EP3723588B1 - Combined examination with imaging and a laser measurement - Google Patents

Combined examination with imaging and a laser measurement Download PDF

Info

Publication number
EP3723588B1
EP3723588B1 EP18830746.6A EP18830746A EP3723588B1 EP 3723588 B1 EP3723588 B1 EP 3723588B1 EP 18830746 A EP18830746 A EP 18830746A EP 3723588 B1 EP3723588 B1 EP 3723588B1
Authority
EP
European Patent Office
Prior art keywords
sample
laser beam
location
aperture
property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18830746.6A
Other languages
German (de)
French (fr)
Other versions
EP3723588A1 (en
Inventor
Iwan W. SCHIE
Wei Yang
Jürgen Popp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz Institut fuer Photonische Technologien eV
Original Assignee
Leibniz Institut fuer Photonische Technologien eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Institut fuer Photonische Technologien eV filed Critical Leibniz Institut fuer Photonische Technologien eV
Publication of EP3723588A1 publication Critical patent/EP3723588A1/en
Application granted granted Critical
Publication of EP3723588B1 publication Critical patent/EP3723588B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4795Scattering, i.e. diffuse reflection spatially resolved investigating of object in scattering medium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/14Coupling media or elements to improve sensor contact with skin or tissue
    • A61B2562/146Coupling media or elements to improve sensor contact with skin or tissue for optical coupling

Definitions

  • the invention relates to a device that makes it possible to fuse large-area information from a sample obtained by imaging with locally queried information about certain properties of the sample.
  • Imaging methods are often used to examine the properties of samples, such as biological tissue.
  • optical images can be obtained very quickly, even from spatially extensive samples, such as an entire organ.
  • such an image can contain information about what portion of the spectrum offered by a light source is reflected by the sample.
  • an optical change in tissue can result from an illness, but it can also have another cause.
  • a chemical examination for example using molecule-specific Raman spectroscopy, can clarify whether, for example, tumor markers are present in the tissue.
  • Raman spectroscopy instruments are designed to analyze small samples on slides or in cuvettes large organ would first have to be removed. Examples of such devices are optical microscopes expanded with a Raman spectrometer. In principle, the laser beam could be directed at the organ from a greater distance. However, it is then difficult to collect enough of the Raman-scattered light emitted in all directions.
  • US 2012/123 205 A1 discloses a system with which an overview image of an operating area produced with visible light can be produced during an operation using, for example, an endoscopic probe, with information then being superimposed on this overview image, which is obtained by locally querying parts of the operating area with a laser beam emerging from the probe were recorded.
  • US 2017/160 201 A1 discloses a further examination device with which an extensive object can be examined, with an overview image produced with visible light and information queried locally with a laser beam being fused and synthesized.
  • US 2009/244 260 A1 discloses an endoscope system that creates a dot pattern in the examined area by spatially scanning and modulating the intensity of a laser beam and reconstructs three-dimensional shapes from an optical image of this dot pattern.
  • US 2007/161 906 A1 discloses a device to support dermatological procedures that optically detects blood vessels hidden in the skin and projects them onto the surface of the skin, for example to facilitate treatment of these blood vessels.
  • WO 2013/010 910 A1 discloses a method by which a 3D scan of a solid object, such as a tooth, is removed from interference caused by temporary im Moving objects in the field of vision, such as cheeks or a tongue, can be corrected.
  • a device for examining a sample includes an imaging device for obtaining an overview image of the sample, such as a camera or an arrangement of cameras.
  • the device further comprises a measuring instrument for locally querying at least one property of the sample with a laser beam which emerges from an aperture, tracking means for determining the location on the sample that is currently being queried with the laser beam, and a memory in which the Laser beam queried property is associated with the determined location on the sample.
  • said tracking means are designed to determine the location at which the laser beam hits the sample by evaluating the resulting laser point from the overview image, and/or to determine this location by measuring the position and orientation of the aperture.
  • the aperture can therefore cover a large part of the solid angle into which the sample emits light when interrogated by the laser beam. A large portion of this light can then be collected and used for evaluation.
  • the concept of querying a property on the sample with the laser beam is not limited to the sample generating an optical signal in response to the laser beam and this being evaluated.
  • the sample can also be locally heated by the laser beam and this heating can be observed in the far field with a thermal imaging camera.
  • locally Material is removed from the sample and sucked into a mass spectrometer to determine the chemical composition.
  • the aperture is part of a probe that can be manually guided to the sample by the operator of the device. While the aim is usually to automate and mechanize as many steps as possible, manual positioning of the aperture is particularly advantageous when examining tissue during an operation. Mechanized positioning with a robot arm would require considerable effort, and in particular it would have to be ensured that no injuries arise due to excessive force exerted by the robot arm. A lot of space would also be required for the robot arm, which is often not available in a surgical scenario. By carrying out the positioning manually and shifting the automation to the subsequent determination of the examined location on the sample, the strengths of the operator on the one hand and the technology on the other are optimally combined. This also enables the realization of a transportable unit that is not tied to a specific space.
  • the concept of manual control is not limited to the probe being held in the hand. Rather, this term also includes, for example, that the probe is guided through the working channel of an endoscope to an organ.
  • this term also includes, for example, that the probe is guided through the working channel of an endoscope to an organ.
  • the entire extended sample is not examined in detail with the laser beam, but rather specific locations are selected for this examination based on the overview image.
  • the operator can use the quick hand-eye coordination and at the same time also use his sense of touch to avoid injuries caused by excessive force on tissue. The operator can therefore concentrate purely on the medical aspects of the examination, while the device takes care of that in the background Complexity takes care of combining the result of the detailed examination by the laser beam with the overview image.
  • the probe advantageously has a manually operable trigger for querying the property by the measuring instrument. Querying the property is not possible in real time for every type of examination. For example, recording a Raman spectrum can take a few seconds. This could result in having to wait for the current recording to end after positioning the probe at a point of interest. However, if the recording is started by pressing the shutter button, this waiting time is eliminated.
  • the focal plane of the laser beam emerging from the aperture may also change.
  • the extent to which this affects the interrogation of the properties of the sample with the laser beam depends on which physical contrast mechanism is used during the interrogation and how quickly this interrogation takes place. For example, recording a Raman spectrum can take a few seconds and can be "blurry" if there is too much relative movement between the probe and sample, similar to a photo that is taken with a correspondingly long exposure time.
  • the relative movement can be caused, for example, by manual guidance of the probe, but also, for example, by the natural movement of the sample, which can be a living organ. Therefore, in a further particularly advantageous embodiment of the invention, tracking means are provided which are designed to track the focal plane of the laser beam emerging from the aperture to a change in the distance between the aperture and the sample.
  • These tracking means can, for example, be designed to automatically readjust the focal plane of the laser and/or the focal plane of the light coupling into an optical waveguide leading to the aperture.
  • the distance between the probe and the sample can be determined in any way.
  • the probe can have a measuring device for the distance between the probe and the sample.
  • This measuring device can, for example, have a transmitter for an electromagnetic wave and/or for ultrasound, as well as a receiver for the wave reflected by the sample or the ultrasound reflected by the sample.
  • the distance between the aperture and the sample can also be determined, for example, using any image that shows both the probe and the sample. This image can be a camera image, for example, but can also be obtained in any other way, for example by evaluating terahertz radiation.
  • the refocusing can be carried out, for example, with the help of fast mechanical movement mechanisms, with the help of liquid lenses or with any other adaptive optics.
  • Tracking the focal plane also makes it possible, in particular, to keep the focal plane stable when the aperture is moved, for example manually, over an extensive area on the sample. This means that the measured values for the properties of the sample obtained at different locations on the sample become more comparable.
  • the tracking means include an image evaluation logic which is designed to detect a location at which the luminance of the overview image exceeds a threshold value, a center of gravity of the luminance of the overview image, and/or a location at which a spatial profile of the Luminance of the overview image matches the beam profile of the laser beam than identifying the location on the sample that is currently being queried with the laser beam.
  • the laser light is much more directed than, for example, lamp light, which is used to create an optical overview image, and is therefore typically dominant in luminance.
  • a secure identification of the The location that is currently being queried with the laser beam is also possible if parts of the sample have the same color as the laser beam.
  • a modulator for modulating the intensity of the laser beam with a frequency ⁇ .
  • the device for obtaining the overview image is expanded in such a way that it can record a chronological sequence of overview images.
  • the tracking means include an image evaluation logic that is designed to identify, from the temporal sequence of overview images, a location at which the luminance is modulated with the frequency ⁇ as the location on the sample that is currently being queried with the laser beam. In this way, the location currently being queried can still be identified even if the laser intensity used is very low and the luminance caused by the laser beam lags behind the dominance caused by other light sources.
  • the tracking means comprise at least two laser scanners or radio transmitters for spatial tracking of the aperture or the probe. These devices can, for example, be placed in the corners of an operating room where they do not disturb and track the position and orientation of the probe throughout the entire operating room.
  • the measuring instrument additionally comprises a scanning device which is designed to change the exit angle of the laser beam from the aperture. In this way, the point examination with the laser beam can be expanded to examine a limited area on the sample.
  • the measuring instrument contains a Raman spectrometer for querying the chemical composition of the sample.
  • a Raman spectrometer for querying the chemical composition of the sample.
  • Each molecule leaves one in the Raman spectrum characteristic fingerprint, so that, for example, the composition of mixtures can be clearly determined.
  • tumor tissue can be clearly identified via the presence of tumor markers.
  • the Raman-scattered light from the sample can be separated from the laser beam used for the query by spectral filtering, since it is wavelength-shifted compared to the laser beam.
  • a fluorescent background can be separated by a fit using polynomials, EMSC or a least squares method.
  • an excitation laser on the one hand and the Raman spectrometer on the other hand are connected to a common optical fiber leading to the aperture via a fiber coupler, the division ratio of which is wavelength-dependent.
  • the fiber coupler can contain, for example, a dichroic mirror.
  • the excitation laser and the spectrometer then do not have to take up space in the immediate vicinity of the operating field, for example in the operating room, but can be accommodated in a place where they do not disturb.
  • the fiber optic with the probe can be guided to the operator of the device in any way, for example from the ceiling of the operating room, in order not to create any tripping hazards.
  • an output unit is provided which is designed to superimpose a representation of the property stored in the memory and queried with the laser beam on the overview image of the sample at the location associated with the memory.
  • the overview image is upgraded to an “augmented reality” in a way that is immediately visible to the operator.
  • a Raman spectrum can be evaluated in such a way that a given canon of chemical substances is then searched for.
  • a linear combination of the Raman spectra of substances from this canon can be fitted to the recorded Raman spectrum in such a way that maximum agreement results.
  • the coefficients of the linear combination then provide a statement about the proportions in which the searched substances are present at the queried location.
  • a color can now be assigned to each substance from the canon, and these colors can, for example, be applied in the representation with intensities that are determined by the coefficients of the linear combination.
  • the canon of substances that are searched for can be freely selected and can be dynamically adjusted, in particular by the operator. For example, it is possible to hide certain substances for the sake of clarity.
  • a projector which is designed to project a representation of the property stored in the memory and queried with the laser beam onto the sample at the location associated with the memory.
  • augmented reality can be further refined so that the operator no longer has to look back and forth between the sample, such as the organ, and a computer screen.
  • the operator can move the probe over an area of the organ whose chemical composition interests him and "draw" the chemical composition determined using Raman spectroscopy directly on the organ itself.
  • the projection is particularly advantageous during longer operations, as every change in view between the organ and a computer screen requires the eyes to adjust to a different distance. These changes can become tiring over time.
  • the imaging device comprises a bright field camera.
  • the overview image recorded then corresponds to the normal way a person sees. In this respect, no adjustment is required if the operator moves his gaze back and forth between the sample and a computer screen with the overview image.
  • the imaging device is designed to record a three-dimensional overview image of the sample.
  • a three-dimensional overview image can in particular be used to control a projector so that it projects the representation of the queried property onto the sample at the correct location associated in the memory.
  • the imaging device can in particular comprise a stereo camera and/or a strip photometry device.
  • the local angle of incidence of the illumination on the sample can be determined using a least squares fit on overview images that are recorded under illumination from different directions.
  • the orientation of the sample surface is then determined which leads to an intensity distribution which is least contradictory to the actually observed intensity distributions.
  • a switching device which is designed to change the intensity of the laser beam between a first, lower level for querying the properties of the sample and a second, higher level for removing material from the sample. and/or for changing the material of the sample.
  • This switching device can be, for example, a shutter or a Pockels cell.
  • the device can then also be used to change the property queried with the laser beam. For example, a chemical contaminant or tumor tissue can be removed.
  • the laser used to remove and/or modify material does not have to be the same as the laser used for interrogation.
  • the laser intensity can also be switched by releasing the beam path from a second laser with higher intensity to the sample.
  • the laser used for interrogation can be a continuous wave laser, while the laser used for ablation and/or modification emits ultra-short pulses with very high intensity. Such pulses can interact directly with the electron shells of atoms of the material to be removed. The material can then be removed without heating the area around the sample to any significant extent.
  • the switching device can in particular be controlled by a manually operable trigger attached to a manually guided probe.
  • the operator can then, for example, use the described “augmented reality” to use the probe as a “chemical eraser” in order to directly “erase” detected undesirable substances or tissue changes by sweeping over them with the probe.
  • the use of the device to support operations is an essential "use case", but is not limited to this (although corresponding methods are not part of the claimed invention).
  • a component made of a metal alloy or a plastic mixture can also be examined with a manually operated probe to determine whether the composition of the alloy or mixture is homogeneous over the entire component and whether the component therefore fulfills the promise of this composition Has practical properties through and through.
  • a weld seam or a splice be examined to see whether the respective properties are homogeneous.
  • Sources of error here include, for example, insufficient lighting in a light-activated adhesive or insufficient mixing of the components of a multi-component adhesive.
  • the switching device is connected to the measuring device so that it is triggered automatically when the property queried with the laser beam fulfills a predetermined condition.
  • the switching device can be activated automatically when a specific substance has been identified at the location that is queried with the laser beam.
  • the switching device can therefore be controlled by an automatic triggering mechanism, which is triggered by the presence of a specific chemical substance.
  • the presence of the chemical substance can be detected, for example, by Raman spectroscopy, but also, for example, by the emission of fluorescent light in response to the laser beam used for the interrogation. This allows the user to perform chemically controlled removal.
  • Chemically controlled removal is not only useful in the medical field. It can also be used in the cosmetic sector, for example, to selectively chemically convert or break down tattoo inks without leaving scars on the treated skin. Furthermore, graffiti paints, for example, can also be selectively removed from surfaces that are too sensitive for the use of chemical solvents.
  • Figure 1 shows schematically an exemplary embodiment of the device 100.
  • the sample 2 to be examined in this example is a liver in vivo. Other organs and body parts are omitted for clarity.
  • a probe 5 is guided over the sample 2 by the operator of the device 100.
  • a glass fiber 38 is guided through the probe 5 and opens into an aperture 31.
  • An excitation laser 36 emits a laser beam 32, which is optionally modulated in a modulator 33 with a frequency ⁇ .
  • the laser beam 32 reaches a fiber coupler 37 with a wavelength-dependent division ratio via a first glass fiber 37a.
  • the laser beam 32 emerges from the aperture 31 and generates a laser spot 32a at location 23 on the sample 2. At this location 23, Raman scattered light is generated, which is characteristic of the local chemical composition of the sample 2 as the queried property 22.
  • the Raman-scattered light symbolized by the reference number 22 for that contained in it Information is passed through the fiber coupler 37 into a second optical fiber 37b, which leads to a Raman spectrometer 35.
  • the distance between the aperture 31 and the sample 2 is in Figure 1 For the sake of clarity, the drawing is greatly exaggerated.
  • the Raman spectrometer 35 determines the local chemical composition 22 of sample 2 at location 23, but itself does not yet know where this location 23 is on sample 2.
  • a tracking device 4 in this regard can include at least two laser scanners 43 or radio transmitters 44, which determine the position 31a and the orientation 31b of the probe 5, and thus also of the aperture 31.
  • the tracking device 4 can alternatively or in combination also comprise an image evaluation logic 41, 42, which contains the overview image 21 of the sample 2 supplied by a camera 1, including the laser point 32a generated therein by the laser beam 32, and from the overview image 21 the position of the laser point 32a as the Location 23 evaluated.
  • Each location 23 is stored in a memory 6 together with the associated queried property 22.
  • the aperture 31, the excitation laser 36, the modulator 33, the fiber coupler 37, the glass fibers 37, 37a and 38 connected to the fiber coupler 37 and the Raman spectrometer 35 together form the measuring instrument 3 for querying the property 22 of the sample 2.
  • the probe 5 contains a first trigger 51 with which the operator of the device 100 can trigger the recording of a Raman spectrum by the Raman spectrometer 35.
  • the probe 5 also contains a second trigger 81 with which the in Figure 3 switching device 8 explained in more detail for the Material removal can be controlled.
  • the signal connections of triggers 51 and 81 are in Figure 1 not shown for clarity.
  • Figure 2a shows an example of how an “augmented reality” can be displayed on an output unit 71 using the information stored in the memory 6.
  • the output unit 71 receives the overview image 21 of the sample 2 from the camera 1 and displays it in the background. At the same time, the output unit 71 receives the values of the queried property 22 from the memory 6 together with the respective locations 23 on the sample 2. From this, the output unit 71 determines a representation 61 in which, for example, different chemical substances are displayed in different colors. The representation 61 is superimposed on the overview image 21 of sample 2.
  • Figure 2b shows an example of how an “augmented reality” can be created that does not require turning your gaze away from the sample 2 and towards an output unit 71.
  • a projector 72 generates a representation 62 from the information stored in the memory 6, which is, for example, analogous to the representation 61 according to Figure 2a can be color coded.
  • the representation is projected directly onto sample 2. So every value for the queried property 22 is projected onto the associated location 23.
  • Figure 3 shows an example of how you can switch between querying property 22 and removing material from sample 2.
  • the continuous laser beam 32 of the excitation laser 36 and the pulsed laser beam 34a of the ablation laser 34 are each guided into the switching device 8.
  • the switching device 8 couples exactly one of the beams 32 and 34a into the first optical fiber 37a, which according to Figure 1 leads to the fiber coupler 37.
  • the other beam is directed to a beam dump 82 and converted there into heat. In this way, the lasers 36 and 34 themselves do not have to be constantly switched on and off, which would be bad for their lifespan.
  • Figure 4 shows another application example in which normal optical contrast and chemical contrast can be combined with each other using the device 100.
  • sample 2 an arrangement consisting of a first workpiece 91 and a second workpiece 92, which are glued together by an adhesive joint 93, is to be examined.
  • Figure 4a shows those features of sample 2 that are visible in a normal optical overview image 21.
  • the first workpiece 91 has substantially horizontal grooves 91a
  • the second workpiece 92 has substantially vertical grooves 92a.
  • the grooves 91a, 92a were created during the production of the workpieces 91 and 92.
  • the adhesive joint 93 appears colorless and without any particular structure.
  • Figure 4b shows a snapshot in which sample 2 has already been partially examined with probe 5.
  • the adhesive joint 93 is successively examined from left to right. Where the probe 5 has already been, it was identified that the adhesive joint 93 consists of properly cured adhesive 93a.
  • This information can, for example, as in Figure 2a explained, be output on an output unit 71 or, for example, as in Figure 2b explained, can be projected directly onto sample 2.
  • Figure 4c shows the state in which the entire adhesive joint 93 was scanned with the probe 5.
  • the in Figure 4b In the area of the adhesive joint 93 that has not yet been examined, it now becomes apparent that the first component 93b and the second component 93c of the adhesive are present in separate phases and have not reacted to the final form 93a. In this area, the adhesive joint 93 is therefore faulty and cannot bear loads.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Human Computer Interaction (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

Die Erfindung betrifft eine Vorrichtung, die es ermöglicht, großflächig durch Bildgebung gewonnene Information von einer Probe mit lokal abgefragter Information über bestimmte Eigenschaften der Probe zu fusionieren.The invention relates to a device that makes it possible to fuse large-area information from a sample obtained by imaging with locally queried information about certain properties of the sample.

Stand der TechnikState of the art

Zur Untersuchung der Eigenschaften von Proben, wie etwa biologischem Gewebe, werden vielfach bildgebende Verfahren eingesetzt. Insbesondere optische Bilder sind auch an räumlich ausgedehnten Proben, wie etwa einem kompletten Organ, sehr schnell gewinnbar. Beispielsweise kann ein solches Bild die Information enthalten, welcher Anteil des von einer Lichtquelle angebotenen Spektrums von der Probe zurückgeworfen wird.Imaging methods are often used to examine the properties of samples, such as biological tissue. In particular, optical images can be obtained very quickly, even from spatially extensive samples, such as an entire organ. For example, such an image can contain information about what portion of the spectrum offered by a light source is reflected by the sample.

Mitunter reicht diese Information nicht für eine schlüssige Beantwortung der zu Beginn der Untersuchung gestellten Frage aus. So kann etwa eine optische Veränderung von Gewebe von einer Erkrankung herrühren, aber auch eine andere Ursache haben. Eine chemische Untersuchung, beispielsweise mit molekülspezifischer Raman-Spektroskopie, kann hier Klarheit bringen, ob beispielsweise Tumormarker im Gewebe vorhanden sind.Sometimes this information is not sufficient to provide a conclusive answer to the question posed at the beginning of the investigation. For example, an optical change in tissue can result from an illness, but it can also have another cause. A chemical examination, for example using molecule-specific Raman spectroscopy, can clarify whether, for example, tumor markers are present in the tissue.

Eine solche Untersuchung ist jedoch schwierig in-vivo durchführbar. Die meisten Geräte für eine Untersuchung mittels Raman-Spektroskopie sind für die Analyse kleiner Proben auf Objektträgern oder in Küvetten ausgelegt, die einem ausgedehnten Organ zunächst entnommen werden müssten. Beispiele für solche Geräte sind um ein Raman-Spektrometer erweiterte optische Mikroskope. Prinzipiell könnte der Laserstrahl aus einer größeren Entfernung auf das Organ gerichtet werden. Es ist dann jedoch schwierig, genug von dem in alle Richtungen emittierten Raman-gestreuten Licht einzusammeln.However, such an investigation is difficult to carry out in vivo. Most Raman spectroscopy instruments are designed to analyze small samples on slides or in cuvettes large organ would first have to be removed. Examples of such devices are optical microscopes expanded with a Raman spectrometer. In principle, the laser beam could be directed at the organ from a greater distance. However, it is then difficult to collect enough of the Raman-scattered light emitted in all directions.

US 2012/123 205 A1 offenbart ein System, mit dem während einer Operation mit Hilfe einer beispielsweise endoskopischen Sonde ein mit sichtbarem Licht angefertigtes Übersichtsbild eines Operationsgebiets angefertigt werden kann, wobei diesem Übersichtsbild dann Informationen überlagert sind, die durch lokale Abfrage von Teilen des Operationsgebiets mit einem aus der Sonde austretenden Laserstrahl erfasst wurden. US 2012/123 205 A1 discloses a system with which an overview image of an operating area produced with visible light can be produced during an operation using, for example, an endoscopic probe, with information then being superimposed on this overview image, which is obtained by locally querying parts of the operating area with a laser beam emerging from the probe were recorded.

US 2017/160 201 A1 offenbart ein weiteres Untersuchungsgerät, mit dem ein ausgedehntes Objekt untersucht werden kann, wobei ein mit sichtbarem Licht angefertigtes Übersichtsbild und lokal mit einem Laserstrahl abgefragte Informationen miteinander fusioniert und synthetisiert werden. US 2017/160 201 A1 discloses a further examination device with which an extensive object can be examined, with an overview image produced with visible light and information queried locally with a laser beam being fused and synthesized.

US 2009/244 260 A1 offenbart ein Endoskopsystem, das durch räumliches Scannen und Intensitätsmodulieren eines Laserstrahls ein Punktmuster im untersuchten Bereich erzeugt und aus einem optischen Bild dieses Punktmusters dreidimensionale Formen rekonstruiert. US 2009/244 260 A1 discloses an endoscope system that creates a dot pattern in the examined area by spatially scanning and modulating the intensity of a laser beam and reconstructs three-dimensional shapes from an optical image of this dot pattern.

US 2007/161 906 A1 offenbart ein Gerät zur Unterstützung dermatologischer Eingriffe, das in der Haut verborgene Blutgefäße optisch detektiert und auf die Hautoberfläche projiziert, um beispielsweise eine Behandlung dieser Blutgefäße zu erleichtern. US 2007/161 906 A1 discloses a device to support dermatological procedures that optically detects blood vessels hidden in the skin and projects them onto the surface of the skin, for example to facilitate treatment of these blood vessels.

WO 2013/010 910 A1 offenbart ein Verfahren, mit dem sich bei einem 3D-Scan eines festen Objekts, wie etwa eines Zahns, Störungen durch vorübergehend im Sichtfeld befindliche bewegliche Objekte, wie etwa Wangen oder eine Zunge, herauskorrigieren lassen. WO 2013/010 910 A1 discloses a method by which a 3D scan of a solid object, such as a tooth, is removed from interference caused by temporary im Moving objects in the field of vision, such as cheeks or a tongue, can be corrected.

Aufgabe und LösungTask and solution

Es ist daher die Aufgabe der Erfindung, eine Vorrichtung zur Verfügung zu stellen, mit der an einer räumlich ausgedehnten Probe eine Eigenschaft lokal mit einem Laserstrahl abgefragt und diese Eigenschaft bestmöglich für in Bezug auf die abgefragte Eigenschaft räumlich selektive Arbeit an der Probe, wie beispielsweise chirurgische Eingriffe, nutzbar gemacht werden kann.It is therefore the object of the invention to provide a device with which a property can be queried locally with a laser beam on a spatially extended sample and this property can be used in the best possible way for spatially selective work on the sample in relation to the queried property, such as surgical ones Interventions can be made usable.

Diese Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung gemäß Anspruch 1. Weitere vorteilhafte Ausgestaltungen ergeben sich aus den darauf rückbezogenen Unteransprüchen.This object is achieved according to the invention by a device according to claim 1. Further advantageous refinements result from the subclaims related thereto.

Gegenstand der ErfindungSubject of the invention

Im Rahmen der Erfindung wurde eine Vorrichtung zur Untersuchung einer Probe entwickelt. Diese Vorrichtung umfasst eine bildgebende Einrichtung zur Gewinnung eines Übersichtsbildes der Probe, wie beispielsweise eine Kamera oder eine Anordnung von Kameras. Die Vorrichtung umfasst weiterhin ein Messinstrument zur lokalen Abfrage mindestens einer Eigenschaft der Probe mit einem Laserstrahl, welcher aus einer Apertur austritt, Verfolgungsmittel zur Ermittlung des Ortes auf der Probe, der aktuell mit dem Laserstrahl abgefragt wird, sowie einen Speicher, in dem die mit dem Laserstrahl abgefragte Eigenschaft mit dem ermittelten Ort auf der Probe assoziiert wird.As part of the invention, a device for examining a sample was developed. This device includes an imaging device for obtaining an overview image of the sample, such as a camera or an arrangement of cameras. The device further comprises a measuring instrument for locally querying at least one property of the sample with a laser beam which emerges from an aperture, tracking means for determining the location on the sample that is currently being queried with the laser beam, and a memory in which the Laser beam queried property is associated with the determined location on the sample.

Erfindungsgemäß sind die besagten Verfolgungsmittel dazu ausgebildet, den Ort, an dem der Laserstrahl auf die Probe trifft, durch Auswertung des dabei entstehenden Laserpunkts aus dem Übersichtsbild zu ermitteln, und/oder diesen Ort durch Messung von Position und Orientierung der Apertur zu ermitteln.According to the invention, said tracking means are designed to determine the location at which the laser beam hits the sample by evaluating the resulting laser point from the overview image, and/or to determine this location by measuring the position and orientation of the aperture.

Es wurde erkannt, dass es auf diese Weise möglich wird, auch bei einer räumlich ausgedehnten Probe, wie etwa einem kompletten Organ, mit der Apertur nah an die Probe heranzukommen. Somit kann die Apertur einen großen Teil des Raumwinkels abdecken, in den die Probe auf die Abfrage mit dem Laserstrahl hin ihrerseits Licht emittiert. Es kann dann ein großer Teil dieses Lichts eingesammelt und der Auswertung zugeführt werden.It was recognized that in this way it becomes possible to get close to the sample with the aperture, even with a spatially extensive sample, such as a complete organ. The aperture can therefore cover a large part of the solid angle into which the sample emits light when interrogated by the laser beam. A large portion of this light can then be collected and used for evaluation.

Dies bedeutet einen Paradigmenwechsel gegenüber den besagten Mikroskopen, die um Raman-Spektrometer erweitert sind. Bei diesen Mikroskopen ist der Ort auf der Probe, der mit dem Laserstrahl untersucht wird, vorab bekannt, da die Probe beispielsweise auf einem Positioniertisch befestigt ist, der in definierter Weise relativ zu der Apertur bewegt wird. Dadurch ist es in keiner Weise schwierig, die mit dem Laserstrahl abgefragte Eigenschaft einem bestimmten Ort auf der Probe zuzuordnen. Es wurde erkannt, dass es bei räumlich ausgedehnten Proben technisch schwierig ist, die Apertur in vorab bekannter Weise aus großer Entfernung nah an die Probe zu führen. Stattdessen ist es vorteilhaft, die Kenntnis, welcher Ort auf der Probe aktuell mit dem Laserstrahl abgefragt wird, zunächst komplett aufzugeben und nachträglich wieder zu ermitteln.This represents a paradigm shift compared to the microscopes in question, which are expanded to include Raman spectrometers. In these microscopes, the location on the sample that is examined with the laser beam is known in advance, since the sample is attached, for example, to a positioning table that is moved in a defined manner relative to the aperture. This means that it is in no way difficult to assign the property queried with the laser beam to a specific location on the sample. It was recognized that with spatially extensive samples it is technically difficult to move the aperture close to the sample from a great distance in a manner known in advance. Instead, it is advantageous to initially completely abandon the knowledge of which location on the sample is currently being queried with the laser beam and then determine it again later.

Der Begriff der Abfrage einer Eigenschaft auf der Probe mit dem Laserstrahl ist jedoch nicht darauf beschränkt, dass die Probe in Antwort auf den Laserstrahl ein optisches Signal erzeugt und dieses ausgewertet wird. Die Probe kann beispielsweise auch durch den Laserstrahl lokal erwärmt und diese Erwärmung im Fernfeld mit einer Wärmebildkamera beobachtet werden. Ebenso kann beispielsweise lokal Material von der Probe abgetragen und in ein Massenspektrometer eingesaugt werden, um die chemische Zusammensetzung zu bestimmen.However, the concept of querying a property on the sample with the laser beam is not limited to the sample generating an optical signal in response to the laser beam and this being evaluated. For example, the sample can also be locally heated by the laser beam and this heating can be observed in the far field with a thermal imaging camera. Likewise, for example, locally Material is removed from the sample and sucked into a mass spectrometer to determine the chemical composition.

Gemäß der Erfindung ist die Apertur Teil einer Sonde, die vom Bediener der Vorrichtung manuell zur Probe führbar ist. Während es üblicherweise gerade angestrebt wird, möglichst viele Schritte zu automatisieren und zu mechanisieren, ist eine manuelle Positionierung der Apertur insbesondere bei der Untersuchung von Gewebe während einer Operation vorteilhaft. Eine mechanisierte Positionierung mit einem Roboterarm würde hier einen erheblichen Aufwand erfordern, wobei insbesondere auch die Sicherheit gewährleistet werden müsste, dass keine Verletzungen durch zu große Kraftwirkung des Roboterarms entstehen. Auch wäre für den Roboterarm viel Platz erforderlich, der in einem Operationsszenario häufig nicht zur Verfügung steht. Indem nun die Positionierung manuell durchgeführt und die Automatisierung auf die nachträgliche Ermittlung des untersuchten Ortes auf der Probe verlagert wird, werden die Stärken des Bedieners einerseits und der Technik andererseits optimal miteinander kombiniert. Dies ermöglicht auch die Realisierung einer transportablen Einheit, die nicht an eine bestimmte Räumlichkeit gebunden ist.According to the invention, the aperture is part of a probe that can be manually guided to the sample by the operator of the device. While the aim is usually to automate and mechanize as many steps as possible, manual positioning of the aperture is particularly advantageous when examining tissue during an operation. Mechanized positioning with a robot arm would require considerable effort, and in particular it would have to be ensured that no injuries arise due to excessive force exerted by the robot arm. A lot of space would also be required for the robot arm, which is often not available in a surgical scenario. By carrying out the positioning manually and shifting the automation to the subsequent determination of the examined location on the sample, the strengths of the operator on the one hand and the technology on the other are optimally combined. This also enables the realization of a transportable unit that is not tied to a specific space.

Der Begriff der manuellen Führbarkeit ist nicht darauf beschränkt, dass die Sonde in der Hand gehalten wird. Vielmehr umfasst dieser Begriff auch beispielsweise, dass die Sonde durch den Arbeitskanal eines Endoskops zu einem Organ geführt wird. Im Allgemeinen wird aus Zeitgründen nicht die komplette ausgedehnte Probe mit dem Laserstrahl im Detail untersucht, sondern es werden anhand des Übersichtsbildes bestimmte Orte für diese Untersuchung ausgewählt. Der Bediener kann hier die schnelle Hand-Auge-Koordination nutzen und zugleich auch seinen Tastsinn nutzen, um Verletzungen durch zu große Kraftwirkung auf Gewebe zu vermeiden. Der Bediener kann sich also rein auf die medizinischen Aspekte der Untersuchung konzentrieren, während sich die Vorrichtung im Hintergrund um die Komplexität kümmert, das Ergebnis der Detailuntersuchung durch den Laserstrahl mit dem Übersichtsbild zusammenzuführen.The concept of manual control is not limited to the probe being held in the hand. Rather, this term also includes, for example, that the probe is guided through the working channel of an endoscope to an organ. In general, due to time constraints, the entire extended sample is not examined in detail with the laser beam, but rather specific locations are selected for this examination based on the overview image. The operator can use the quick hand-eye coordination and at the same time also use his sense of touch to avoid injuries caused by excessive force on tissue. The operator can therefore concentrate purely on the medical aspects of the examination, while the device takes care of that in the background Complexity takes care of combining the result of the detailed examination by the laser beam with the overview image.

Vorteilhaft weist die Sonde einen manuell betätigbaren Auslöser für die Abfrage der Eigenschaft durch das Messinstrument auf. Die Abfrage der Eigenschaft ist nicht für jede Untersuchungsart in Echtzeit möglich. Beispielsweise kann die Aufnahme eines Raman-Spektrums einige Sekunden dauern. Dies könnte dazu führen, dass nach dem Positionieren der Sonde an einer interessierenden Stelle zunächst das Ende der laufenden Aufnahme abgewartet werden muss. Wenn die Aufnahme hingegen durch Betätigung des Auslösers gestartet wird, entfällt diese Wartezeit.The probe advantageously has a manually operable trigger for querying the property by the measuring instrument. Querying the property is not possible in real time for every type of examination. For example, recording a Raman spectrum can take a few seconds. This could result in having to wait for the current recording to end after positioning the probe at a point of interest. However, if the recording is started by pressing the shutter button, this waiting time is eliminated.

Wenn sich der Abstand zwischen der Sonde und der Probe ändert, kann sich auch die Fokusebene des aus der Apertur austretenden Laserstrahls ändern. Inwieweit sich dies auf die Abfrage der Eigenschaft der Probe mit dem Laserstrahl auswirkt, hängt davon ab, welcher physikalische Kontrastmechanismus bei der Abfrage verwendet wird und wie schnell diese Abfrage erfolgt. Beispielsweise kann die Aufnahme eines Raman-Spektrums einige Sekunden in Anspruch nehmen und bei zu starker Relativbewegung zwischen Sonde und Probe "verwackelt" werden, ähnlich wie ein Foto, das mit entsprechend langer Belichtungszeit aufgenommen wird. Die Relativbewegung kann beispielsweise durch eine manuelle Führung der Sonde verursacht werden, aber auch beispielsweise durch die natürliche Bewegung der Probe, bei der es sich etwa um ein lebendes Organ handeln kann. Daher sind in einer weiteren besonders vorteilhaften Ausgestaltung der Erfindung Nachführmittel vorgesehen, die dazu ausgebildet sind, die Fokusebene des aus der Apertur austretenden Laserstrahls einer Änderung des Abstands zwischen der Apertur und der Probe nachzuführen.As the distance between the probe and the sample changes, the focal plane of the laser beam emerging from the aperture may also change. The extent to which this affects the interrogation of the properties of the sample with the laser beam depends on which physical contrast mechanism is used during the interrogation and how quickly this interrogation takes place. For example, recording a Raman spectrum can take a few seconds and can be "blurry" if there is too much relative movement between the probe and sample, similar to a photo that is taken with a correspondingly long exposure time. The relative movement can be caused, for example, by manual guidance of the probe, but also, for example, by the natural movement of the sample, which can be a living organ. Therefore, in a further particularly advantageous embodiment of the invention, tracking means are provided which are designed to track the focal plane of the laser beam emerging from the aperture to a change in the distance between the aperture and the sample.

Diese Nachführmittel können beispielsweise dazu ausgebildet sein, die Fokusebene des Lasers, und/oder die Fokusebene der Lichteinkopplung in einen zu der Apertur führenden Lichtwellenleiter, automatisch nachzujustieren. Zu diesem Zweck kann der Abstand zwischen der Sonde und der Probe auf beliebige Weise ermittelt werden. Beispielsweise kann die Sonde eine Messvorrichtung für den Abstand zwischen der Sonde und der Probe aufweisen. Diese Messvorrichtung kann beispielsweise einen Sender für eine elektromagnetische Welle, und/oder für Ultraschall, sowie einen Empfänger für die von der Probe reflektierte Welle, bzw. den von der Probe reflektierten Ultraschall, aufweisen. Der Abstand zwischen der Apertur und der Probe kann aber auch beispielsweise anhand eines beliebigen Bildes ermittelt werden, das sowohl die Sonde als auch die Probe zeigt. Dieses Bild kann beispielsweise ein Kamerabild sein, aber auch auf beliebige andere Weise, etwa durch Auswertung von Terahertz-Strahlung, erhalten werden.These tracking means can, for example, be designed to automatically readjust the focal plane of the laser and/or the focal plane of the light coupling into an optical waveguide leading to the aperture. For this purpose can the distance between the probe and the sample can be determined in any way. For example, the probe can have a measuring device for the distance between the probe and the sample. This measuring device can, for example, have a transmitter for an electromagnetic wave and/or for ultrasound, as well as a receiver for the wave reflected by the sample or the ultrasound reflected by the sample. The distance between the aperture and the sample can also be determined, for example, using any image that shows both the probe and the sample. This image can be a camera image, for example, but can also be obtained in any other way, for example by evaluating terahertz radiation.

Die Nachfokussierung kann beispielsweise mit Hilfe von schnellen mechanischen Verfahrmechanismen, mit der Hilfe von Liquid Linsen oder mit einer beliebigen anderen adaptiven Optik durchgeführt werden.The refocusing can be carried out, for example, with the help of fast mechanical movement mechanisms, with the help of liquid lenses or with any other adaptive optics.

Eine Nachführung der Fokusebene ermöglicht es insbesondere auch, die Fokusebene stabil zu halten, wenn die Apertur, beispielsweise manuell, über einen ausgedehnten Bereich auf der Probe bewegt wird. Dies hat zur Folge, dass die an unterschiedlichen Orten auf der Probe gewonnenen Messwerte für die Eigenschaft der Probe vergleichbarer werden.Tracking the focal plane also makes it possible, in particular, to keep the focal plane stable when the aperture is moved, for example manually, over an extensive area on the sample. This means that the measured values for the properties of the sample obtained at different locations on the sample become more comparable.

In einer besonders vorteilhaften Ausgestaltung der Erfindung umfassen die Verfolgungsmittel eine Bildauswertungslogik, die dazu ausgebildet ist, einen Ort, an dem die Luminanz des Übersichtsbildes einen Schwellwert überschreitet, einen Schwerpunkt der Luminanz des Übersichtsbildes, und/oder einen Ort, an dem ein räumliches Profil der Luminanz des Übersichtsbildes zum Strahlprofil des Laserstrahls passt, als den Ort auf der Probe zu identifizieren, der aktuell mit dem Laserstrahl abgefragt wird. Das Laserlicht ist wesentlich stärker gerichtet als beispielsweise Lampenlicht, mit dem ein optisches Übersichtsbild angefertigt wird, und somit typischerweise in der Luminanz dominant. Eine sichere Identifikation des Ortes, der aktuell mit dem Laserstrahl abgefragt wird, ist also auch dann möglich, wenn Teile der Probe die gleiche Farbe haben wie der Laserstrahl.In a particularly advantageous embodiment of the invention, the tracking means include an image evaluation logic which is designed to detect a location at which the luminance of the overview image exceeds a threshold value, a center of gravity of the luminance of the overview image, and/or a location at which a spatial profile of the Luminance of the overview image matches the beam profile of the laser beam than identifying the location on the sample that is currently being queried with the laser beam. The laser light is much more directed than, for example, lamp light, which is used to create an optical overview image, and is therefore typically dominant in luminance. A secure identification of the The location that is currently being queried with the laser beam is also possible if parts of the sample have the same color as the laser beam.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist ein Modulator zur Intensitätsmodulation des Laserstrahls mit einer Frequenz ω vorgesehen. Weiterhin ist die Einrichtung zur Gewinnung des Übersichtsbildes dahingehend erweitert, dass sie eine zeitliche Abfolge von Übersichtsbildern aufzunehmen vermag. Die Verfolgungsmittel umfassen eine Bildauswertungslogik, die dazu ausgebildet ist, aus der zeitlichen Abfolge von Übersichtsbildern einen Ort, an dem die Luminanz mit der Frequenz ω moduliert ist, als den Ort auf der Probe zu identifizieren, der aktuell mit dem Laserstrahl abgefragt wird. Auf diese Weise kann der aktuell abgefragte Ort auch dann noch identifiziert werden, wenn die verwendete Laserintensität sehr gering ist und die durch den Laserstrahl bewirkte Luminanz hinter der durch andere Lichtquellen verursachten Dominanz zurückbleibt.In a further advantageous embodiment of the invention, a modulator is provided for modulating the intensity of the laser beam with a frequency ω. Furthermore, the device for obtaining the overview image is expanded in such a way that it can record a chronological sequence of overview images. The tracking means include an image evaluation logic that is designed to identify, from the temporal sequence of overview images, a location at which the luminance is modulated with the frequency ω as the location on the sample that is currently being queried with the laser beam. In this way, the location currently being queried can still be identified even if the laser intensity used is very low and the luminance caused by the laser beam lags behind the dominance caused by other light sources.

In einer weiteren besonders vorteilhaften Ausgestaltung der Erfindung umfassen die Verfolgungsmittel mindestens zwei Laserscanner oder Funksender zur räumlichen Verfolgung der Apertur, bzw. der Sonde. Diese Geräte können beispielsweise in den Ecken eines Operationsaals, wo sie nicht stören, angebracht sein und die Position sowie die Orientierung der Sonde innerhalb des ganzen Operationssaals verfolgen.In a further particularly advantageous embodiment of the invention, the tracking means comprise at least two laser scanners or radio transmitters for spatial tracking of the aperture or the probe. These devices can, for example, be placed in the corners of an operating room where they do not disturb and track the position and orientation of the probe throughout the entire operating room.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung umfasst das Messinstrument zusätzlich eine Scanvorrichtung, die dazu ausgebildet ist, den Austrittswinkel des Laserstrahls aus der Apertur zu verändern. Auf diese Weise kann die punktförmige Untersuchung mit dem Laserstrahl zur Untersuchung eines begrenzten Gebiets auf der Probe erweitert werden.In a further advantageous embodiment of the invention, the measuring instrument additionally comprises a scanning device which is designed to change the exit angle of the laser beam from the aperture. In this way, the point examination with the laser beam can be expanded to examine a limited area on the sample.

In einer besonders vorteilhaften Ausgestaltung der Erfindung enthält das Messinstrument ein Raman-Spektrometer zur Abfrage der chemischen Zusammensetzung der Probe. Jedes Molekül hinterlässt im Raman-Spektrum einen charakteristischen Fingerabdruck, so dass beispielsweise auch die Zusammensetzung von Gemischen eindeutig bestimmt werden kann. Insbesondere lässt sich Tumorgewebe über das Vorhandensein von Tumormarkern eindeutig identifizieren. Weiterhin lässt sich das von der Probe Raman-gestreute Licht durch spektrale Filterung von dem für die Abfrage verwendeten Laserstrahl trennen, da es gegenüber dem Laserstrahl wellenlängenverschoben ist.In a particularly advantageous embodiment of the invention, the measuring instrument contains a Raman spectrometer for querying the chemical composition of the sample. Each molecule leaves one in the Raman spectrum characteristic fingerprint, so that, for example, the composition of mixtures can be clearly determined. In particular, tumor tissue can be clearly identified via the presence of tumor markers. Furthermore, the Raman-scattered light from the sample can be separated from the laser beam used for the query by spectral filtering, since it is wavelength-shifted compared to the laser beam.

Auf das Raman-Spektrum können beliebige Korrekturen angewendet werden. Beispielsweise kann ein fluoreszierender Untergrund durch einen Fit mittels Polynomen, EMSC oder einer Least-Squares-Methode abgetrennt werden.Any corrections can be applied to the Raman spectrum. For example, a fluorescent background can be separated by a fit using polynomials, EMSC or a least squares method.

In einer besonders vorteilhaften Ausgestaltung der Erfindung sind ein Anregungslaser einerseits und das Raman-Spektrometer andererseits über einen Faserkoppler, dessen Teilungsverhältnis wellenlängenabhängig ist, mit einer gemeinsamen zur Apertur führenden Glasfaser verbunden. Der Faserkoppler kann zu diesem Zweck beispielsweise einen dichroischen Spiegel enthalten. Auf diese Weise können auch größere Entfernungen von einigen Metern zwischen dem Anregungslaser, dem Spektrometer und der Probe überwunden werden. Der Anregungslaser und das Spektrometer müssen dann beispielsweise im Operationssaal keinen Platz in unmittelbarer Nähe des Operationsfeldes beanspruchen, sondern können an einem Ort untergebracht sein, an dem sie nicht stören. Die Glasfaser mit der Sonde kann auf beliebigem Wege zum Bediener der Vorrichtung geführt sein, beispielsweise von der Decke des Operationssaals herab, um keine Stolperfallen zu erzeugen.In a particularly advantageous embodiment of the invention, an excitation laser on the one hand and the Raman spectrometer on the other hand are connected to a common optical fiber leading to the aperture via a fiber coupler, the division ratio of which is wavelength-dependent. For this purpose, the fiber coupler can contain, for example, a dichroic mirror. In this way, even larger distances of several meters between the excitation laser, the spectrometer and the sample can be overcome. The excitation laser and the spectrometer then do not have to take up space in the immediate vicinity of the operating field, for example in the operating room, but can be accommodated in a place where they do not disturb. The fiber optic with the probe can be guided to the operator of the device in any way, for example from the ceiling of the operating room, in order not to create any tripping hazards.

In einer weiteren besonders vorteilhaften Ausgestaltung der Erfindung ist eine Ausgabeeinheit vorgesehen, die dazu ausgebildet ist, eine Darstellung der in dem Speicher abgelegten, mit dem Laserstrahl abgefragten Eigenschaft dem Übersichtsbild der Probe an dem durch den Speicher assoziierten Ort zu überlagern. Auf diese Weise wird das Übersichtsbild in für den Bediener unmittelbar einsichtiger Weise zu einer "Augmented Reality" aufgewertet.In a further particularly advantageous embodiment of the invention, an output unit is provided which is designed to superimpose a representation of the property stored in the memory and queried with the laser beam on the overview image of the sample at the location associated with the memory. In this way, the overview image is upgraded to an “augmented reality” in a way that is immediately visible to the operator.

Beispielsweise kann ein Raman-Spektrum dahingehend ausgewertet werden, dass dann nach einem vorgegebenen Kanon von chemischen Substanzen gesucht wird. Beispielsweise kann eine Linearkombination der Raman-Spektren von Substanzen aus diesem Kanon so an das aufgenommene Raman-Spektrum angefittet werden, dass sich eine maximale Übereinstimmung ergibt. Die Koeffizienten der Linearkombination liefern dann eine Aussage über die Mengenverhältnisse, in denen die gesuchten Substanzen an dem abgefragten Ort vorhanden sind. Es kann nun beispielsweise jeder Substanz aus dem Kanon eine Farbe zugeordnet werden, und diese Farben können beispielsweise in der Darstellung mit Intensitäten aufgetragen werden, die durch die Koeffizienten der Linearkombination bestimmt sind.For example, a Raman spectrum can be evaluated in such a way that a given canon of chemical substances is then searched for. For example, a linear combination of the Raman spectra of substances from this canon can be fitted to the recorded Raman spectrum in such a way that maximum agreement results. The coefficients of the linear combination then provide a statement about the proportions in which the searched substances are present at the queried location. For example, a color can now be assigned to each substance from the canon, and these colors can, for example, be applied in the representation with intensities that are determined by the coefficients of the linear combination.

Dabei ist der Kanon von Substanzen, nach denen gesucht wird, frei wählbar und kann insbesondere vom Bediener dynamisch angepasst werden. So ist es beispielsweise möglich, der Übersichtlichkeit halber bestimmte Substanzen auszublenden.The canon of substances that are searched for can be freely selected and can be dynamically adjusted, in particular by the operator. For example, it is possible to hide certain substances for the sake of clarity.

Gemäß der Erfindung ist ein Projektor vorgesehen, der dazu ausgebildet ist, eine Darstellung der in dem Speicher abgelegten, mit dem Laserstrahl abgefragten Eigenschaft an dem durch den Speicher assoziierten Ort auf die Probe zu projizieren. Damit kann die "Augmented Reality" noch weiter verfeinert werden dahingehend, dass der Bediener den Blick gar nicht mehr zwischen der Probe, etwa dem Organ, und einem Computerbildschirm hin- und herwandern lassen muss. Der Bediener kann beispielsweise die Sonde über einen Bereich des Organs bewegen, dessen chemische Zusammensetzung ihn interessiert, und die mittels Raman-Spektroskopie ermittelte chemische Zusammensetzung unmittelbar auf dem Organ selbst "einzeichnen". Die Projektion ist insbesondere bei längeren Operationen vorteilhaft, da jeder Wechsel des Blicks zwischen dem Organ und einem Computerbildschirm eine Anpassung der Augen auf eine andere Entfernung notwendig macht. Diese Wechsel können mit der Zeit ermüdend wirken.According to the invention, a projector is provided which is designed to project a representation of the property stored in the memory and queried with the laser beam onto the sample at the location associated with the memory. This means that “augmented reality” can be further refined so that the operator no longer has to look back and forth between the sample, such as the organ, and a computer screen. For example, the operator can move the probe over an area of the organ whose chemical composition interests him and "draw" the chemical composition determined using Raman spectroscopy directly on the organ itself. The projection is particularly advantageous during longer operations, as every change in view between the organ and a computer screen requires the eyes to adjust to a different distance. These changes can become tiring over time.

In einer weiteren besonders vorteilhaften Ausgestaltung der Erfindung umfasst die bildgebende Einrichtung eine Hellfeldkamera. Das aufgenommene Übersichtsbild entspricht dann der normalen Sehweise des Menschen. Es ist also in dieser Hinsicht kein Umgewöhnen erforderlich, wenn der Bediener den Blick zwischen der Probe und einem Computerbildschirm mit dem Übersichtsbild hin- und herbewegt.In a further particularly advantageous embodiment of the invention, the imaging device comprises a bright field camera. The overview image recorded then corresponds to the normal way a person sees. In this respect, no adjustment is required if the operator moves his gaze back and forth between the sample and a computer screen with the overview image.

In einer weiteren besonders vorteilhaften Ausgestaltung der Erfindung ist die bildgebende Einrichtung zur Aufnahme eines dreidimensionalen Übersichtsbildes der Probe ausgebildet. Ein dreidimensionales Übersichtsbild kann insbesondere verwendet werden, um einen Projektor dahingehend anzusteuern, dass er die Darstellung der abgefragten Eigenschaft an dem korrekten jeweils im Speicher assoziierten Ort auf die Probe projiziert. Die bildgebende Einrichtung kann insbesondere eine Stereokamera und/oder ein Streifenphotometriegerät umfassen.In a further particularly advantageous embodiment of the invention, the imaging device is designed to record a three-dimensional overview image of the sample. A three-dimensional overview image can in particular be used to control a projector so that it projects the representation of the queried property onto the sample at the correct location associated in the memory. The imaging device can in particular comprise a stereo camera and/or a strip photometry device.

Beispielsweise kann der lokale Einfallswinkel der Beleuchtung auf die Probe, und somit die lokale Orientierung der Probenoberfläche, durch einen Least-Squares-Fit an Übersichtsbilder ermittelt werden, die unter Beleuchtung aus verschiedenen Richtungen aufgenommen werden. Es wird dann diejenige Orientierung der Probenoberfläche ermittelt, die zu einer Intensitätsverteilung führt, welche zu den tatsächlich beobachteten Intensitätsverteilungen am wenigsten widersprüchlich ist.For example, the local angle of incidence of the illumination on the sample, and thus the local orientation of the sample surface, can be determined using a least squares fit on overview images that are recorded under illumination from different directions. The orientation of the sample surface is then determined which leads to an intensity distribution which is least contradictory to the actually observed intensity distributions.

In einer weiteren besonders vorteilhaften Ausgestaltung der Erfindung ist eine Umschalteinrichtung vorgesehen, die dazu ausgebildet ist, die Intensität des Laserstrahls zwischen einem ersten, niedrigeren Niveau für die Abfrage der Eigenschaft der Probe und einem zweiten, höheren Niveau für den Abtrag von Material von der Probe, und/oder für die Veränderung von Material der Probe, umzuschalten. Diese Umschalteinrichtung kann beispielsweise ein Shutter oder eine Pockelszelle sein. Die Vorrichtung kann dann zusätzlich dazu verwendet werden, die mit dem Laserstrahl abgefragte Eigenschaft auch zu verändern. Beispielsweise kann ein chemischer Kontaminant oder ein Tumorgewebe abgetragen werden.In a further particularly advantageous embodiment of the invention, a switching device is provided which is designed to change the intensity of the laser beam between a first, lower level for querying the properties of the sample and a second, higher level for removing material from the sample. and/or for changing the material of the sample. This switching device can be, for example, a shutter or a Pockels cell. The device can then also be used to change the property queried with the laser beam. For example, a chemical contaminant or tumor tissue can be removed.

Der für den Abtrag, und/oder für die Veränderung, von Material verwendete Laser muss nicht der gleiche sein wie der für die Abfrage verwendete Laser. Die Laserintensität kann auch umgeschaltet werden, indem der Strahlengang von einem zweiten Laser mit höherer Intensität zur Probe freigegeben wird. Beispielsweise kann der für die Abfrage verwendete Laser ein Dauerstrich-Laser sein, während der für den Abtrag, und/oder für die Veränderung, verwendete Laser ultrakurze Pulse mit sehr hoher Intensität emittiert. Derartige Pulse können unmittelbar mit den Elektronenhüllen von Atomen des abzutragenden Materials wechselwirken. Das Material kann dann abgetragen werden, ohne die Umgebung auf der Probe in größerem Umfang zu erwärmen.The laser used to remove and/or modify material does not have to be the same as the laser used for interrogation. The laser intensity can also be switched by releasing the beam path from a second laser with higher intensity to the sample. For example, the laser used for interrogation can be a continuous wave laser, while the laser used for ablation and/or modification emits ultra-short pulses with very high intensity. Such pulses can interact directly with the electron shells of atoms of the material to be removed. The material can then be removed without heating the area around the sample to any significant extent.

Die Umschalteinrichtung kann insbesondere durch einen manuell betätigbaren, an einer manuell führbaren Sonde angebrachten Auslöser ansteuerbar sein. Der Bediener kann dann beispielsweise unter Nutzung der beschriebenen "Augmented Reality" die Sonde als "chemisches Radiergummi" verwenden, um festgestellte unerwünschte Substanzen oder Gewebeveränderungen durch Überstreichen mit der Sonde direkt "auszuradieren".The switching device can in particular be controlled by a manually operable trigger attached to a manually guided probe. The operator can then, for example, use the described “augmented reality” to use the probe as a “chemical eraser” in order to directly “erase” detected undesirable substances or tissue changes by sweeping over them with the probe.

In diesem Zusammenhang ist anzumerken, dass die Anwendung der Vorrichtung zur Unterstützung von Operationen zwar ein wesentlicher "use case" ist, aber nicht hierauf beschränkt ist (wobei entsprechende Verfahren nicht Teil der beanspruchten Erfindung sind). Beispielsweise kann auch ein aus einer Metall-Legierung oder aus einem Kunststoff-Gemisch bestehendes Bauteil mit einer manuell führbaren Sonde dahingehend untersucht werden, ob die Zusammensetzung der Legierung bzw. des Gemisches über das gesamte Bauteil homogen ist und das Bauteil somit die durch diese Zusammensetzung versprochenen Gebrauchseigenschaften durch und durch besitzt. Ebenso kann beispielsweise eine Schweißnaht oder eine Klebestelle dahingehend untersucht werden, ob die jeweiligen Eigenschaften homogen sind. Bei der Klebestelle können so beispielsweise Bereiche identifiziert werden, in denen der Kleber nicht in seine ausgehärtete Form durchreagiert hat. Als Fehlerquellen kommen hier beispielsweise eine unzureichende Beleuchtung bei einem lichtaktivierten Kleber oder eine unzureichende Durchmischung der Komponenten eines Mehrkomponentenklebers in Betracht.In this context, it should be noted that the use of the device to support operations is an essential "use case", but is not limited to this (although corresponding methods are not part of the claimed invention). For example, a component made of a metal alloy or a plastic mixture can also be examined with a manually operated probe to determine whether the composition of the alloy or mixture is homogeneous over the entire component and whether the component therefore fulfills the promise of this composition Has practical properties through and through. Likewise, for example, a weld seam or a splice be examined to see whether the respective properties are homogeneous. For example, at the point of adhesion, areas in which the adhesive has not fully reacted into its hardened form can be identified. Sources of error here include, for example, insufficient lighting in a light-activated adhesive or insufficient mixing of the components of a multi-component adhesive.

In einer weiteren besonders vorteilhaften Ausgestaltung der Erfindung ist die Umschalteinrichtung mit dem Messgerät verbunden, so dass sie automatisch ausgelöst wird, wenn die mit dem Laserstrahl abgefragte Eigenschaft eine vorgegebene Bedingung erfüllt. Beispielsweise kann die Umschalteinrichtung automatisch aktiviert werden, wenn an dem Ort, der mit dem Laserstrahl abgefragt wird, eine bestimmte Substanz identifiziert worden ist. Die Umschalteinrichtung kann also durch einen automatischen Auslösemechanismus ansteuerbar sein, welcher durch das Vorhandensein einer bestimmten chemischen Substanz ausgelöst wird. Das Vorhandensein der chemischen Substanz kann beispielsweise durch Raman-Spektroskopie nachgewiesen werden, aber auch beispielsweise durch die Emission von Fluoreszenzlicht in Antwort auf den für die Abfrage verwendeten Laserstrahl. Dies ermöglicht es dem Benutzer, eine chemisch gesteuerte Abtragung durchzuführen.In a further particularly advantageous embodiment of the invention, the switching device is connected to the measuring device so that it is triggered automatically when the property queried with the laser beam fulfills a predetermined condition. For example, the switching device can be activated automatically when a specific substance has been identified at the location that is queried with the laser beam. The switching device can therefore be controlled by an automatic triggering mechanism, which is triggered by the presence of a specific chemical substance. The presence of the chemical substance can be detected, for example, by Raman spectroscopy, but also, for example, by the emission of fluorescent light in response to the laser beam used for the interrogation. This allows the user to perform chemically controlled removal.

Eine chemisch gesteuerte Abtragung ist nicht nur im medizinischen Bereich sinnvoll. Sie kann beispielsweise auch im kosmetischen Bereich angewendet werden, um etwa selektiv Tattoo-Farben chemisch umzuwandeln oder aufzuspalten, ohne auf der behandelten Haut Narben zu hinterlassen. Weiterhin können beispielsweise auch Graffiti-Farben selektiv von Oberflächen entfernt werden, die für die Anwendung chemischer Lösungsmittel zu empfindlich sind.Chemically controlled removal is not only useful in the medical field. It can also be used in the cosmetic sector, for example, to selectively chemically convert or break down tattoo inks without leaving scars on the treated skin. Furthermore, graffiti paints, for example, can also be selectively removed from surfaces that are too sensitive for the use of chemical solvents.

Spezieller BeschreibungsteilSpecial description part

Nachfolgend wird der Gegenstand der Erfindung anhand von Figuren erläutert, ohne dass der Gegenstand der Erfindung hierdurch beschränkt wird. Es ist gezeigt:

Figur 1:
Nicht maßstabsgerechte Schemazeichnung eines Ausführungsbeispiels der Vorrichtung 100;
Figur 2:
Beispielhafte Darstellung der "Augmented Reality" auf einer Ausgabeeinheit 71 (Figur 2a) oder direkt auf der Probe 2 (Figur 2b);
Figur 3:
Umschaltung 8 zwischen einem Anregungslaser 36 für die Abfrage der Eigenschaft 23 der Probe 2 und einem Ablationslaser 34 für den Materialabtrag von der Probe 2;
Figur 4:
Überlagerung optischer und chemischer Information am Beispiel zweier Werkstücke 91 und 92, die mit einer Klebefuge 93 verklebt sind.
The subject matter of the invention is explained below with reference to figures, without the subject matter of the invention being limited thereby. It is shown:
Figure 1:
Schematic drawing of an exemplary embodiment of the device 100, not to scale;
Figure 2:
Example representation of “Augmented Reality” on an output unit 71 ( Figure 2a ) or directly on sample 2 ( Figure 2b );
Figure 3:
Switching 8 between an excitation laser 36 for querying the property 23 of sample 2 and an ablation laser 34 for removing material from sample 2;
Figure 4:
Superimposition of optical and chemical information using the example of two workpieces 91 and 92, which are glued with an adhesive joint 93.

Figur 1 zeigt schematisch ein Ausführungsbeispiel der Vorrichtung 100. Die zu untersuchende Probe 2 ist in diesem Beispiel eine Leber in-vivo. Weitere Organe und Körperteile sind der Übersichtlichkeit halber weggelassen. Figure 1 shows schematically an exemplary embodiment of the device 100. The sample 2 to be examined in this example is a liver in vivo. Other organs and body parts are omitted for clarity.

Eine Sonde 5 wird von dem Bediener der Vorrichtung 100 über die Probe 2 geführt. Durch die Sonde 5 ist eine Glasfaser 38 geführt, die in einer Apertur 31 mündet. Ein Anregungslaser 36 emittiert einen Laserstrahl 32, der optional in einem Modulator 33 mit einer Frequenz ω moduliert wird. Über eine erste Glasfaser 37a gelangt der Laserstrahl 32 in einen Faserkoppler 37 mit wellenlängenabhängigem Teilungsverhältnis. Der Laserstrahl 32 tritt aus der Apertur 31 aus und erzeugt am Ort 23 auf der Probe 2 einen Laserpunkt 32a. An diesem Ort 23 wird Ramangestreutes Licht erzeugt, das charakteristisch für die lokale chemische Zusammensetzung der Probe 2 als abgefragte Eigenschaft 22 ist. Das Raman-gestreute Licht, symbolisiert durch das Bezugszeichen 22 für die in ihm enthaltene Information, wird durch den Faserkoppler 37 in eine zweite Glasfaser 37b geleitet, die zu einem Raman-Spektrometer 35 führt. Der Abstand zwischen der Apertur 31 und der Probe 2 ist in Figur 1 der Übersichtlichkeit halber stark überhöht gezeichnet. Das Raman-Spektrometer 35 ermittelt die lokale chemische Zusammensetzung 22 der Probe 2 am Ort 23, hat aber selbst noch keine Kenntnis, wo sich dieser Ort 23 auf der Probe 2 befindet.A probe 5 is guided over the sample 2 by the operator of the device 100. A glass fiber 38 is guided through the probe 5 and opens into an aperture 31. An excitation laser 36 emits a laser beam 32, which is optionally modulated in a modulator 33 with a frequency ω. The laser beam 32 reaches a fiber coupler 37 with a wavelength-dependent division ratio via a first glass fiber 37a. The laser beam 32 emerges from the aperture 31 and generates a laser spot 32a at location 23 on the sample 2. At this location 23, Raman scattered light is generated, which is characteristic of the local chemical composition of the sample 2 as the queried property 22. The Raman-scattered light, symbolized by the reference number 22 for that contained in it Information is passed through the fiber coupler 37 into a second optical fiber 37b, which leads to a Raman spectrometer 35. The distance between the aperture 31 and the sample 2 is in Figure 1 For the sake of clarity, the drawing is greatly exaggerated. The Raman spectrometer 35 determines the local chemical composition 22 of sample 2 at location 23, but itself does not yet know where this location 23 is on sample 2.

In Figur 1 sind zwei Möglichkeiten eingezeichnet, mit denen der Ort 23 ermittelt werden kann. Eine diesbezügliche Verfolgungseinrichtung 4 kann mindestens zwei Laserscanner 43 oder Funksender 44 umfassen, die die Position 31a und die Orientierung 31b der Sonde 5, und damit auch der Apertur 31, bestimmen. Die Verfolgungseinrichtung 4 kann alternativ oder in Kombination auch eine Bildauswertungslogik 41, 42 umfassen, die das von einer Kamera 1 gelieferte Übersichtsbild 21 der Probe 2 einschließlich des vom Laserstrahl 32 darin erzeugten Laserpunkts 32a enthält und aus dem Übersichtsbild 21 die Position des Laserpunkts 32a als den Ort 23 auswertet.In Figure 1 Two options are shown with which the location 23 can be determined. A tracking device 4 in this regard can include at least two laser scanners 43 or radio transmitters 44, which determine the position 31a and the orientation 31b of the probe 5, and thus also of the aperture 31. The tracking device 4 can alternatively or in combination also comprise an image evaluation logic 41, 42, which contains the overview image 21 of the sample 2 supplied by a camera 1, including the laser point 32a generated therein by the laser beam 32, and from the overview image 21 the position of the laser point 32a as the Location 23 evaluated.

Jeder Ort 23 wird zusammen mit der zugehörigen abgefragten Eigenschaft 22 in einem Speicher 6 hinterlegt.Each location 23 is stored in a memory 6 together with the associated queried property 22.

Die Apertur 31, der Anregungslaser 36, der Modulator 33, der Faserkoppler 37, die an den Faserkoppler 37 angeschlossenen Glasfasern 37, 37a und 38 sowie das Raman-Spektrometer 35 bilden zusammen das Messinstrument 3 für die Abfrage der Eigenschaft 22 der Probe 2.The aperture 31, the excitation laser 36, the modulator 33, the fiber coupler 37, the glass fibers 37, 37a and 38 connected to the fiber coupler 37 and the Raman spectrometer 35 together form the measuring instrument 3 for querying the property 22 of the sample 2.

Die Sonde 5 enthält einen ersten Auslöser 51, mit dem durch den Bediener der Vorrichtung 100 die Aufnahme eines Raman-Spektrums durch das Raman-Spektrometer 35 angestoßen werden kann. Ebenso enthält die Sonde 5 einen zweiten Auslöser 81, mit dem die in Figur 3 näher erläuterte Umschalteinrichtung 8 für den Materialabtrag angesteuert werden kann. Die Signalverbindungen der Auslöser 51 und 81 sind in Figur 1 der Übersichtlichkeit halber nicht eingezeichnet.The probe 5 contains a first trigger 51 with which the operator of the device 100 can trigger the recording of a Raman spectrum by the Raman spectrometer 35. The probe 5 also contains a second trigger 81 with which the in Figure 3 switching device 8 explained in more detail for the Material removal can be controlled. The signal connections of triggers 51 and 81 are in Figure 1 not shown for clarity.

Figur 2a zeigt beispielhaft, wie mit den im Speicher 6 hinterlegten Informationen eine "Augmented Reality" auf einer Ausgabeeinheit 71 dargestellt werden kann. Die Ausgabeeinheit 71 erhält von der Kamera 1 das Übersichtsbild 21 der Probe 2 und zeigt dieses im Hintergrund an. Zugleich erhält die Ausgabeeinheit 71 aus dem Speicher 6 die Werte der abgefragten Eigenschaft 22 zusammen mit den jeweiligen Orten 23 auf der Probe 2. Hieraus bestimmt die Ausgabeeinheit 71 eine Darstellung 61, in der beispielsweise unterschiedliche chemische Substanzen in unterschiedlichen Farben angezeigt werden. Die Darstellung 61 wird dem Übersichtsbild 21 der Probe 2 überlagert. Figure 2a shows an example of how an “augmented reality” can be displayed on an output unit 71 using the information stored in the memory 6. The output unit 71 receives the overview image 21 of the sample 2 from the camera 1 and displays it in the background. At the same time, the output unit 71 receives the values of the queried property 22 from the memory 6 together with the respective locations 23 on the sample 2. From this, the output unit 71 determines a representation 61 in which, for example, different chemical substances are displayed in different colors. The representation 61 is superimposed on the overview image 21 of sample 2.

Figur 2b zeigt beispielhaft, wie eine "Augmented Reality" erzeugt werden kann, die keine Blickwendung weg von der Probe 2 und hin zu einer Ausgabeeinheit 71 erfordert. Ein Projektor 72 erzeugt aus den im Speicher 6 hinterlegten Informationen eine Darstellung 62, die beispielsweise analog zu der Darstellung 61 gemäß Figur 2a farbkodiert sein kann. Im Unterschied zu Figur 2a wird die Darstellung unmittelbar auf die Probe 2 projiziert. Es wird also jeder Wert für die abgefragte Eigenschaft 22 auf den zugehörigen Ort 23 projiziert. Figure 2b shows an example of how an “augmented reality” can be created that does not require turning your gaze away from the sample 2 and towards an output unit 71. A projector 72 generates a representation 62 from the information stored in the memory 6, which is, for example, analogous to the representation 61 according to Figure 2a can be color coded. In contrast to Figure 2a the representation is projected directly onto sample 2. So every value for the queried property 22 is projected onto the associated location 23.

Figur 3 zeigt beispielhaft, wie zwischen einer Abfrage der Eigenschaft 22 und einem Materialabtrag von der Probe 2 umgeschaltet werden kann. Der kontinuierliche Laserstrahl 32 des Anregungslasers 36 und der gepulste Laserstrahl 34a des Ablationslasers 34 sind jeweils in die Umschalteinrichtung 8 geführt. Die Umschalteinrichtung 8 koppelt jeweils genau einen der Strahlen 32 und 34a in die erste Glasfaser 37a ein, die gemäß Figur 1 zum Faserkoppler 37 führt. Der jeweils andere Strahl wird auf ein Beamdump 82 geleitet und dort in Wärme umgewandelt. Auf diese Weise müssen die Laser 36 und 34 selbst nicht ständig an- und ausgeschaltet werden, was schlecht für deren Lebensdauer wäre. Figure 3 shows an example of how you can switch between querying property 22 and removing material from sample 2. The continuous laser beam 32 of the excitation laser 36 and the pulsed laser beam 34a of the ablation laser 34 are each guided into the switching device 8. The switching device 8 couples exactly one of the beams 32 and 34a into the first optical fiber 37a, which according to Figure 1 leads to the fiber coupler 37. The other beam is directed to a beam dump 82 and converted there into heat. In this way, the lasers 36 and 34 themselves do not have to be constantly switched on and off, which would be bad for their lifespan.

Figur 4 zeigt ein anderes Anwendungsbeispiel, in dem normaler optischer Kontrast und chemischer Kontrast mit Hilfe der Vorrichtung 100 miteinander kombiniert werden können. Als Probe 2 ist eine Anordnung aus einem ersten Werkstück 91 und einem zweiten Werkstück 92, die durch eine Klebefuge 93 miteinander verklebt sind, zu untersuchen. Figure 4 shows another application example in which normal optical contrast and chemical contrast can be combined with each other using the device 100. As sample 2, an arrangement consisting of a first workpiece 91 and a second workpiece 92, which are glued together by an adhesive joint 93, is to be examined.

Figur 4a zeigt diejenigen Merkmale der Probe 2, die in einem normalen optischen Übersichtsbild 21 sichtbar sind. Das erste Werkstück 91 weist im Wesentlichen horizontale Riefen 91a auf, und das zweite Werkstück 92 weist im Wesentlichen vertikale Riefen 92a auf. Die Riefen 91a, 92a sind jeweils bei der Herstellung der Werkstücke 91 und 92 entstanden. Die Klebefuge 93 erscheint farblos und ohne besondere Struktur. Figure 4a shows those features of sample 2 that are visible in a normal optical overview image 21. The first workpiece 91 has substantially horizontal grooves 91a, and the second workpiece 92 has substantially vertical grooves 92a. The grooves 91a, 92a were created during the production of the workpieces 91 and 92. The adhesive joint 93 appears colorless and without any particular structure.

Figur 4b zeigt eine Momentaufnahme, in der die Probe 2 bereits zum Teil mit der Sonde 5 untersucht wurde. Die Klebefuge 93 wird sukzessive von links nach rechts untersucht. Dort, wo die Sonde 5 bereits gewesen ist, wurde identifiziert, dass die Klebefuge 93 aus ordnungsgemäß ausgehärtetem Kleber 93a besteht. Diese Information kann beispielsweise, wie in Figur 2a erläutert, auf einer Ausgabeeinheit 71 ausgegeben werden oder beispielsweise, wie in Figur 2b erläutert, direkt auf die Probe 2 projiziert werden. Figure 4b shows a snapshot in which sample 2 has already been partially examined with probe 5. The adhesive joint 93 is successively examined from left to right. Where the probe 5 has already been, it was identified that the adhesive joint 93 consists of properly cured adhesive 93a. This information can, for example, as in Figure 2a explained, be output on an output unit 71 or, for example, as in Figure 2b explained, can be projected directly onto sample 2.

Figur 4c zeigt den Zustand, in dem die komplette Klebefuge 93 mit der Sonde 5 abgetastet wurde. In dem in Figur 4b noch nicht untersuchten Bereich der Klebefuge 93 wird nun offenbar, dass dort die erste Komponente 93b und die zweite Komponente 93c des Klebers in getrennten Phasen vorliegen und nicht etwa zur endgültigen Form 93a durchreagiert haben. In diesem Bereich ist die Klebefuge 93 somit fehlerhaft und nicht belastbar. Figure 4c shows the state in which the entire adhesive joint 93 was scanned with the probe 5. In the in Figure 4b In the area of the adhesive joint 93 that has not yet been examined, it now becomes apparent that the first component 93b and the second component 93c of the adhesive are present in separate phases and have not reacted to the final form 93a. In this area, the adhesive joint 93 is therefore faulty and cannot bear loads.

BezugszeichenlisteReference symbol list

11
Einrichtung zur Gewinnung des Übersichtsbildes 21Device for obtaining the overview image 21
22
Probesample
2121
Übersichtsbild der Probe 2Overview image of sample 2
2222
mit Laserstrahl 32 abgefragte Eigenschaft der Probe 2Property of sample 2 queried with laser beam 32
2323
Ort auf Probe 2, an dem Laserstrahl 32 Eigenschaft 22 abfragtLocation on sample 2 where laser beam 32 queries property 22
33
Messinstrument zur lokalen Abfrage der Eigenschaft 22Measuring instrument for local query of property 22
3131
Apertur für Laserstrahl 3Aperture for laser beam 3
31a31a
Position der Apertur 31Position of aperture 31
31b31b
Orientierung der Apertur 31 im RaumOrientation of the aperture 31 in space
3232
Laserstrahllaser beam
32a32a
von Laserstrahl 32 auf Probe 2 erzeugter LaserpunktLaser spot generated by laser beam 32 on sample 2
3333
Modulator für Laserstrahl 32Laser beam modulator 32
3434
AblationslaserAblation laser
34a34a
Strahl des Ablationslasers 34Ablation laser beam 34
3535
Raman-SpektrometerRaman spectrometer
3636
AnregungslaserExcitation laser
3737
Faserkopplerfiber coupler
37a37a
Eingang des Faserkopplers 37 für Laserstrahlen 32, 34aInput of the fiber coupler 37 for laser beams 32, 34a
37b37b
Ausgang des Faserkopplers 37 für abgefragte Eigenschaft 22Output of the fiber coupler 37 for the queried property 22
3838
gemeinsame Glasfaser für Laserstrahl 32, 34a und Eigenschaft 22common optical fiber for laser beam 32, 34a and property 22
44
Verfolgungsmittel für Ort 23 auf Probe 2Tracking agent for location 23 on sample 2
41,4241.42
BildauswertungslogikenImage evaluation logics
4343
LaserscannerLaser scanner
4444
FunksenderRadio transmitter
55
Sondeprobe
5151
Auslöser für Abfrage der Eigenschaft 22Trigger for querying property 22
66
Speicher, der Eigenschaft 22 zu Orten 23 assoziiertMemory that associates property 22 to locations 23
61, 6261, 62
Darstellungen der Information im Speicher 6Representations of information in memory 6
7171
Ausgabeeinrichtung für Übersichtsbild 21 und Darstellung 61Output device for overview image 21 and representation 61
7272
Projektor für Darstellung 62 auf Probe 2Projector for display 62 on sample 2
88th
UmschalteinrichtungSwitching device
8181
Auslöser für UmschalteinrichtungTrigger for switching device
8282
BeamdumpBeamdump
9191
erstes Werkstückfirst workpiece
91a91a
Riefen im ersten Werkstück 91Scoring in the first workpiece 91
9292
zweites Werkstücksecond workpiece
92a92a
Riefen im zweiten Werkstück 92Scoring in the second workpiece 92
9393
Klebefuge zwischen Werkstücken 91 und 92Adhesive joint between workpieces 91 and 92
93a93a
vollständig ausgehärteter Kleberfully cured glue
93b93b
erste Komponente des Klebersfirst component of the glue
93c93c
zweite Komponente des Kleberssecond component of the glue
100100
Vorrichtungcontraption

Claims (15)

  1. An apparatus (100) for examining a sample (2), comprising an imaging device (1) for obtaining an overview image (21) of the sample (2), an excitation laser (36) for providing a laser beam (32), a measuring instrument (3) for locally interrogating at least one property (22) of the sample with the laser beam (32) which emanates from an aperture (31), wherein this aperture (31) is part of a probe (5) that is manually guidable to the sample (2) by an operator of the apparatus (100), further comprising tracking means (4) for determining the location (23) on the sample (2) that is currently being interrogated with the laser beam (32), as well as a memory (6) that is configured to associate the property (22) interrogated with the laser beam (32) with the determined location (23) on the sample (2) in the memory (6), wherein the tracking means (4) are configured to determine the location (23) at which the laser beam (32) impacts the sample (2) by evaluating the so-generated laser spot (32a) from the overview image (21), and/or to determine this location (23) by measuring the position (31a) and orientation (31b) of the aperture, characterized in that a projector (72) is provided, said projector (72) being configured to project a rendering (62) of the property (22) interrogated with the laser beam (32) and stored in the memory (6) onto the sample (2) at the location (23) associated by the memory (6).
  2. The apparatus (100) of claim 1, characterized in that the probe (5) comprises a manually-actuated trigger (51) for the probing of the property (22) by the measuring instrument (3).
  3. The apparatus (100) of any one of claims 1 to 2, characterized in that adapting means are provided, said adapting means being configured to adapt the focus plane of the laser beam (32) emanating from the aperture (31) to a change of the distance between the aperture (31) and the sample (2).
  4. The apparatus (100) of any one of claims 1 to 3, characterized in that the tracking means (4) comprise an image processing logic (41), said image processing logic (41) being configured to identify a location at which the luminance of the overview image (21) exceeds a threshold value, a center of gravity of the luminance of the overview image (21), and/or a location at which a spatial profile of the luminance of the overview image (21) matches the beam profile of the laser beam (32), as the location (23) on the sample (2) that is currently being interrogated with the laser beam (32).
  5. The apparatus (100) of any one of claims 1 to 4, characterized in that a modulator (33) for intensity modulation of the laser beam (32) with a frequency ω is provided, wherein the imaging device (1) is configured for obtaining a temporal sequence of overview images (21), and wherein the tracking means (4) comprise an image processing logic (42) that is configured to determine, from the temporal sequence of overview images (21), a location at which the luminance is modulated with the frequency ω as the location (23) on the sample (2) that is currently being interrogated with the laser beam (32).
  6. The apparatus (100) of any one of claims 1 to 5, characterized in that the tracking means (4) comprise at least two laser scanners (43) or radio transmitters (44) for spatial tracking of the aperture (31), respectively of the probe (5).
  7. The apparatus (100) of any one of claims 1 to 6, characterized in that the measuring instrument (3) further comprises a scanning device that is configured to change the exiting angle of the laser beam (32) from the aperture (31).
  8. The apparatus (100) of any one of claims 1 to 7, characterized in that the measuring instrument (3) comprises a Raman spectrometer (35) for interrogating the chemical composition of the sample (2).
  9. The apparatus (100) of claim 8, characterized in that an excitation laser (36) on the one hand and the Raman spectrometer (35) on the other hand are connected to a common optical fiber (38) leading to the aperture (31) via a fiber coupler (37) whose splitting ratio is wavelength-dependent.
  10. The apparatus (100) of any one of claims 1 to 9, characterized in that an output unit (71) is provided, said output unit (71) being configured to superimpose a rendering (61) of the property (22) interrogated with the laser beam (32) and stored in the memory (6) onto the overview image (21) of the sample (2) at a location (23) associated by the memory (6).
  11. The apparatus (100) of any one of claims 1 to 10, characterized in that the imaging device (1) comprises a bright field camera.
  12. The apparatus (100) of any one of claims 1 to 11, characterized in that the imaging device (1) is configured for recording a three-dimensional overview image (21) of the sample (2).
  13. The apparatus (100) of claim 12, characterized in that the imaging device (1) comprises a stereo camera and/or a stripe photometry device.
  14. The apparatus (100) of any one of claims 1 to 13, characterized in that a switching device (8) is provided, said switching device (8) being configured to switch the intensity of the laser beam (32) between a first, lower level for interrogating the property (22) of the sample (2) and a second, higher level for ablating material from the sample (2), and/or for modifying material of the sample (2).
  15. The apparatus (100) of claim 14, characterized in that the switching device (8) is connected to the measuring instrument (3), such that it is triggered automatically if the property (22) interrogated with the laser beam (32) fulfils a predetermined condition.
EP18830746.6A 2017-12-13 2018-12-12 Combined examination with imaging and a laser measurement Active EP3723588B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017129837.1A DE102017129837A1 (en) 2017-12-13 2017-12-13 Combined examination with imaging and laser measurement
PCT/EP2018/084493 WO2019115589A1 (en) 2017-12-13 2018-12-12 Combined examination with imaging and a laser measurement

Publications (2)

Publication Number Publication Date
EP3723588A1 EP3723588A1 (en) 2020-10-21
EP3723588B1 true EP3723588B1 (en) 2024-02-07

Family

ID=65009674

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18830746.6A Active EP3723588B1 (en) 2017-12-13 2018-12-12 Combined examination with imaging and a laser measurement

Country Status (5)

Country Link
US (1) US20200383577A1 (en)
EP (1) EP3723588B1 (en)
CN (1) CN111511270A (en)
DE (1) DE102017129837A1 (en)
WO (1) WO2019115589A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020127385B3 (en) 2020-10-16 2022-03-10 Abberior Instruments Gmbh Process and device for the light microscopic multi-scale recording of biological samples
DE102020134495B4 (en) 2020-12-21 2024-02-15 Abberior Instruments Gmbh Method and microscope for recording trajectories of individual particles in a sample
GB2606359A (en) * 2021-05-04 2022-11-09 Arspectra Sarl Augmented reality headset and probe for medical imaging

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3113090A1 (en) * 1981-04-01 1982-10-21 Volkswagenwerk Ag, 3180 Wolfsburg Method and device for the wave analysis of an object using a laser Doppler vibrometer
WO1992019930A1 (en) * 1991-04-29 1992-11-12 Massachusetts Institute Of Technology Method and apparatus for optical imaging and measurement
SE9700384D0 (en) * 1997-02-04 1997-02-04 Biacore Ab Analytical method and apparatus
WO1999002974A1 (en) * 1997-07-10 1999-01-21 Ruprecht-Karls-Universität Heidelberg Wave field microscope, method for a wave field microscope, including for dna sequencing, and calibration method for wave field microscopy
US20070161906A1 (en) * 2000-01-19 2007-07-12 Luminetx Technologies Corporation Method To Facilitate A Dermatological Procedure
US6748259B1 (en) * 2000-06-15 2004-06-08 Spectros Corporation Optical imaging of induced signals in vivo under ambient light conditions
US8838210B2 (en) * 2006-06-29 2014-09-16 AccuView, Inc. Scanned laser vein contrast enhancer using a single laser
JP2009240621A (en) * 2008-03-31 2009-10-22 Hoya Corp Endoscope apparatus
CA2731810C (en) * 2008-04-01 2017-07-04 Amo Development, Llc Ophthalmic laser system with high resolution imaging and kit therefor
DE102009031481A1 (en) * 2008-07-03 2010-02-11 Ohnesorge, Frank, Dr. High-space resolved spectroscopy method for scanning e.g. molecule, involves providing array with camera designed as charge-coupled device camera/color video camera in version with multiple detector arrays for component areas without lens
CN102665559B (en) * 2009-12-21 2015-06-24 泰尔茂株式会社 Excitation, detection, and projection system for visualizing target cancer tissue
DE102010007676A1 (en) * 2010-02-10 2011-08-11 Ohnesorge, Frank, Dr., 91054 Concept for laterally resolved Fourier transform infrared spectroscopy below/beyond the diffraction limit - applications for optical (but also electronic) fast reading of ultra-small memory cells in the form of luminescent quantum wells - as well as in biology/crystallography
US20120078088A1 (en) * 2010-09-28 2012-03-29 Point of Contact, LLC. Medical image projection and tracking system
EP2637553A2 (en) * 2010-11-12 2013-09-18 Emory University Additional systems and methods for providing real-time anatomical guidance in a diagnostic or therapeutic procedure
CN103782321B (en) * 2011-07-15 2017-05-10 3形状股份有限公司 Detection of a movable object when 3d scanning a rigid object
WO2013109978A1 (en) * 2012-01-20 2013-07-25 University Of Washington Through Its Center For Commercialization Dental demineralization detection, methods and systems
US20140194747A1 (en) * 2012-05-01 2014-07-10 Empire Technology Development Llc Infrared scanner and projector to indicate cancerous cells
US10517483B2 (en) * 2012-12-05 2019-12-31 Accuvein, Inc. System for detecting fluorescence and projecting a representative image
CN106068510B (en) * 2014-01-29 2020-02-07 贝克顿·迪金森公司 System and method for ensuring patient medication and fluid delivery at a clinical point of use
US10420608B2 (en) * 2014-05-20 2019-09-24 Verily Life Sciences Llc System for laser ablation surgery
JP6230957B2 (en) * 2014-05-29 2017-11-15 株式会社日立国際電気 Inspection apparatus and inspection method
JP6468287B2 (en) * 2014-06-05 2019-02-13 株式会社ニコン Scanning projection apparatus, projection method, scanning apparatus, and surgery support system
JP6534096B2 (en) * 2014-06-25 2019-06-26 パナソニックIpマネジメント株式会社 Projection system
WO2016127173A1 (en) * 2015-02-06 2016-08-11 The University Of Akron Optical imaging system and methods thereof
WO2016154557A1 (en) * 2015-03-26 2016-09-29 Universidade De Coimbra Methods and systems for computer-aided surgery using intra-operative video acquired by a free moving camera
EP3355769A4 (en) * 2015-09-28 2020-02-05 Montefiore Medical Center Methods and devices for intraoperative viewing of patient 3d surface images
DE102015226669B4 (en) * 2015-12-23 2022-07-28 Siemens Healthcare Gmbh Method and system for outputting augmented reality information
DE102016103736A1 (en) * 2016-03-02 2017-09-07 Carl Zeiss Microscopy Gmbh Method for determining an altitude of an object
CN111329552B (en) * 2016-03-12 2021-06-22 P·K·朗 Augmented reality visualization for guiding bone resection including a robot
DE102017107343A1 (en) * 2016-06-21 2017-12-21 Werth Messtechnik Gmbh Method and apparatus for operating an optical distance sensor

Also Published As

Publication number Publication date
CN111511270A (en) 2020-08-07
EP3723588A1 (en) 2020-10-21
DE102017129837A1 (en) 2019-06-13
WO2019115589A1 (en) 2019-06-20
US20200383577A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
DE19819516B4 (en) Fluorescence diagnostic device
EP3723588B1 (en) Combined examination with imaging and a laser measurement
WO2014032773A1 (en) System and method for optical coherence tomography and positioning element
DE19829981A1 (en) Confocal microscopy method, especially for laser scanning microscope
WO2005096058A1 (en) Scanning microscope and method for examining a sample by using scanning microscopy
WO2014183860A1 (en) Method and device for a 3d measurement of the skin surface and skin layers close to the surface
WO1998058242A1 (en) Method and device for analyzing surface structure
DE102004002918B4 (en) Device for the examination of the skin
WO2012136340A1 (en) Method and system for optical coherence tomography
DE102012001854A1 (en) Special lighting Operations stereomicroscope
EP3458841B1 (en) Laser microscope with ablation function
WO2001079806A1 (en) Method and device for laser cutting microscopic samples
WO2012136338A1 (en) Method and system for optical coherence tomography
WO2021219473A1 (en) Medical optical system, data processing system, computer program, and non-volatile computer-readable storage medium
EP3741290A1 (en) Device for generating images of skin lesions
DE19618963C5 (en) Endoscope auxiliary device and method for endoscopic detection of fluorescent light using the same
DE10251345B4 (en) Method and device for examining layers of tissue in living animals with a microscope
EP2208460A1 (en) Recognition and localisation of tissue through light analysis
EP3768153A1 (en) Multi-modal imaging system and method for non-invasive examination of an object to be examined
DE2742957A1 (en) MICROSCOPE
WO2021151780A1 (en) Method for identifying a region of a tumour
DE4017850C1 (en) Controlling laser beam radiation dose - using difference in properties of red, green and blue components of diffusely reflected light, as measure of radiation
DE102014222997B3 (en) Apparatus for examining a biological sample for contrast agent
EP1219920A2 (en) Method and device for locating sample areas
DE19735150B4 (en) Additional device for an endoscope

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: YANG, WEI

Inventor name: SCHIE, IWAN W.

Inventor name: POPP, JUERGEN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210727

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220513

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: POPP, JUERGEN

Inventor name: YANG, WEI

Inventor name: SCHIE, IWAN W.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230707

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018014090

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240205

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D