EP2668822B1 - Actuating a plurality of series-connected luminous elements - Google Patents

Actuating a plurality of series-connected luminous elements Download PDF

Info

Publication number
EP2668822B1
EP2668822B1 EP12701873.7A EP12701873A EP2668822B1 EP 2668822 B1 EP2668822 B1 EP 2668822B1 EP 12701873 A EP12701873 A EP 12701873A EP 2668822 B1 EP2668822 B1 EP 2668822B1
Authority
EP
European Patent Office
Prior art keywords
light
voltage
emitting means
current source
circuit according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12701873.7A
Other languages
German (de)
French (fr)
Other versions
EP2668822A2 (en
Inventor
Hubert Maiwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP2668822A2 publication Critical patent/EP2668822A2/en
Application granted granted Critical
Publication of EP2668822B1 publication Critical patent/EP2668822B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits
    • H05B45/44Details of LED load circuits with an active control inside an LED matrix
    • H05B45/48Details of LED load circuits with an active control inside an LED matrix having LEDs organised in strings and incorporating parallel shunting devices

Definitions

  • the invention relates to a circuit for controlling a plurality of series-connected bulbs.
  • LED Light-emitting diodes
  • LED systems to operate directly on an electrical power grid, in particular when the semiconductor light elements are dimmable and should have at least approximately a sinusoidal current consumption.
  • filter capacitor Another disadvantage is that a circuit without energy storage (filter capacitor) leads to a visible flicker of the connected bulbs.
  • the filter capacitor also has the disadvantage that high Umladeströme reduce its life; Thus, the filter capacitor is often the weak point of a circuit for controlling the bulbs.
  • the object of the invention is to avoid the abovementioned disadvantages and, in particular, to provide a solution for efficiently operating dimmable semiconductor light elements via a mains voltage.
  • the discharge phase in particular comprises only a partial discharge of the energy store (a complete discharge is not necessary and possibly also undesirable).
  • the charging phase is based on that electrical energy is supplied to the energy storage and the discharge phase is based on that electrical energy is removed from the energy storage.
  • a development is that the energy store during an initial charging phase over several cycles of the rectified mains voltage is rechargeable.
  • the energy store e.g. a capacitor
  • the energy store initially (nearly) empty, it is charged over several cycles. Thereafter, the cyclic operation is performed around an operating point as described above.
  • one cycle of a positive half cycle may correspond to the rectified pulsating mains voltage.
  • the frequency of the half-waves (and thus of the cycles) corresponds in particular to twice the frequency of the mains alternating voltage.
  • the energy store is connected in series with a current source, in particular a constant current source or a voltage-controlled current source.
  • the current controlled by the voltage-controlled current source is set or limited by the lighting means (as a function of the number of light-emitting means activated by means of the electronic switches). Furthermore, the charging current of the energy storage can be limited by the voltage-controlled current source, if the voltage-controlled current source, for example, is arranged in series with the parallel circuit of energy storage and lighting.
  • the voltage-controlled current source can be controlled via the rectified mains voltage.
  • the voltage-controlled current source By controlling the voltage-controlled current source by means of, for example sinusoidal-like pulsed rectified mains voltage is achieved that at low voltage values (in which only one lamp or a few lamps are activated) and a correspondingly adapted smaller current flows through the lamps than at high voltage values (in which, for example all bulbs are activated).
  • the voltage controlled current source provides a current suitable for the currently active number of lamps.
  • Both the number of active lamps and the current through these lamps is therefore influenced or adjusted by the waveform of the rectified mains voltage. This advantageously leads to an almost sinusoidal current consumption and thus minimizes disturbances that act on the power network starting from the circuit.
  • the electronic switches and the voltage-controlled current source are arranged together in an integrated circuit.
  • both energy stores during the discharge phase can be activated alternately. This can be done by a corresponding control of electronic switches, which are arranged for example in series with the respective energy storage.
  • An embodiment is that on the basis of a control unit, a detection and evaluation of the rectified mains voltage takes place and depending on a level of the detected mains voltage more or fewer bulbs can be activated via the electronic switch.
  • the electronic switches are arranged parallel to the lighting means.
  • each electronic switch when activated, can bridge (or short-circuit) a different number of light sources. It is advantageous if the electronic switches are arranged so that upon activation of a first electronic switch of the bulbs, upon activation of a second electronic switch two of the bulbs, upon activation of a third electronic switch three of the bulbs, etc. are bridged. When the last electronic switch is activated, for example, all but one of the lamps connected in series are bridged.
  • each of the electronic switches can be activated with the same switching voltage.
  • An alternative embodiment consists in that, in particular based on the control unit, a dimmable control of the lighting means takes place.
  • a brightness control (dimming) of the series-connected bulbs done.
  • control unit and the electronic switches are designed to be integrated together in a circuit.
  • the lighting means comprises at least one semiconductor light-emitting element, in particular a group of semiconductor light-emitting elements.
  • the semiconductor light element can be a light-emitting diode (LED).
  • the electronic switches comprise semiconductor switches, in particular transistors, bipolar transistors and / or MOSFETs.
  • the energy storage comprises a capacitor, an electrolytic capacitor or a battery.
  • the battery can be a rechargeable battery.
  • the at least one charge pump for example, at the beginning (substantially or preferably) continuously and then cyclically (or iteratively) is charged.
  • the energy for the lighting means in particular a chain or a series connection of semiconductor light elements, eg light-emitting diodes
  • the power network is made available without significantly distorting or disturbing the power consumption of the power network ,
  • the bulbs can be operated via a voltage-controlled current source, which can serve as a controlling voltage, for example, a pulsed rectified mains voltage.
  • a voltage-controlled current source which can serve as a controlling voltage, for example, a pulsed rectified mains voltage.
  • the (sinusoidal) half-waves of the rectified (pulsating) mains voltage have twice the frequency of the mains alternating voltage (eg 100Hz or 120Hz). This results in a (nearly or substantially) sinusoidal operating current for the operation of the lamps.
  • the bulbs can be controlled via electronic switches.
  • the electronic switches may be semiconductor switches, e.g. Transistors, bipolar transistors, mosfets, etc. act.
  • semiconductor switches can be used with a common reference potential. This simplifies the control of the semiconductor switches.
  • the semiconductor switches may be integrated with the driving unit (e.g., silicon).
  • Fig.1 shows a schematic circuit diagram for the operation of several series-connected light-emitting diodes 101 to 109 at an AC line voltage 110th
  • the AC line voltage 110 is converted via a rectifier 111 in a (pulsating) DC voltage.
  • the DC voltage is connected after the rectifier 110 to the anode of a diode 112 (positive supply voltage) and to the terminal of a current source 121 (ground potential).
  • the cathode of the diode 112 is connected to a node 113.
  • the node 113 is connected via a series connection of a diode 114 and an (optional) current source 115 to a node 118, wherein the cathode of the diode 114 points in the direction of the node 113.
  • the light-emitting diodes 101 to 109 are connected in series in the same orientation, wherein the anode of the light-emitting diode 101 is connected to the node 113 and the cathode of the light-emitting diode 109 is connected to a node 119.
  • the current source 121 is arranged between this node 119 and the rectifier 111.
  • a tap or center tap between the light emitting diodes 104 and 105 is referred to as a node 127.
  • a diode 120 is arranged, the cathode of which in the direction of the node 118 shows.
  • a capacitor 117 (eg, configured as an electrolytic capacitor) is disposed.
  • the node 127 is further connected to the drain terminal of a mosfet 122.
  • the source terminal of the mosfet 122 is connected to the node 119.
  • a tap between the light emitting diodes 105 and 106 is connected to the drain terminal of a mosfet 123.
  • the source terminal of the mosfet 123 is connected to the node 119.
  • a tap between the light emitting diodes 106 and 107 is connected to the drain terminal of a mosfet 124.
  • the source terminal of the mosfet 124 is connected to the node 119.
  • a tap between the light emitting diodes 107 and 108 is connected to the drain terminal of a mosfet 125.
  • the source terminal of the mosfet 125 is connected to the node 119.
  • a tap between the light emitting diodes 108 and 109 is connected to the drain terminal of a mosfet 126.
  • the source terminal of the mosfet 126 is connected to the node 119.
  • the diodes 112, 114 and 120 may be 1N4004 type diodes.
  • Each light-emitting diode 101 to 109 may be embodied as at least one light-emitting diode or at least one semiconductor light-emitting element.
  • each light-emitting diode 101 to 109 may comprise a group of light-emitting diodes.
  • a setpoint voltage for a group of light-emitting diodes may in particular correspond to the total voltage by the number of light-emitting diodes per group.
  • each light emitting diode 101 to 109 correspond to a group of light emitting diodes that require a supply voltage of 35V.
  • the remaining mosfets are preferably blocked.
  • the light-emitting diodes 101 to 105 are effectively connected in series and can be operated by the (current) mains voltage. The same applies to the other switching states.
  • any electronic switches can be used, e.g. (Bipolar) transistors or similar
  • the electronic switches may be used together with the control unit and / or the power sources e.g. be manufactured based on silicon.
  • center tap or tap designates a possibility of contacting between two components. This corresponds electrically to a node that may be connected to multiple components.
  • the capacitor 117 is first over several network periods via a threshold voltage of the four light-emitting diodes 101 to 104 (in the above example: 140V) charged.
  • the charging takes place via the node 127 and the diode 120.
  • the current source 121 also limits the charging current for the capacitor 117.
  • the MOSFETs 122 to 126 are preferably blocked, ie none of the LEDs 105 to 109 is short-circuited.
  • the maximum charge of the capacitor 117 is limited to approximately the voltage which drops across the five light-emitting diodes 105 to 109 (175V in the above example).
  • the energy stored in capacitor 117 flows through diode 114 and node 113 into the series connection of the LEDs.
  • the current flow is limited by the optional existing current source 115.
  • the mosfet 122 is turned on, blocking the remaining mosfets 123 to 126.
  • the current flows from the node 113 via the light-emitting diodes 101 to 104 and the mosfet 122 to the node 119 and from there further via the current source 121 in the direction of the rectifier 111.
  • the current source 121 limits the current flowing through the LEDs and the maximum charging current of the capacitor 117.
  • the light-emitting diodes 101 to 109 can be operated, wherein at a mains voltage which is less than a predetermined threshold, the Mosfet 122 is turned on and the light emitting diodes 101 to 104 are supplied by the capacitor 117.
  • the capacitor is recharged as soon as the mains voltage is greater than the predetermined threshold (or greater than a second threshold, which in turn is greater than said threshold); In this case, at least the mosfet 122 is deactivated again (switched off).
  • the circuit may be dimensioned such that at least the light-emitting diodes 101 to 104 are not (or only for a very short period of time) de-energized, independent of the instantaneous voltage value of the pulsed rectified waveform of the mains voltage.
  • the first charging of the capacitor 117 can take place over several network cycles, since (also) the charging current is limited by the current source 121.
  • the power source 115 can be omitted.
  • the current source 115 may be a constant current source or a voltage controlled current source. In the latter case, the controlling voltage may be provided by the rectified mains voltage.
  • the energy supplied to the capacitor 117 during the charging cycle is above its cyclic discharge energy.
  • the charging voltage is greater than the discharge voltage of the capacitor.
  • the charging time may be longer than the discharging time and / or an average value of the charging current for the capacitor 117 may be greater than an average value of its discharging current.
  • the voltage on the capacitor 117 may oscillate after a successful charging by one operating point.
  • this voltage can oscillate between four to five times the light-emitting diode voltage, ie between 140V and 175V.
  • the capacitor 117 is designed so that in the illustrated Application, the voltage level of 140V during the discharge cycle is not exceeded.
  • the recharging of the capacitor 117 occurs when the mains voltage is so high that no Mosfet 122 to 126 is turned on or that only the Mosfet 126 is turned on. In the example described here, this corresponds to recharging the capacitor 117 from a voltage of approximately 280V.
  • the current source 121 is preferably a voltage-controlled current source, wherein the control voltage can be effected by means of the (rectified) mains voltage (dashed line 116 in FIG Fig.1 ). This ensures that the current through the LEDs or to charge the capacitor (almost) sinusoidal (or similar sinusoidal due to the rectified pulsating sinusoidal-wave signal) and thus does not disturb the power supply or not significantly.
  • the diodes 112, 114 and 120 may be used as electronic switches, e.g. be realized as transistors, mosfets, etc.
  • the electronic switches can be designed to be integrated together with the current source 115 and / or the current source 121.
  • the capacitor 117 is in the in Fig.1 presented wiring around a charge pump:
  • the capacitor 117 (after initial charging) becomes dependent charged by the voltage of an input signal for a certain period of time; If the voltage falls below a predetermined level, the capacitor pumps charge into the lamps. Discharging and charging can alternate cyclically, with one cycle being dictated by a sinusoidal half cycle of a rectified AC voltage.
  • Fig.2 shows a schematic circuit diagram for operating a plurality of series-connected LEDs 101 to 109 at an AC line voltage 110 based on the representation of Fig.1 ,
  • a capacitor 201 (eg, an electrolytic capacitor) connected in series with a current source 202 and a diode 204, the cathode of the diode 204 being connected to a node 203 corresponding to the tap between the light emitting diode 105 and the light emitting diode 106 ,
  • the capacitor 201 is connected at its negative pole to the node 119.
  • a tap between the capacitor 201 and the current source 202 is connected via a diode 205 to the node 127, wherein the anode of the diode 205 points in the direction of the node 127.
  • the diodes 204, 205 are, for example, the same types as the diodes 112, 114 and 120 (1N4004).
  • the current source 202 may be a current source which can be switched on or off, in particular a controlled current source.
  • the capacitor 201 is charged via the voltage at the node 127 and the diode 205. If the voltage at the node 203 falls below a predetermined voltage, which is smaller than the voltage of the charged capacitor 201, the current source 202 can be switched on and the capacitor 201 feeds energy via the diode 204 into the node 203 and thus supplies the light-emitting diodes 106 to 109 with energy.
  • the charging current for the capacitor 201 is limited by the (voltage-controlled) current source 121 and the current through the light-emitting diodes 106 to 109 is also limited by the (possibly voltage-controlled or constant) current source 202.
  • the power source 202 can be omitted and replaced by an electronic switch that can be controlled by the control unit.
  • this electronic switch can also be activated: charge then additionally flows from the capacitor 201 via the node 203 through the light emitting diodes 106 to 109 (all Mosfets 123 to 126 lock).
  • the current source 202 can be switched on or off (or the switch provided instead) and the mosfet 122 to be operated alternately (with the same or different switch-on and / or switch-off periods).
  • Figure 3 shows a schematic circuit arrangement with a control unit 302 for controlling electronic switches (eg, the gate terminals of in Fig.1 and Fig.2 shown Mosfets 122 to 126).
  • a control unit 302 for controlling electronic switches eg, the gate terminals of in Fig.1 and Fig.2 shown Mosfets 122 to 126.
  • the light-emitting means 305 are, for example, semiconductor light-emitting elements or groups of semiconductor light-emitting elements which are connected in series with one another. In particular, groups of lamps can each be controlled jointly.
  • a pulsating DC voltage 301 with twice the frequency of an AC line voltage is supplied to a control unit 302.
  • the control unit may have a processor and / or a (micro) controller which, depending on the course of the pulsating DC voltage 301, drives the electronic switches 303.
  • the switches 303 may be the in Fig.1 and Fig.2 Mosfets shown correspond.
  • the current sources 115 and / or 202 it is possible for the current sources 115 and / or 202 to be switched on and off (see in this regard the switch in the current source 202 in FIG Fig.2 ).
  • the control unit 302 evaluates the progression of a half-wave of the pulsating DC voltage 301 by activating one or more of the switches 303 as a function of the magnitude of the voltage of the half-wave, so that the lighting means 305 are activated in stages via the switches 303 in a manner adapted to the voltage profile ( In this case, the number of activated lighting means 305 can gradually be increased according to the height of the voltage curve).
  • the half-wave is preferably subdivided into stages or switching thresholds, so that the illuminants 305 are switched on stepwise with increasing voltage, and the illuminants 305 are switched off step by step with decreasing voltage of the half-wave.
  • the pulsating DC voltage 301 also becomes a voltage-controlled current source 304 (compare: voltage-controlled current source 121 in FIG Fig.1 and Fig.2 ) is supplied, by means of which a current through the lighting means 305 depending on the voltage of the half-wave is provided (in particular limited).
  • a current through the lighting means 305 is also substantially in phase with the mains voltage, which has a favorable effect on the power factor and reduces or prevents disturbing influences of the circuit on the power grid.
  • the control unit 302 also shows (at least) an energy store 306 which, as described here, functions as a charge pump and "charges" charge into the lighting means as a function of the height of the pulsating DC voltage.
  • the energy storage 306 is shown here as an example as part of the control unit, but may also be designed separately for this.
  • the control unit to control at least one switch for activating the energy storage.
  • control unit 302 it is possible for the control unit 302 to control the voltage-controlled current source 304.
  • the at least one charge pump is charged during the lighting phase of the bulbs; During the time in which the grid power is not available or is not sufficient for the operation of the lighting means, energy is provided by the at least one charge pump for operating the lighting means.
  • the energy storage can be done for example by means of a capacitor or by means of another energy storage.
  • This solution also has the advantage that the power factor is essentially dependent on the voltage-controlled current source and is also limited by this. This results in a substantially sinusoidal current load on the power grid.
  • the charge pump may be made discrete or integrated.
  • the charge pump may be part of the chain of the lighting means (eg integrated in an LED chain). Implementations in which the charging voltage of the at least one charge pump is higher than its discharge voltage are advantageous; In particular, it is advantageous if more current is supplied during a cyclic charging of the charge pump than during the cyclical discharge of the charge pump. Correspondingly (alternatively or additionally), the cyclic charging of the charge pump may take longer than its cyclical discharge.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Description

Die Erfindung betrifft eine Schaltung zur Ansteuerung mehrerer in Reihe geschalteter Leuchtmittel.The invention relates to a circuit for controlling a plurality of series-connected bulbs.

Grundsätzlich ist es ein Problem, Halbleiterleuchtelemente, z.B. Leuchtdioden (LED) oder LED-Systeme, direkt an einem elektrischen Stromnetz zu betreiben, insbesondere wenn die Halbleiterleuchtelemente dimmbar sein und zumindest näherungsweise eine sinusförmige Stromaufnahme aufweisen sollen.Basically, it is a problem to use semiconductor light elements, e.g. Light-emitting diodes (LED) or LED systems to operate directly on an electrical power grid, in particular when the semiconductor light elements are dimmable and should have at least approximately a sinusoidal current consumption.

Bekannte Ansätze verwenden Aufwärts- oder Abwärtswandler zur Einstellung einer Versorgungsspannung für die Halbleiterleuchtelemente. Auch wird ein Siebkondensator nach der Netzgleichrichtung eingesetzt, um den Strom in den Halbleiterleuchtelementen auf einem nahezu konstanten Pegel zu halten. Derartige Lösungen sind nicht dimmbar. Weiterhin ist der Stromverlauf durch die Halbleiterleuchtelemente nicht sinusförmig, was zu einer nachteiligen Belastung oder zu unerwünschten Störungen des Wechselstromnetzes führt.Known approaches use up or down converters to set a supply voltage to the semiconductor light elements. Also, a mesh capacitor is used after the mains rectification to keep the current in the semiconductor light elements at a nearly constant level. Such solutions are not dimmable. Furthermore, the current flow through the semiconductor light-emitting elements is not sinusoidal, which leads to a disadvantageous load or unwanted disturbances of the AC mains.

Ein weiterer Nachteil besteht darin, dass eine Schaltung ohne Energiespeicher (Siebkondensator) zu einem sichtbaren Flackern der angeschlossenen Leuchtmittel führt. Allerdings weist der Siebkondensator auch den Nachteil auf, dass hohe Umladeströme seine Lebensdauer verringern; somit ist der Siebkondensator oft die Schwachstelle einer Schaltung zur Ansteuerung der Leuchtmittel ist.Another disadvantage is that a circuit without energy storage (filter capacitor) leads to a visible flicker of the connected bulbs. However, the filter capacitor also has the disadvantage that high Umladeströme reduce its life; Thus, the filter capacitor is often the weak point of a circuit for controlling the bulbs.

In der US 2010/308739 A1 und der EP 2 187 706 A2 zeigen Leuchtvorrichtungen, bei denen in Abhängigkeit von einer angelegten Spannung die Zahl der aktiven Leuchtdioden verändert wird.In the US 2010/308739 A1 and the EP 2 187 706 A2 show lighting devices in which, depending on an applied voltage, the number of active light-emitting diodes is changed.

Die Aufgabe der Erfindung besteht darin, die vorstehend genannten Nachteile zu vermeiden und insbesondere eine Lösung anzugeben, Halbleiterleuchtelemente dimmbar über eine Netzspannung effizient zu betreiben.The object of the invention is to avoid the abovementioned disadvantages and, in particular, to provide a solution for efficiently operating dimmable semiconductor light elements via a mains voltage.

Diese Aufgabe wird gemäß den Merkmalen der unabhängigen Patentansprüche gelöst. Weiterbildungen der Erfindung ergeben sich auch aus den abhängigen Ansprüchen.This object is achieved according to the features of the independent claims. Further developments of the invention will become apparent from the dependent claims.

Zur Lösung der Aufgabe wird eine Schaltung gemäß Anspruch 1 angegeben.To achieve the object, a circuit according to claim 1 is given.

Somit kann der Energiespeicher vorteilhaft als Ladungspumpe dienen und abhängig von der Höhe der gleichgerichteten Netzspannung

  • bei Unterschreiten eines vorgegebenen Schwellwerts elektrische Energie für einen Teil der Leuchtmittel bereitstellen und
  • bei Überschreiten des vorgegebenen Schwellwerts (oder eines weiteren Schwellwerts) über die gleichgerichtete Netzspannung aufgeladen werden.
Thus, the energy storage can advantageously serve as a charge pump and depending on the height of the rectified mains voltage
  • provide below a predetermined threshold electrical energy for a portion of the bulbs and
  • when the predetermined threshold value (or a further threshold value) is exceeded, they are charged via the rectified mains voltage.

Dies führt dazu, dass im Verlauf eines Zyklus (umfassend z.B. Entladung, Ladung und Entladung des Energiespeichers) zumindest ein Teil der Leuchtmittel nahezu ohne Unterbrechung Licht emittieren kann. Die Unterbrechungen sind nicht vorhanden oder so kurz, dass ein Flackern der Leuchtmittel vom menschlichen Auge nicht wahrnehmbar ist. Durch den als Ladungspumpe arbeitenden Energiespeicher wird somit wirksam ein wahrnehmbares Flackern der Leuchtmittel unterbunden.As a result, during the course of a cycle (including, for example, discharging, charging and discharging of the energy store), at least a part of the lighting means is almost without Interruption can emit light. The interruptions are not present or so short that a flickering of the bulbs from the human eye is imperceptible. By working as a charge pump energy storage is thus effectively a perceptible flicker of the bulbs prevented.

Hierbei sei angemerkt, dass die Entladephase insbesondere nur eine Teilentladung des Energiespeichers umfasst (eine vollständige Entladung ist nicht nötig und gegebenenfalls auch unerwünscht). Somit stellt die Ladephase darauf ab, dass elektrische Energie dem Energiespeicher zugeführt wird und die Entladephase stellt darauf ab, dass elektrische Energie aus dem Energiespeicher entnommen wird.It should be noted that the discharge phase in particular comprises only a partial discharge of the energy store (a complete discharge is not necessary and possibly also undesirable). Thus, the charging phase is based on that electrical energy is supplied to the energy storage and the discharge phase is based on that electrical energy is removed from the energy storage.

Eine Weiterbildung ist es, dass der Energiespeicher während einer initialen Ladephase über mehrere Zyklen der gleichgerichteten Netzspannung aufladbar ist.A development is that the energy store during an initial charging phase over several cycles of the rectified mains voltage is rechargeable.

Ist der Energiespeicher, z.B. ein Kondensator, anfangs (nahezu) leer, so wird er über mehrere Zyklen aufgeladen. Danach erfolgt der zyklische Betrieb um einen Arbeitspunkt wie oben beschrieben.If the energy store, e.g. a capacitor, initially (nearly) empty, it is charged over several cycles. Thereafter, the cyclic operation is performed around an operating point as described above.

Hierbei sei angemerkt, dass ein Zyklus einer positiven Halbwelle der gleichgerichteten pulsierenden Netzspannung entsprechen kann. Die Frequenz der Halbwellen (und damit der Zyklen) entspricht insbesondere der doppelten Frequenz der Netzwechselspannung.It should be noted that one cycle of a positive half cycle may correspond to the rectified pulsating mains voltage. The frequency of the half-waves (and thus of the cycles) corresponds in particular to twice the frequency of the mains alternating voltage.

Insbesondere ist es eine Weiterbildung, dass der Energiespeicher in Reihe mit einer Stromquelle, insbesondere einer Konstantstromquelle oder einer spannungsgesteuerten Stromquelle, geschaltet ist.In particular, it is a further development that the energy store is connected in series with a current source, in particular a constant current source or a voltage-controlled current source.

Hierdurch kann sichergestellt sein, dass der Energiespeicher während der Entladephase der zweiten Gruppe von Leuchtmitteln einen geeigneten Strom bereitstellt.This makes it possible to ensure that the energy store provides a suitable current during the discharge phase of the second group of light sources.

Auch ist es eine Weiterbildung, dass die in Reihe geschalteten Leuchtmittel mit einer spannungsgesteuerten Stromquelle in Reihe geschaltet sind.It is also a development that the series-connected bulbs are connected in series with a voltage-controlled current source.

Durch die spannungsgesteuerte Stromquelle wird der Strom durch die Leuchtmittel (in Abhängigkeit von der Anzahl der mittels der elektronischen Schalter aktivierten Leuchtmittel) eingestellt bzw. begrenzt. Weiterhin kann der Ladestrom des Energiespeichers durch die spannungsgesteuerte Stromquelle begrenzt werden, falls die spannungsgesteuerte Stromquelle bspw. in Reihe zu der Parallelschaltung aus Energiespeicher und Leuchtmittel angeordnet ist.The current controlled by the voltage-controlled current source is set or limited by the lighting means (as a function of the number of light-emitting means activated by means of the electronic switches). Furthermore, the charging current of the energy storage can be limited by the voltage-controlled current source, if the voltage-controlled current source, for example, is arranged in series with the parallel circuit of energy storage and lighting.

Ferner ist es eine Weiterbildung, dass die spannungsgesteuerte Stromquelle über die gleichgerichtete Netzspannung ansteuerbar ist.Furthermore, it is a development that the voltage-controlled current source can be controlled via the rectified mains voltage.

Durch die Ansteuerung der spannungsgesteuerten Stromquelle mittels der z.B. sinusformähnlichen pulsierenden gleichgerichteten Netzspannung wird erreicht, dass bei geringen Spannungswerten (bei denen nur ein Leuchtmittel oder wenige Leuchtmittel aktiviert sind) auch ein entsprechend angepasster kleinerer Strom durch die Leuchtmittel fließt als bei hohen Spannungswerten (bei denen z.B. alle Leuchtmittel aktiviert sind). Somit stellt die spannungsgesteuerte Stromquelle einen für die gerade aktive Anzahl von Leuchtmitteln geeigneten Strom bereit.By controlling the voltage-controlled current source by means of, for example sinusoidal-like pulsed rectified mains voltage is achieved that at low voltage values (in which only one lamp or a few lamps are activated) and a correspondingly adapted smaller current flows through the lamps than at high voltage values (in which, for example all bulbs are activated). Thus, the voltage controlled current source provides a current suitable for the currently active number of lamps.

Sowohl die Anzahl der aktiven Leuchtmittel als auch der Strom durch diese Leuchtmittel wird daher durch die Kurvenform der gleichgerichteten Netzspannung beeinflusst bzw. eingestellt. Dies führt vorteilhaft zu einer nahezu sinusförmigen Stromaufnahme und minimiert somit Störungen, die von der Schaltung ausgehend auf das Stromnetz wirken.Both the number of active lamps and the current through these lamps is therefore influenced or adjusted by the waveform of the rectified mains voltage. This advantageously leads to an almost sinusoidal current consumption and thus minimizes disturbances that act on the power network starting from the circuit.

Im Rahmen einer zusätzlichen Weiterbildung sind die elektronischen Schalter und die spannungsgesteuerte Stromquelle gemeinsam in einem integrierten Schaltkreis angeordnet.In an additional development, the electronic switches and the voltage-controlled current source are arranged together in an integrated circuit.

Eine nächste Weiterbildung besteht darin, dass ein erster Energiespeicher und ein zweiter Energiespeicher vorgesehen sind,

  • wobei der erste Energiespeicher
    • während einer Ladephase anhand der elektronischen Schalter parallel zu der ersten Gruppe von Leuchtmitteln geschaltet ist und
    • während einer Entladephase anhand der elektronischen Schalter parallel zu der zweiten Gruppe von Leuchtmitteln geschaltet ist,
  • wobei der zweite Energiespeicher
    • während einer Ladephase anhand der elektronischen Schalter parallel zu der ersten Gruppe von Leuchtmitteln geschaltet ist und
    • während einer Entladephase (z.B. anhand der elektronischen Schalter) parallel zu einer dritten Gruppe von Leuchtmitteln geschaltet ist, wobei die dritte Gruppe von Leuchtmitteln beispielsweise eine Teilmenge der ersten Gruppe von Leuchtmitteln ist.
A next development consists in that a first energy store and a second energy store are provided,
  • wherein the first energy store
    • is connected in parallel to the first group of lamps during a charging phase based on the electronic switch and
    • is switched parallel to the second group of lamps during a discharge phase on the basis of the electronic switch,
  • wherein the second energy storage
    • is connected in parallel to the first group of lamps during a charging phase based on the electronic switch and
    • during a discharge phase (eg based on the electronic switch) is connected in parallel to a third group of bulbs, wherein the third group of bulbs is for example a subset of the first group of bulbs.

Somit ist es möglich, das Flackern zusätzlich zu verringern, indem eine weitere Ladungspumpe vorgesehen wird. Insbesondere können beide Energiespeicher während der Entladephase (z.B. wenn die gleichgerichtete Netzspannung einen vorgegebenen Schwellwert erreicht oder unterschreitet) abwechselnd aktiviert werden. Dies kann durch eine entsprechende Ansteuerung von elektronischen Schaltern erfolgen, die z.B. in Reihe mit dem jeweiligen Energiespeicher angeordnet sind.Thus, it is possible to further reduce the flicker by providing another charge pump. In particular, both energy stores during the discharge phase (eg when the rectified mains voltage reaches or falls below a predetermined threshold value) can be activated alternately. This can be done by a corresponding control of electronic switches, which are arranged for example in series with the respective energy storage.

Eine Ausgestaltung ist es, dass anhand einer Steuereinheit eine Erfassung und Auswertung der gleichgerichteten Netzspannung erfolgt und abhängig von einer Höhe der erfassten Netzspannung mehr oder weniger viele Leuchtmittel über die elektronischen Schalter aktivierbar sind.An embodiment is that on the basis of a control unit, a detection and evaluation of the rectified mains voltage takes place and depending on a level of the detected mains voltage more or fewer bulbs can be activated via the electronic switch.

Insbesondere werden abhängig von der Höhe der gleichgerichteten Netzspannung unterschiedliche elektronische Schalter angesteuert. So können über die gleichgerichtete Netzspannung stufenweise unterschiedliche elektronische Schalter aktiviert werden und somit eine unterschiedliche Anzahl der in Reihe geschalteten Leuchtmittel aktiviert oder deaktiviert werden. Der Verlauf einer pulsierenden Gleichspannung kann somit genutzt werden, um abhängig von deren Spannungswert unterschiedlich viele der Leuchtmittel zu aktivieren bzw. zu deaktivieren.In particular, depending on the height of the rectified mains voltage, different electronic switches are activated. Thus, different electronic switches can be gradually activated via the rectified mains voltage and thus a different number of series-connected lighting means can be activated or deactivated. The course of a pulsating DC voltage can thus be used to activate or deactivate different numbers of the lamps depending on their voltage value.

Die elektronischen Schalter sind parallel zu den Leuchtmitteln angeordnet. Insbesondere kann jeder elektronische Schalter bei dessen Aktivierung eine unterschiedliche Anzahl von Leuchtmitteln überbrücken (bzw. kurzschließen). Es ist von Vorteil, wenn die elektronischen Schalter so angeordnet sind, dass bei Aktivierung eines ersten elektronischen Schalters eines der Leuchtmittel, bei Aktivierung eines zweiten elektronischen Schalters zwei der Leuchtmittel, bei Aktivierung eines dritten elektronischen Schalters drei der Leuchtmittel, etc. überbrückbar sind. Bei Aktivierung des letzten elektronischen Schalters werden beispielsweise alle bis auf eines der in Reihe geschalteten Leuchtmittel überbrückt.The electronic switches are arranged parallel to the lighting means. In particular, each electronic switch, when activated, can bridge (or short-circuit) a different number of light sources. It is advantageous if the electronic switches are arranged so that upon activation of a first electronic switch of the bulbs, upon activation of a second electronic switch two of the bulbs, upon activation of a third electronic switch three of the bulbs, etc. are bridged. When the last electronic switch is activated, for example, all but one of the lamps connected in series are bridged.

Durch ein gemeinsames Bezugspotential der elektronischen Schalter wird beispielsweise sichergestellt, dass jeder der elektronischen Schalter mit der gleichen Schaltspannung aktivierbar ist.By a common reference potential of the electronic switch, for example, it is ensured that each of the electronic switches can be activated with the same switching voltage.

Eine alternative Ausführungsform besteht darin, dass insbesondere anhand der Steuereinheit eine dimmbare Ansteuerung der Leuchtmittel erfolgt.An alternative embodiment consists in that, in particular based on the control unit, a dimmable control of the lighting means takes place.

So kann z.B. mittels einer Referenzspannung, die von einem Benutzer veränderbar sein kann, eine Helligkeitsregelung (Dimmung) der in Reihe geschalteten Leuchtmittel erfolgen.Thus, e.g. by means of a reference voltage that can be changed by a user, a brightness control (dimming) of the series-connected bulbs done.

Eine nächste Ausgestaltung ist es, dass die Steuereinheit und die elektronischen Schalter gemeinsam in einem Schaltkreis integriert ausgeführt sind.A next embodiment is that the control unit and the electronic switches are designed to be integrated together in a circuit.

Eine Weiterbildung ist es, dass das Leuchtmittel mindestens ein Halbleiterleuchtelement, insbesondere eine Gruppe von Halbleiterleuchtelementen, umfasst.A further development is that the lighting means comprises at least one semiconductor light-emitting element, in particular a group of semiconductor light-emitting elements.

Bei dem Halbleiterleuchtelement kann es sich um eine Leuchtdiode (LED) handeln.The semiconductor light element can be a light-emitting diode (LED).

Eine Ausgestaltung ist es, dass die elektronischen Schalter Halbleiterschalter, insbesondere Transistoren, Bipolartransistoren und/oder Mosfets umfassen.One embodiment is that the electronic switches comprise semiconductor switches, in particular transistors, bipolar transistors and / or MOSFETs.

Auch ist es eine Ausgestaltung, dass der Energiespeicher einen Kondensator, einen Elektrolytkondensator oder eine Batterie umfasst.It is also an embodiment that the energy storage comprises a capacitor, an electrolytic capacitor or a battery.

Die Batterie kann eine wiederaufladbare Batterie sein.The battery can be a rechargeable battery.

Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen dargestellt und erläutert.Embodiments of the invention are illustrated and explained below with reference to the drawings.

Es zeigen:

Fig.1
ein schematisches Schaltbild mit einer Ladungspumpe zum Betrieb mehrerer in Reihe geschalteter Leuchtdioden an einer Netzwechselspannung;
Fig.2
ein schematisches Schaltbild mit zwei Ladungspumpen zum Betrieb mehrerer in Reihe geschalteter Leuchtdioden an einer Netzwechselspannung basierend auf der Darstellung von Fig.1;
Fig.3
eine schematische Schaltungsanordnung mit einer Steuereinheit zur Ansteuerung elektronischer Schalter.
Show it:
Fig.1
a schematic circuit diagram with a charge pump for operating a plurality of series-connected LEDs on an AC line voltage;
Fig.2
a schematic diagram of two charge pumps for operating a plurality of series-connected LEDs to an AC line voltage based on the representation of Fig.1 ;
Figure 3
a schematic circuit arrangement with a control unit for controlling electronic switches.

Es wird vorgeschlagen, eine oder mehrere Ladungspumpen zum Betreiben von Leuchtmitteln zu verwenden, wobei die mindestens eine Ladungspumpe beispielsweise zu Beginn (im Wesentlichen oder bevorzugt) kontinuierlich und danach zyklisch (oder iterativ) aufgeladen wird. In Zeiträumen, in denen ein Wert der Netzspannung klein ist, wird die Energie für die Leuchtmittel (insbesondere eine Kette bzw. eine Reihenschaltung von Halbleiterleuchtelementen, z.B. Leuchtdioden) zur Verfügung gestellt, ohne dabei die Stromaufnahme von dem Stromnetzwerk wesentlich zu verzerren bzw. zu stören.It is proposed to use one or more charge pumps for operating light bulbs, wherein the at least one charge pump, for example, at the beginning (substantially or preferably) continuously and then cyclically (or iteratively) is charged. In periods in which a value of the mains voltage is small, the energy for the lighting means (in particular a chain or a series connection of semiconductor light elements, eg light-emitting diodes) is made available without significantly distorting or disturbing the power consumption of the power network ,

Die Leuchtmittel können über eine spannungsgesteuerte Stromquelle betrieben werden, wobei als steuernde Spannung beispielsweise eine pulsierende gleichgerichtete Netzspannung dienen kann. Die (sinusähnlichen) Halbwellen der gleichgerichteten (pulsierenden) Netzspannung weisen die doppelte Frequenz der Netzwechselspannung (also z.B. 100Hz oder 120Hz) auf. Damit ergibt sich auch ein (nahezu bzw. im Wesentlichen) sinusförmiger Betriebsstrom für den Betrieb der Leuchtmittel.The bulbs can be operated via a voltage-controlled current source, which can serve as a controlling voltage, for example, a pulsed rectified mains voltage. The (sinusoidal) half-waves of the rectified (pulsating) mains voltage have twice the frequency of the mains alternating voltage (eg 100Hz or 120Hz). This results in a (nearly or substantially) sinusoidal operating current for the operation of the lamps.

Die Leuchtmittel können über elektronische Schalter angesteuert werden. Bei den elektronischen Schaltern kann es sich um Halbleiterschalter, z.B. Transistoren, Bipolartransistoren, Mosfets, etc. handeln. Vorzugsweise können Halbleiterschalter mit einem gemeinsamen Bezugspotential eingesetzt werden. Dadurch vereinfacht sich die Ansteuerung der Halbleiterschalter. Außerdem können die Halbleiterschalter zusammen mit der sie ansteuernden Einheit integriert (z.B. auf Silizium) ausgeführt sein.The bulbs can be controlled via electronic switches. The electronic switches may be semiconductor switches, e.g. Transistors, bipolar transistors, mosfets, etc. act. Preferably, semiconductor switches can be used with a common reference potential. This simplifies the control of the semiconductor switches. In addition, the semiconductor switches may be integrated with the driving unit (e.g., silicon).

Fig.1 zeigt ein schematisches Schaltbild zum Betrieb mehrerer in Reihe geschalteter Leuchtdioden 101 bis 109 an einer Netzwechselspannung 110. Fig.1 shows a schematic circuit diagram for the operation of several series-connected light-emitting diodes 101 to 109 at an AC line voltage 110th

Die Netzwechselspannung 110 wird über einen Gleichrichter 111 in eine (pulsierende) Gleichspannung umgewandelt. Die Gleichspannung ist nach dem Gleichrichter 110 mit der Anode einer Diode 112 (positive Versorgungsspannung) und mit dem Anschluss einer Stromquelle 121 (Massepotential) verbunden.The AC line voltage 110 is converted via a rectifier 111 in a (pulsating) DC voltage. The DC voltage is connected after the rectifier 110 to the anode of a diode 112 (positive supply voltage) and to the terminal of a current source 121 (ground potential).

Die Kathode der Diode 112 ist mit einem Knoten 113 verbunden. Der Knoten 113 ist über eine Reihenschaltung aus einer Diode 114 und einer (optionalen) Stromquelle 115 mit einem Knoten 118 verbunden, wobei die Kathode der Diode 114 in Richtung des Knotens 113 zeigt.The cathode of the diode 112 is connected to a node 113. The node 113 is connected via a series connection of a diode 114 and an (optional) current source 115 to a node 118, wherein the cathode of the diode 114 points in the direction of the node 113.

Die Leuchtdioden 101 bis 109 sind in gleicher Orientierung in Reihe geschaltet, wobei die Anode der Leuchtdiode 101 mit dem Knoten 113 und die Kathode der Leuchtdiode 109 mit einem Knoten 119 verbunden ist. Die Stromquelle 121 ist zwischen diesem Knoten 119 und dem Gleichrichter 111 angeordnet.The light-emitting diodes 101 to 109 are connected in series in the same orientation, wherein the anode of the light-emitting diode 101 is connected to the node 113 and the cathode of the light-emitting diode 109 is connected to a node 119. The current source 121 is arranged between this node 119 and the rectifier 111.

Ein Abgriff oder Mittenabgriff zwischen den Leuchtdioden 104 und 105 wird als ein Knoten 127 bezeichnet. Zwischen dem Knoten 127 und dem Knoten 118 ist eine Diode 120 angeordnet, deren Kathode in Richtung des Knotens 118 zeigt. Zwischen dem Knoten 117 und dem Knoten 119 ist ein Kondensator 117 (z.B. ausgeführt als ein Elektrolytkondensator) angeordnet.A tap or center tap between the light emitting diodes 104 and 105 is referred to as a node 127. Between the node 127 and the node 118, a diode 120 is arranged, the cathode of which in the direction of the node 118 shows. Between the node 117 and the node 119, a capacitor 117 (eg, configured as an electrolytic capacitor) is disposed.

Der Knoten 127 ist weiterhin mit dem Drain-Anschluss eines Mosfets 122 verbunden. Der Source-Anschluss des Mosfets 122 ist mit dem Knoten 119 verbunden. Ein Abgriff zwischen den Leuchtdioden 105 und 106 ist mit dem Drain-Anschluss eines Mosfets 123 verbunden. Der Source-Anschluss des Mosfets 123 ist mit dem Knoten 119 verbunden. Ein Abgriff zwischen den Leuchtdioden 106 und 107 ist mit dem Drain-Anschluss eines Mosfets 124 verbunden. Der Source-Anschluss des Mosfets 124 ist mit dem Knoten 119 verbunden. Ein Abgriff zwischen den Leuchtdioden 107 und 108 ist mit dem Drain-Anschluss eines Mosfets 125 verbunden. Der Source-Anschluss des Mosfets 125 ist mit dem Knoten 119 verbunden. Ein Abgriff zwischen den Leuchtdioden 108 und 109 ist mit dem Drain-Anschluss eines Mosfets 126 verbunden. Der Source-Anschluss des Mosfets 126 ist mit dem Knoten 119 verbunden.The node 127 is further connected to the drain terminal of a mosfet 122. The source terminal of the mosfet 122 is connected to the node 119. A tap between the light emitting diodes 105 and 106 is connected to the drain terminal of a mosfet 123. The source terminal of the mosfet 123 is connected to the node 119. A tap between the light emitting diodes 106 and 107 is connected to the drain terminal of a mosfet 124. The source terminal of the mosfet 124 is connected to the node 119. A tap between the light emitting diodes 107 and 108 is connected to the drain terminal of a mosfet 125. The source terminal of the mosfet 125 is connected to the node 119. A tap between the light emitting diodes 108 and 109 is connected to the drain terminal of a mosfet 126. The source terminal of the mosfet 126 is connected to the node 119.

Bei den Dioden 112, 114 und 120 kann es sich um Dioden vom Typ 1N4004 handeln. Jede Leuchtdiode 101 bis 109 kann als mindestens eine Leuchtdiode bzw. als mindestens ein Halbleiterleuchtelement ausgeführt sein. Insbesondere kann jede Leuchtdiode 101 bis 109 eine Gruppe von Leuchtdioden umfassen. Eine Sollspannung für eine Gruppe der Leuchtdioden kann insbesondere der Gesamtspannung durch die Anzahl der Leuchtdioden pro Gruppe entsprechen.The diodes 112, 114 and 120 may be 1N4004 type diodes. Each light-emitting diode 101 to 109 may be embodied as at least one light-emitting diode or at least one semiconductor light-emitting element. In particular, each light-emitting diode 101 to 109 may comprise a group of light-emitting diodes. A setpoint voltage for a group of light-emitting diodes may in particular correspond to the total voltage by the number of light-emitting diodes per group.

Beispielsweise kann jede Leuchtdiode 101 bis 109 einer Gruppe von Leuchtdioden entsprechen, die eine Versorgungsspannung von 35V benötigen.For example, each light emitting diode 101 to 109 correspond to a group of light emitting diodes that require a supply voltage of 35V.

Die Gate-Anschlüsse der Mosfets 122 bis 126 werden durch eine geeignete Steuereinheit (nicht in Fig.1 gezeigt; Details zur Steuereinheit: siehe auch Fig.3) angesteuert. So können die Mosfets abhängig von der Höhe der Netzspannung aktiviert werden, z.B.

  • der Mosfet 126 bei einer Netzspannung in Höhe von 8*35V=280V;
  • der Mosfet 125 bei einer Netzspannung in Höhe von 7*35V=245V;
  • der Mosfet 124 bei einer Netzspannung in Höhe von 6*35V=210V;
  • der Mosfet 123 bei einer Netzspannung in Höhe von 5*35V=175V;
  • der Mosfet 123 bei einer Netzspannung in Höhe von 4*35V=140V.
The gate terminals of the MOSFETs 122 to 126 are controlled by a suitable control unit (not in FIG Fig.1 shown; Control unit details: see also Figure 3 ). Thus, the mosfets can be activated depending on the level of the mains voltage, eg
  • the Mosfet 126 at a mains voltage of 8 * 35V = 280V;
  • the Mosfet 125 at a mains voltage of 7 * 35V = 245V;
  • the Mosfet 124 at a mains voltage of 6 * 35V = 210V;
  • the Mosfet 123 at a mains voltage of 5 * 35V = 175V;
  • the Mosfet 123 at a mains voltage of 4 * 35V = 140V.

Wird der jeweilige Mosfet 122 bis 126 aktiviert (kurzgeschlossen), sperren vorzugsweise die verbleibenden Mosfets. Im obigen Beispiel bedeutet dies, dass bei einer Netzspannung in einem Bereich zwischen ca. 175V und 210V der Mosfet 123 leitend geschaltet wird, wodurch die Leuchtdioden 106 bis 109 kurzgeschlossen bzw. überbrückt sind. Somit sind während dieser Dauer nur die Leuchtdioden 101 bis 105 wirksam in Reihe geschaltet und können durch die (aktuelle) Netzspannung betrieben werden. Entsprechendes gilt für die anderen Schaltzustände.If the respective mosfet 122 to 126 is activated (short-circuited), the remaining mosfets are preferably blocked. In the above example, this means that with a mains voltage in a range between approximately 175V and 210V, the MOSFET 123 is turned on, as a result of which the light-emitting diodes 106 to 109 are short-circuited or bridged. Thus, during this period, only the light-emitting diodes 101 to 105 are effectively connected in series and can be operated by the (current) mains voltage. The same applies to the other switching states.

Anstelle der Mosfets können beliebige elektronische Schalter eingesetzt werden, z.B. (Bipolar-)Transistoren o.ä. Die elektronischen Schalter können zusammen mit der Steuereinheit und/oder den Stromquellen z.B. auf Silizium-Basis integriert hergestellt sein.Instead of the mosfets, any electronic switches can be used, e.g. (Bipolar) transistors or similar The electronic switches may be used together with the control unit and / or the power sources e.g. be manufactured based on silicon.

Es sei angemerkt, dass Mittenabgriff oder Abgriff eine Möglichkeit der Kontaktierung zwischen zwei Bauelementen bezeichnet. Dies entspricht elektrisch einem Knoten, der mit mehreren Bauelementen verbunden sein kann.It should be noted that center tap or tap designates a possibility of contacting between two components. This corresponds electrically to a node that may be connected to multiple components.

Der Kondensator 117 wird zunächst über mehrere Netzperioden über eine Schwellenspannung der vier Leuchtdioden 101 bis 104 (im obigen Beispiel: 140V) aufgeladen. Die Aufladung erfolgt über den Knoten 127 und die Diode 120. Die Stromquelle 121 begrenzt auch den Ladestrom für den Kondensator 117. Während des Aufladens werden die Mosfets 122 bis 126 vorzugsweise sperrend angesteuert, d.h. keine der Leuchtdioden 105 bis 109 ist kurzgeschlossen.The capacitor 117 is first over several network periods via a threshold voltage of the four light-emitting diodes 101 to 104 (in the above example: 140V) charged. The charging takes place via the node 127 and the diode 120. The current source 121 also limits the charging current for the capacitor 117. During charging, the MOSFETs 122 to 126 are preferably blocked, ie none of the LEDs 105 to 109 is short-circuited.

Die maximale Aufladung des Kondensators 117 ist hierbei begrenzt auf in etwa die Spannung, die an den fünf Leuchtdioden 105 bis 109 abfällt (im obigen Beispiel: 175V).In this case, the maximum charge of the capacitor 117 is limited to approximately the voltage which drops across the five light-emitting diodes 105 to 109 (175V in the above example).

Sinkt die Netzspannung an dem Knoten 118 unterhalb ein vorgegebenes Niveau ab (z.B. 165V in dem obigen Beispiel), so fließt die in dem Kondensator 117 gespeicherte Energie über die Diode 114 und den Knoten 113 in die Reihenschaltung der Leuchtdioden. Hierbei wird durch die optional vorhandene Stromquelle 115 der Stromfluss begrenzt. Vorzugsweise ist in diesem Fall der Mosfet 122 leitend geschaltet, die verbleibenden Mosfets 123 bis 126 sperren. Damit fließt der Strom von dem Knoten 113 über die Leuchtdioden 101 bis 104 und den Mosfet 122 zu dem Knoten 119 und von dort weiter über die Stromquelle 121 in Richtung des Gleichrichters 111.When the mains voltage at node 118 drops below a predetermined level (e.g., 165V in the above example), the energy stored in capacitor 117 flows through diode 114 and node 113 into the series connection of the LEDs. In this case, the current flow is limited by the optional existing current source 115. Preferably, in this case, the mosfet 122 is turned on, blocking the remaining mosfets 123 to 126. Thus, the current flows from the node 113 via the light-emitting diodes 101 to 104 and the mosfet 122 to the node 119 and from there further via the current source 121 in the direction of the rectifier 111.

Die Stromquelle 121 begrenzt den durch die Leuchtdioden fließenden Strom sowie den maximalen Ladestrom des Kondensators 117.The current source 121 limits the current flowing through the LEDs and the maximum charging current of the capacitor 117.

Insofern können zyklisch mit der doppelten Frequenz der Netzwechselspannung (die pulsierende Gleichspannung, die von dem Gleichrichter 111 bereitgestellt wird, weist die doppelte Netzfrequenz auf) die Leuchtdioden 101 bis 109 betrieben werden, wobei bei einer Netzspannung, die kleiner als ein vorgegebener Schwellwert ist, der Mosfet 122 leitend geschaltet wird und die Leuchtdioden 101 bis 104 von dem Kondensator 117 versorgt werden. Der Kondensator wird wieder nachgeladen sobald die Netzspannung größer als der vorgegebene Schwellwert ist (bzw. größer als ein zweiter Schwellwert, der wiederum größer als der genannte Schwellwert ist); in diesem Fall wird zumindest der Mosfet 122 wieder deaktiviert (sperrend geschaltet).In this respect, cyclically with twice the frequency of the AC line voltage (the pulsating DC voltage provided by the rectifier 111 has twice the mains frequency), the light-emitting diodes 101 to 109 can be operated, wherein at a mains voltage which is less than a predetermined threshold, the Mosfet 122 is turned on and the light emitting diodes 101 to 104 are supplied by the capacitor 117. The capacitor is recharged as soon as the mains voltage is greater than the predetermined threshold (or greater than a second threshold, which in turn is greater than said threshold); In this case, at least the mosfet 122 is deactivated again (switched off).

Vorzugsweise kann die Schaltung so dimensioniert werden, dass zumindest die Leuchtdioden 101 bis 104 nicht (oder nur für einen sehr kurzen Zeitraum) stromlos sind, unabhängig von dem momentanen Spannungswert der pulsierenden gleichgerichteten Wellenform der Netzspannung.Preferably, the circuit may be dimensioned such that at least the light-emitting diodes 101 to 104 are not (or only for a very short period of time) de-energized, independent of the instantaneous voltage value of the pulsed rectified waveform of the mains voltage.

Das erstmalige Aufladen des Kondensators 117 kann über mehrere Netzzyklen erfolgen, da (auch) der Ladestrom durch die Stromquelle 121 begrenzt wird.The first charging of the capacitor 117 can take place over several network cycles, since (also) the charging current is limited by the current source 121.

Optional kann die Stromquelle 115 entfallen. Bei der Stromquelle 115 kann es sich um eine Konstantstromquelle oder um eine spannungsgesteuerte Stromquelle handeln. Im letzteren Fall kann die steuernde Spannung von der gleichgerichteten Netzspannung bereitgestellt werden.Optionally, the power source 115 can be omitted. The current source 115 may be a constant current source or a voltage controlled current source. In the latter case, the controlling voltage may be provided by the rectified mains voltage.

Bevorzugt liegt die Energie, die während des Ladezyklus dem Kondensator 117 zugeführt wird, über seiner zyklischen Entladeenergie. Vorzugsweise ist die Ladespannung größer als die Entladespannung des Kondensators. Beispielsweise kann auch die Aufladezeit länger sein als die Entladezeit und/oder kann ein Mittelwert des Ladestroms für den Kondensator 117 größer als ein Mittelwert seines Entladestroms sein.Preferably, the energy supplied to the capacitor 117 during the charging cycle is above its cyclic discharge energy. Preferably, the charging voltage is greater than the discharge voltage of the capacitor. For example, the charging time may be longer than the discharging time and / or an average value of the charging current for the capacitor 117 may be greater than an average value of its discharging current.

Somit kann die Spannung an dem Kondensator 117 nach erfolgtem Aufladen um einen Betriebspunkt pendeln. In dem hier beschriebenen Beispiel kann diese Spannung zwischen der vier- bis fünffachen Leuchtdioden-Spannung pendeln, also zwischen 140V und 175V. Vorteilhaft wird der Kondensator 117 so ausgelegt, dass in der dargestellten Anwendung das Spannungsniveau von 140V während des Entladezyklus nicht unterschritten wird.Thus, the voltage on the capacitor 117 may oscillate after a successful charging by one operating point. In the example described here, this voltage can oscillate between four to five times the light-emitting diode voltage, ie between 140V and 175V. Advantageously, the capacitor 117 is designed so that in the illustrated Application, the voltage level of 140V during the discharge cycle is not exceeded.

Beispielsweise erfolgt die Nachladung des Kondensators 117 wenn die Netzspannung so groß ist, dass gar kein Mosfet 122 bis 126 leitend geschaltet ist oder dass nur der Mosfet 126 leitend geschaltet ist. Dies entspricht in dem hier beschriebenen Beispiel einem Nachladen des Kondensators 117 ab einer Spannung in Höhe von ca. 280V.For example, the recharging of the capacitor 117 occurs when the mains voltage is so high that no Mosfet 122 to 126 is turned on or that only the Mosfet 126 is turned on. In the example described here, this corresponds to recharging the capacitor 117 from a voltage of approximately 280V.

Bei der Stromquelle 121 handelt es sich vorzugsweise um eine spannungsgesteuerte Stromquelle, wobei die Steuerspannung mittels der (gleichgerichteten) Netzspannung erfolgen kann (gestrichelte Linie 116 in Fig.1). Damit ist sichergestellt, dass auch der Strom durch die Leuchtdioden bzw. zum Aufladen des Kondensators (nahezu) sinusförmig (bzw. sinusähnlich aufgrund des gleichgerichteten pulsierenden sinus-halbwellenförmigen Signals) ist und damit das Stromnetz nicht bzw. nicht signifikant stört.The current source 121 is preferably a voltage-controlled current source, wherein the control voltage can be effected by means of the (rectified) mains voltage (dashed line 116 in FIG Fig.1 ). This ensures that the current through the LEDs or to charge the capacitor (almost) sinusoidal (or similar sinusoidal due to the rectified pulsating sinusoidal-wave signal) and thus does not disturb the power supply or not significantly.

Die Dioden 112, 114 und 120 können als elektronische Schalter, z.B. als Transistoren, Mosfets, etc. realisiert sein. Insbesondere können die elektronischen Schalter zusammen mit der Stromquelle 115 und/oder der Stromquelle 121 integriert ausgeführt sein.The diodes 112, 114 and 120 may be used as electronic switches, e.g. be realized as transistors, mosfets, etc. In particular, the electronic switches can be designed to be integrated together with the current source 115 and / or the current source 121.

Dadurch, dass der Kondensator 117 Ladung in die Leuchtdioden "pumpt", wenn die gleichgerichtete Netzspannung unter eine vorgegebene Schwelle absinkt, erfolgt eine Intensitätsmodulation der Leuchtmittel mit einer Frequenz, die oberhalb der doppelten Netzfrequenz liegt. Somit wird wirksam ein wahrnehmbares Flackern der Leuchtdioden verhindert.Characterized in that the capacitor 117 "charges" charge in the LEDs, when the rectified mains voltage drops below a predetermined threshold, there is an intensity modulation of the lamps with a frequency which is above twice the mains frequency. Thus, a noticeable flicker of the LEDs is effectively prevented.

Bei dem Kondensator 117 handelt es sich in der in Fig.1 vorgestellten Beschaltung um eine Ladungspumpe: Der Kondensator 117 (nach initialer Aufladung) wird abhängig von der Spannung eines Eingangssignals für eine bestimmte Zeitdauer geladen; fällt die Spannung unter ein vorgegebenes Niveau, pumpt der Kondensator Ladung in die Leuchtmittel. Entladen und Laden können sich zyklisch abwechseln, wobei ein Zyklus durch eine sinusähnliche Halbwelle einer gleichgerichteten Wechselspannung vorgegeben sein kann.The capacitor 117 is in the in Fig.1 presented wiring around a charge pump: The capacitor 117 (after initial charging) becomes dependent charged by the voltage of an input signal for a certain period of time; If the voltage falls below a predetermined level, the capacitor pumps charge into the lamps. Discharging and charging can alternate cyclically, with one cycle being dictated by a sinusoidal half cycle of a rectified AC voltage.

Nachfolgend wird beispielhaft erläutert, dass auch mehrere Ladungspumpen zum Betrieb der Leuchtmittel vorgesehen sein können.It will be explained below by way of example that it is also possible to provide a plurality of charge pumps for operating the lighting means.

Fig.2 zeigt ein schematisches Schaltbild zum Betrieb mehrerer in Reihe geschalteter Leuchtdioden 101 bis 109 an einer Netzwechselspannung 110 basierend auf der Darstellung von Fig.1. Fig.2 shows a schematic circuit diagram for operating a plurality of series-connected LEDs 101 to 109 at an AC line voltage 110 based on the representation of Fig.1 ,

In Ergänzung zu der Ladungspumpe von Fig.1, umfassend den Kondensator mit Stromquelle 115 sowie zugehöriger Beschaltung, weist Fig.2 eine weitere Ladungspumpe auf. Hierdurch lassen sich die Pausenzeiten weiter verkürzen und ein nochmals kontinuierlich erscheinender Helligkeitseindruck erreichen.In addition to the charge pump of Fig.1 comprising the capacitor with current source 115 and associated circuitry has Fig.2 another charge pump on. As a result, the pause times can be further shortened and achieve a brightness impression that appears again continuously.

Im Unterschied zu Fig.1 weist Fig.2 einen Kondensator 201 (beispielsweise einen Elektrolytkondensator) auf, der mit einer Stromquelle 202 und einer Diode 204 in Reihe geschaltet ist, wobei die Kathode der Diode 204 mit einem Knoten 203, der dem Abgriff zwischen der Leuchtdiode 105 und der Leuchtdiode 106 entspricht, verbunden ist. Der Kondensator 201 ist mit seinem negativen Pol mit dem Knoten 119 verbunden. Ein Abgriff zwischen dem Kondensator 201 und der Stromquelle 202 ist über eine Diode 205 mit dem Knoten 127 verbunden, wobei die Anode der Diode 205 in Richtung des Knotens 127 zeigt.In contrast to Fig.1 has Fig.2 a capacitor 201 (eg, an electrolytic capacitor) connected in series with a current source 202 and a diode 204, the cathode of the diode 204 being connected to a node 203 corresponding to the tap between the light emitting diode 105 and the light emitting diode 106 , The capacitor 201 is connected at its negative pole to the node 119. A tap between the capacitor 201 and the current source 202 is connected via a diode 205 to the node 127, wherein the anode of the diode 205 points in the direction of the node 127.

Bei den Dioden 204, 205 handelt es sich beispielsweise um die gleichen Typen wie bei den Dioden 112, 114 und 120 (1N4004).The diodes 204, 205 are, for example, the same types as the diodes 112, 114 and 120 (1N4004).

Die Stromquelle 202 kann eine zu- bzw. abschaltbare Stromquelle, insbesondere eine gesteuerte Stromquelle, sein.The current source 202 may be a current source which can be switched on or off, in particular a controlled current source.

Analog zu den vorstehenden Ausführungen zu Fig.1 wird der Kondensator 201 über die Spannung an dem Knoten 127 und die Diode 205 aufgeladen. Fällt die Spannung an dem Knoten 203 unter eine vorgegeben Spannung, die kleiner als die Spannung des geladenen Kondensators 201 ist, so kann die Stromquelle 202 zugeschaltet werden und der Kondensator 201 speist Energie über die Diode 204 in den Knoten 203 und versorgt somit die Leuchtdioden 106 bis 109 mit Energie. Der Ladestrom für den Kondensator 201 wird durch die (spannungsgesteuerte) Stromquelle 121 begrenzt und der Strom durch die Leuchtdioden 106 bis 109 wird auch durch die (ggf. spannungsgesteuerte oder konstante) Stromquelle 202 begrenzt.Analogous to the previous comments Fig.1 The capacitor 201 is charged via the voltage at the node 127 and the diode 205. If the voltage at the node 203 falls below a predetermined voltage, which is smaller than the voltage of the charged capacitor 201, the current source 202 can be switched on and the capacitor 201 feeds energy via the diode 204 into the node 203 and thus supplies the light-emitting diodes 106 to 109 with energy. The charging current for the capacitor 201 is limited by the (voltage-controlled) current source 121 and the current through the light-emitting diodes 106 to 109 is also limited by the (possibly voltage-controlled or constant) current source 202.

Optional kann die Stromquelle 202 entfallen und durch einen elektronischen Schalter ersetzt werden, der von der Steuereinheit angesteuert werden kann. Beispielsweise kann mit der Aktivierung des Mosfets 122 (Ladung fließt von dem Kondensator 117 in die Leuchtdioden 101 bis 104 und über den Mosfet 122 in den Knoten 119) auch dieser elektronische Schalter aktiviert werden: Dann fließt zusätzlich Ladung von dem Kondensator 201 über den Knoten 203 durch die Leuchtdioden 106 bis 109 (alle Mosfets 123 bis 126 sperren). Auch ist es möglich, dass die zu- bzw. abschaltbare Stromquelle 202 (oder der stattdessen vorgesehene Schalter) und der Mosfet 122 alternierend (mit gleichen oder unterschiedlichen Ein- und/oder Ausschaltdauern) betrieben werden.Optionally, the power source 202 can be omitted and replaced by an electronic switch that can be controlled by the control unit. For example, with the activation of the mosfet 122 (charge flows from the capacitor 117 into the light emitting diodes 101 to 104 and via the mosfet 122 into the node 119), this electronic switch can also be activated: charge then additionally flows from the capacitor 201 via the node 203 through the light emitting diodes 106 to 109 (all Mosfets 123 to 126 lock). It is also possible for the current source 202 to be switched on or off (or the switch provided instead) and the mosfet 122 to be operated alternately (with the same or different switch-on and / or switch-off periods).

Somit kann die Versorgung der Leuchtdioden 106 bis 109 durch den Kondensator 201 zusätzlich zu der Versorgung der Leuchtdioden 101 bis 104 durch den Kondensator 117 (siehe obige Ausführungen) erfolgen.Thus, the supply of the light emitting diodes 106 to 109 through the capacitor 201 in addition to the supply of the light emitting diodes 101 to 104 by the capacitor 117 (see above).

Fig.3 zeigt eine schematische Schaltungsanordnung mit einer Steuereinheit 302 zur Ansteuerung elektronischer Schalter (z.B. der Gate-Anschlüsse der in Fig.1 und Fig.2 gezeigten Mosfets 122 bis 126). Figure 3 shows a schematic circuit arrangement with a control unit 302 for controlling electronic switches (eg, the gate terminals of in Fig.1 and Fig.2 shown Mosfets 122 to 126).

Bei den Leuchtmitteln 305 handelt es sich beispielsweise um Halbleiterleuchtelemente oder Gruppen von Halbleiterleuchtelementen, die miteinander in Reihe geschaltet sind. Insbesondere können Gruppen von Leuchtmitteln jeweils gemeinsam angesteuert werden.The light-emitting means 305 are, for example, semiconductor light-emitting elements or groups of semiconductor light-emitting elements which are connected in series with one another. In particular, groups of lamps can each be controlled jointly.

Eine pulsierende Gleichspannung 301 mit der doppelten Frequenz einer Netzwechselspannung wird einer Steuereinheit 302 zugeführt. Die Steuereinheit kann einen Prozessor und/oder einen (Mikro-)Controller aufweisen, der abhängig von dem Verlauf der pulsierenden Gleichspannung 301 die elektronischen Schalter 303 ansteuert. Die Schalter 303 können den in Fig.1 und Fig.2 gezeigten Mosfets entsprechen. Zusätzlich ist es möglich, dass auch die Stromquellen 115 und/oder 202 zu- bzw. abgeschaltet werden (siehe diesbezüglich den Schalter in der Stromquelle 202 in Fig.2). Grundsätzlich ist es möglich, auch andere elektronische Schalter, z.B. (Bipolar) Transistoren, zu verwenden.A pulsating DC voltage 301 with twice the frequency of an AC line voltage is supplied to a control unit 302. The control unit may have a processor and / or a (micro) controller which, depending on the course of the pulsating DC voltage 301, drives the electronic switches 303. The switches 303 may be the in Fig.1 and Fig.2 Mosfets shown correspond. In addition, it is possible for the current sources 115 and / or 202 to be switched on and off (see in this regard the switch in the current source 202 in FIG Fig.2 ). In principle, it is also possible to use other electronic switches, for example (bipolar) transistors.

Die Steuereinheit 302 wertet den Verlauf einer Halbwelle der pulsierenden Gleichspannung 301 aus, indem abhängig von der Höhe der Spannung der Halbwelle einer oder mehrere der Schalter 303 angesteuert wird/werden, so dass dem Spannungsverlauf angepasst stufenweise die Leuchtmittel 305 über die Schalter 303 aktiviert werden (hierbei kann stufenweise die Anzahl der aktivierten Leuchtmittel 305 entsprechend der Höhe des Spannungsverlaufs erhöht werden). Dazu wird vorzugsweise die Halbwelle in Stufen oder Schaltschwellen unterteilt, so dass mit ansteigender Spannung stufenweise die Leuchtmittel 305 zugeschaltet werden und mit abfallender Spannung der Halbwelle stufenweise die Leuchtmittel 305 wieder abgeschaltet werden.The control unit 302 evaluates the progression of a half-wave of the pulsating DC voltage 301 by activating one or more of the switches 303 as a function of the magnitude of the voltage of the half-wave, so that the lighting means 305 are activated in stages via the switches 303 in a manner adapted to the voltage profile ( In this case, the number of activated lighting means 305 can gradually be increased according to the height of the voltage curve). For this purpose, the half-wave is preferably subdivided into stages or switching thresholds, so that the illuminants 305 are switched on stepwise with increasing voltage, and the illuminants 305 are switched off step by step with decreasing voltage of the half-wave.

Weiterhin wird die pulsierende Gleichspannung 301 auch einer spannungsgesteuerten Stromquelle 304 (vergleiche: spannungsgesteuerte Stromquelle 121 in Fig.1 und Fig.2) zugeführt, anhand derer ein Strom durch die Leuchtmittel 305 abhängig von der Spannung der Halbwelle bereitgestellt (insbesondere begrenzt) wird. Somit kann erreicht werden, dass sich auch der Strom durch die Leuchtmittel 305 im Wesentlichen in Phase mit der Netzspannung befindet, was sich günstig auf den Powerfaktor auswirkt und störende Einflüsse der Schaltung auf das Stromnetz reduziert bzw. verhindert.Furthermore, the pulsating DC voltage 301 also becomes a voltage-controlled current source 304 (compare: voltage-controlled current source 121 in FIG Fig.1 and Fig.2 ) is supplied, by means of which a current through the lighting means 305 depending on the voltage of the half-wave is provided (in particular limited). Thus, it can be achieved that the current through the lighting means 305 is also substantially in phase with the mains voltage, which has a favorable effect on the power factor and reduces or prevents disturbing influences of the circuit on the power grid.

Auch zeigt die Steuereinheit 302 (mindestens) einen Energiespeicher 306, der wie hier beschrieben als Ladungspumpe funktioniert und abhängig von der Höhe der pulsierenden Gleichspannung Ladung in die Leuchtmittel "pumpt".The control unit 302 also shows (at least) an energy store 306 which, as described here, functions as a charge pump and "charges" charge into the lighting means as a function of the height of the pulsating DC voltage.

Der Energiespeicher 306 ist hier beispielhaft als Teil der Steuereinheit dargestellt, kann aber auch separat zu dieser ausgeführt sein. Optional kann in diesem Fall die Steuereinheit mindestens einen Schalter zur Aktivierung des Energiespeichers ansteuern.The energy storage 306 is shown here as an example as part of the control unit, but may also be designed separately for this. Optionally, in this case, the control unit to control at least one switch for activating the energy storage.

Alternativ ist es möglich, dass die Steuereinheit 302 die spannungsgesteuerte Stromquelle 304 ansteuert.Alternatively, it is possible for the control unit 302 to control the voltage-controlled current source 304.

Weitere Vorteile:Other advantages:

Die mindestens eine Ladungspumpe wird während der Leuchtphase der Leuchtmittel aufgeladen; während der Zeit, in der die Netzenergie nicht zur Verfügung steht oder nicht zum Betrieb der Leuchtmittel ausreichend ist, wird von der mindestens einen Ladungspumpe Energie zum Betrieb des Leuchtmittels bereitgestellt. Die Energiespeicherung kann beispielsweise mittels eines Kondensators oder mittels eines anderen Energiespeichers erfolgen.The at least one charge pump is charged during the lighting phase of the bulbs; During the time in which the grid power is not available or is not sufficient for the operation of the lighting means, energy is provided by the at least one charge pump for operating the lighting means. The energy storage can be done for example by means of a capacitor or by means of another energy storage.

Diese Lösung hat auch den Vorteil, dass der Powerfaktor im Wesentlichen von der spannungsgesteuerten Stromquelle abhängig ist und von dieser auch begrenzt wird. Hierdurch resultiert eine im Wesentlichen sinusförmige Strombelastung des Stromnetzes.This solution also has the advantage that the power factor is essentially dependent on the voltage-controlled current source and is also limited by this. This results in a substantially sinusoidal current load on the power grid.

Die Ladungspumpe kann diskret oder integriert ausgeführt sein.The charge pump may be made discrete or integrated.

Insbesondere kann die Ladungspumpe Teil der Kette der Leuchtmittel (z.B. in eine LED-Kette integriert) sein. Vorteilhaft sind Realisierungen, bei denen die Ladespannung der mindestens einen Ladungspumpe höher als deren Entladespannung ist; insbesondere ist es von Vorteil, wenn während einer zyklischen Aufladung der Ladungspumpe mehr Strom bereitgestellt wird als während der zyklischen Entladung der Ladungspumpe. Entsprechend (alternativ oder zusätzlich) kann auch die zyklische Aufladung der Ladungspumpe länger dauern als ihre zyklische Entladung.In particular, the charge pump may be part of the chain of the lighting means (eg integrated in an LED chain). Implementations in which the charging voltage of the at least one charge pump is higher than its discharge voltage are advantageous; In particular, it is advantageous if more current is supplied during a cyclic charging of the charge pump than during the cyclical discharge of the charge pump. Correspondingly (alternatively or additionally), the cyclic charging of the charge pump may take longer than its cyclical discharge.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

101 bis 109101 to 109
Leuchtdiode bzw. Gruppe von HalbleiterleuchtelementenLight emitting diode or group of semiconductor light elements
110110
NetzwechselspannungAC line voltage
111111
Gleichrichterrectifier
112112
Diodediode
113113
Knotennode
114114
Diodediode
115115
Stromquelle (Konstantstromquelle oder spannungsgesteuerte Stromquelle)Power source (constant current source or voltage controlled current source)
116116
Spannung zur Steuerung der spannungsgesteuerten StromquelleVoltage for controlling the voltage-controlled current source
117117
Kondensatorcapacitor
118118
Knotennode
119119
Knotennode
120120
Diodediode
121121
spannungsgesteuerte Stromquellevoltage-controlled current source
122 bis 126122 to 126
elektronische Schalter (n-Kanal Mosfets)electronic switches (n-channel mosfets)
127127
Knotennode
201201
Kondensatorcapacitor
202202
Stromquelle mit elektronischem Schalter (aktivierbar z.B. von der Steuereinheit)Power source with electronic switch (activatable, for example, from the control unit)
203203
Knotennode
204, 205204, 205
Diodendiodes
301301
gleichgerichtete pulsierende Netzspannung (doppelte Frequenz im Vergleich zur Netz (wechsel) spannung)rectified pulsating mains voltage (double the frequency compared to the mains (alternating) voltage)
302302
Steuereinheitcontrol unit
303303
elektronische Schalterelectronic switches
304304
spannungsgesteuerte Stromquellevoltage-controlled current source
305305
Leuchtmittel (z.B. Reihenschaltung aus Halbleiterleuchtelementen oder Reihenschaltung aus Halbleiterleuchtsystemen, wobei jedes Halbleiterleuchtsystem mindestens ein Halbleiterleuchtelement aufweist)Light source (eg series connection of semiconductor light elements or series circuit of semiconductor light systems, each Semiconductor luminaire system has at least one semiconductor element
306306
Energiespeicher (Ladungspumpe), z.B. (Elektrolyt-)KondensatorEnergy storage (charge pump), e.g. (Electrolyte) Condenser

Claims (13)

  1. Circuit for actuating a plurality of light-emitting means (101-109; 305) which are connected in series,
    - comprising a plurality of electronic switches (122-126; 303), which can be actuated depending on a rectified system voltage (301),
    - wherein the plurality of electronic switches (122-126; 303) are arranged in parallel with at least some of the light-emitting means (105-109),
    - wherein each of the plurality of electronic switches (122-126; 303) short-circuits on activation of in each case at least one of the light-emitting means (105-109; 305) connected in series,
    characterized in that
    - the circuit comprises at least one first energy store (117; 306),
    - which is connected in parallel with a first group of light-emitting means (105-109) during a charge phase by virtue of the electronic switches, and
    - which is connected in parallel with a second group of light-emitting means (101-104) during a discharge phase by virtue of the electronic switches,
    - wherein there is a higher voltage drop across the first group of light-emitting means than across the second group of light-emitting means.
  2. Circuit according to the preceding claim, in which the first energy store (117; 201; 306) can be charged during an initial charge phase over a plurality of cycles of the rectified system voltage (301).
  3. Circuit according to one of the preceding claims, in which the first energy store (117; 201; 306) is connected in series with a current source (115; 202), in particular a constant current source or a voltage-controlled current source.
  4. Circuit according to one of the preceding claims, in which the light-emitting means (101-109; 305) connected in series are connected in series with a voltage-controlled current source (121; 304).
  5. Circuit according to Claim 4, in which the voltage-controlled current source (121; 304) is actuable via the rectified system voltage (301).
  6. Circuit according to either of Claims 4 and 5, in which the electronic switches (122-126; 303) and the voltage-controlled current source (121; 301) are arranged together in an integrated circuit.
  7. Circuit according to one of the preceding claims, comprising a second energy store (201),
    - wherein the second energy store
    - is connected in parallel with the first group of light-emitting means (105-109) during a charge phase by virtue of the electronic switches, and
    - is connected in parallel with a third group of light-emitting means (106-109) during a discharge phase, wherein the third group of light-emitting means is in particular a subset of the first group of light-emitting means (105-109).
  8. Circuit according to one of the preceding claims, in which detection and evaluation of the rectified system voltage (301) is performed using a control unit (302) and, depending on a level of the detected system voltage (301), more or fewer light-emitting means (101-109; 305) can be activated via the electronic switches (122-126; 303).
  9. Circuit according to Claim 8, in which dimmable actuation of the light-emitting means is performed using the control unit.
  10. Circuit according to either of Claims 8 and 9, in which the control unit (302) and the electronic switches (122-126; 303) are integrated together in a circuit.
  11. Circuit according to one of the preceding claims, in which the light-emitting means comprises at least one semiconductor light-emitting element, in particular a group of semiconductor light-emitting elements.
  12. Circuit according to one of the preceding claims, in which the electronic switches comprise semiconductor switches, in particular transistors, bipolar transistors and/or MOSFETs.
  13. Circuit according to one of the preceding claims, in which the energy store comprises a capacitor, an electrolyte capacitor or a battery.
EP12701873.7A 2011-02-10 2012-01-26 Actuating a plurality of series-connected luminous elements Active EP2668822B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011003931A DE102011003931A1 (en) 2011-02-10 2011-02-10 Control of several series-connected bulbs
PCT/EP2012/051183 WO2012107293A2 (en) 2011-02-10 2012-01-26 Actuating a plurality of series-connected luminous elements

Publications (2)

Publication Number Publication Date
EP2668822A2 EP2668822A2 (en) 2013-12-04
EP2668822B1 true EP2668822B1 (en) 2016-06-22

Family

ID=45558706

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12701873.7A Active EP2668822B1 (en) 2011-02-10 2012-01-26 Actuating a plurality of series-connected luminous elements

Country Status (5)

Country Link
US (1) US9210772B2 (en)
EP (1) EP2668822B1 (en)
CN (1) CN103348767B (en)
DE (1) DE102011003931A1 (en)
WO (1) WO2012107293A2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201401921A (en) * 2012-06-26 2014-01-01 Gio Optoelectronics Corp Light-emitting device
RU2554271C2 (en) * 2012-09-13 2015-06-27 Общество с ограниченной ответственностью "Тегас Электрик" Light source with unified led module
EP2876977B1 (en) * 2013-11-21 2018-11-21 Tridonic GmbH & Co. KG Driver module for driving LEDs
DE102014104365B4 (en) * 2014-03-28 2015-11-26 Vossloh-Schwabe Deutschland Gmbh lighting device
DE102014005582B4 (en) 2014-04-15 2015-11-12 Diehl Aerospace Gmbh LED lighting fixture with modeling device for modeling a voltage curve
DE102014005584B4 (en) * 2014-04-15 2015-11-12 Diehl Aerospace Gmbh LED lighting device with an energy storage module and method for operating the LED lighting device
WO2015174877A2 (en) * 2014-05-15 2015-11-19 Rus Adrian Ioan Direct ac led driver flicker index reduction circuit and method
WO2015192266A1 (en) * 2014-06-17 2015-12-23 钰瀚科技股份有限公司 Drive circuit of light emitting diode having low flicker and high power
US20150382414A1 (en) * 2014-06-27 2015-12-31 Microchip Technology Inc. Sequential Linear LED System With Low Output Ripple
DE102014114853A1 (en) * 2014-10-14 2016-04-14 Atlas Elektronik Gmbh Circuit for low-fl ash operation of light-emitting diodes, as well as light source and luminaire
KR102427793B1 (en) * 2015-11-18 2022-08-04 서울반도체 주식회사 Led driving circuit with improved flicker performance and led luminescent apparutus the same
DE212015000282U1 (en) 2014-12-12 2017-08-11 Seoul Semiconductor Co., Ltd. LED circuit with improved flicker performance and lighting device comprising same
KR102309840B1 (en) * 2014-12-12 2021-10-08 서울반도체 주식회사 Led driving circuit with improved flicker performance and led luminescent apparutus the same
WO2016093534A1 (en) * 2014-12-12 2016-06-16 서울반도체 주식회사 Led drive circuit with improved flicker performance, and led lighting device comprising same
US10070490B2 (en) 2015-03-23 2018-09-04 Philips Lighting Holding B.V. Light unit and method for controlling a light unit
US10830831B2 (en) * 2015-06-30 2020-11-10 Signify Holding B.V. Status derivation of load circuit via capacitance
US9730280B2 (en) * 2015-10-01 2017-08-08 Microchip Technology Inc. Ripple reduction circuit for sequential linear LED drivers
ITUB20159821A1 (en) 2015-12-31 2017-07-01 St Microelectronics Srl ELECTRONIC CIRCUIT TO DRIVE LED STRINGS INCLUDING A PLURALITY OF ADJUSTMENT MODULES THAT OPERATE IN SEQUENCE
ITUA20163034A1 (en) * 2016-04-29 2017-10-29 St Microelectronics Srl ELECTRONIC CIRCUIT TO DRIVE LED STRINGS IN ORDER TO REDUCE THE LUMINOUS BALL
US9867245B2 (en) 2015-12-31 2018-01-09 Stmicroelectronics S.R.L. Electronic circuit for driving LED strings so as to reduce the light flicker
FR3049423B1 (en) * 2016-03-24 2018-04-27 Easii Ic OPTOELECTRONIC CIRCUIT COMPRISING LIGHT EMITTING DIODES
FR3049422A1 (en) * 2016-03-24 2017-09-29 Easii Ic OPTOELECTRONIC CIRCUIT COMPRISING LIGHT EMITTING DIODES
US10178717B2 (en) * 2017-03-09 2019-01-08 Dongming Li Lamp-control circuit for lamp array emitting constant light output
IT201700032546A1 (en) * 2017-03-24 2018-09-24 Cynergi S R L Electronic circuit for driving a string of light-emitting diodes
CN108696965B (en) 2017-04-07 2020-08-14 首尔半导体株式会社 Light emitting diode driving module, working method thereof and lighting device comprising same
CN109152125A (en) * 2017-06-28 2019-01-04 群光电能科技股份有限公司 Light emitting device and its driving method
US11013086B2 (en) * 2018-12-12 2021-05-18 i Sine Inc. Methods and apparatus for delivery of constant magnitude power to LED strings
DE102019215594A1 (en) * 2019-10-11 2021-04-15 Osram Gmbh Circuit arrangement and method for controlling semiconductor light sources
DE102019215592A1 (en) * 2019-10-11 2021-04-15 Osram Gmbh Circuit arrangement and method for controlling semiconductor light sources

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4129059A1 (en) * 1991-09-02 1993-03-04 Vdo Schindling Light emitting diode circuit including energy storage capacitor - charges capacitor during half-cycles from AC supply, and discharges through diodes of opposite polarity
US8188679B2 (en) * 2007-07-23 2012-05-29 Nxp B.V. Self-powered LED bypass-switch configuration
CN102113410B (en) * 2008-07-29 2013-11-06 皇家飞利浦电子股份有限公司 Illumination device comprising multiple leds
TW201019795A (en) 2008-11-06 2010-05-16 Aussmak Optoelectronic Corp Light-emitting device
US8410717B2 (en) * 2009-06-04 2013-04-02 Point Somee Limited Liability Company Apparatus, method and system for providing AC line power to lighting devices
US8324840B2 (en) * 2009-06-04 2012-12-04 Point Somee Limited Liability Company Apparatus, method and system for providing AC line power to lighting devices
CN102668709A (en) 2009-06-16 2012-09-12 耐克斯照明公司 Continuous step driver

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN103348767B (en) 2016-01-27
CN103348767A (en) 2013-10-09
DE102011003931A1 (en) 2012-08-16
US20130313984A1 (en) 2013-11-28
US9210772B2 (en) 2015-12-08
EP2668822A2 (en) 2013-12-04
WO2012107293A3 (en) 2012-10-11
WO2012107293A2 (en) 2012-08-16

Similar Documents

Publication Publication Date Title
EP2668822B1 (en) Actuating a plurality of series-connected luminous elements
EP2683221A1 (en) Assembly and method for controlling light emitting diodes dependent on supply voltage amplitude, using capacitor and switch
WO2010046065A1 (en) Operating circuit for leds
DE102015117732A1 (en) Light modulation control unit, lighting system and a system device
DE212015000247U1 (en) LED drive circuit with improved flicker performance and LED lighting device containing this
DE102015203249A1 (en) Down converter for operating bulbs with peak current value control and average current value detection
DE112009002500B4 (en) Driving circuit for LEDs and method for driving LEDs
EP2992735A1 (en) Operating circuit for an led
DE102014106869B4 (en) LED lighting device and lighting device
DE112014002525T5 (en) A control circuit and method for generating a voltage for a light-emitting diode illumination device
WO2012045475A1 (en) Operating circuit for light-emitting diodes
EP2351460A1 (en) Operating connection for light emitting diodes
AT12495U1 (en) ERROR DETECTION FOR LUMINAIRE DIODES
DE112015002852T5 (en) lighting device
DE102011003937A1 (en) Control circuit for controlling lamps switched into series, has electronic switches arranged parallel to lamps and short circuited during activation of lamps that are switched into series and comprise common reference potential
DE102013211767A1 (en) Operating circuit for LED, has switches closed before start of low-frequency pulse packets to store energy in coil, where one switch is repeatedly clocked in pulse packets while another switch is controllable independent of former switch
DE212015000282U1 (en) LED circuit with improved flicker performance and lighting device comprising same
DE202018100418U1 (en) Circuit arrangement for operating a light source
DE102009033280A1 (en) Low voltage supply circuit for operating integrated circuit of operating device, has integrated circuit supplied with electric current when voltage level at current supply connection of integrated circuit is lower than reference voltage
WO2015007713A1 (en) Device and method for directly operating a plurality of light-emitting diodes on a pulsating dc voltage
WO2015071357A1 (en) Operating circuit for a lamp and method for operating a lamp
WO2014176608A1 (en) Operating circuit for light-emitting diodes
EP2992738A1 (en) Error detection for led
EP3439159A1 (en) Reduction of light power fluctuations in a threshold control system of an actively clocked converter
DE102017113013A1 (en) Operating device and method for operating a control gear

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130830

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012007451

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0037020000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 33/08 20060101ALI20160308BHEP

Ipc: H05B 37/02 20060101AFI20160308BHEP

INTG Intention to grant announced

Effective date: 20160324

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 808319

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012007451

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160923

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161022

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161024

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012007451

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170119

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170126

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 808319

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170126

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211230

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231222

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231220

Year of fee payment: 13