EP3294478A1 - Powder bed-based additive manufacturing method with surface aftertreatment, and system which is suitable for said manufacturing method - Google Patents

Powder bed-based additive manufacturing method with surface aftertreatment, and system which is suitable for said manufacturing method

Info

Publication number
EP3294478A1
EP3294478A1 EP16733945.6A EP16733945A EP3294478A1 EP 3294478 A1 EP3294478 A1 EP 3294478A1 EP 16733945 A EP16733945 A EP 16733945A EP 3294478 A1 EP3294478 A1 EP 3294478A1
Authority
EP
European Patent Office
Prior art keywords
component
laser
manufacturing
powder bed
ablation medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP16733945.6A
Other languages
German (de)
French (fr)
Inventor
Daniel Reznik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3294478A1 publication Critical patent/EP3294478A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/50Treatment of workpieces or articles during build-up, e.g. treatments applied to fused layers during build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • B22F12/43Radiation means characterised by the type, e.g. laser or electron beam pulsed; frequency modulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • B22F12/45Two or more
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D10/00Modifying the physical properties by methods other than heat treatment or deformation
    • C21D10/005Modifying the physical properties by methods other than heat treatment or deformation by laser shock processing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • B22F3/164Partial deformation or calibration
    • B22F3/168Local deformation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B2310/00Manufacturing methods
    • B60B2310/60Surface treatment; After treatment
    • B60B2310/622Shot-peening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • Powder bed based additive manufacturing processes with upper ⁇ surface post-treatment and for this manufacturing process overall was suitable facility
  • the invention relates to a powder bed additive based Fer ⁇ operating procedure, in which a component in a building process by local melting of particles is produced in a powder bed layer by layer.
  • a post-treatment of the surface of the produced component is carried out by laser hammering, wherein on the surface in the component by the laser hammering compressive stresses are generated.
  • the invention relates to a system for a powder bed based additive manufacturing process. This system has a powder bed recording, which is a Einrich ⁇ tion, in which a powder bed can be generated.
  • a dosing device for the powder in the system, wherein the powder bed recording also has a building platform on which the additive component to be produced is, and the location can be lowered for location.
  • an energy source is also provided in the system with which a powder bed located in the powder bed receptacle can be locally fused.
  • the energy source is preferably a laser for generating a laser beam or an electron source for generating an electron beam.
  • selective laser sintering or selective electron beam melting can be carried out.
  • a laser hammering not only be carried out as a post-treatment of a finished component, but also during its production by the construction process is interrupted after completion of a position for an application of laser hammering.
  • Laser hammering also called laser shock peening
  • a liquid or solid ablation medium is applied to the surface to be treated, which is then removed by laser pulses.
  • This process is also referred to as laser ablation.
  • the laser is pulsed, caused by the sudden evaporation of the ablative Ver ⁇ a shock wave, which also extends from the surface into the interior of the component from ⁇ and leads to a forging operation.
  • the local deformation of the material generates compressive stresses, which can even reduce tensile stresses.
  • a post-treatment by means of laser peening sets out vo ⁇ that the surface of the component is accessible by the laser fusion for the laser after Her ⁇ position.
  • the components are produced by laser melting and other addi tive ⁇ manufacturing processes, which have a very complex geometry. This also creates cavities and inner surfaces that can not be reached by a laser after completion of the component.
  • the object of the invention is to provide a pulverbettba- overbased additive manufacturing method for a component suits ⁇ ben with which also components of complex geometry with the upper can be prepared surfaces, which are close to the surface subjected to compressive stresses, wherein the effort in the generation of compressive stresses as possible should be kept low.
  • the powder bed based additive manufacturing process is interrupted at least once to make egg ⁇ ne-treatment by laser peening.
  • This has the advantage that component areas which are no longer accessible after completion of the component (for example cavities) can also be aftertreated by laser hammering.
  • this production plant To the laser hammering in the manufacturing plant for the additive To be able to carry out production processes, this production plant must be modified accordingly.
  • a laser pulse is required.
  • an ablation medium must be applied to the component areas of the component being post-treated , for which purpose an application device is provided in the production system.
  • the object is thus also by a modified system for a powder bed based additive manufacturing process ge ⁇ triggers, wherein a pulse laser is alignable to the powder bed of record and in this system, in addition to the power source, which is provided for melting of the powder bed integrated, so can also be aligned on already completed parts of a component in development.
  • Laser hammering can then be carried out with this pulsed laser, wherein an ablation medium must be applied to the component areas to be post-treated before this treatment by means of an application device.
  • the power of the pulse laser must be such that it is sufficient to carry out the laser hammering.
  • the application device for the ablation medium may advantageously be a printhead for a liquid ablation medium.
  • components which are already used in additive production processes, such as 3D printing, can be advantageously used. These can be integrated into the system for laser melting and allow the application of a liquid Ablationsmediums. This can be used as a liquid film for laser hammering.
  • the liquid Ablations ⁇ medium before performing the laser hammering dries (evaporation of a solvent) or cures.
  • the liquid ablation medium may also contain solids in the form of particles.
  • Abla ⁇ tion medium in the form of a film.
  • This can be provided by an application device in the form of a roll in the system.
  • the ablation medium can then be easily rolled onto the surface of the component being formed.
  • the film may have the form of a strip.
  • This strip must be sufficiently wide that either a train of laser pulses or multiple tracks of laser pulses can be applied to each other next to each other.
  • the ablation medium can advantageously be utilized very well without generating a large waste of the film.
  • the film strip then has to be repeatedly unrolled for larger areas (that is to say wider than the strip width) and transverse to its longitudinal extent over the area to be treated be moved to create adjacent tracks of laser pulses on the surface to be treated.
  • the construction process for the aftertreatment is interrupted several times and the already formed parts of the surface are subjected to the aftertreatment such that these post-treated parts directly adjoin previously already aftertreated parts of the surface.
  • a comprehensive post-treatment of inner surfaces of components is advantageously possible to ⁇ sem way.
  • a post-treatment strategy can easily be calculated with knowledge of the CAD model, since this is available anyway for the production of the component by the additive manufacturing process. It is advantageous if the post-treatment on parts of
  • Another embodiment of the invention provides that in each case not melted before the post-treatment particles are removed from the intended for the aftertreatment part of the surface. This can be done for example by local suction of the powder particles.
  • the application of the ablation medium to the surfaces to be post-treated is then advantageously not disturbed by remaining particles.
  • the post-treatment of the component regions must be carried out as long as the generated inner surfaces of the component are still accessible. In other words, the
  • an ablation medium for laser hammering in the form of a film can be adhered to the component. It is possible, the film, as already explained, unroll from a roll. Another possibility is to cut Folienstü ⁇ blocks in a suitable manner and in part region applied by means of an applicator device directly on the nachzubehandelnde construction.
  • an applicator device for example, handling systems can be used, as they are customary for electronics assembly, in particular Saugköp ⁇ fe, temporarily fix the cut film pieces by a vacuum and put on the surface to be treated nachzubehandeln the component.
  • Figure 3 to 9 selected steps of an exemplary embodiment of the manufacturing method of the invention pulverbettbasier- th additive schematically.
  • a production plant according to FIG. 1 has a process chamber 11 in which a powder bed receptacle 12 is provided. This has a construction platform 13, which is surrounded by a side wall 14 and can be lowered via a cylinder 15. This creates a trough-shaped cavity in which a powder bed 16 can be produced.
  • a doctor blade 17 to the Availability checked ⁇ supply consisting of a powder source powder across the powder bed
  • the doctor 17 can be moved along a guide rail 19.
  • FIG 1 is also shown how by means of a La ⁇ sers as an energy source 20, a laser beam 21 can be generated. This is introduced via an optical coupler 22 and a deflection mirror 23 through a window 24 in the process chamber 11 and sweeps there the surface of the powder ⁇ bed 16 where a component 25 is to arise.
  • a laser as the energy source 20
  • a generating device for an electron beam can also be used (not shown).
  • a print head 26 can also be moved over the guide rail 19 over the surface of the powder bed 16 in order to carry out a liquid ablation medium there for a subsequent treatment of a surface 27 of the component 25.
  • the print head 26 is lowered onto the areas of the component 25 to be post-treated and applies the liquid ablation medium thereat .
  • a pulsed laser 28 is activated, with which the after-treatment can be carried out.
  • the optical coupler 22 and the deflection mirror 23 are also used (see FIG.
  • FIG. 2 shows another application method for an ablation medium in the form of a film 29. This is unrolled from a supply roll 30 and rolled up the remainder of the film 29 on another roll 31. This is a so-called reel-to-reel process. To recognize the doctor 17, wherein the direction of movement of the doctor blade
  • the doctor blade 17 and the film 29 can be alternately lowered onto the powder bed 16.
  • a pulsed laser beam 32 is generated, which performs laser hammering on an inner surface 27 of the component 25.
  • the material of the film 29 evaporates at the corresponding point 33, which leads to the process of laser hammering already described.
  • FIGS. 3 to 9 A possible sequence of the method according to the invention is shown by way of example in FIGS. 3 to 9. In this case, only the components of the production plant that are required in the respective production step are shown. Also, the powder bed is shown without its surroundings a building platform 13 or a side wall 14, wherein the structure of the manufacturing plant, which is used in Figures 3 to 9, may be formed in accordance with Figure 1.
  • Figure 3 is shown how a first layer 34a of the Pul ⁇ verbetts was prepared.
  • the first layer of a component 25 is Herge ⁇ in this position 34a.
  • the component which arises in the first layer 34 is shown hatched.
  • FIG. 4 shows how a second layer 34b has been applied to the powder bed and is now partially melted by means of the laser 21. This results in a further part of the component 25, which will later give the same a side wall.
  • FIG. 6 shows how a liquid ablation medium 37 is applied to the surface 27 of the component 25 by means of the print head 26. This ablation medium 37 can then be cured by means of a radiant heater 38 (optional step).
  • FIG. 7 shows how a pulsed laser beam 32 is generated by means of the pulse laser 28 and the ablation medium 37 evaporates on the surface 27. This results in 27 surface compressive stresses in areas where previously caused by the process tensile stresses had occurred.
  • FIG. 8 shows how a third layer 34c in the powder bed is produced by means of the doctor 17.
  • the depression 35 (see FIG. 5) is also refilled.
  • FIG. 9 shows how the process of selective laser melting for the third layer 34c is resumed and the resulting wall of the component 25 is continued.
  • the resulting vertical wall layer by layer of tensile stresses can be freed who ⁇ by a Laser peening is performed (not Darge ⁇ asserted) by repeating the steps 6 and 7.
  • FIG. 9 shows how the process of selective laser melting for the third layer 34c is resumed and the resulting wall of the component 25 is continued.
  • the resulting vertical wall layer by layer of tensile stresses can be freed who ⁇ by a Laser peening is performed (not Darge ⁇ asserted) by repeating the steps 6 and 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)

Abstract

The invention relates to a powder bed-based additive manufacturing method which can be carried out in a system (11) for an additive manufacturing method. The invention also relates to a system of this type. It is provided according to the invention that an application apparatus (26) for an ablation medium, for example a print head, is provided in the system. By way of said application apparatus, laser peening can be carried out in an alternating manner with the additive manufacture of a component (25), by way of which laser peening inner surfaces (27) of the component can advantageously also be subjected to an aftertreatment in order to produce compressive stresses. To this end, a pulsed laser (28) is provided which can be operated in an alternating manner with the energy source (20) (laser) for the additive manufacturing method, wherein the ablation medium which is applied by way of the application apparatus (26) is evaporated by the pulsed laser (28), in order to produce the compressive stresses.

Description

Beschreibung description
Pulverbettbasiertes additives Fertigungsverfahren mit Ober¬ flächennachbehandlung und für dieses Fertigungsverfahren ge- eignete Anlage Powder bed based additive manufacturing processes with upper ¬ surface post-treatment and for this manufacturing process overall was suitable facility
Die Erfindung betrifft ein pulverbettbasiertes additives Fer¬ tigungsverfahren, bei dem ein Bauteil in einem Bauprozess durch lokales Aufschmelzen von Partikeln in einem Pulverbett Lage für Lage erzeugt wird. Außerdem wird eine Nachbehandlung der Oberfläche des erzeugten Bauteils durch Laserhämmern durchgeführt, wobei an der Oberfläche im Bauteil durch das Laserhämmern Druckspannungen erzeugt werden. Weiterhin betrifft die Erfindung eine Anlage für ein pulverbettbasiertes additives Fertigungsverfahren. Diese Anlage weist eine Pulverbett-Aufnahme auf, wobei dies eine Einrich¬ tung ist, in der ein Pulverbett erzeugt werden kann. Zu die¬ sem Zweck ist in der Anlage eine Dosiereinrichtung für das Pulver vorgesehen, wobei die Pulverbett-Aufnahme auch eine Bauplattform aufweist, auf der das additiv herzustellende Bauteil steht und die Lage für Lage abgesenkt werden kann. Um das Bauteil herzustellen ist in der Anlage außerdem eine Energiequelle vorgesehen, mit der ein in der Pulverbett- Aufnahme befindliches Pulverbett lokal aufschmelzbar ist. Bei der Energiequelle handelt es sich vorzugsweise um einen Laser zur Erzeugung eines Laserstrahls oder einer Elektronenquelle zur Erzeugung eines Elektronenstrahls. Damit kann ein selek¬ tives Laserschmelzen, ein selektives Lasersintern oder ein selektives Elektronenstrahlschmelzen durchgeführt werden. The invention relates to a powder bed additive based Fer ¬ operating procedure, in which a component in a building process by local melting of particles is produced in a powder bed layer by layer. In addition, a post-treatment of the surface of the produced component is carried out by laser hammering, wherein on the surface in the component by the laser hammering compressive stresses are generated. Furthermore, the invention relates to a system for a powder bed based additive manufacturing process. This system has a powder bed recording, which is a Einrich ¬ tion, in which a powder bed can be generated. To the ¬ sem purpose a dosing device is provided for the powder in the system, wherein the powder bed recording also has a building platform on which the additive component to be produced is, and the location can be lowered for location. In order to produce the component, an energy source is also provided in the system with which a powder bed located in the powder bed receptacle can be locally fused. The energy source is preferably a laser for generating a laser beam or an electron source for generating an electron beam. In order for a selec ¬ tive laser melting, selective laser sintering or selective electron beam melting can be carried out.
Gemäß der US 2014/0034626 AI ist es bekannt, dass Bauteile, die durch Lasersintern fertiggestellt wurden, an der Oberfläche vorzugsweise Zugspannungen ausbilden. Dies liegt daran, dass beim selektiven Laserschmelzen (und auch beim selektiven Elektronenstrahlschmelzen) durch den Laser sehr kleine Volumina im Pulverbett aufgeschmolzen werden. Verlässt der Laser das aktuelle Schmelzbad, so kühlt sich der aufgeschmolzene Bereich mit einer Abkühlrate von ungefähr 105 °C/s ab und schrumpft entsprechend, was die Ausbildung der Zugspannungen erklärt. Die vorher darunter hergestellten Lagen des Bauteils werden dementsprechend auf Druck beansprucht, da diese die Zugspannungen an der Oberfläche aufnehmen. According to US 2014/0034626 AI it is known that components which have been completed by laser sintering, preferably form tensile stresses on the surface. This is because, during selective laser melting (and also during selective electron beam melting), very small volumes in the powder bed are melted by the laser. When the laser leaves the current melt pool, the molten one cools down Range with a cooling rate of about 10 5 ° C / s and shrinks accordingly, which explains the formation of tensile stresses. The previously produced layers of the component are therefore subjected to pressure, as they absorb the tensile stresses on the surface.
Zugspannungen an der Oberfläche von Bauteilen wirken sich allerdings bei metallischen Strukturen nachteilig aus, weil sich ein Korrosionsangriff oder Risse aufgrund mechanischer Beanspruchungen schneller in das Innere des Bauteils ausbrei¬ ten können. Daher wird gemäß der US 2014/0034626 AI vorge¬ schlagen, dass das durch Laserschmelzen fertiggestellte Bauteil einer Nachbehandlung unterworfen wird, mit der die bestehenden Zugspannungen an der Oberfläche in Druckspannungen umgewandelt werden. Dies kann durch eine Wärmebehandlung (Spannungsarmglühen) durch ein heiß-isostatisches Pressen oder auch durch eine mechanische Bearbeitung der Oberfläche, einem Hämmern (peening) erfolgen. Für ein Hämmern der Oberfläche wird in der US 2014/0034626 AI ein Kugelstrahl- oder ein Laserhämmern (laser peening) vorgeschlagen. Gemäß der DE 10 2009 051 551 AI wird vorgeschlagen, dass ein Läserhämmern nicht nur als Nachbehandlung eines fertiggestellten Bauteils, sondern auch während dessen Herstellung erfolgen kann, indem der Bauprozess nach Fertigstellung einer Lage für eine Anwendung des Laserhämmerns unterbrochen wird. However, tensile stresses at the surface of components affect the case of metallic structures adversely because a corrosion attack or cracks due to mechanical stresses can ausbrei ¬ th faster in the interior of the component. Therefore, pre-¬ beat according to the US 2014/0034626 Al, that the component is completed by laser melting is subjected to a post-treatment, with the be converted to the surface in compressive stresses existing tensile stresses. This can be done by a heat treatment (stress relief annealing) by a hot isostatic pressing or by a mechanical treatment of the surface, a peening. For surface hammering, US 2014/0034626 A1 proposes shot peening or laser peening. According to DE 10 2009 051 551 Al, it is proposed that a laser hammering not only be carried out as a post-treatment of a finished component, but also during its production by the construction process is interrupted after completion of a position for an application of laser hammering.
Das Laserhämmern (auch laser shock peening genannt) ist ein bekanntes Verfahren, welches beispielsweise in der US Laser hammering (also called laser shock peening) is a known method which is described, for example, in US Pat
5,674,328 ausführlich beschrieben wird. Auf die zu behandeln- de Oberfläche wird ein flüssiges oder festes Ablationsmedium aufgebracht, welches anschließend durch Laserpulse abgetragen wird. Dieser Vorgang wird auch als Laserablation bezeichnet. Da der Laser gepulst ist, entsteht durch das plötzliche Ver¬ dampfen des Ablationsmediums eine Schockwelle, die sich auch ausgehend von der Oberfläche in das Innere des Bauteils aus¬ dehnt und dort zu einem Schmiedevorgang führt. Die lokale Verformung des Materials erzeugt Druckspannungen, wodurch sogar Zugspannungen abgebaut werden können. Eine Nachbehandlung mittels Laserhämmern setzt allerdings vo¬ raus, dass die Oberfläche des Bauteils nach erfolgter Her¬ stellung durch das Laserschmelzen für den Laser zugänglich ist. Allerdings werden durch Laserschmelzen und andere addi¬ tive Fertigungsverfahren bevorzugt Bauteile hergestellt, die eine sehr komplexe Geometrie aufweisen. Hierbei entstehen auch Hohlräume und innere Oberflächen, die durch einen Laser nach Fertigstellung des Bauteils nicht mehr erreicht werden können. 5,674,328 is described in detail. A liquid or solid ablation medium is applied to the surface to be treated, which is then removed by laser pulses. This process is also referred to as laser ablation. Since the laser is pulsed, caused by the sudden evaporation of the ablative Ver ¬ a shock wave, which also extends from the surface into the interior of the component from ¬ and leads to a forging operation. The local deformation of the material generates compressive stresses, which can even reduce tensile stresses. However, a post-treatment by means of laser peening sets out vo ¬ that the surface of the component is accessible by the laser fusion for the laser after Her ¬ position. However, preferably the components are produced by laser melting and other addi tive ¬ manufacturing processes, which have a very complex geometry. This also creates cavities and inner surfaces that can not be reached by a laser after completion of the component.
Die Aufgabe der Erfindung besteht darin, ein pulverbettba- siertes additives Fertigungsverfahren für ein Bauteil anzuge¬ ben, mit dem sich auch Bauteile komplexer Geometrie mit Ober- flächen herstellen lassen, die oberflächennah mit Druckspannungen beaufschlagt sind, wobei der Aufwand bei der Erzeugung der Druckspannungen möglichst gering gehalten werden soll. Außerdem ist es Aufgabe der Erfindung, eine Fertigungsanlage anzugeben, mit der ein solches verbessertes additives Ferti- gungsverfahren durchgeführt werden kann. The object of the invention is to provide a pulverbettba- overbased additive manufacturing method for a component suits ¬ ben with which also components of complex geometry with the upper can be prepared surfaces, which are close to the surface subjected to compressive stresses, wherein the effort in the generation of compressive stresses as possible should be kept low. In addition, it is an object of the invention to provide a production plant with which such an improved additive manufacturing process can be carried out.
Diese Aufgabe wird mit dem eingangs angegebenen Fertigungs¬ verfahren erfindungsgemäß dadurch gelöst, dass für die Nach¬ behandlung der Oberfläche des Bauteils der Bauprozess nach Fertigstellung einer Lage unterbrochen wird. Dann wird dasThis object is achieved with the above-mentioned manufacturing ¬ method according to the invention that is interrupted for the after ¬ treatment of the surface of the component of the construction process after completion of a layer. Then that will be
Laserhämmern für bereits ausgeführte Teile der Oberfläche des Bauteils durchgeführt, wobei das Bauteil erfindungsgemäß für diese Nachbehandlung im Pulverbett der Anlage für das pulver- bettbasierte additive Fertigungsverfahren verbleibt. Deswegen kann vorteilhaft anschließend der Bauprozess zur Herstellung der nächsten Lage wieder aufgenommen werden. Erfindungsgemäß ist also vorgesehen, dass der pulverbettbasierte additive Fertigungsprozess mindestens einmal unterbrochen wird, um ei¬ ne Nachbehandlung durch Laserhämmern vorzunehmen. Dies hat den Vorteil, dass durch das Laserhämmern auch Bauteilbereiche nachbehandelt werden können, welche nach Fertigstellung des Bauteils nicht mehr zugänglich sind (zum Beispiel Hohlräume) . Um das Laserhämmern in der Fertigungsanlage für das additive Fertigungsverfahren durchführen zu können, muss diese Fertigungsanlage entsprechend modifiziert werden. Für die Behand¬ lung durch Laserhämmern ist ein Pulslaser erforderlich. Außerdem muss ein Ablationsmedium auf die nachzubehandelnden Bauteilbereiche des in Entstehung befindlichen Bauteils auf¬ gebracht werden, wofür erfindungsgemäß eine Applikationsvorrichtung in der Fertigungsanlage vorgesehen ist. Laser hammers performed for already executed parts of the surface of the component, wherein the component according to the invention for this aftertreatment remains in the powder bed of the plant for the powder bed-based additive manufacturing process. Because of this, advantageously, the construction process for producing the next layer can be resumed. According to the invention is therefore provided that the powder bed based additive manufacturing process is interrupted at least once to make egg ¬ ne-treatment by laser peening. This has the advantage that component areas which are no longer accessible after completion of the component (for example cavities) can also be aftertreated by laser hammering. To the laser hammering in the manufacturing plant for the additive To be able to carry out production processes, this production plant must be modified accordingly. For the treatmen ¬ development by Laser peening a laser pulse is required. In addition, an ablation medium must be applied to the component areas of the component being post-treated , for which purpose an application device is provided in the production system.
Die Aufgabe wird somit auch durch eine modifizierte Anlage für ein pulverbettbasiertes additives Fertigungsverfahren ge¬ löst, wobei in dieser Anlage zusätzlich zu der Energiequelle, die für ein Aufschmelzen des Pulverbetts vorgesehen ist, ein Pulslaser integriert ist, der auf die Pulverbett-Aufnahme ausrichtbar ist und so auch auf bereits fertiggestellte Teile eines in Entstehung befindlichen Bauteils ausgerichtet werden kann. Mit diesem Pulslaser ist dann ein Laserhämmern durchführbar, wobei vor dieser Behandlung mittels einer Applikationsvorrichtung ein Ablationsmedium auf die nachzubehandelnden Bauteilbereiche aufgebracht werden muss. Die Leistung des Pulslasers muss so bemessen sein, dass diese zur Durchführung des Laserhämmerns ausreicht. The object is thus also by a modified system for a powder bed based additive manufacturing process ge ¬ triggers, wherein a pulse laser is alignable to the powder bed of record and in this system, in addition to the power source, which is provided for melting of the powder bed integrated, so can also be aligned on already completed parts of a component in development. Laser hammering can then be carried out with this pulsed laser, wherein an ablation medium must be applied to the component areas to be post-treated before this treatment by means of an application device. The power of the pulse laser must be such that it is sufficient to carry out the laser hammering.
Die Applikationsvorrichtung für das Ablationsmedium kann vorteilhaft ein Druckkopf für ein flüssiges Ablationsmedium sein. Hierbei lassen sich Komponenten vorteilhaft verwenden, welche bereits bei additiven Herstellungsverfahren, wie dem 3D-Drucken, zum Einsatz kommen. Diese können in die Anlage zum Laserschmelzen integriert werden und lassen die Applikation eines flüssigen Ablationsmediums zu. Dieses kann als Flüssigkeitsfilm zum Laserhämmern verwendet werden. Eine andere Möglichkeit besteht darin, dass das flüssige Ablations¬ medium vor dem Durchführen des Laserhämmerns trocknet (Verdunstung eines Lösungsmittels) oder aushärtet. Das flüssige Ablationsmedium kann auch Feststoffe in Form von Partikeln enthalten. The application device for the ablation medium may advantageously be a printhead for a liquid ablation medium. In this case, components which are already used in additive production processes, such as 3D printing, can be advantageously used. These can be integrated into the system for laser melting and allow the application of a liquid Ablationsmediums. This can be used as a liquid film for laser hammering. Another possibility is that the liquid Ablations ¬ medium before performing the laser hammering dries (evaporation of a solvent) or cures. The liquid ablation medium may also contain solids in the form of particles.
Eine andere vorteilhafte Möglichkeit besteht darin, ein Abla¬ tionsmedium in Form einer Folie zu verwenden. Diese kann durch eine Applikationsvorrichtung in Form einer Rolle in der Anlage vorgesehen sein. Das Ablationsmedium lässt sich dann einfach auf die Oberfläche des in Entstehung befindlichen Bauteils abrollen. Besonders vorteilhaft kann die Folie die Form eines Streifens aufweisen. Dieser Streifen muss genügend breit sein, dass entweder eine Bahn von Laserpulsen oder mehrere Bahnen von Laserpulsen nebeneinander darauf applizierbar sind. Hierbei kann das Ablationsmedium vorteilhaft sehr gut ausgenutzt werden, ohne großen Verschnitt der Folie zu erzeu- gen. Der Folienstreifen muss bei größeren (das heißt breiter als die Streifenbreite) zu behandelnden Flächen dann wiederholt abgerollt werden und quer zu seiner Längsausdehnung über die zu behandelnde Fläche verschoben werden, um benachbarte Bahnen von Laserpulsen auf der zu behandelnden Oberfläche zu erzeugen. Another advantageous possibility is to use a Abla ¬ tion medium in the form of a film. This can be provided by an application device in the form of a roll in the system. The ablation medium can then be easily rolled onto the surface of the component being formed. Particularly advantageously, the film may have the form of a strip. This strip must be sufficiently wide that either a train of laser pulses or multiple tracks of laser pulses can be applied to each other next to each other. In this case, the ablation medium can advantageously be utilized very well without generating a large waste of the film. The film strip then has to be repeatedly unrolled for larger areas (that is to say wider than the strip width) and transverse to its longitudinal extent over the area to be treated be moved to create adjacent tracks of laser pulses on the surface to be treated.
Gemäß einer Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass der Bauprozess für die Nachbehandlung mehrere Male unterbrochen wird und die bereits ausgebildeten Teile der Oberfläche derart der Nachbehandlung unterworfen werden, dass diese nachbehandelten Teile direkt an zuvor bereits nachbehandelte Teile der Oberfläche angrenzen. Auf die¬ sem Wege ist vorteilhaft eine flächendeckende Nachbehandlung innerer Oberflächen von Bauteilen möglich. Eine Strategie für die Nachbehandlung lässt sich unter Kenntnis des CAD-Modells ohne Weiteres berechnen, da dieses für die Herstellung des Bauteils durch das additive Fertigungsverfahren ohnehin zur Verfügung steht. Vorteilhaft ist es, wenn die Nachbehandlung auf Teile derAccording to one embodiment of the method according to the invention it is provided that the construction process for the aftertreatment is interrupted several times and the already formed parts of the surface are subjected to the aftertreatment such that these post-treated parts directly adjoin previously already aftertreated parts of the surface. A comprehensive post-treatment of inner surfaces of components is advantageously possible to ¬ sem way. A post-treatment strategy can easily be calculated with knowledge of the CAD model, since this is available anyway for the production of the component by the additive manufacturing process. It is advantageous if the post-treatment on parts of
Oberfläche beschränkt wird, die nach Fertigstellung des Bau¬ teils für eine Nachbehandlung nicht mehr zugänglich sind. Hierdurch kann der Aufwand, der dadurch entsteht, dass das additive Fertigungsverfahren für die sukzessive stattfindende Nachbehandlung immer wieder unterbrochen werden muss, so klein wie möglich gehalten werden. Äußere, das heißt zugängliche Oberflächen können auch nach Fertigstellung des gesamten Bauteils in an sich bekannter Weise einer Nachbehandlung unterworfen werden, die beispielsweise auch durch Laserhämmern, aber auch durch andere im oben genannten Stand der Technik bekannte Verfahren zum Nachbehandeln durchgeführt werden können. Surface is limited, which are no longer accessible after completion of the ¬ part for a subsequent treatment. As a result, the expense that arises from the fact that the additive manufacturing process for the successive post-treatment must be interrupted again and again, be kept as small as possible. Exterior, that is accessible surfaces can also after completion of the entire component in a conventional manner of aftertreatment be subjected, for example, by laser hammering, but also by other known in the above-mentioned prior art method for aftertreatment can be performed.
Eine andere Ausgestaltung der Erfindung sieht vor, dass jeweils vor der Nachbehandlung nicht aufgeschmolzene Partikel von dem für die Nachbehandlung vorgesehenen Teil der Oberfläche entfernt werden. Dies kann beispielsweise durch lokales Absaugen der Pulverpartikel erfolgen. Die Applikation des Ab- lationsmediums auf die nachzubehandelnden Oberflächen wird dann vorteilhaft nicht durch verbleibende Partikel gestört. Außerdem ist es möglich, eine Nachbehandlung von Teilen des Bauteils durchzuführen, die vorher in mehreren aufeinander- folgenden Schritten des additiven Herstellungsverfahrens erzeugt worden sind. Dies hat den Vorteil, dass der Prozess für das additive Herstellen des Bauteils seltener unterbrochen werden muss. Die Nachbehandlung der Bauteilregionen muss jedoch erfolgen, solange die erzeugten inneren Oberflächen des Bauteils noch zugänglich sind. Mit anderen Worten muss dieAnother embodiment of the invention provides that in each case not melted before the post-treatment particles are removed from the intended for the aftertreatment part of the surface. This can be done for example by local suction of the powder particles. The application of the ablation medium to the surfaces to be post-treated is then advantageously not disturbed by remaining particles. In addition, it is possible to perform a post-treatment of parts of the component, which have previously been produced in several consecutive steps of the additive manufacturing process. This has the advantage that the process for the additive manufacturing of the component must be interrupted less frequently. However, the post-treatment of the component regions must be carried out as long as the generated inner surfaces of the component are still accessible. In other words, the
Nachbehandlung erfolgen, bevor die inneren Oberflächen durch Verschluss des Bauteilvolumens nicht mehr zugänglich sind. After treatment, before the inner surfaces are no longer accessible by closing the component volume.
Vorteilhaft kann ein Ablationsmedium für das Laserhämmern in Form einer Folie auf das Bauteil aufgeklebt werden. Dabei ist es möglich, die Folie, wie bereits erläutert, von einer Rolle abzurollen. Eine andere Möglichkeit besteht darin, Folienstü¬ cke in geeigneter Weise zuzuschneiden und mittels einer Applikationsvorrichtung direkt auf die nachzubehandelnde Bau- teilregion aufzubringen. Als Applikationsvorrichtung können beispielsweise Handhabungssysteme zum Einsatz kommen, wie sie für die Elektronikmontage üblich sind, insbesondere Saugköp¬ fe, die die zugeschnittenen Folienstücke durch einen Unterdruck temporär fixieren und auf der nachzubehandelnden Ober- fläche des Bauteils ablegen. Advantageously, an ablation medium for laser hammering in the form of a film can be adhered to the component. It is possible, the film, as already explained, unroll from a roll. Another possibility is to cut Folienstü ¬ blocks in a suitable manner and in part region applied by means of an applicator device directly on the nachzubehandelnde construction. As an application device, for example, handling systems can be used, as they are customary for electronics assembly, in particular Saugköp ¬ fe, temporarily fix the cut film pieces by a vacuum and put on the surface to be treated nachzubehandeln the component.
Vorteilhaft ist es auch, dass nach erfolgtem Laserhämmern Reste eines beim Laserhämmern nicht verbrauchten Ablationsme- diums von der Oberfläche des Bauteils entfernt werden, bevor der Bauprozess zur Herstellung der nächsten Lage wieder aufgenommen wird. Dies kann beispielsweise durch Absaugen erfol¬ gen und hat den Vorteil, dass nachfolgende Schichten des Bau- teils bei ihrer Herstellung nicht durch das Ablationsmaterial kontaminiert werden können. Besonders vorteilhaft ist es, wenn das nicht verbrauchte Ablationsmedium mit derjenigen Energiequelle entfernt wird, die auch für das Aufschmelzen der Partikel verwendet wird. Mittels des Laserstrahls oder des Elektronenstrahls kann das Ablationsmaterial verdampft werden, wobei diese Energie nicht gepulst aufgebracht wird, so dass es nicht zu einem ungewünschten Laserhämmern kommen kann. Das Material wird kontinuierlich abgetragen. Weitere Einzelheiten der Erfindung werden nachfolgend anhand der Zeichnung beschrieben. Gleiche oder sich entsprechende Zeichnungselemente sind jeweils mit den gleichen Bezugszei¬ chen versehen und werden nur insoweit mehrfach erläutert, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen: It is also advantageous that, after laser hamming, residues of an ablation medium not consumed during laser hammering are diums are removed from the surface of the component, before the construction process for the production of the next layer is resumed. This can, for example, by suction SUC ¬ gen and has the advantage that subsequent layers of the building can not be contaminated by the ablative part in their production. It is particularly advantageous if the unused ablation medium is removed with the energy source which is also used for the melting of the particles. By means of the laser beam or the electron beam, the ablation material can be evaporated, whereby this energy is not applied pulsed, so that it can not come to an undesired laser hammering. The material is removed continuously. Further details of the invention are described below with reference to the drawing. Identical or corresponding drawing elements are each provided with the same Bezugszei ¬ chen and are only explained several times as far as differences arise between the individual figures. Show it:
Figur 1 und 2 Ausführungsbeispiele für die erfindungsgemäße Figures 1 and 2 embodiments of the invention
Anlage für ein pulverbettbasiertes additives Fertigungsverfahren schematisch geschnitten und  Scheme for a powdered bed additive manufacturing process schematically cut and
Figur 3 bis 9 ausgewählte Schritte eines Ausführungsbei¬ spiels des erfindungsgemäßen pulverbettbasier- ten additiven Fertigungsverfahrens schema- tisch. Figure 3 to 9 selected steps of an exemplary embodiment of the manufacturing method of the invention pulverbettbasier- th additive schematically.
Eine Fertigungsanlage gemäß Figur 1 weist eine Prozesskammer 11 auf, in der eine Pulverbett-Aufnahme 12 vorgesehen ist. Diese weist eine Bauplattform 13 auf, die von einer Seiten- wand 14 umgeben ist und über einen Zylinder 15 abgesenkt werden kann. So entsteht ein wannenförmiger Hohlraum, in dem ein Pulverbett 16 erzeugt werden kann. 0 A production plant according to FIG. 1 has a process chamber 11 in which a powder bed receptacle 12 is provided. This has a construction platform 13, which is surrounded by a side wall 14 and can be lowered via a cylinder 15. This creates a trough-shaped cavity in which a powder bed 16 can be produced. 0
o  O
Zur Erzeugung des Pulverbetts steht eine Rakel 17 zur Verfü¬ gung, die aus einem Pulvervorrat Pulver über das PulverbettIn order to produce the powder bed is a doctor blade 17 to the Availability checked ¬ supply, consisting of a powder source powder across the powder bed
16 verteilen kann. Dieses Verfahren ist an sich bekannt und wird an dieser Stelle nicht näher erläutert. Die Rakel 17 kann an einer Führungsschiene 19 entlang bewegt werden. 16 can distribute. This method is known per se and is not explained in detail here. The doctor 17 can be moved along a guide rail 19.
In Figur 1 ist weiterhin dargestellt, wie mittels eines La¬ sers als Energiequelle 20 ein Laserstrahl 21 erzeugt werden kann. Dieser wird über einen optischen Koppler 22 und einen Umlenkspiegel 23 durch ein Fenster 24 in die Prozesskammer 11 eingeleitet und bestreicht dort die Oberfläche des Pulver¬ betts 16 dort, wo ein Bauteil 25 entstehen soll. Statt eines Lasers als Energiequelle 20 kann auch eine Erzeugungseinrich¬ tung für einen Elektronenstrahl zum Einsatz kommen (nicht dargestellt) . In figure 1 is also shown how by means of a La ¬ sers as an energy source 20, a laser beam 21 can be generated. This is introduced via an optical coupler 22 and a deflection mirror 23 through a window 24 in the process chamber 11 and sweeps there the surface of the powder ¬ bed 16 where a component 25 is to arise. Instead of a laser as the energy source 20, a generating device for an electron beam can also be used (not shown).
Über die Führungsschiene 19 kann auch ein Druckkopf 26 über die Oberfläche des Pulverbetts 16 bewegt werden, um dort ein flüssiges Ablationsmedium für eine nachfolgende Behandlung einer Oberfläche 27 des Bauteils 25 durchzuführen. Dafür wird der Druckkopf 26 auf die nachzubehandelnden Areale des Bau¬ teils 25 abgesenkt und appliziert das flüssige Ablationsmedi¬ um dort. Anschließend wird ein Pulslaser 28 aktiviert, mit dem die Nachbehandlung durchgeführt werden kann. Hierbei kom- men auch der optische Koppler 22 und der Umlenkspiegel 23 zum Einsatz (vgl. Figur 2) . A print head 26 can also be moved over the guide rail 19 over the surface of the powder bed 16 in order to carry out a liquid ablation medium there for a subsequent treatment of a surface 27 of the component 25. For this purpose, the print head 26 is lowered onto the areas of the component 25 to be post-treated and applies the liquid ablation medium thereat . Subsequently, a pulsed laser 28 is activated, with which the after-treatment can be carried out. In this case, the optical coupler 22 and the deflection mirror 23 are also used (see FIG.
In Figur 2 ist ein anderes Applikationsverfahren für ein Ablationsmedium in Form einer Folie 29 dargestellt. Diese wird von einer Vorratsrolle 30 abgerollt und die Reste der Folie 29 auf eine weitere Rolle 31 aufgerollt. Hierbei handelt es sich um einen sogenannten Reel-to-Reel-Prozess . Zu erkennen ist auch die Rakel 17, wobei die Bewegungsrichtung der RakelFIG. 2 shows another application method for an ablation medium in the form of a film 29. This is unrolled from a supply roll 30 and rolled up the remainder of the film 29 on another roll 31. This is a so-called reel-to-reel process. To recognize the doctor 17, wherein the direction of movement of the doctor blade
17 über die Führungsschiene 19 rechtwinklig zur Bewegungs- richtung der Folie 29 von der Vorratsrolle 30 hin zur Rolle17 via the guide rail 19 at right angles to the direction of movement of the film 29 from the supply roll 30 to the roller
31 ausgerichtet ist. So können die Rakel 17 und die Folie 29 abwechselnd auf das Pulverbett 16 abgesenkt werden. Mit dem Pulslaser 28 wird ein gepulster Laserstrahl 32 erzeugt, der an einer inneren Oberfläche 27 des Bauteils 25 ein Laserhämmern durchführt. Dabei verdampft an der entsprechenden Stelle 33 das Material der Folie 29, was zu dem bereits beschriebenen Prozess des Laserhämmerns führt. 31 is aligned. Thus, the doctor blade 17 and the film 29 can be alternately lowered onto the powder bed 16. With the pulse laser 28, a pulsed laser beam 32 is generated, which performs laser hammering on an inner surface 27 of the component 25. In this case, the material of the film 29 evaporates at the corresponding point 33, which leads to the process of laser hammering already described.
In den Figuren 3 bis 9 ist ein möglicher Ablauf des erfindungsgemäßen Verfahrens exemplarisch dargestellt. Hierbei werden jeweils nur die Komponenten der Fertigungsanlage dar- gestellt, die in dem betreffenden Fertigungsschritt benötigt werden. Auch das Pulverbett ist ohne seine Umgebung einer Bauplattform 13 oder einer Seitenwand 14 dargestellt, wobei der Aufbau der Fertigungsanlage, die in den Figuren 3 bis 9 verwendet wird, gemäß Figur 1 ausgebildet sein kann. A possible sequence of the method according to the invention is shown by way of example in FIGS. 3 to 9. In this case, only the components of the production plant that are required in the respective production step are shown. Also, the powder bed is shown without its surroundings a building platform 13 or a side wall 14, wherein the structure of the manufacturing plant, which is used in Figures 3 to 9, may be formed in accordance with Figure 1.
In Figur 3 ist dargestellt, wie eine erste Lage 34a des Pul¬ verbetts hergestellt wurde. Mittels des Laserstrahls 21 wird in diese Lage 34a die erste Lage eines Bauteils 25 herge¬ stellt. Das Bauteil, welches in der ersten Lage 34 entsteht, ist schraffiert dargestellt. In Figure 3 is shown how a first layer 34a of the Pul ¬ verbetts was prepared. By means of the laser beam 21, the first layer of a component 25 is Herge ¬ in this position 34a. The component which arises in the first layer 34 is shown hatched.
In Figur 4 ist dargestellt, wie eine zweite Lage 34b auf das Pulverbett aufgebracht wurde und nun mittels des Lasers 21 teilweise aufgeschmolzen wird. Hierbei entsteht ein weiterer Teil des Bauteils 25, der später eine Seitenwand desselben ergeben wird. FIG. 4 shows how a second layer 34b has been applied to the powder bed and is now partially melted by means of the laser 21. This results in a further part of the component 25, which will later give the same a side wall.
In Figur 5 ist dargestellt, wie aus einer in dem Bauteil ent¬ standenen Vertiefung 35 mittels einer Absaugvorrichtung 36 das Pulver des Pulverbetts entfernt wird. In figure 5 is shown how the powder of the powder bed is removed from a ent ¬ standenen in the component recess 35 by means of a suction device 36th
In Figur 6 ist gezeigt, wie mittels des Druckkopfs 26 ein flüssiges Ablationsmedium 37 auf die Oberfläche 27 des Bau¬ teils 25 aufgebracht wird. Dieses Ablationsmedium 37 kann an- schließend mittels eines Heizstrahlers 38 ausgehärtet werden (optionaler Schritt) . In Figur 7 ist zu erkennen, wie mittels des Pulslasers 28 ein gepulster Laserstrahl 32 erzeugt wird und auf der Oberfläche 27 das Ablationsmedium 37 verdampft. Hierbei entstehen an der Oberfläche 27 Druckspannungen in Bereichen, wo vorher verfahrensbedingt Zugspannungen aufgetreten waren. FIG. 6 shows how a liquid ablation medium 37 is applied to the surface 27 of the component 25 by means of the print head 26. This ablation medium 37 can then be cured by means of a radiant heater 38 (optional step). FIG. 7 shows how a pulsed laser beam 32 is generated by means of the pulse laser 28 and the ablation medium 37 evaporates on the surface 27. This results in 27 surface compressive stresses in areas where previously caused by the process tensile stresses had occurred.
In Figur 8 ist dargestellt, wie mittels der Rakel 17 eine dritte Lage 34c im Pulverbett erzeugt wird. Dabei wird auch die Vertiefung 35 (vgl. Figur 5) wieder aufgefüllt. FIG. 8 shows how a third layer 34c in the powder bed is produced by means of the doctor 17. In this case, the depression 35 (see FIG. 5) is also refilled.
In Figur 9 ist gezeigt, wie das Verfahren des selektiven Laserschmelzens für die dritte Lage 34c wieder aufgenommen wird und die entstehende Wand des Bauteils 25 weitergeführt wird. Durch Wiederholen der Schritte 6 und 7 kann die entstehende senkrechte Wand Lage für Lage von Zugspannungen befreit wer¬ den, indem ein Laserhämmern durchgeführt wird (nicht darge¬ stellt) . FIG. 9 shows how the process of selective laser melting for the third layer 34c is resumed and the resulting wall of the component 25 is continued. The resulting vertical wall layer by layer of tensile stresses can be freed who ¬ by a Laser peening is performed (not Darge ¬ asserted) by repeating the steps 6 and 7. FIG.

Claims

Patentansprüche claims
1. Pulverbettbasiertes additives Fertigungsverfahren, 1. powder bed based additive manufacturing process,
• bei dem ein Bauteil (25) in einem Bauprozess durch loka- les Aufschmelzen von Partikeln in einem Pulverbett (16) In which a component (25) in a construction process by local melting of particles in a powder bed (16)
Lage für Lage erzeugt wird und Location by location is generated and
• eine Nachbehandlung der Oberfläche (27) des Bauteils durch Laserhämmern durchgeführt wird, wobei an der Oberfläche (27) im Bauteil (25) Druckspannungen erzeugt wer- den,  Aftertreatment of the surface (27) of the component is carried out by laser hammering, wherein compressive stresses are generated on the surface (27) in the component (25),
wobei in which
• für die Nachbehandlung der Oberfläche (27) des Bauteils (25) der Bauprozess nach Fertigstellung einer Lage unterbrochen wird,  For the aftertreatment of the surface (27) of the component (25) the construction process is interrupted after completion of a layer,
· das Laserhämmern für bereits ausgebildete Teile der  · The laser hammering for already formed parts of the
Oberfläche (27) des Bauteils (25) durchgeführt wird und Surface (27) of the component (25) is performed and
• der Bauprozess zur Herstellung der nächsten Lage wieder aufgenommen wird, The building process is resumed to produce the next layer,
d a d u r c h g e k e n n z e i c h n e t,  characterized,
dass in der Anlage eine Applikationsvorrichtung (26, 31) für ein Ablationsmedium vorgesehen ist.  in that an application device (26, 31) for an ablation medium is provided in the system.
2. Fertigungsverfahren nach Anspruch 1, 2. Manufacturing method according to claim 1,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass der Bauprozess für die Nachbehandlung mehrere Male un¬ terbrochen wird und die bereits ausgebildeten Teile der Oberfläche (27) derart der Nachbehandlung unterworfen werden, dass diese nachbehandelten Teile direkt an zuvor bereits nachbehandelte Teile der Oberfläche (27) angrenzen. that the construction process for the aftertreatment more times un ¬ interrupted and the already formed part of the surface (27) are subjected to such post-treatment that these post-treated parts are directly adjacent to previously post-treated parts of the surface (27).
3. Fertigungsverfahren nach einem der voranstehenden Ansprüche, 3. Manufacturing method according to one of the preceding claims,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass die Nachbehandlung auf Teile der Oberfläche (27) be- schränkt wird, die nach Fertigstellung des Bauteils (25) für eine Nachbehandlung nicht mehr zugänglich sind. the post-treatment is restricted to parts of the surface (27) which are no longer accessible after finishing the component (25) for aftertreatment.
4. Fertigungsverfahren nach einem der voranstehenden Ansprüche, 4. Manufacturing method according to one of the preceding claims,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass jeweils vor der Nachbehandlung nicht aufgeschmolzene Partikel von dem für die Nachbehandlung vorgesehenen Teil der Oberfläche (27) entfernt werden. that non-molten particles are removed from the post-treatment part of the surface (27) before the after-treatment.
5. Fertigungsverfahren nach einem der voranstehenden Ansprüche, 5. Manufacturing method according to one of the preceding claims,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass ein Ablationsmedium für das Laserhämmern in Form einer Folie (29) aufgeklebt wird. in that an ablation medium for laser hammering is adhesively bonded in the form of a film (29).
6. Fertigungsverfahren nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, 6. A manufacturing method according to any one of claims 1 to 4, d a a c e c o v e n c e m e n e,
dass ein Ablationsmedium für das Laserhämmern als Schicht (37) aufgetragen wird. in that an ablation medium for laser hammering is applied as a layer (37).
7. Fertigungsverfahren nach Anspruch 6, 7. Manufacturing method according to claim 6,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass das Auftragen der Schicht (37) durch Drucken erfolgt. the application of the layer (37) is effected by printing.
8. Fertigungsverfahren nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, 8. A manufacturing method according to any one of claims 1 to 4, d a a c e c o m e n c e n e,
dass nach erfolgtem Laserhämmern Reste eines beim Laserhämmern nicht verbrauchten Ablationsmediums von der Oberfläche (27) des Bauteils (25) entfernt werden, bevor der Bauprozess zur Herstellung der nächsten Lage wieder aufgenommen wird. that, after laser hammering, residues of an ablation medium not consumed during laser hammering are removed from the surface (27) of the component (25) before the construction process is resumed to produce the next layer.
9. Fertigungsverfahren nach Anspruch 8, 9. Manufacturing method according to claim 8,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass das nicht verbrauchte Ablationsmedium mit einer Energie¬ quelle (20) entfernt wird, die auch für das Aufschmelzen der Partikel verwendet wird. that the unconsumed ablative medium that is also used for the melting of the particles is removed by an energy source ¬ (20).
10. Anlage für ein pulverbettbasiertes additives Fertigungs¬ verfahren mit 10. Plant for a powder bed-based additive manufacturing ¬ method with
• einer Pulverbett-Aufnahme (12), • einer Energiequelle, mit der ein in der Pulverbett- Aufnahme befindliches Pulverbett lokal aufschmelzbar ist und A powder bed receptacle (12), An energy source with which a powder bed located in the powder bed receptacle can be locally melted, and
• zusätzlich zu der Energiequelle (20) einem Pulslaser, der auf die Pulverbett-Aufnahme (12) ausrichtbar ist und mit dem ein Laserhämmern durchführbar ist,  In addition to the energy source 20, a pulse laser which can be aligned with the powder bed receptacle 12 and with which laser hammering can be carried out,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass in der Anlage eine Applikationsvorrichtung (26, 31) für ein Ablationsmedium vorgesehen ist. in that an application device (26, 31) for an ablation medium is provided in the system.
11. Anlage nach Anspruch 10, 11. Plant according to claim 10,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass die Applikationsvorrichtung (26, 31) einen Druckkopf (26) für ein flüssiges Ablationsmedium aufweist. in that the application device (26, 31) has a print head (26) for a liquid ablation medium.
12. Anlage nach Anspruch 10, 12. Plant according to claim 10,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass die Applikationsvorrichtung eine Vorratsrolle (31) für ein Ablationsmedium in Form einer Folie (29) aufweist. in that the application device has a supply roll (31) for an ablation medium in the form of a film (29).
13. Anlage nach Anspruch 12, 13. Plant according to claim 12,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass die Folie (29) die Form eines Streifens aufweist. the film (29) has the form of a strip.
EP16733945.6A 2015-07-03 2016-06-29 Powder bed-based additive manufacturing method with surface aftertreatment, and system which is suitable for said manufacturing method Withdrawn EP3294478A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015212529.7A DE102015212529A1 (en) 2015-07-03 2015-07-03 Powder bed based additive manufacturing process with surface post-treatment and plant suitable for this manufacturing process
PCT/EP2016/065158 WO2017005578A1 (en) 2015-07-03 2016-06-29 Powder bed-based additive manufacturing method with surface aftertreatment, and system which is suitable for said manufacturing method

Publications (1)

Publication Number Publication Date
EP3294478A1 true EP3294478A1 (en) 2018-03-21

Family

ID=56296808

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16733945.6A Withdrawn EP3294478A1 (en) 2015-07-03 2016-06-29 Powder bed-based additive manufacturing method with surface aftertreatment, and system which is suitable for said manufacturing method

Country Status (5)

Country Link
US (1) US20180361509A1 (en)
EP (1) EP3294478A1 (en)
CN (1) CN107735197A (en)
DE (1) DE102015212529A1 (en)
WO (1) WO2017005578A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10596661B2 (en) * 2015-09-28 2020-03-24 Ecole Polytechnique Federale De Lausanne (Epfl) Method and device for implementing laser shock peening or warm laser shock peening during selective laser melting
DE102016203649A1 (en) * 2016-03-07 2017-09-07 MTU Aero Engines AG Micro-forging in a generative manufacturing process
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
CN106947856A (en) * 2017-04-06 2017-07-14 广东工业大学 The manufacture method and intensifying method of a kind of member for prolonging service life
US10821519B2 (en) 2017-06-23 2020-11-03 General Electric Company Laser shock peening within an additive manufacturing process
CN107498857A (en) * 2017-07-19 2017-12-22 洛阳理工学院 A kind of worktable lifting formula 3D printer
CA3081330A1 (en) 2017-10-31 2019-05-09 MELD Manufacturing Corporation Solid-state additive manufacturing system and material compositions and structures
US11110548B2 (en) * 2018-08-10 2021-09-07 The Boeing Company Methods and apparatus for laser deposition
CN109047761B (en) * 2018-08-24 2019-12-31 西安科技大学 Metal additive manufacturing process
EP3883718A4 (en) * 2018-11-21 2022-08-31 Meld Manufacturing Corporation Hybrid solid-state additive and subtractive manufacturing processes, materials used and parts fabricated with the hybrid processes
FR3090014B1 (en) * 2018-12-18 2021-04-09 Safran DEVICE FOR THE MANUFACTURING OF A METAL MATERIAL PART BY MATERIAL DEPOSIT
CN110116207A (en) * 2019-05-14 2019-08-13 中国航发北京航空材料研究院 The intensifying device and method of selective laser fusing increasing material manufacturing component
EP3969267A4 (en) * 2019-05-14 2023-04-19 Nexa3D Inc. Robotic powder bed carts and compatible printer housings for sls three-dimensional printing
EP3741479A1 (en) * 2019-05-22 2020-11-25 Siemens Aktiengesellschaft Device and method for the additive production of components
JP7383406B2 (en) * 2019-06-11 2023-11-20 ニデックマシンツール株式会社 Three-dimensional lamination method and three-dimensional shaped objects
CN110328364B (en) * 2019-06-24 2020-11-24 华中科技大学 Additive manufacturing method and device suitable for ceramic and composite material thereof
US11491718B2 (en) * 2019-12-20 2022-11-08 Nutech Ventures Hybrid additive manufacturing method
CN112809398B (en) * 2020-08-18 2023-07-14 连灿鑫 Composite machining center for increasing and decreasing materials
US20230321757A1 (en) * 2022-04-11 2023-10-12 Hrl Laboratories, Llc Methods for tailoring the magnetic permeability of soft magnets, and soft magnets obtained therefrom
CN115026308B (en) * 2022-06-10 2024-02-02 南京工业大学 Method for regulating and controlling laser cladding deposition tissue by cold spraying
CN117862531A (en) * 2024-03-12 2024-04-12 西安空天机电智能制造有限公司 Dual-beam laser cooperative control method, device, equipment and medium for forging printing

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5207371A (en) * 1991-07-29 1993-05-04 Prinz Fritz B Method and apparatus for fabrication of three-dimensional metal articles by weld deposition
US5741559A (en) * 1995-10-23 1998-04-21 Lsp Technologies, Inc. Laser peening process and apparatus
US5674328A (en) 1996-04-26 1997-10-07 General Electric Company Dry tape covered laser shock peening
US6677037B1 (en) * 2000-09-13 2004-01-13 General Electric Company Laser shock peening tape, method and article
DE102009051551A1 (en) * 2009-10-31 2011-05-05 Mtu Aero Engines Gmbh Method and device for producing a component of a turbomachine
JP5786579B2 (en) * 2011-09-15 2015-09-30 ソニー株式会社 Structure forming device
GB201204752D0 (en) * 2012-03-19 2012-05-02 Bae Systems Plc Additive layer manufacturing
GB201213940D0 (en) 2012-08-06 2012-09-19 Materials Solutions Additive manufacturing
AU2013343276B2 (en) * 2012-11-09 2017-11-02 Bae Systems Plc Additive layer manufacturing
US10710161B2 (en) * 2013-03-11 2020-07-14 Raytheon Technologies Corporation Turbine disk fabrication with in situ material property variation

Also Published As

Publication number Publication date
US20180361509A1 (en) 2018-12-20
CN107735197A (en) 2018-02-23
WO2017005578A1 (en) 2017-01-12
DE102015212529A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
WO2017005578A1 (en) Powder bed-based additive manufacturing method with surface aftertreatment, and system which is suitable for said manufacturing method
EP1844181B1 (en) Cold gas spraying method
EP3225334B1 (en) Method and apparatus for additive manufacture of at least one component area of a component
EP3259381B1 (en) Method for manufacturing a component by thermal spraying and installation for manufacturing a component with a device for thermal spraying
EP3022008B1 (en) Method for manufacturing a component and optical irradiation device
EP3174654B1 (en) Device and method for additively producing at least one component region of a component
DE102014108061A1 (en) Device and method for the generative production of at least one component region of a component
WO2012152259A1 (en) Method for the production, reparation or replacement of a component, including a compacting step using pressure
DE102009051551A1 (en) Method and device for producing a component of a turbomachine
DE102012212587A1 (en) Apparatus and method for layering a three-dimensional object
DE102014012425A1 (en) Method for producing a three-dimensional object
EP3542927A1 (en) Method for selectively irradiating a material layer, method for providing a data set, device and computer program product
DE102014108081A1 (en) Device and method for the generative production of at least one component region of a component
EP3275654A1 (en) Coating unit, coating method, method and device for generating a three-dimensional object
DE102017220153A1 (en) Method and device for the layered additive manufacturing of components by means of a continuous and a pulsed laser beam and associated computer program product
EP3455014B1 (en) Apparatus with guiding rail for additive manufacturing
DE102010049068A1 (en) Device for producing, repairing and / or replacing a component by means of an energy-beam solidifiable powder, and a method and a component produced according to the method
DE102016209618A1 (en) Method and device for the additive production of at least one component region of a component
WO2017041882A1 (en) Method and device for producing a three-dimensional object
DE102016223987A1 (en) Method for producing a component with cavities and / or undercuts
EP4114597A1 (en) Method for additively manufacturing a three-dimensional component, and repairing system
DE102017201084A1 (en) Process for additive production and coating apparatus
EP3248719A1 (en) Method and apparatus for additive manufacture of at least one component area of a component
DE102016207309A1 (en) Apparatus and method for melt-layering workpieces
EP3175941A1 (en) Method and apparatus for additive manufacture of at least one component area of a component

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210112