductor layer in an insulating trench
US8779432B2 (en) 2011-01-26 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8809870B2 (en) 2011-01-26 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9048130B2 (en) 2011-01-26 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8753928B2 (en) 2011-03-11 2014-06-17 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US9450104B2 (en) 2011-03-11 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9184296B2 (en) 2011-03-11 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having c-axis aligned portions and doped portions
US10079295B2 (en) 2011-04-22 2018-09-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing thereof
US9006803B2 (en) 2011-04-22 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing thereof
US9082663B2 (en) 2011-09-16 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10290744B2 (en) 2011-09-29 2019-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9741860B2 (en) 2011-09-29 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11791415B2 (en) 2011-09-29 2023-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10622485B2 (en) 2011-09-29 2020-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11217701B2 (en) 2011-09-29 2022-01-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9218966B2 (en) 2011-10-14 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US9680028B2 (en) 2011-10-14 2017-06-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2014025147A (en) * 2012-06-22 2014-02-06 Semiconductor Energy Lab Co Ltd Sputtering target and method for using the same
JP2016085970A (en) * 2014-10-23 2016-05-19 株式会社半導体エネルギー研究所 Light-emitting element, light-emitting device, display device, electronic device, and illuminating device

Similar Documents

Publication Publication Date Title
JP2000026119A (en) Article having transparent electrically conductive oxide thin film and its manufacture
EP1306858B1 (en) Process for producing an ultraviolet-transparent conductive film
JP4397511B2 (en) Low resistance ITO thin film and manufacturing method thereof
Choi et al. Initial preferred growth in zinc oxide thin films on Si and amorphous substrates by a pulsed laser deposition
US5955178A (en) Electro-conductive oxides and electrodes using the same
EP1734150B1 (en) Oxide sintered body, oxide transparent conductive film and manufacturing method thereof
Zhou et al. Shape control and spectroscopy of crystalline BaZrO 3 perovskite particles
JP3644647B2 (en) Conductive oxide and electrode using the same
Raj et al. Fabrication techniques and material properties of dielectric MgO thin films—A status review
JP3881407B2 (en) Conductive oxide thin film, article having this thin film, and method for producing the same
JPH05208895A (en) Production of thin film of perovskite material
Bonomi et al. Versatile vapor phase deposition approach to cesium tin bromide materials CsSnBr 3, CsSn 2 Br 5 and Cs 2 SnBr 6
JP2000128698A (en) Ito material, ito film and its formation, and el element
Wang et al. Growth mechanism of preferred crystallite orientation in transparent conducting ZnO: In thin films
JP3945887B2 (en) Article having conductive oxide thin film and method for producing the same
CN101296880A (en) Ceramic target, film constituting zinc, gallium and boron oxide and method of manufacturing of the said film
Negi et al. Impact of high energy ion irradiation on structural, morphological, optical and photoluminescence properties of MgTiO3 thin films
JP4237861B2 (en) Highly monocrystalline zinc oxide thin film and manufacturing method
JP3824289B2 (en) Transparent conductive thin film
JP3506390B2 (en) Transparent oxide and transparent conductive oxide using the same
JP2009108420A (en) Low-resistance ito thin film and its manufacturing method
Djazovski et al. Growth and Characterization of Blue Emitting Phosphor Films of SrGa2 S 4: Ce Prepared by Deposition from Binary Vapors
Park et al. Characterization of Eu-doped SnO2 thin films deposited by radio-frequency sputtering for a transparent conductive phosphor layer
Abduev et al. Preferred oriented ZnO films growth on nonoriented substrates by CVD
JP2014009150A (en) Method for producing zinc oxide sintered body