EP2936470B1 - Verfahren und system zum lernen von verkehrsereignissen sowie verwendung des systems - Google Patents

Verfahren und system zum lernen von verkehrsereignissen sowie verwendung des systems Download PDF

Info

Publication number
EP2936470B1
EP2936470B1 EP13815740.9A EP13815740A EP2936470B1 EP 2936470 B1 EP2936470 B1 EP 2936470B1 EP 13815740 A EP13815740 A EP 13815740A EP 2936470 B1 EP2936470 B1 EP 2936470B1
Authority
EP
European Patent Office
Prior art keywords
traffic
traffic events
events
vehicle
data network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13815740.9A
Other languages
English (en)
French (fr)
Other versions
EP2936470A1 (de
Inventor
Stefan Hegemann
Ulrich STÄHLIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conti Temic Microelectronic GmbH
Continental Teves AG and Co OHG
Original Assignee
Conti Temic Microelectronic GmbH
Continental Teves AG and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conti Temic Microelectronic GmbH, Continental Teves AG and Co OHG filed Critical Conti Temic Microelectronic GmbH
Publication of EP2936470A1 publication Critical patent/EP2936470A1/de
Application granted granted Critical
Publication of EP2936470B1 publication Critical patent/EP2936470B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination

Definitions

  • the invention relates to a method for learning traffic events according to the preamble of claim 1, a system for learning traffic events according to the preamble of claim 13 and its use.
  • driver assistance systems which are essentially common that they serve to relieve the driver and increase safety in traffic.
  • Such systems are based in part on environment information detected by environment sensors, on information read from digital map material, or also on information received by means of vehicle-to-X communication.
  • navigation systems which are usually designed GPS-based, known and available in more and more current vehicles in series. These navigation systems use satellite signals received to determine their position and guide the driver to the destination along a route determined by digital maps.
  • From the DE 10 2007 048 809 A1 is a method for detecting hidden objects in traffic known.
  • the environment of a vehicle as well as the motion variables of the vehicle are detected by sensors.
  • This information is transmitted by means of vehicle-to-vehicle communication to other surrounding vehicles.
  • the surrounding vehicles also record and transmit ambient and movement information. This information is received and used to extend an existing environment model.
  • the thus extended environment model is reproduced updated by means of a display in the vehicle and can be made available to one or more driver assistance systems.
  • vehicle information about objects are available, which can not be detected by the vehicle sensors themselves.
  • the vehicle system comprises a provider unit, at least one environment sensor and a vehicle sensor.
  • the provider unit in turn comprises a position sensor based on a satellite signal sensor and an ADAS horizon provider communicatively coupled with a navigation unit which may also be located outside the vehicle.
  • the navigation unit can be embodied, for example, as a server which transmits map sections of a digital map to the provider unit.
  • the DE 10 2008 012 660 A1 discloses a method for server-based warning of vehicles from hazards and a corresponding hazard warning unit.
  • a measured value is detected by means of a detection unit of a first vehicle and it is determined whether the measured value corresponds to a hazard. If the measured value corresponds to a hazard, information about the danger is transmitted to a control center.
  • the control center stores the type of hazard, the location where the reading was taken, the time at which the reading was taken, an identification of the transmitting vehicle, and generates corresponding warning data. The relevant for a second vehicle warning data can then be retrieved from this second vehicle from the control center.
  • the prior art methods and systems are disadvantageous in that the information and environment models stored in a database or memory are held rigidly and made available to vehicles until they have been refuted or changed by a sufficient number of more recent measurements.
  • a flexible handling of the stored information and environment models which takes into account the dynamics of the traffic flow is thus not possible, in particular a recognition of regularly occurring traffic events at certain traffic sections is not possible.
  • the object of the present invention is therefore to propose a method which overcomes the disadvantages prevailing in the prior art.
  • This object is achieved by the method for learning traffic events according to claim 1.
  • the traffic event learning method of the present invention wherein the traffic events are transmitted to a data network by vehicle-to-X communication, and wherein the traffic events include position data and time data associated with the traffic events, the traffic events are electronically held on the data network.
  • the method is characterized in that for each traffic event an individual lead time is determined and that the traffic event is deleted from the data network after expiration of the lead time. This results in the advantage that the traffic events are automatically deleted from the data network after expiration of the individual retention period, wherein the individual retention period is advantageously selected adapted to the respective traffic event.
  • the traffic jam traffic event can be deleted more quickly from the data network as the traffic event "slippery roads", as a traffic jam usually dissolves again within a few hours, while slippery roads may last longer due to weather conditions, especially in the absence of a scattering service.
  • the method according to the invention thus corresponds to a "learning” and a subsequent “forgetting” of traffic events, which enables an intelligent and event-oriented provision of the individual traffic events.
  • traffic event is used within the meaning of the invention not exclusively for the traffic event as such, but in particular for the information describing the traffic event.
  • the determination of the position data is preferably carried out by means of a global navigation satellite system, such as e.g. GPS or Galileo, and is particularly preferably supplemented by a map matching method or dead reckoning.
  • a global navigation satellite system such as e.g. GPS or Galileo
  • the time data is advantageously determined via a timer of the data network and assigned to the traffic events when they are transmitted to the data network.
  • connections offer different advantages, depending on the type, wavelength and data protocol used.
  • some of the mentioned types of connection e.g. a comparatively high data transmission rate and a comparatively fast connection setup, while others are very well suited for data transmission around obstructions.
  • the combination and simultaneous or parallel use of several of these types of connections provide further advantages, as well as disadvantages of individual types of connections can be compensated.
  • the traffic events describe hazardous situations and the lead time is determined depending on a hazard factor and / or a frequency of the traffic event, the lead time increases with increasing frequency and with increasing risk factor.
  • the traffic events can also describe seasonal or daytime special features, such as “slippery roads through fallen leaves” in autumn and "dazzling danger due to sunrise or sunset” during twilight.
  • the associated guard time is also redetermined with each transmission, i. extended. This clearly corresponds to a "learning and forgetting process" through the data network, which is able to remember more frequently occurring traffic events, so to speak, than traffic events that occur comparatively seldom. This results in the advantage that comparatively frequently occurring traffic events are kept longer and thus information about these traffic events is available for a longer time.
  • the duration of the maintenance can be made linearly dependent on the frequency as well as on the level, ie That a certain frequency interval is assigned a certain retention period. Thus, if the frequency of a particular traffic event is so large that the associated individual lead time is increased more quickly than it expires, that traffic event will be permanently maintained.
  • the retention period is dependent on a hazard factor and also increases as the risk factor increases, there is the further advantage that traffic events which represent a comparatively great danger are kept longer than traffic events which represent only a slight hazard.
  • the determination of the hazard factor can be done, for example, by means of a predetermined table, which assigns a risk factor to each type of traffic event.
  • the already determined risk factor can be transmitted to the data network together with the traffic event.
  • the retention period of certain traffic events is always extended if they occur frequently enough and have a corresponding risk factor.
  • An example of this are, for example, at peak times regularly occurring tail end behind hills or hidden corners, which regularly have a relatively high risk and thus a relatively large risk factor.
  • a traffic event is not deleted when describing a traffic accident. Since a traffic accident is the consequence of a danger that can no longer be averted and is thus highly relevant to the traffic situation and the safety of the road users, it is thus ensured that the information about the traffic accident is available at all times. This can e.g. be done by the traffic incident "traffic accident" is assigned an infinitely long retention period.
  • An example of this is, for example, the occurrence of road slipperiness due to road surface icing on a certain roadway section, the road slipper being detected at different locations a few meters apart and correspondingly transmitted to the data network.
  • Traffic events are considered as similar traffic events in the sense of the invention if they describe an identical situation, such as e.g. "Road slipperiness", "traffic jam” or "construction site”.
  • the data network is a decentralized data network comprising local network elements along a plurality of traffic routes. This results in the advantage that the volume of data resulting from the transmission of traffic events to the data network can be distributed to the local network elements.
  • the local network elements are also comparatively Short-range connection types of vehicle-to-X communication at any time easily accessible.
  • the traffic events are held by the network elements which are located within a predefinable distance from position data assigned to the traffic events.
  • the network elements may have suitable local electronic databases.
  • the respective traffic events are thus held in the vicinity of those position data on which they occurred. This makes it possible to avoid the transmission of comparatively large volumes of data even within the data network, since the traffic events are e.g. no longer need to be transferred to a central database and must be retrieved by this if necessary.
  • the traffic events are available immediately in the vicinity of the position data on which they occurred.
  • the traffic events are detected by a plurality of vehicles by means of environmental sensors and or driving condition sensors and transmitted to the data network. This results in the advantage that the traffic events are detected directly by the road users who are involved in the traffic events. As a rule, all relevant traffic events are thus reliably detected in a comparatively simple manner.
  • the sensors mentioned are sensors typically used in the automotive sector, which essentially permit comprehensive detection and recognition of the vehicle environment and of the vehicle condition. At the present time, a large number of vehicles are already equipped with a plurality of sensors of the aforementioned types as standard, and this number is likely to increase further in the future. The additional equipment cost for implementing the method according to the invention in a motor vehicle is therefore low.
  • the electronically stored traffic events and / or the cumulative traffic events are transmitted to a vehicle by means of vehicle-to-X communication, when the vehicle falls below the predefinable distance to the traffic events associated with position data.
  • the vehicle can continuously or regularly transmit its position data to the data network, whereupon this then transmits the corresponding traffic events to the vehicle.
  • the data network can identify the reserved traffic events on the basis of their assigned position data, so that they can be retrieved from the vehicle as soon as it falls below the predetermined distance.
  • push or pull methods are suitable for transmission here.
  • the vehicle or the driver of the vehicle thus receive information about traffic events that are based on detection by other vehicles. Due to the large number of vehicles which detect the traffic events, the traffic events transmitted to the vehicle by the data network according to the invention are correspondingly more reliable and possibly statistically more secure than information captured by only a few or even individual vehicles or between them by vehicle signals. exchanged for X-communication.
  • the vehicles or their drivers thus receive information about traffic events even if there are no other vehicles in the area or in transmission range.
  • the network elements are mobile telephone masts and / or traffic lights and / or traffic signs and / or beacons and / or guide posts and / or bridges and / or weather stations and / or separate infrastructure facilities.
  • already existing infrastructure elements can be used as network elements, whereby the costs incurred by the construction of the data network costs can be kept low.
  • the infrastructure elements are not capable of vehicle-to-X communication, they may need to be extended functionally. Also an extension of infrastructure elements around a local electronic database for the local provision of traffic events may become necessary.
  • the separate infrastructure facilities are special network elements which are provided exclusively for carrying out the method according to the invention and which do not fulfill any further function.
  • the traffic events are held centrally and can be retrieved via a database and in particular are available for route planning for vehicles.
  • a database in particular are available for route planning for vehicles.
  • an up-to-date overall picture of all recorded traffic events is kept in the database.
  • This overall image can either be used as backup copy in case of data loss in one or more network elements, or else be used to evaluate larger route sections with regard to certain traffic events.
  • Special advantages also result from the use of the central database for route planning for vehicles.
  • the traffic events held in the database can be retrievable, for example, by the respective vehicles. This allows for route planning e.g. the consideration of criteria such as "Avoiding routes with increased smoothness" or "Avoiding routes with increased congestion".
  • Another use of the database is to determine optimal, particularly ecological or particularly fast routes.
  • traffic events transmitted to the data network are checked for plausibility by means of traffic events held in the data network before they are transmitted from the data network to the vehicle.
  • traffic events held in the data network may be considered plausible if a certain number of similar traffic events having substantially identical location data are transmitted to the database in a particular amount of time.
  • traffic event "slipperiness" in a road section with a known smoothness hazard can be assumed to be faster than plausibility than in another road section.
  • a multiplicity of plausibility procedures for vehicle-to-X messages which are already known in the context of vehicle-to-X communication is generally available.
  • traffic events detected by each of the plurality of vehicles are additionally stored electronically in each of the plurality of vehicles.
  • these traffic events held locally in the multitude of vehicles are less comprehensive than the traffic events held in the data network, but they provide a good complement to these.
  • a confirmation or validation of the traffic events is possible by matching the traffic events stored in each of the plurality of vehicles with the traffic events stored in the data network.
  • a plausibility check of the traffic events transmitted by the data network in each of the plurality of vehicles is possible by means of its environment or driving condition sensor system.
  • Analogous to the method in the data network can be determined in each of the plurality of vehicles for each traffic event, an individual lead time, the traffic event after the expiration of the retention period from a corresponding electronic memory or an electronic Database in any of the many vehicles can be deleted.
  • the invention further relates to a traffic event learning system comprising at least one electronic database, a plurality of vehicles equipped with vehicle-to-X communication means and environment sensors and / or driving condition sensors, and a plurality of network elements of a data engine running along a plurality of traffic routes are arranged and equipped with vehicle-to-X communication means comprises, wherein the plurality of vehicles detected by means of the environmental sensors and / or the driving condition sensor traffic events and transmits by means of the vehicle-to-X communication means to the data network, wherein the traffic events include position data and time data associated with the traffic events, and wherein the at least one electronic database electronically maintains the traffic events.
  • the system is characterized in that evaluation means of the at least one electronic database for each traffic event determine an individual lead time and that memory extinguishing means delete the traffic event after the expiration of the retention period from the at least one electronic database.
  • the system according to the invention thus comprises all necessary means for carrying out the method according to the invention and therefore makes it possible to study traffic events in an efficient manner.
  • the invention also relates to a use of the system according to the invention for warning of danger in traffic.
  • Fig. 1 shows an exemplary structure of the system according to the invention.
  • vehicles 11 and 12 On display are vehicles 11 and 12, each capable of vehicle-to-X communication and traveling on traffic routes 13 and 14.
  • Vehicles 11 and 12 are each equipped with environmental and driving condition sensors for detecting traffic events.
  • weather station 15, mobile tower 16, bridge 17 and road sign 18, which serve as network elements of the data network according to the invention in addition to their actual traffic engineering function.
  • network elements 15, 16, 17 and 18 are each equipped with vehicle-to-X communication means and local electronic databases.
  • bridge 17 and road sign 18 are capable of vehicle-to-X communication exclusively by means of WLAN according to IEEE 802.11p, while mobile radio masts 16 and weather station 15 are capable of vehicle-to-X communication exclusively by means of mobile radio.
  • Vehicle 12 transmits this traffic event by means of mobile radio to weather station 15 and mobile tower 16 and by means of WLAN to bridge 17, which is just in Sendereichweite.
  • the transmitted traffic event also includes position data in the form of GPS coordinates and time data, the position data describing the location of vehicle 12 at the time of detection of construction site 19 and the time data describing the time of detection of construction site 19.
  • Weather station 15, mobile mast 16 and bridge 17 store the transmitted traffic event in each case in a local electronic database and hold it for a determinable lead time. During the retention period, the traffic event can be transmitted and made available to other vehicles traveling on traffic route 14.
  • the retention period is read out of a table which assigns a risk factor to each type of traffic event. On the basis of this risk factor and the frequency with which traffic event "site 19" is transmitted to weather station 15, mobile tower 16 and bridge 17, determine weather station 15, mobile tower 16 and bridge 17 each an individual lead time. Since weather station 15, mobile tower 16 and bridge 17 refer to the same table, they each determine an identical individual retention period. By way of example, the current retention period is two days. If the traffic event "construction site 19" is not transmitted again to weather station 15, mobile tower 16 or bridge 17 within the retention period, it is deleted from its electronic databases, because it is assumed that construction site 19 is no longer available. This clearly corresponds to a "forgetting" of site 19 in network elements 15, 16 and 17.
  • Network elements 202, 203, 204, 205 and 206 are, for example, as specific to the invention Provided infrastructure provided infrastructure without further traffic-technical function and each capable of vehicle-to-X communication by means of WLAN IEEE 802.11p.
  • Network elements 202, 203, 204, 205, and 206 are assigned transmit ranges 207, 208, 209, 210, and 211. As can be seen, transmit ranges 207, 208, 209, 210 and 211 completely cover traffic route 201.
  • Traffic events 212, 213, 214 and 215 are maintained in the local electronic databases of network elements 202, 203, 204, 205 and 206. Traffic events 212 describe accident events, traffic events 213 describe the occurrence of slipperiness in the form of black ice, traffic events 214 describe potholes, and traffic events 215 describe a traffic jam. Since these traffic events are transmitted to a vehicle which travels along traffic route 201, the vehicle has up-to-date warnings of possible dangerous situations.
  • Fig. 3 is a possible sequence of the method according to the invention in the form of a flow chart to see.
  • traffic events are detected by a vehicle by means of environment sensors and driving condition sensors. These traffic events are transmitted in step 32 to an inventive data network and written in the same time step 33 in an internal vehicle memory.
  • the traffic events include position and time data.
  • the traffic events are written to and maintained in an electronic database of the data network. Step 34 also includes associating new time data with the transmitted traffic events, the new time data being from an internal timer of the data network. This guarantees a uniform identification of the traffic events with time data, since the time data thus always comes from the same timer.
  • step 35 the traffic events by means of evaluation means associated with an individual lead time, which is first read out of a table for each specific traffic event and is modified in step 36 depending on the frequency of the specific traffic events. The more frequently a specific traffic event occurs or is transmitted to the data network, the further the retention period is extended.
  • step 37 the traffic events are transmitted to a vehicle which passes through a traffic route associated with the traffic events.
  • step 38 the traffic events whose reservation duration has expired are deleted from the data network.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Lernen von Verkehrsereignissen gemäß Oberbegriff von Anspruch 1, ein System zum Lernen von Verkehrsereignissen gemäß Oberbegriff von Anspruch 13 sowie dessen Verwendung.
  • Im Stand der Technik sind unterschiedliche Gattungen von Fahrerassistenzsystemen bekannt, denen im Wesentlichen gemein ist, dass sie der Entlastung des Fahrers und der Erhöhung der Sicherheit im Verkehrsgeschehen dienen. Derartige Systeme basieren dabei teilweise auf mittels Umfeldsensorik erfassten Umfeldinformationen, auf aus digitalem Kartenmaterial ausgelesenen Informationen oder auch auf Informationen, die mittels Fahrzeug-zu-X-Kommunikation empfangen wurden. Ebenso sind auch Navigationssysteme, welche in der Regel GPS-basierend ausgeführt sind, bekannt und in immer mehr aktuellen Fahrzeugen serienmäßig vorhanden. Diese Navigationssysteme nehmen anhand von empfangenen Satellitensignalen eine Standortbestimmung vor und führen den Fahrer entlang einer mithilfe digitalen Kartenmaterials bestimmten Fahrtroute ans Ziel.
  • Aus der DE 10 2007 048 809 A1 ist ein Verfahren zur Erkennung von verdeckten Objekten im Straßenverkehr bekannt. Dabei werden die Umgebung eines Fahrzeugs sowie Bewegungsgrößen des Fahrzeugs sensorisch erfasst. Diese Informationen werden mittels Fahrzeug-zu-Fahrzeug-Kommunikation an weitere im Umfeld befindliche Fahrzeuge übertragen. Gleichzeitig erfassen und senden die im Umfeld befindlichen, weiteren Fahrzeuge ebenfalls Umgebungs- und Bewegungsinformationen. Diese Informationen werden empfangen und dazu verwendet, ein bestehendes Umfeldmodell zu erweitern.
  • Das solcherart erweiterte Umfeldmodell wird mittels einer Anzeige im Fahrzeug aktualisiert wiedergegeben und kann einem oder mehreren Fahrerassistenzsystemen zur Verfügung gestellt werden. Somit stehen im Fahrzeug Informationen über Objekte zur Verfügung, welche von den Fahrzeugsensoren selbst nicht erfasst werden können.
    In der DE 10 2009 008 959 A1 wird ein Fahrzeugsystem zur Navigation und/oder Fahrerassistenz beschrieben. Das Fahrzeugsystem umfasst eine Providereinheit, zumindest einen Umfeldsensor und einen Fahrzeugsensor. Die Providereinheit umfasst ihrerseits ein auf einem Satellitensignalsensor basierendes Positionsmodul und einen ADAS-Horizontprovider, welcher mit einer Navigationseinheit, die sich auch außerhalb des Fahrzeugs befinden kann, kommunikativ koppelbar ist. Die Navigationseinheit kann dabei z.B. als Server ausgeführt sein, welcher Kartenausschnitte einer digitalen Karte an die Providereinheit übermittelt.
    Die DE 10 2008 012 660 A1 offenbart ein Verfahren zur serverbasierten Warnung von Fahrzeugen vor Gefahren sowie eine entsprechende Gefahrenwarneinheit. Dabei wird ein Messwert mittels einer Erfassungseinheit eines ersten Fahrzeugs erfasst und es wird bestimmt, ob der Messwert mit einer Gefahr korrespondiert. Sofern der Messwert mit einer Gefahr korrespondiert, werden Informationsdaten über die Gefahr an eine Zentrale übermittelt. In der Zentrale werden die Art der Gefahr, der Ort, an dem der Messwert erfasst wurde, die Zeit, zu der der Messwert erfasst wurde sowie eine Identifikation des übermittelnden Fahrzeugs gespeichert und entsprechende Warndaten erzeugt. Die für ein zweites Fahrzeug relevanten Warndaten können dann von diesem zweiten Fahrzeug von der Zentrale abgerufen werden.
  • Aus der US 2006/0178788 A1 ist ein System bekannt, bei welchem eine Vielzahl von Fahrzeugen Informationen über die Ver-kehrsdichte sammeln und auf Basis eines spezifischen Maschine-Lernverfahrens, basierend auf dem "Pheromone Modeling", austauschen. Dabei wird eine berechnete Zuverlässigkeitsgröße bei fortschreitender Zeit "gedämpft" bis die Information schließlich ungültig ist.
  • Das "Pheromone Modeling" - Verfahen ist aus dem Dokument "Yasushi Ando, Yoshiaki Fukazawa, Osamu Matsutani, Hirotoshi Iwasa / Performance of Pheromone Model for Predicting Traffic Congestion / 05.12.2006" bekannt.
  • Das Dokument "Communication Consortium Manifesto Overview of the C2C-CC System / gefunden im Internet: Internet Citation Online 28. August 2007, Seiten 1-94, URL: http://www.car-to-car.org/fileadmin/downloads/C2C-CC_manifest o_v1.1.pdf / 11.11.2009" beschreibt die Kommunikation zwischen Fahrzeugen und einem Kommunikationsnetzwerk.
  • Die im Stand der Technik bekannten Verfahren und Systeme sind jedoch insofern nachteilbehaftet, als dass in einer Datenbank oder einem Speicher gespeicherte Informationen und Umfeldmodelle solange starr vorgehalten und Fahrzeugen zur Verfügung gestellt werden, bis sie durch eine ausreichende Zahl aktuellerer Messungen widerlegt bzw. geändert wurden. Ein flexibler, der Dynamik des Verkehrsflusses Rechnung tragender Umgang mit den gespeicherten Informationen und Umfeldmodellen ist damit nicht möglich, insbesondere ist eine Erkennung von regelmäßig auftretenden Verkehrsereignissen an bestimmten Verkehrsabschnitten nicht möglich.
  • Die Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren vorzuschlagen, welches die im Stand der Technik vorherrschenden Nachteile überwindet.
    Diese Aufgabe wird erfindungsgemäß durch das Verfahren zum Lernen von Verkehrsereignissen gemäß Anspruch 1 gelöst.
    Gemäß dem erfindungsgemäßen Verfahren zum Lernen von Verkehrsereignissen, bei welchem die Verkehrsereignisse mittels Fahrzeug-zu-X-Kommunikation an ein Datennetzwerk übertragen werden und wobei die Verkehrsereignisse den Verkehrsereignissen zugeordnete Positionsdaten und Zeitdaten umfassen, werden die Verkehrsereignisse im Datennetzwerk elektronisch vorgehalten. Das Verfahren zeichnet sich dadurch aus, dass für jedes Verkehrsereignis eine individuelle Vorhaltedauer bestimmt wird und dass das Verkehrsereignis nach Ablauf der Vorhaltedauer aus dem Datennetzwerk gelöscht wird.
    Daraus ergibt sich der Vorteil, dass die Verkehrsereignisse selbstständig nach Ablauf der individuellen Vorhaltedauer aus dem Datennetzwerk gelöscht werden, wobei die individuelle Vorhaltedauer vorteilhafterweise dem jeweiligen Verkehrsereignis angepasst gewählt wird. Z.B. kann das Verkehrsereignis "Verkehrsstau" schneller aus dem Datennetzwerk gelöscht werden als das Verkehrsereignis "Straßenglätte", da ein Verkehrsstau sich in der Regel innerhalb von wenigen Stunden wieder auflöst, während Straßenglätte witterungsbedingt, insbesondere bei Ausbleiben eines Streudienstes, vergleichsweise länger anhalten kann.
  • Das erfindungsgemäße Verfahren entspricht somit einem "Lernen" und einem anschließenden "Vergessen" von Verkehrsereignissen, was ein intelligentes und ereignisorientiertes Vorhalten der einzelnen Verkehrsereignisse ermöglicht.
  • Der Begriff "Verkehrsereignis" wird im Sinne der Erfindung nicht ausschließlich für das Verkehrsereignis als solches, sondern insbesondere für die das Verkehrsereignis beschreibenden Informationen verwendet.
  • Die Bestimmung der Positionsdaten erfolgt bevorzugt mittels eines globalen Satellitennavigationssystems, wie z.B. GPS oder Galileo, und wird besonders bevorzugt durch ein Map-Matching-Verfahren bzw. Koppelnavigation ergänzt.
  • Die Zeitdaten werden vorteilhafterweise über einen Zeitgeber des Datennetzwerks bestimmt und den Verkehrsereignissen zugeordnet, wenn diese an das Datennetzwerk übertragen werden.
  • Vorteilhafterweise ist es vorgesehen, dass die Fahrzeug-zu-X-Kommunikation mittels mindestens einer der folgenden Verbindungsarten erfolgt:
    • WLAN-Verbindung, insbesondere nach IEEE 802.11p,
    • WiFi-Verbindung,
    • ISM-Verbindung (Industrial, Scientific, Medical Band), insbesondere über eine funkverbindungsfähige Schließvorrichtung,
    • Bluetooth-Verbindung,
    • ZigBee-Verbindung,
    • UWB-Verbindung (Ultra Wide Band),
    • WiMax-Verbindung (Worldwide Interoperability for Microwave
      Access),
    • Remote-Keyless-Entry-Verbindung,
    • Mobilfunkverbindung, insbesondere GSM-, GPRS-, EDGE-, UMTS- und/oder LTE-Verbindung und
      • Infrarotverbindung.
  • Diese Verbindungsarten bieten dabei unterschiedliche Vorteile, je nach Art, Wellenlänge und verwendetem Datenprotokoll. So ermöglichen einige der genannten Verbindungsarten z.B. eine vergleichsweise hohe Datenübertragungsrate und einen vergleichsweise schnellen Verbindungsaufbau, andere hingegen eignen sich weitestgehend sehr gut zur Datenübertragung um Sichthindernisse herum. Durch die Kombination und gleichzeitige bzw. parallele Nutzung mehrerer dieser Verbindungsarten ergeben sich weitere Vorteile, da so auch Nachteile einzelner Verbindungsarten ausgeglichen werden können.
  • Bevorzugt ist es vorgesehen, dass die Verkehrsereignisse Gefahrensituationen beschreiben und die Vorhaltedauer abhängig von einem Gefährdungsfaktor und/oder einer Häufigkeit des Verkehrsereignisses bestimmt wird, wobei die Vorhaltedauer mit zunehmender Häufigkeit und mit zunehmendem Gefährdungsfaktor zunimmt. Daraus ergibt sich zunächst der Vorteil, dass die Zahl der vorgehaltenen Verkehrsereignisse beschränkt bleibt, da sie auf Gefahrensituationen reduziert ist. Ein Verlust an relevanten Informationen bzw. Verkehrsereignissen tritt im Wesentlichen dennoch nicht auf, da die vergleichsweise bedeutsamsten Verkehrsereignisse in aller Regel Gefahrensituationen sind. Beispiele für derartige Verkehrsereignisse, die eine Gefahrensituation beschreiben, sind etwa die Ereignisse "Straßenglätte" "Verkehrsstau", "Unfall", "Baustelle", "Fahrbahnverengung" und "Pannenfahrzeug". Die Verkehrsereignisse können dabei auch jahreszeitliche bzw. tageszeitliche Besonderheiten beschreiben, wie etwa "Straßenglätte durch herabgefallenes Laub" im Herbst und "Blendungsgefahr durch Sonnenaufgang bzw. -untergang" während der Dämmerung.
  • Je öfter ein bestimmtes Verkehrsereignis auftritt und an das Datennetzwerk übermittelt wird, je größer also die Häufigkeit des Verkehrsereignisse ist, desto länger ist die jeweilige Vorhaltedauer. Da die Häufigkeit eines Verkehrsereignisses mit jeder Übertragung an das Datennetzwerk zunimmt, wird auch die zugehörige Vorhaltedauer mit jeder Übertragung neu bestimmt, d.h. verlängert. Dies entspricht anschaulich einem "Lernen-und-Vergessen-Prozess" durch das Datennetzwerk, welches sich häufiger auftretende Verkehrsereignisse sozusagen länger merken kann als vergleichsweise selten auftretende Verkehrsereignisse. Somit ergibt sich der Vorteil, dass vergleichsweise häufig auftretende Verkehrsereignisse länger vorgehalten werden und somit Informationen über diese Verkehrsereignisse länger zu Verfügung stehen. Die Vorhaltedauer kann dabei sowohl linear abhängig gemacht werden von der Häufigkeit als auch gestuft abhängig gemacht werden, d.h. dass einem bestimmten Häufigkeitsintervall eine bestimmte Vorhaltedauer zugeordnet wird. Falls die Häufigkeit eines bestimmten Verkehrsereignisses so groß ist, dass die zugehörige individuelle Vorhaltedauer schneller verlängert wird als sie abläuft, wird dieses Verkehrsereignis folglich dauerhaft vorgehalten.
  • Da die Vorhaltedauer außerdem von einem Gefährdungsfaktor abhängig ist und mit zunehmendem Gefährdungsfaktor ebenfalls zunimmt, ergibt sich der weitere Vorteil, dass Verkehrsereignisse, die eine vergleichsweise große Gefahr darstellen, länger vorgehalten werden als Verkehrsereignisse, die nur eine geringe Gefahr darstellen. Die Bestimmung des Gefährdungsfaktors kann dabei z.B. mittels einer vorgegebenen Tabelle erfolgen, welche jeder Art von Verkehrsereignis einen Gefährdungsfaktor zuordnet. Alternativ oder zusätzlich kann der bereits bestimmte Gefährdungsfaktor gemeinsam mit dem Verkehrsereignis an das Datennetzwerk übertragen werden.
  • Letztendlich wird also die Vorhaltedauer bestimmter Verkehrsereignisse immer weiter verlängert, wenn diese häufig genug auftreten und einen entsprechenden Gefährdungsfaktor aufweisen. Ein Beispiel hierfür sind etwa zu den Hauptverkehrszeiten regelmäßig auftretende Stauenden hinter Höhenkuppen oder uneinsehbaren Kurven, welche regelmäßig eine vergleichsweise große Gefährdung und damit einen vergleichsweise großen Gefährdungsfaktor aufweisen.
  • Außerdem ist es bevorzugt, dass ein Verkehrsereignis nicht gelöscht wird, wenn es einen Verkehrsunfall beschreibt. Da ein Verkehrsunfall die Folge einer nicht mehr abwendbaren Gefahr ist und somit für das Verkehrsgeschehen und die Sicherheit der Verkehrsteilnehmer höchst relevant ist, wird somit gewährleistet, dass die Informationen über den Verkehrsunfall jederzeit zur Verfügung stehen. Dies kann z.B. dadurch geschehen, dass dem Verkehrsereignis "Verkehrsunfall" eine unendlich lange Vorhaltedauer zugeordnet wird.
  • Weiterhin ist es bevorzugt, dass elektronisch vorgehaltene, gleichartige Verkehrsereignisse, deren Positionsdaten und/oder Zeitdaten nicht weiter als einen räumlichen und/oder einen zeitlichen Grenzwert voneinander beabstandet sind, zu einem kumulierten Verkehrsereignis zusammengefasst werden. Daraus ergibt sich zum Einen der Vorteil, dass das erfindungsgemäße Verfahren vereinfacht wird, da nicht eine vergleichsweise große Anzahl von einzelnen, nahezu identischen Verkehrsereignissen und eine entsprechend große Datenmenge vorgehalten werden muss. Zum Anderen ergibt sich der Vorteil, dass für die Bestimmung der Vorhaltedauer auf die Häufigkeit der kumulierten Verkehrsereignisse zurückgegriffen werden kann, wodurch eine der tatsächlichen Häufigkeit besser gerecht werdende Vorhaltedauer bestimmt werden kann. Ein Beispiel hierfür ist etwa das Auftreten von Straßenglätte aufgrund von Fahrbahnvereisungen auf einem bestimmten Fahrbahnabschnitt, wobei die Straßenglätte an jeweils einige Meter voneinander entfernten, unterschiedlichen Stellen erfasst und entsprechend an das Datennetzwerk übermittelt wurde. Durch das Zusammenfassen dieser einzelnen, gleichartigen Verkehrsereignisse zu einem kumulierten Verkehrsereignis ergibt sich also der Vorteil, dass die Häufigkeit des kumulierten Verkehrsereignisses im Vergleich zu den einzelnen Häufigkeiten der einzelnen Verkehrsereignisse deutlich größer ist, was zu einer vergleichsweise längeren Vorhaltedauer führt. Diese längere Vorhaltedauer entspricht der tatsächlichen Verkehrssituation besser, da in der Realität davon auszugehen ist, dass der ganze Fahrbahnabschnitt vereist ist. Es ist in der Praxis unerheblich, an welcher Stelle genau die Fahrbahnvereisung erkannt wurde.
  • Verkehrsereignisse werden im Sinne der Erfindung als gleichartige Verkehrsereignisse angesehen, wenn sie eine identische Situation beschreiben, wie z.B. "Straßenglätte", "Verkehrsstau" oder "Baustelle".
  • Zweckmäßigerweise ist es vorgesehen, dass das Datennetzwerk ein dezentrales Datennetzwerk ist, welches lokale Netzwerkelemente entlang einer Vielzahl von Verkehrsrouten umfasst. Daraus ergibt sich der Vorteil, dass das durch das Übertragen von Verkehrsereignissen an das Datennetzwerk entstehende Datenvolumen auf die lokalen Netzwerkelemente verteilt werden kann. Zudem sind die lokalen Netzwerkelemente auch mittels vergleichsweise kurzreichweitiger Verbindungsarten der Fahrzeug-zu-X-Kommunikation jederzeit gut erreichbar.
  • Zweckmäßigerweise ist es insbesondere vorgesehen, dass die Verkehrsereignisse von den Netzwerkelementen vorgehalten werden, die sich innerhalb einer vorgebbaren Entfernung von den Verkehrsereignissen zugeordneten Positionsdaten befinden. Dazu können die Netzwerkelemente über geeignete lokale elektronische Datenbanken verfügen. Somit werden die jeweiligen Verkehrsereignisse also in der Nähe derjenigen Positionsdaten vorgehalten, an denen sie aufgetreten sind. Dies ermöglicht es, auch innerhalb des Datennetzwerks das Übertragen vergleichsweise großer Datenvolumen zu vermeiden, da die Verkehrsereignisse z.B. nicht mehr an eine zentrale Datenbank übertragen werden müssen und von dieser ggf. wieder abgerufen werden müssen. Zudem stehen die Verkehrsereignisse unmittelbar in der Nähe derjenigen Positionsdaten zur Verfügung, an denen sie aufgetreten sind.
  • Vorteilhafterweise ist es vorgesehen, dass die Verkehrsereignisse von einer Vielzahl von Fahrzeugen mittels Umfeldsensorik und oder Fahrzustandssensorik erfasst werden und an das Datennetzwerk übertragen werden. Daraus ergibt sich der Vorteil, dass die Verkehrsereignisse direkt von den Verkehrsteilnehmern, welche in die Verkehrsereignisse involviert sind, erfasst werden. Es werden somit in der Regel alle relevanten Verkehrsereignisse auf vergleichsweise einfache Art zuverlässig erfasst.
  • Insbesondere ist es vorgesehen, dass die Verkehrsereignisse mittels mindestens eines der folgenden Umfeldsensoren bzw. Fahrzustandssensoren erfasst werden:
    • Radarsensor,
    • optischer Kamerasensor,
    • Lidarsensor,
    • Lasersensor,
    • Ultraschallsensor,
    • Fahrwerkssensor,
    • ESP-Sensor,
    • ABS-Sensor und
    • Neigungssensor.
  • Bei den genannten Sensoren handelt es sich um im Kraftfahrzeugbereich typischerweise verwendete Sensoren, die im Wesentlichen eine umfassende Erfassung und Erkennung des Fahrzeugumfelds und des Fahrzeugzustands ermöglichen. Zum gegenwärtigen Zeitpunkt ist bereits eine Vielzahl von Fahrzeugen standardmäßig mit mehreren Sensoren der genannten Gattungen ausgestattet und diese Zahl wird in Zukunft aller Voraussicht nach weiter zunehmen. Der zusätzliche Ausrüstungsaufwand zur Implementierung des erfindungsgemäßen Verfahrens in ein Kraftfahrzeug ist daher gering.
  • Außerdem ist es vorgesehen, dass die elektronisch vorgehaltenen Verkehrsereignisse und/oder die kumulierten Verkehrsereignisse mittels Fahrzeug-zu-X-Kommunikation an ein Fahrzeug übertragen werden, wenn das Fahrzeug die vorgebbare Entfernung zu den Verkehrsereignissen zugeordneten Positionsdaten unterschreitet. Somit ergibt sich der Vorteil, dass das Fahrzeug, sobald es sich weit genug an die Positionsdaten des jeweiligen Verkehrsereignisses angenähert hat, Informationen über dieses jeweilige Verkehrsereignis erhält. Da es sich bei den Verkehrsereignissen in der Regel um Gefahrensituationen handelt, erhält das Fahrzeug also rechtzeitig vor dem Erreichen der Position, von der die Gefahrensituation ausgeht bzw. ausging, als Warnung interpretierbare Informationen. Diese Informationen können z.B. mittels einer kurzreichweitigen Verbindungsart als sogenannter Broadcast übermittelt werden, wodurch in diesem Fall durch die Übertragungsreichweite auch die vorgebbare Entfernung, ab deren Unterschreiten die Übertragung erfolgt, festgelegt ist.
  • Ebenso kann das Fahrzeug kontinuierlich oder regelmäßig seine Positionsdaten an das Datennetzwerk übermitteln, woraufhin dieses dann die entsprechenden Verkehrsereignisse an das Fahrzeug überträgt. Alternativ kann das Datennetzwerk die vorgehaltenen Verkehrsereignisse anhand der ihnen zugeordneten Positionsdaten kennzeichnen, so dass diese vom Fahrzeug abgerufen werden können, sobald es die vorgebbare Entfernung unterschreitet. Im Prinzip sind hier alle gängigen und bekannten sogenannten Push- bzw. Pull-Verfahren zur Übertragung geeignet.
  • Das Fahrzeug bzw. der Fahrer des Fahrzeugs erhalten somit Informationen über Verkehrsereignisse, die auf einer Erfassung durch andere Fahrzeuge beruhen. Durch die Vielzahl der Fahrzeuge, welche die Verkehrsereignisse erfassen, sind die erfindungsgemäß vom Datennetzwerk an das Fahrzeug übertragenen Verkehrsereignisse entsprechend zuverlässiger und ggf. statistisch stärker abgesichert, als Informationen, die nur von wenigen oder gar einzelnen Fahrzeugen erfasst werden bzw. zwischen diesen mittels Fahrzeug-zu-X-Kommunikation ausgetauscht werden.
  • Außerdem erhalten die Fahrzeuge bzw. deren Fahrer somit auch dann Informationen über Verkehrsereignisse, wenn keine anderen Fahrzeuge in der Umgebung bzw. in Übertragungsreichweite sind.
  • Weiterhin ist es vorgesehen, dass die Netzwerkelemente Mobilfunkmasten und/oder Verkehrsampeln und/oder Verkehrszeichen und/oder Baken und/oder Leitpfosten und/oder Brücken und/oder Wetterstationen und/oder gesonderte Infrastruktureinrichtungen sind. Somit können also bereits bestehende Infrastrukturelemente als Netzwerkelemente genutzt werden, wodurch die durch den Aufbau des Datennetzwerks entstehenden Kosten gering gehalten werden können. Sofern die Infrastrukturelemente nicht zur Fahrzeug-zu-X-Kommunikation befähigt sind, müssen sie ggf. funktionstechnisch erweitert werden. Auch eine Erweiterung der genannten Infrastrukturelemente um eine lokale elektronische Datenbank zum lokalen Vorhalten der Verkehrsereignisse kann notwendig werden.
  • Bei den gesonderten Infrastruktureinrichtungen handelt es sich erfindungsgemäß um spezielle und ausschließlich zur Ausführung des erfindungsgemäßen Verfahrens vorgesehene Netzwerkelemente, die keine weitere Funktion erfüllen.
  • Bevorzugt ist es vorgesehen, dass die Verkehrsereignisse zentral vorgehalten werden und über eine Datenbank abrufbar sind sowie insbesondere zur Routenplanung für Fahrzeuge abrufbar sind. Somit wird also in der Datenbank ein aktuelles Gesamtbild aller erfassten Verkehrsereignisse vorgehalten. Dieses Gesamtbild kann entweder als Sicherheitskopie bei Datenverlust in einem oder mehreren Netzwerkelementen verwendet werden, oder aber auch zur Auswertung größerer Routenabschnitte hinsichtlich bestimmter Verkehrsereignisse herangezogen werden. Besondere Vorteile ergeben sich weiterhin durch die Verwendung der zentralen Datenbank zur Routenplanung für Fahrzeuge. Dazu können die in der Datenbank vorgehaltenen Verkehrsereignisse beispielsweise durch die jeweiligen Fahrzeuge abrufbar sein. Dies ermöglicht bei der Routenplanung z.B. das Berücksichtigen von Kriterien wie "Vermeidung von Strecken mit erhöhter Glättegefahr" oder "Vermeidung von Strecken mit erhöhter Staugefahr". Eine weitere Verwendungsmöglichkeit der Datenbank besteht darin, jeweils optimale, besonders ökologische oder besonders schnelle Routen zu ermitteln.
  • Außerdem ist es bevorzugt, dass an das Datennetzwerk übertragene Verkehrsereignisse mittels im Datennetzwerk vorgehaltener Verkehrsereignisse plausibilisiert werden, bevor diese vom Datennetzwerk an das Fahrzeug übertragen werden. Daraus ergibt sich der Vorteil, dass an das Fahrzeug nur Verkehrsereignisse übermittelt werden, die als bestätigt angenommen werden können. Beispielsweise kann ein an die Datenbank übertragenes Verkehrsereignis als plausibilisiert angenommen werden, wenn eine bestimmte Anzahl gleichartiger Verkehrsereignisse mit im Wesentlichen identischen Positionsdaten in einer bestimmten Zeitspanne an die Datenbank übertragen wird. Oder aber es kann z.B. das Verkehrsereignis "Straßenglätte" in einem Fahrbahnabschnitt mit bekannter Glättegefahr schneller als plausibilisiert angenommen werden als in einem anderen Fahrbahnabschnitt. Zur erfindungsgemäßen Plausibilisierung bietet sich allgemein eine Vielzahl von im Rahmen der Fahrzeug-zu-X-Kommunikation bereits bekannten Plausibilisierungsverfahren für Fahrzeug-zu-X-Botschaften an.
  • Zweckmäßigerweise ist es vorgesehen, dass von jedem der Vielzahl von Fahrzeugen erfasste Verkehrsereignisse zusätzlich in jedem der Vielzahl von Fahrzeugen elektronisch vorgehalten werden. Diese lokal in der Vielzahl von Fahrzeugen vorgehaltenen Verkehrsereignisse sind naturgemäß zwar weniger umfassend als die im Datennetzwerk vorgehaltenen Verkehrsereignisse, ergeben jedoch eine gute Ergänzung zu diesen. Insbesondere ist eine Bestätigung bzw. Validierung der Verkehrsereignisse durch Abgleichen der in jedem der Vielzahl von Fahrzeugen vorgehaltenen Verkehrsereignisse mit den im Datennetzwerk vorgehaltenen Verkehrsereignissen möglich. Weiterhin ist auch eine Plausibilisierung der vom Datennetzwerk übertragenen Verkehrsereignisse in jedem der Vielzahl von Fahrzeugen mittels dessen Umfeld- bzw. Fahrzustandssensorik möglich.
  • Analog zu dem Verfahren im Datennetzwerk kann auch in jedem der Vielzahl von Fahrzeugen für jedes Verkehrsereignis eine individuelle Vorhaltedauer bestimmt werden, wobei das Verkehrsereignis nach Ablauf der Vorhaltedauer aus einem entsprechenden elektronischen Speicher bzw. einer elektronischen Datenbank in jedem der Vielzahl von Fahrzeugen gelöscht werden kann.
  • Die Erfindung betrifft weiterhin ein System zum Lernen von Verkehrsereignissen, welches mindestens eine elektronische Datenbank, eine Vielzahl von Fahrzeugen, welche mit Fahrzeug-zu-X-Kommunikationsmitteln und mit Umfeldsensorik und/oder Fahrzustandssensorik ausgestattet sind sowie eine Vielzahl von Netzwerkelementen eines Datenntzwerks, welche entlang einer Vielzahl von Verkehrsrouten angeordnet sind und mit Fahrzeug-zu-X-Kommunikationsmitteln ausgestattet sind, umfasst, wobei die Vielzahl von Fahrzeugen mittels der Umfeldsensorik und/oder der Fahrzustandssensorik Verkehrsereignisse erfasst und mittels der Fahrzeug-zu-X-Kommunikationsmittel an das Datennetzwerk überträgt, wobei die Verkehrsereignisse den Verkehrsereignissen zugeordneten Positionsdaten und Zeitdaten umfassen und wobei die mindestens eine elektronische Datenbank die Verkehrsereignisse elektronisch vorhält. Das System zeichnet sich dadurch aus, dass Auswertemittel der mindestens einen elektronischen Datenbank für jedes Verkehrsereignis eine individuelle Vorhaltedauer bestimmen und dass Speicherlöschmittel das Verkehrsereignis nach Ablauf der Vorhaltedauer aus der mindestens einen elektronischen Datenbank löschen. Das erfindungsgemäße System umfasst somit alle notwendigen Mittel zur Ausführung des erfindungsgemäßen Verfahrens und ermöglicht daher auf effiziente Weise das Lernen von Verkehrsereignissen.
  • Bevorzugt ist es vorgesehen, dass das System das erfindungsgemäße Verfahren ausführt. Daraus ergeben sich die bereits beschriebenen Vorteile.
  • Die Erfindung betrifft außerdem eine Verwendung des erfindungsgemäßen Systems zur Gefahrenwarnung im Straßenverkehr.
  • Weitere bevorzugte Ausführungsformen ergeben sich aus den Unteransprüchen und den nachfolgenden Beschreibungen von Ausführungsbeispielen an Hand von Figuren.
  • Es zeigen
    • Fig. 1 beispielhaft ein erfindungsgemäßes System,
    • Fig. 2 schematisch eine Anordnung von Netzwerkelementen entlang einer Verkehrsoute und
    • Fig. 3 einen beispielhaften Ablauf des erfindungsgemäßen Verfahrens in Form eines Flussdiagramms.
  • Fig. 1 zeigt einen beispielhaften Aufbau des erfindungsgemäßen Systems. Zu sehen sind Fahrzeuge 11 und 12, welche jeweils zur Fahrzeug-zu-X-Kommunikation befähigt sind und auf Verkehrsrouten 13 und 14 unterwegs sind. Fahrzeuge 11 und 12 sind jeweils mit Umfeld- und Fahrzustandssensorik zur Erfassung von Verkehrsereignissen ausgestattet. Zu sehen sind weiterhin Wetterstation 15, Mobilfunkmast 16, Brücke 17 und Verkehrsschild 18, welche neben ihrer eigentlichen verkehrstechnischen Funktion jeweils als Netzwerkelemente des erfindungsgemäßen Datennetzwerks dienen. Dazu sind Netzwerkelemente 15, 16, 17 und 18 jeweils mit Fahrzeug-zu-X-Kommunikationsmitteln und lokalen elektronischen Datenbanken ausgestattet. Beispielsgemäß sind Brücke 17 und Verkehrsschild 18 ausschließlich mittels WLAN nach IEEE 802.11p zur Fahrzeug-zu-X-Kommunikation befähigt, während Mobilfunkmasten 16 und Wetterstation 15 ausschließlich mittels Mobilfunk zur Fahrzeug-zu-X-Kommunikation befähigt sind. Beim Fahren auf Verkehrsroute 14 erfasst Fahrzeug 12 mittels seiner Umfeldsensorik Baustelle 19, welche eine Gefahrensituation darstellt und im Sinne der Erfindung als Verkehrsereignis verstanden wird. Fahrzeug 12 übermittelt dieses Verkehrsereignis mittels Mobilfunk an Wetterstation 15 und Mobilfunkmast 16 sowie mittels WLAN an Brücke 17, welche gerade noch in Sendereichweite ist. Das übermittelte Verkehrsereignis umfasst außerdem Positionsdaten in Form von GPS-Koordinaten sowie Zeitdaten, wobei die Positionsdaten den Ort von Fahrzeug 12 zum Zeitpunkt der Erfassung von Baustelle 19 beschreiben und die Zeitdaten den Zeitpunkt der Erfassung von Baustelle 19 beschreiben. Wetterstation 15, Mobilfunkmast 16 und Brücke 17 speichern das übermittelte Verkehrsereignis jeweils in einer lokalen elektronischen Datenbank und halten es für eine bestimmbare Vorhaltedauer vor. Während der Vorhaltedauer kann das Verkehrsereignis an andere Fahrzeuge, welche auf Verkehrsroute 14 unterwegs sind, übermittelt und zur Verfügung gestellt werden. Die Vorhaltedauer wird dabei aus einer Tabelle ausgelesen, welche jeder Art von Verkehrsereignis einen Gefährdungsfaktor zuordnet. Anhand dieses Gefährdungsfaktors und der Häufigkeit, mit das Verkehrsereignis "Baustelle 19" an Wetterstation 15, Mobilfunkmast 16 und Brücke 17 übermittelt wird, bestimmen an Wetterstation 15, Mobilfunkmast 16 und Brücke 17 jeweils eine individuelle Vorhaltedauer. Da Wetterstation 15, Mobilfunkmast 16 und Brücke 17 auf dieselbe Tabelle zurückgreifen, bestimmen sie jeweils eine identische individuelle Vorhaltedauer. Beispielsgemäß beträgt die gegenwärtige Vorhaltedauer zwei Tage. Sofern innerhalb der Vorhaltedauer das Verkehrsereignis "Baustelle 19" nicht erneut an Wetterstation 15, Mobilfunkmast 16 oder Brücke 17 übermittelt wird, wird es aus deren elektronischen Datenbanken gelöscht, weil davon ausgegangen wird, dass Baustelle 19 nicht mehr vorhanden ist. Dies entspricht anschaulich einem "Vergessen" von Baustelle 19 in Netzwerkelementen 15, 16 und 17.
  • In Fig. 2 ist Straßenabschnitt 201 mit Netzwerkelementen 202, 203, 204, 205 und 206 zu sehen. Netzwerkelementen 202, 203, 204, 205 und 206 sind beispielsgemäß als speziell für das erfindungsgemäße Verfahren vorgesehene Infrastruktureinrichtungen ohne weitere verkehrstechnische Funktion ausgebildet und jeweils zur Fahrzeug-zu-X-Kommunikation mittels WLAN nach IEEE 802.11p befähigt. Netzwerkelementen 202, 203, 204, 205 und 206 sind Sendereichweiten 207, 208, 209, 210 und 211 zugeordnet. Wie zu sehen ist, decken Sendereichweiten 207, 208, 209, 210 und 211 Verkehrsroute 201 vollständig ab. In den lokalen elektronischen Datenbanken von Netzwerkelementen 202, 203, 204, 205 und 206 werden Verkehrsereignisse 212, 213, 214 und 215 vorgehalten. Verkehrsereignisse 212 beschreiben Unfallereignisse, Verkehrsereignisse 213 beschreiben das Auftreten von Straßenglätte in Form von Glatteis, Verkehrsereignisse 214 beschreiben Schlaglöcher und Verkehrsereignisse 215 beschreiben einen Verkehrsstau. Da diese Verkehrsereignisse an ein Fahrzeug, welches Verkehrsroute 201 entlang fährt, übermittelt werden, verfügt das Fahrzeug über aktuelle Warnhinweise vor möglichen Gefahrensituationen.
  • In Fig. 3 ist ein möglicher Ablauf des erfindungsgemäßen Verfahrens in Form eines Flussdiagramms zu sehen. In Schritt 31 werden von einem Fahrzeug Verkehrsereignisse mittels Umfeldsensorik und Fahrzustandssensorik erfasst. Diese Verkehrsereignisse werden in Schritt 32 an ein erfindungsgemäßes Datennetzwerk übermittelt und in zeitgleichem Schritt 33 in einen internen Fahrzeugspeicher geschrieben. Die Verkehrsereignisse umfassen Positions- und Zeitdaten. In Schritt 34 werden die Verkehrsereignisse in eine elektronische Datenbank des Datennetzwerks geschrieben und in dieser vorgehalten. Schritt 34 umfasst auch das Zuordnen neuen Zeitdaten zu den übermittelten Verkehrsereignissen, wobei die neuer Zeitdaten einem internen Zeitgeber des Datennetzwerks entstammen. Dies garantiert eine einheitliche Kennzeichnung der Verkehrsereignisse mit Zeitdaten, da die Zeitdaten somit stets vom gleichen Zeitgeber stammen. In Verfahrensschritt 35 wird den Verkehrsereignissen mittels Auswertemitteln eine individuelle Vorhaltedauer zugeordnet, die zunächst für jedes spezifische Verkehrsereignis aus einer Tabelle ausgelesen wird und in Schritt 36 abhängig von der Häufigkeit der spezifischen Verkehrsereignisse modifiziert wird. Je häufiger dabei ein spezifisches Verkehrsereignis auftritt bzw. an das Datennetzwerk übermittelt wird, desto weiter wird die Vorhaltedauer verlängert. In Schritt 37 werden die Verkehrsereignisse an ein Fahrzeug, welches eine den Verkehrsereignissen zugeordnete Verkehrsroute durchfährt, übermittelt. Im letzten Verfahrensschritt 38 schließlich werden die Verkehrsereignisse, deren Vorhaltedauer abgelaufen ist, aus dem Datennetzwerk gelöscht.

Claims (15)

  1. Verfahren zum Lernen von Verkehrsereignissen (212, 213, 214, 215), bei welchem die Verkehrsereignisse (212, 213, 214, 215) mittels Fahrzeug-zu-X-Kommunikation an ein Datennetzwerk übertragen werden, wobei die Verkehrsereignisse (212, 213, 214, 215) den Verkehrsereignissen (212, 213, 214, 215) zugeordnete Positionsdaten und Zeitdaten umfassen und wobei die Verkehrsereignisse (212, 213, 214, 215) im Datennetzwerk elektronisch vorgehalten werden,
    dadurch gekennzeichnet, dass für jedes Verkehrsereignis (212, 213, 214, 215) eine individuelle Vorhaltedauer bestimmt wird, wobei die individuelle Vorhaltedauer dem jeweiligen Verkehrsereignis angepasst gewählt wird, und dass das Verkehrsereignis (212, 213, 214, 215) nach Ablauf der Vorhaltedauer aus dem Datennetzwerk gelöscht wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die Verkehrsereignisse (212, 213, 214, 215) Gefahrensituationen beschreiben und die Vorhaltedauer abhängig von einem Gefährdungsfaktor und/oder einer Häufigkeit des Verkehrsereignisses (212, 213, 214, 215) bestimmt wird, wobei die Vorhaltedauer mit zunehmender Häufigkeit und mit zunehmendem Gefährdungsfaktor zunimmt.
  3. Verfahren nach mindestens einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass ein Verkehrsereignis (212, 213, 214, 215) nicht gelöscht wird, wenn es einen Verkehrsunfall (212) beschreibt.
  4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass elektronisch vorgehaltene, gleichartige Verkehrsereignisse (212, 213, 214, 215), deren Positionsdaten und/oder Zeitdaten nicht weiter als einen räumlichen und/oder einen zeitlichen Grenzwert voneinander beabstandet sind, zu einem kumulierten Verkehrsereignis zusammengefasst werden.
  5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Datennetzwerk ein dezentrales Datennetzwerk ist, welches lokale Netzwerkelemente (15, 16, 17, 18, 202, 203, 204, 205, 206) entlang einer Vielzahl von Verkehrsrouten (13, 14, 201) umfasst.
  6. Verfahren nach Anspruch 5,
    dadurch gekennzeichnet, dass die Verkehrsereignisse (212, 213, 214, 215) von den Netzwerkelementen (15, 16, 17, 18, 202, 203, 204, 205, 206) vorgehalten werden, die sich innerhalb einer vorgebbaren Entfernung von den Verkehrsereignissen (212, 213, 214, 215) zugeordneten Positionsdaten befinden.
  7. Verfahren nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Verkehrsereignisse (212, 213, 214, 215) von einer Vielzahl von Fahrzeugen (11, 12) mittels Umfeldsensorik und oder Fahrzustandssensorik erfasst werden und an das Datennetzwerk übertragen werden.
  8. Verfahren nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die elektronisch vorgehaltenen Verkehrsereignisse (212, 213, 214, 215) und/oder die kumulierten Verkehrsereignisse mittels Fahrzeug-zu-X-Kommunikation an ein Fahrzeug (11, 12) übertragen werden, wenn das Fahrzeug (11, 12) die vorgebbare Entfernung zu den Verkehrsereignissen (212, 213, 214, 215) zugeordneten Positionsdaten unterschreitet.
  9. Verfahren nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Netzwerkelemente (15, 16, 17, 18, 202, 203, 204, 205, 206) Mobilfunkmasten (16) und/oder Verkehrsampeln und/oder Verkehrszeichen (18) und/oder Baken und/oder Leitpfosten und/oder Brücken (17) und/oder Wetterstationen (15) und/oder gesonderte Infrastruktureinrichtungen (202, 203, 204, 205, 206) sind.
  10. Verfahren nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Verkehrsereignisse (212, 213, 214, 215) zentral vorgehalten werden und über eine Datenbank abrufbar sind sowie insbesondere zur Routenplanung für Fahrzeuge (11, 12) abrufbar sind.
  11. Verfahren nach mindestens einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass an das Datennetzwerk übertragene Verkehrsereignisse (212, 213, 214, 215) mittels im Datennetzwerk vorgehaltener Verkehrsereignisse (212, 213, 214, 215) plausibilisiert werden, bevor diese vom Datennetzwerk an das Fahrzeug (11, 12) übertragen werden.
  12. Verfahren nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass von jedem der Vielzahl von Fahrzeugen (11, 12) erfasste Verkehrsereignisse (212, 213, 214, 215) zusätzlich in jedem der Vielzahl von Fahrzeugen (11, 12) elektronisch vorgehalten werden.
  13. System zum Lernen von Verkehrsereignissen, umfassend mindestens eine elektronische Datenbank, eine Vielzahl von Fahrzeugen (11, 12), welche mit Fahrzeug-zu-X-Kommuni-kationsmitteln und mit Umfeldsensorik und/oder Fahrzustandssensorik ausgestattet sind sowie eine Vielzahl von Netzwerkelementen (15, 16, 17, 18, 202, 203, 204, 205, 206) eines Datennetzwerks, welche entlang einer Vielzahl von Verkehrsrouten (13, 14, 201) angeordnet sind und mit Fahrzeug-zu-X-Kommunikationsmitteln ausgestattet sind, wobei die Vielzahl von Fahrzeugen (11, 12) mittels der Umfeldsensorik und/oder der Fahrzustandssensorik Verkehrsereignisse (212, 213, 214, 215) erfasst und mittels der Fahrzeug-zu-X-Kommunikationsmittel an das Datennetzwerk überträgt, wobei die Verkehrsereignisse (212, 213, 214, 215) den Verkehrsereignissen (212, 213, 214, 215) zugeordneten Positionsdaten und Zeitdaten umfassen und wobei die mindestens eine elektronische Datenbank die Verkehrsereignisse (212, 213, 214, 215) elektronisch vorhält,
    dadurch gekennzeichnet, dass Auswertemittel der mindestens einen elektronischen Datenbank für jedes Verkehrsereignis (212, 213, 214, 215) eine individuelle Vorhaltedauer bestimmen, wobei die individuelle Vorhaltedauer dem jeweiligen Verkehrsereignis angepasst gewählt wird, und dass Speicherlöschmittel das Verkehrsereignis (212, 213, 214, 215) nach Ablauf der Vorhaltedauer aus der mindestens einen elektronischen Datenbank löschen.
  14. System nach Anspruch 13,
    dadurch gekennzeichnet, dass das System ein Verfahren nach mindestens einem der Ansprüche 1 bis 12 ausführt.
  15. Verwendung des Systems nach mindestens einem der Ansprüche 13 und 14 zur Gefahrenwarnung im Straßenverkehr.
EP13815740.9A 2012-12-21 2013-12-20 Verfahren und system zum lernen von verkehrsereignissen sowie verwendung des systems Active EP2936470B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012025159.9A DE102012025159A1 (de) 2012-12-21 2012-12-21 Verfahren und System zum Lernen von Verkehrsereignissen sowie Verwendung des Systems
PCT/EP2013/077655 WO2014096345A1 (de) 2012-12-21 2013-12-20 Verfahren und system zum lernen von verkehrsereignissen sowie verwendung des systems

Publications (2)

Publication Number Publication Date
EP2936470A1 EP2936470A1 (de) 2015-10-28
EP2936470B1 true EP2936470B1 (de) 2019-01-30

Family

ID=49917071

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13815740.9A Active EP2936470B1 (de) 2012-12-21 2013-12-20 Verfahren und system zum lernen von verkehrsereignissen sowie verwendung des systems

Country Status (5)

Country Link
US (1) US9652982B2 (de)
EP (1) EP2936470B1 (de)
KR (1) KR20150097782A (de)
DE (1) DE102012025159A1 (de)
WO (1) WO2014096345A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013213106A1 (de) 2013-09-18 2015-03-19 Continental Teves Ag & Co. Ohg Verfahren und System zur Bewertung einer Zuverlässigkeit eines sensorikbasierten Fahrzeugsystems
US9934249B2 (en) * 2014-06-03 2018-04-03 Conduent Business Machines Services, Llc Systems and methods for context-aware and personalized access to visualizations of road events
FR3048113B1 (fr) * 2016-02-23 2019-06-14 Valeo Schalter Und Sensoren Gmbh Dispositif et procede d'aide a la conduite d'un vehicule automobile
US20180188057A1 (en) * 2017-01-03 2018-07-05 International Business Machines Corporation Detecting and simulating a moving event for an affected vehicle
US10026314B1 (en) * 2017-01-19 2018-07-17 GM Global Technology Operations LLC Multi-vehicle sensor sharing
DE102017208124B4 (de) * 2017-05-15 2019-04-04 Bayerische Motoren Werke Aktiengesellschaft Verfahren, Vorrichtung und System zum Ermitteln einer Straßenbaustelle
DE102017008301A1 (de) 2017-09-05 2018-03-01 Daimler Ag Verfahren zur Erkennung von Straßensperrungen
DE102017221632A1 (de) * 2017-11-30 2019-06-06 Continental Automotive Gmbh Verfahren zum Bestimmen einer Risikozonenbewertung eines Fahrzeugs, elektronische Steuerungseinheit und Speichermedium
DE102018108358A1 (de) 2018-04-09 2019-10-10 Valeo Schalter Und Sensoren Gmbh Verfahren zum Erfassen einer Baustelle und Fahrerunterstützungssystem zum Ausführen eines derartigen Verfahrens
US11176825B1 (en) * 2020-11-17 2021-11-16 Ford Global Technologies, Llc Systems and methods for vehicle backup warning notification

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1286507A1 (de) * 2001-08-16 2003-02-26 Siemens Aktiengesellschaft Verzögerungsfreie Übermittlung lokaler Informationen über eine Ad-Hoc-Funkverbindung
US7221287B2 (en) * 2002-03-05 2007-05-22 Triangle Software Llc Three-dimensional traffic report
US7983835B2 (en) * 2004-11-03 2011-07-19 Lagassey Paul J Modular intelligent transportation system
US7348895B2 (en) * 2004-11-03 2008-03-25 Lagassey Paul J Advanced automobile accident detection, data recordation and reporting system
US7248947B2 (en) * 2005-01-21 2007-07-24 Denso It Laboratory, Inc. And Research Organization Of Information And Systems Of C/O National Institute Of Informatics Information-sharing system, information-sharing server, information-sharing method, and information-sharing program
US8325718B2 (en) * 2006-07-03 2012-12-04 Palo Alto Research Center Incorporated Derivation of a propagation specification from a predicted utility of information in a network
DE102007048809A1 (de) 2006-10-13 2008-07-10 Continental Teves Ag & Co. Ohg Verfahren und Vorrichtung zur Erkennung von verdeckten Objekten im Straßenverkehr
US20080270363A1 (en) * 2007-01-26 2008-10-30 Herbert Dennis Hunt Cluster processing of a core information matrix
DE102008012660A1 (de) 2007-06-22 2008-12-24 Continental Teves Ag & Co. Ohg Serverbasierte Warnung vor Gefahren
US8410956B2 (en) 2007-08-16 2013-04-02 GM Global Technology Operations LLC Message management protocol persistent geocast routing
US8666591B2 (en) 2008-02-15 2014-03-04 Continental Teves Ag & Co. Ohg Vehicle system for navigation and/or driver assistance
WO2009149730A1 (en) * 2008-06-13 2009-12-17 Nec Europe Ltd. Method and system for information dissemination in a communication network
US8831869B2 (en) 2009-03-31 2014-09-09 GM Global Technology Operations LLC Using V2X-based in-network message generation, aggregation, distribution and processing protocols to enable road hazard condition warning applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2014096345A1 (de) 2014-06-26
EP2936470A1 (de) 2015-10-28
US9652982B2 (en) 2017-05-16
US20150317901A1 (en) 2015-11-05
DE102012025159A1 (de) 2014-06-26
KR20150097782A (ko) 2015-08-26

Similar Documents

Publication Publication Date Title
EP2936470B1 (de) Verfahren und system zum lernen von verkehrsereignissen sowie verwendung des systems
DE102015100812B4 (de) Verfahren zum Verwenden von Strassenniveaubildern zum Verbessern eines Modus eines automatisierten Fahrens für ein Fahrzeug
EP2850607B1 (de) Verfahren und system zur erstellung eines aktuellen situationsabbilds
EP2979261B1 (de) Backend für fahrerassistenzsysteme
EP3688742B1 (de) System zur erzeugung und/oder aktualisierung eines digitalen modells einer digitalen karte
DE102014220681A1 (de) Verkehrssignalvorhersage
EP3207538A1 (de) Kommunikationsvorrichtung für ein fahrzeug und verfahren zum kommunizieren
EP2953111B1 (de) Verfahren und vorrichtung zur ermittlung freier abstellplätze auf lkw-parkplätzen und mitteilung an lkw-fahrer
DE102014013672A1 (de) Verfahren und System zur Absicherung eines autonomen oder teilautonomen Betriebs von Fahrzeugen auf einem Verkehrsstreckennetz
EP3769042B1 (de) System zur erzeugung von konfidenzwerten im backend
DE102011081614A1 (de) Verfahren und Vorrichtung zur Analysierung eines von einem Fahrzeug zu befahrenden Streckenabschnitts
DE102014217900A1 (de) Vorrichtung und Verfahren zur Sammlung von Informationen über eine Verfügbarkeit freier Parkplätze
DE102012216788A1 (de) Verfahren und System zum Erhalten von Qualitätsdaten betreffend Informationen über Schaltzeiten und/oder Schaltbedingungen von Ampeln und/oder Wechselverkehrszeichen
DE112018003637T5 (de) Datenanalyse in intelligenten städten zur verbesserten unfallrekonstruktion und für bessere lösungen
DE102012005471A1 (de) Verkehrsinformationssystem
DE102011085060A1 (de) Vorrichtung und Verfahren zum Detektieren von Objekten in einem Strom von Sensordaten
DE102007000971B4 (de) Verfahren zur kollaborativen Pflege von Kartenmaterial für mobile Navigationsgeräte
WO2017125332A2 (de) ERFASSUNG EINER GEFAHRENSITUATION IM STRAßENVERKEHR
DE102019117136A1 (de) Kommunikation und steuerung für verkehrsinfrastruktur
EP3625520A1 (de) Verfahren, vorrichtung und system zum ermitteln eines wettergebiets
DE102012102693A1 (de) Verfahren und Vorrichtung zur Bereitstellung von Verkehrsinformationen in Fahrzeugen
DE102018117830A1 (de) Digitale Umfeldkarte mit Sensorreichweiten
WO2019063630A1 (de) Verfahren und einrichtung
DE102017218932B4 (de) Verfahren zur Bewertung einer Trajektorie eines Fortbewegungsmittels
DE102019117722A1 (de) Gegenverkehrsfreier Überholassistent zur Verwendung bei autonomem Fahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTI TEMIC MICROELECTRONIC GMBH

Owner name: CONTINENTAL TEVES AG & CO. OHG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180921

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1093874

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013012129

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190530

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190430

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190530

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013012129

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191220

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1093874

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013012129

Country of ref document: DE

Owner name: CONTINENTAL AUTOMOTIVE TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNERS: CONTINENTAL TEVES AG & CO. OHG, 60488 FRANKFURT, DE; CONTI TEMIC MICROELECTRONIC GMBH, 90411 NUERNBERG, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20221222

Year of fee payment: 10

Ref country code: IE

Payment date: 20221222

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 11

Ref country code: DE

Payment date: 20231231

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013012129

Country of ref document: DE

Owner name: CONTINENTAL AUTOMOTIVE TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE TECHNOLOGIES GMBH, 30165 HANNOVER, DE