EP2466686A1 - Antenna for transmitting and receiving GHz and or THz radiation with optimised frequency characteristics - Google Patents

Antenna for transmitting and receiving GHz and or THz radiation with optimised frequency characteristics Download PDF

Info

Publication number
EP2466686A1
EP2466686A1 EP10195245A EP10195245A EP2466686A1 EP 2466686 A1 EP2466686 A1 EP 2466686A1 EP 10195245 A EP10195245 A EP 10195245A EP 10195245 A EP10195245 A EP 10195245A EP 2466686 A1 EP2466686 A1 EP 2466686A1
Authority
EP
European Patent Office
Prior art keywords
antenna
resonators
resonator
antenna according
photoconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10195245A
Other languages
German (de)
French (fr)
Inventor
Maik Scheller
Christian Jansen
Martin Prof. Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philipps Universitaet Marburg
Original Assignee
Philipps Universitaet Marburg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philipps Universitaet Marburg filed Critical Philipps Universitaet Marburg
Priority to EP10195245A priority Critical patent/EP2466686A1/en
Priority to PCT/EP2011/072276 priority patent/WO2012080105A1/en
Publication of EP2466686A1 publication Critical patent/EP2466686A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/002Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices being reconfigurable or tunable, e.g. using switches or diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element

Definitions

  • the present invention relates to a photoconductive antenna for emitting or receiving terahertz radiation which has an increased antenna gain for one or more frequency bands.
  • This increased antenna gain is realized according to the invention by resonators applied in the vicinity of the photoconductive excitation site.
  • THz systems based on photoconductive antennas are used, for example, in non-destructive testing technology and safety technology.
  • antennas designed according to the invention can decisively improve the performance of THz systems, inter alia with regard to the signal-to-noise ratio, and thus open up new fields of application for the THz technology in which the dynamic range of existing systems is insufficient.
  • the invention relates to a photoconductive antenna for emitting or receiving terahertz radiation.
  • Terahertz radiation is electromagnetic radiation with a frequency of about 0.1 THz to about 100 THz. Applications for terahertz
  • the antenna can be used as a photoconductive switch for generation and detection of terahertz pulses.
  • a short laser pulse whose duration is in the range of femtoseconds to picoseconds, the photoconductivity, so that terahertz radiation can be emitted or detected for a short time (see WO 2008/054 846 A2 ).
  • a photoconductive telescope antenna consists of a high-resistance, semiconductive layer which has the shortest possible carrier recombination time in the femtosecond to picosecond range and the highest possible charge carrier mobility. On this layer, an antenna structure of an electrically conductive material is applied.
  • this antenna includes, for example, spiral antennas ( KR 10 2005 0015364 A . JP2001060821A ; JP2008028872A . JP 58123203 A . CA 2 292 635 . CA 2 575 130 ), Bowtie antennas ( US 2006/0152412 A1 ) and dipole antennas ( US 5 729 017 A . WO 02/060017 A1 ).
  • These structures have a photoconductive excitation site in the form of a gap in the metallization. Its conductivity is determined by the incident laser radiation, since the photon energy of the laser is greater than the band gap of the semiconductive layer and thus free charge carriers are generated during illumination (cf. US 5 729 017 A ; WO 03/047036 A1 ).
  • electrical contacts and leads are deposited on the semiconductive layer.
  • the photoconductive telether antenna is used as an emitter, a bias voltage is applied to the antenna. If charge carriers are now generated by the laser radiation incident in the photoconductive gap, they experience an acceleration in the externally impressed electric field, which causes the emission of the terahertz radiation.
  • the photoconductive telescope antenna is used as a detector, instead of a voltage source, a highly sensitive current amplifier is connected to the antenna.
  • the charge carriers generated by the laser beam are accelerated by the incident terahertz field.
  • the measurable photocurrent is thus a measure of the incident terahertz field strength.
  • terahertz antennas according to the prior art is in particular the inefficient conversion of laser to terahertz power. This results from the spectrally relatively flat but very broadband antenna gain.
  • the antennas may emit THz waves in a frequency range from 0.1 THz up to a few 10 THz, without the antenna gain in individual frequency ranges experiencing a noticeable increase caused by the metallization structure.
  • terahertz antennas Another disadvantage of terahertz antennas according to the prior art are the static, non-modulatable nature of the antenna gain and the static, non-modulatable spatial radiation profile.
  • the object of the present invention is to overcome the disadvantages of the prior art.
  • such an antenna which in addition to the features of a photoconductive terahertz antenna according to the prior art additionally has at least one arranged resonator in the vicinity of the photoconductive excitation locus, is suitable for improving the frequency-selective antenna gain and / or the emission characteristic.
  • at least one of the resonators measured from the excitation location, in a radius which corresponds at most twice the resonance wavelength, to be arranged away.
  • the resonators consist of conductive regions (resistance layer below 1 k ⁇ / cm), which can be excited to an electrical oscillation at one or more resonant frequencies.
  • the lateral dimension of the essentially planar resonators is at least 1/50, but not more than one, preferably 1/2 and more preferably one third to one fourth of the resonance wavelength.
  • the dimensions of the at least one resonator and the spatial proximity to the radiation location result.
  • resonator types also in combination, can be used.
  • periodic arrangements of resonators also known as frequency-selective surfaces or electronic-bandgap structures
  • Embodiments of the resonator elements include, among others symmetrical and asymmetrical single and double gap ring as well as rectangular resonators.
  • the conductivity of the regions forming the resonator structures is preferably achieved by metallization (for example with gold, titanium, copper, platinum, silver, aluminum, nickel, iron or a combination of these elements). These can be applied wet, electrochemically, by evaporation (CVD, PVD, MOCVD), by doping or by printing processes (screen printing, gravure printing, inkjet printing, laser printing).
  • metallization for example with gold, titanium, copper, platinum, silver, aluminum, nickel, iron or a combination of these elements.
  • the resonators are in the same spatial plane as the leads, so that no additional effort in the structuring of the antenna is formed.
  • switchable, electrically conductive resonators can be realized directly in the semiconductor.
  • the circuit is performed electrically and or photoelectrically.
  • gallium arsenide, indium gallium arsenide, indium aluminum arsenide, indium antimonide, or sapphire grown silicon films are preferably used singly or in combination.
  • Other III / V or II / VI contributors may also be used insofar as they have short carrier lifetimes and have bandgap energy less than the photon energy of the laser used.
  • the semiconducting materials are preferably grown at low temperature (narrow. low temperature green) or ion implanted to achieve a short carrier lifetime.
  • the antenna according to the invention is suitable for transmitting and receiving terahertz radiation.
  • An advantage of emitting terahertz radiation is that the transmission power of the antenna in one or more narrow frequency band / bands (bandwidth of 1 to 100 GHz) is significantly enhanced by the use of the resonators. As a result, the signal-to-noise ratio can be increased in these spectral ranges. If an antenna according to the invention is used to receive terahertz radiation, then it has an increased reception sensitivity in one or more narrow frequency bands (bandwidth from 1 to 100 GHz), which likewise achieves an improvement in the signal-to-noise ratio.
  • the antenna is excited by continuous wave laser radiation, it is particularly advantageous if the resonance frequency of the resonators is close to the difference frequency of the exciting laser modes, since then a particularly efficient conversion of laser to terahertz power is possible.
  • the resonant structure attenuates the antenna gain in those areas in which unwanted frequency components would arise which make the signal detection and / or evaluation more difficult.
  • the resonant structures include those which can be modulated in their quality (their spectral resonance width), for example via a Changing the impedance between two sub-segments of the resonator or a change in the impedance between adjacent resonator elements, and thus allow a modulation of the resulting antenna gain of the photoconductive antenna.
  • terahertz antenna which can tune the main emission and reception direction of the antenna by a spatial angle.
  • This tunability can be achieved, for example, by influencing the impedance between individual resonator segments or between a plurality of resonators.
  • the terahertz antenna according to the invention with tunable resonant frequency.
  • a tuning of the resonance frequency is possible, inter alia, via electrical or optical switching areas.
  • the resonators may consist of a plurality of ring segments, wherein two rings can be short-circuited to each other over a switching range, thus changing the To allow resonance condition.
  • the effective length of the resonator would be increased so that the resonant frequency would be shifted to lower frequencies.
  • switchable resonator elements it is thus possible to set different resonance frequencies.
  • liquid crystals (English Liquid Crystals) can be applied to the resonators. These change their dielectric properties when an electric field is applied. This causes a change in the resonant condition of the resonators and thus a shift in the resonant frequency.
  • structures according to the invention can be used as sensors which allow conclusions to be drawn about the sample material by changing the resonance properties when a sample is applied.
  • the resonance frequency and the resonance width vary characteristically according to the material properties of the sample depending on the sample material.
  • the feed lines of the antenna structure further comprise matching elements which minimize the parasitic resonances due to back reflections from the electrical contacts.
  • the matching elements can additionally be provided with loss elements, such as absorbing coatings and / or low-resistance metal structures, in order to further minimize the back reflections.
  • An arrangement of components (transmitter and receiver) is constructed which emits and detects THz radiation.
  • a photoconductive terahertz antenna This consists of a semiconductive substrate (eg gallium arsenide, silicon on sapphire or indium gallium arsenide) 101, on which one or more electrical leads 102 are applied. To operate the antenna, laser radiation 104 is directed to a photoconductive region 106 .
  • the antenna structures according to the invention additionally include one or more conductive resonators 105 (see Fig. 2 ).
  • the antenna can be switched as a receiver or as a transmitter. By applying a voltage 109 to the electrical leads 102, the antenna emits terahertz radiation and operates as a transmitter. Alternatively, a meter 103 may be connected to the leads 102 to detect terahertz waves.
  • the partial areas of the conductive resonators 105 can be connected via switching area 107.
  • the conductivity of the switching ranges can be modulated by applying a voltage or a current to them.
  • the switching regions 107 may be realized in the form of photoconductive regions whose conductivity can be switched optically (e.g., by a laser). By modulating the switching ranges, the spectral characteristics of the resonators can be changed and thus the spectral antenna gain or the radiation characteristic of the antenna can be influenced.
  • gap-ring resonators FIGS. 2 to 5
  • a periodic arrangement of rectangular conductors FIG. 6
  • a periodic arrangement of gap-ring resonators FIG. 7
  • the resonators can have both angular and round shapes and either laterally to the electrical leads ( FIGS. 2 to 4 ) or as part of these ( FIG. 5 ).
  • FIG. 9 shows the spectral intensity of a measured in a THz time domain spectrometer signal, on the one hand, a photoconductive antenna resonant structure according to the invention and, secondly, a reference antenna according to the prior art was used as an emitter.
  • FIG. 10 schematically shows the spectral intensity of the signal of a THz time domain spectrometer, in which a resonant structure photoconductive antenna according to the invention is used as a sensor.
  • a sample 108 By applying a sample 108 , the resonant frequency of the resonator structure can be changed. Based on the waveform can be deduced on the dielectric properties of the sample material.

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The antenna has a resistanceless structure for voltage supply and/or current supply and a photoconductive excitation spot located on a semiconductive substrate e.g. gallium arsenide substrate. Conductive resonators (105) e.g. symmetric resonators, are provided in the substrate in proximity to the photoconductive excitation spot. The resonators are switched relative to quality and/or resonance frequency. One of the resonators is arranged in a same spatial plane as supply lines. A switch of the resonators is designed such that frequency selective antenna gain of the antenna is modulated.

Description

[Beschreibung und Einleitung des allgemeinen Gebietes der Erfindung][Description and Introduction of the General Field of the Invention]

Die vorliegende Erfindung betrifft eine photoleitende Antenne zum Aussenden oder Empfangen von Terahertz-Strahlung, die einen erhöhten Antennengewinn für ein oder mehrere Frequenzbänder aufweist. Dieser erhöhte Antennengewinn wird erfindungsgemäß durch in der Nähe des photoleitenden Anregungsort aufgebrachte Resonatoren realisiert. THz-Systeme, die auf photoleitenden Antennen aufbauen, werden beispielsweise in der zerstörungsfreien Prüftechnik und der Sicherheitstechnik genutzt. Im Vergleich zum Stand der Technik können erfindungsgemäß ausgeführte Antennen die Leistungsfähigkeit von THz-Systemen unter anderem in Bezug auf den Signal- zu Rauschabstand entscheidend verbessern und somit neue Anwendungsgebiete für die THz-Technik erschließen in denen der Dynamikumfang bestehender Systeme nicht ausreicht.The present invention relates to a photoconductive antenna for emitting or receiving terahertz radiation which has an increased antenna gain for one or more frequency bands. This increased antenna gain is realized according to the invention by resonators applied in the vicinity of the photoconductive excitation site. THz systems based on photoconductive antennas are used, for example, in non-destructive testing technology and safety technology. In comparison with the prior art, antennas designed according to the invention can decisively improve the performance of THz systems, inter alia with regard to the signal-to-noise ratio, and thus open up new fields of application for the THz technology in which the dynamic range of existing systems is insufficient.

[Stand der Technik][State of the art]

Die Erfindung betrifft eine photoleitende Antenne zum Aussenden oder Empfangen von Terahertz-Strahlung.The invention relates to a photoconductive antenna for emitting or receiving terahertz radiation.

Als Terahertz-Strahlung bezeichnet man elektromagnetische Strahlung mit einer Frequenz von circa 0,1 THz bis circa 100 THz. Applikationen für Terahertz-Terahertz radiation is electromagnetic radiation with a frequency of about 0.1 THz to about 100 THz. Applications for terahertz

Systeme finden sich unter anderem im Sicherheitssektor (z.B. die Detektion versteckter Gefahrengüter oder die Identifikation von Flüssigsprengstoffen) oder in der Qualitätskontrolle von Lebensmitteln und Kunststoffprodukten. Weiterhin liegen Molekülschwingungen einiger Substanzen im Terahertzfrequenzbereich, so dass neben dem technisch-kommerziellen auch ein wissenschaftliches Interesse an leistungsstarken Terahertz-Emittern und -Detektoren für spektroskopische Anwendungen besteht.Systems can be found, for example, in the security sector (for example, the detection of hidden hazardous substances or the identification of liquid explosives) or in the quality control of food and plastic products. Furthermore, molecular vibrations of some substances in the terahertz frequency range, so that in addition to the technical-commercial and a scientific interest in high-performance terahertz emitters and detectors for spectroscopic applications exists.

Gemäß dem Stand der Technik ist bekannt, dass photoleitende Antennen zur Emission und Detektion von Terahertz-Strahlung verwendet werden können. Hierbei existieren zwei verschiedene Ansätze:

  • Zum einen kann die photoleitende Antenne als Photomischer zur Dauerstrichemission und -detektion verwendet werden. In diesem Fall erfolgt die optische Anregung durch die Überlagerung von mindestens zwei Lasermoden unterschiedlicher Frequenz (vgl. Patentschrift US 5 789 750 A ). Die Differenzfrequenz zwischen den Lasermoden wird von der Antenne emittiert bzw. detektiert.
It is known in the art that photoconductive antennas can be used to emit and detect terahertz radiation. There are two different approaches:
  • On the one hand, the photoconductive antenna can be used as a photomixer for continuous wave emission and detection. In this case, the optical excitation is carried out by the superposition of at least two laser modes of different frequency (see US 5,789,750 A ). The difference frequency between the laser modes is emitted or detected by the antenna.

Zum anderen kann die Antenne als photoleitender Schalter zur Generation und zum Nachweis von Terahertzpulsen verwendet werden. Hierbei schaltet ein kurzer Laserpuls, dessen Dauer im Bereich von Femtoekunden bis Pikosekundenliegt, die Photoleitfähigkeit, so dass kurzzeitig Terahertz-Strahlung emittiert oder detektiert werden kann (vgl. Patentschrift WO 2008/054 846 A2 ). Nach dem Stand der Technik besteht eine photoleitendeTerahertz-Antenne aus einer hochohmigen, halbleitenden Schicht, welche eine möglichst kurze Ladungsträgerrekombinationszeit im Femto- bis Pikosekundenbereich und eine möglichst hohe Ladungsträgermobilität aufweist. Auf dieser Schicht ist eine Antennenstruktur aus einem elektrisch leitfähigen Material aufgebracht. Gängige technische Ausführungsformen dieser Antenne umfassen beispielsweise Spiral-Antennen ( KR 10 2005 0015364 A , JP2001060821 A ; JP2008028872 A , JP 58123203 A , CA 2 292 635 , CA 2 575 130 ), Bowtie-Antennen ( US 2006/0152412 A1 ) und Dipolantennen ( US 5 729 017 A , WO 02/060017 A1 ). Diese Strukturen weisen einen photoleitenden Anregungsort in Form einer Lücke in der Metallisierung auf. Dessen Leitfähigkeit wird durch die einfallende Laserstrahlung bestimmt wird, da die Photonenenergie des Lasers größer ist als die Bandlücke der halbleitenden Schicht und somit bei Illumination freie Ladungsträger generiert werden (vgl. US 5 729 017 A ; WO 03/047036 A1 ). Zusätzlich zu der Antennenstruktur sind elektrische Kontakte und Zuleitungen auf der halbleitenden Schicht aufgebracht.On the other hand, the antenna can be used as a photoconductive switch for generation and detection of terahertz pulses. Here, a short laser pulse whose duration is in the range of femtoseconds to picoseconds, the photoconductivity, so that terahertz radiation can be emitted or detected for a short time (see WO 2008/054 846 A2 ). According to the state of the art, a photoconductive telescope antenna consists of a high-resistance, semiconductive layer which has the shortest possible carrier recombination time in the femtosecond to picosecond range and the highest possible charge carrier mobility. On this layer, an antenna structure of an electrically conductive material is applied. Common technical embodiments of this antenna include, for example, spiral antennas ( KR 10 2005 0015364 A . JP2001060821A ; JP2008028872A . JP 58123203 A . CA 2 292 635 . CA 2 575 130 ), Bowtie antennas ( US 2006/0152412 A1 ) and dipole antennas ( US 5 729 017 A . WO 02/060017 A1 ). These structures have a photoconductive excitation site in the form of a gap in the metallization. Its conductivity is determined by the incident laser radiation, since the photon energy of the laser is greater than the band gap of the semiconductive layer and thus free charge carriers are generated during illumination (cf. US 5 729 017 A ; WO 03/047036 A1 ). In addition to the antenna structure, electrical contacts and leads are deposited on the semiconductive layer.

Im Falle, dass die photoleitendeTerahertz-Antenne als Emitter Einsatz findet, wird eine Vorspannung an die Antenne angelegt. Werden nun durch die in die photoleitende Lücke einfallende Laserstrahlung Ladungsträger generiert, erfahren diese eine Beschleunigung im von außen eingeprägten elektrischen Feld, welche die Emission der Terahertzstrahlung bewirkt.In the case where the photoconductive telether antenna is used as an emitter, a bias voltage is applied to the antenna. If charge carriers are now generated by the laser radiation incident in the photoconductive gap, they experience an acceleration in the externally impressed electric field, which causes the emission of the terahertz radiation.

Wird die photoleitendeTerahertz-Antenne als Detektor genutzt, verbindet man statt einer Spannungsquelle einen hochsensitiven Stromverstärker mit der Antenne. Die durch den Laserstrahl generierten Ladungsträger werden vom einfallenden Terahertz-Feld beschleunigt. Der messbare Photostrom ist somit ein Maß für die einfallende Terahertz-Feldstärke.If the photoconductive telescope antenna is used as a detector, instead of a voltage source, a highly sensitive current amplifier is connected to the antenna. The charge carriers generated by the laser beam are accelerated by the incident terahertz field. The measurable photocurrent is thus a measure of the incident terahertz field strength.

Nachteilig an Terahertz-Antennen gemäß dem Stand der Technik ist insbesondere die ineffiziente Konversion von Laser- in Terahertz-Leistung. Diese resultiert aus dem spektral relativ flachen jedoch sehr breitbandigen Antennengewinn. Die Antennen können in Abhängigkeit von der Laserquelle THz-Wellen in einem Frequenzbereich von 0,1 THz bis hin zu einigen 10 THz emittierten, ohne dass der Antennengewinn in einzelnen Frequenzbereichen eine merkliche, durch die Metallisierungsstruktur verursachte Erhöhung erfährt.A disadvantage of terahertz antennas according to the prior art is in particular the inefficient conversion of laser to terahertz power. This results from the spectrally relatively flat but very broadband antenna gain. Depending on the laser source, the antennas may emit THz waves in a frequency range from 0.1 THz up to a few 10 THz, without the antenna gain in individual frequency ranges experiencing a noticeable increase caused by the metallization structure.

Weiterhin nachteilig an Terahertzantennen gemäß dem Stand der Technik sind der statische, nicht modulierbare Charakter des Antennengewinns und das statische, nicht modulierbare räumliche Abstrahlprofil.Another disadvantage of terahertz antennas according to the prior art are the static, non-modulatable nature of the antenna gain and the static, non-modulatable spatial radiation profile.

[Aufgabe][Task]

Aufgabe der vorliegenden Erfindung ist es, die Nachteile gemäß dem Stand der Technik zu überwinden.The object of the present invention is to overcome the disadvantages of the prior art.

[Lösung der Aufgabe][Solution of the task]

Diese Aufgabe wird erfindungsgemäß gelöst durch eine Antenne gemäß Anspruch 1.This object is achieved by an antenna according to claim 1.

Überraschenderweise wurde gefunden, dass eine solche Antenne, die neben den Merkmalen einer photoleitenden Terahertz-Antenne gemäß dem Stand der Technik zusätzlich in der Nähe des photoleitenden Anregungsorts mindestens einen angeordneten Resonator aufweist, dazu geeignet ist den frequenzselektiven Antennengewinn und/oder die Abstrahlcharakteristik zu verbessern. Dazu ist mindestens einer der Resonatoren, gemessen vom Anregungsort, in einem Radius, welcher maximal dem zweifachen der Resonanzwellenlänge entspricht, entfernt anzuordnen.Surprisingly, it has been found that such an antenna, which in addition to the features of a photoconductive terahertz antenna according to the prior art additionally has at least one arranged resonator in the vicinity of the photoconductive excitation locus, is suitable for improving the frequency-selective antenna gain and / or the emission characteristic. For this purpose, at least one of the resonators, measured from the excitation location, in a radius which corresponds at most twice the resonance wavelength, to be arranged away.

Die Resonatoren bestehen erfindungsgemäß aus leitfähigen Bereichen (Widerstandsbelag unter 1 kΩ/cm), die zu einer elektrischen Schwingung bei einer oder mehreren Resonanzfrequenzen angeregt werden können. Die laterale Dimension der im Wesentlichen planar ausgeführten Resonatoren beträgt mindestens 1/50, jedoch höchstens eine, bevorzugt 1/2 und besonders bevorzugt ein Drittel bis ein Viertel der Resonanzwellenlänge.According to the invention, the resonators consist of conductive regions (resistance layer below 1 kΩ / cm), which can be excited to an electrical oscillation at one or more resonant frequencies. The lateral dimension of the essentially planar resonators is at least 1/50, but not more than one, preferably 1/2 and more preferably one third to one fourth of the resonance wavelength.

Bei einer Antenne für 300 GHz ergibt sich eine Resonanzwellenlänge von 1 mm und bei einer Antenne für 1 THz ergibt sich eine Resonanzwellenlänge von 300 µm. Entsprechend ergeben sich damit erfindungsgemäß die Abmessungen des mindestens einen Resonators und die räumliche Nähe zum Abstrahlungsort. Es sind mehrere Resonator-Typen, auch in Kombination, einsetzbar. Insbesondere können auch periodische Anordnungen von Resonatoren (auch als Frequenzselektive-Oberflächen oder Elektronische-Bandlücken Strukturen bekannt) erfindungsgemäß verwendet werden um die Konversionseffizienz von Laser- zu Terahertz-Leistung bei der Resonanzfrequenz noch weiter zu erhöhen. Ausführungsformen der Resonatorelemente umfassen unter anderem symmetrische und asymmetrische Einzel- und Doppel-Spalt-Ring-, sowie Rechteck-Resonatoren.In the case of an antenna for 300 GHz, a resonance wavelength of 1 mm results and with an antenna for 1 THz a resonance wavelength of 300 μm results. Accordingly, according to the invention, the dimensions of the at least one resonator and the spatial proximity to the radiation location result. There are several resonator types, also in combination, can be used. In particular, periodic arrangements of resonators (also known as frequency-selective surfaces or electronic-bandgap structures) can be used according to the invention in order to further increase the conversion efficiency from laser to terahertz power at the resonant frequency. Embodiments of the resonator elements include, among others symmetrical and asymmetrical single and double gap ring as well as rectangular resonators.

Die Leitfähigkeit der Bereiche, welche die Resonator-Strukturen bilden, wird bevorzugt durch Metallisierung (beispielsweise mit Gold, Titan, Kupfer, Platin, Silber, Aluminium, Nickel, Eisen oder einer Kombination dieser Elemente) erreicht. Diese können unter anderem nass-, elektrochemisch, durch Verdampfung (CVD, PVD, MOCVD), durch Dotierung oder mittels Druckverfahren (Sieb-, Tiefdruck, Inkjet-Printing, Laserdruck) aufgebracht werden.The conductivity of the regions forming the resonator structures is preferably achieved by metallization (for example with gold, titanium, copper, platinum, silver, aluminum, nickel, iron or a combination of these elements). These can be applied wet, electrochemically, by evaporation (CVD, PVD, MOCVD), by doping or by printing processes (screen printing, gravure printing, inkjet printing, laser printing).

Besonders bevorzugt liegen die Resonatoren in der gleichen räumlichen Ebene wie die Zuleitungen, so dass kein zusätzlicher Aufwand in der Strukturierung der Antenne entsteht.Particularly preferably, the resonators are in the same spatial plane as the leads, so that no additional effort in the structuring of the antenna is formed.

Mittels Dotierung sind schaltbare, elektrisch leitfähige Resonatoren direkt im Halbleiter realisierbar. Die Schaltung wird elektrisch und oder photoelektrisch durchgeführt.By means of doping, switchable, electrically conductive resonators can be realized directly in the semiconductor. The circuit is performed electrically and or photoelectrically.

Als halbleitendes Material wird bevorzugt einzeln oder in Kombination Gallium-Arsenid, Indium-Gallium-Arsenid, Indium-Aluminium-Arsenid, Indium-Antimonid oder auf Saphir gewachsene Siliziumfilme verwendet. Andere III/V oder II/VI Halbeiter können ebenfalls eingesetzt werden insofern sie über kurze Ladungsträgerlebensdauern verfügen und eine Bandlückenenergie, die geringer als die Photonenenergie des verwendeten Lasers ist, aufweisen. Die halbleitenden Materialien werden bevorzugt tieftemperaturgewachsen (eng. lowtemperaturegrown) oder ionenimplantiert, um eine kurze Ladungsträgerlebensdauer zu erzielen.As the semiconducting material, gallium arsenide, indium gallium arsenide, indium aluminum arsenide, indium antimonide, or sapphire grown silicon films are preferably used singly or in combination. Other III / V or II / VI contributors may also be used insofar as they have short carrier lifetimes and have bandgap energy less than the photon energy of the laser used. The semiconducting materials are preferably grown at low temperature (narrow. low temperature green) or ion implanted to achieve a short carrier lifetime.

Die erfindungsgemäße Antenne ist zum Senden und zum Empfang von Terahertz-Strahlung geeignet. Vorteilhaft beim Aussenden von Terahertz-Strahlung ist, dass durch den Einsatz der Resonatoren die Sendeleistung der Antenne in einem oder mehreren schmalen Frequenzband/bändern (Bandbreite von 1 bis 100 GHz) deutlich verstärkt wird. Hierdurch kann in diesen spektralen Bereichen das Signal/Rausch-Verhältnis erhöht werden. Nutzt man eine erfindungsgemäße Antenne zum Empfangen von Terahertz-Strahlung so weist diese in einem oder mehreren schmalen Frequenzband/bändern (Bandbreite von 1 bis 100 GHz) eine erhöhte Empfangssensitivität auf wodurch ebenfalls eine Verbesserung des Signal zu Rausch Verhältnisses erreicht wird.The antenna according to the invention is suitable for transmitting and receiving terahertz radiation. An advantage of emitting terahertz radiation is that the transmission power of the antenna in one or more narrow frequency band / bands (bandwidth of 1 to 100 GHz) is significantly enhanced by the use of the resonators. As a result, the signal-to-noise ratio can be increased in these spectral ranges. If an antenna according to the invention is used to receive terahertz radiation, then it has an increased reception sensitivity in one or more narrow frequency bands (bandwidth from 1 to 100 GHz), which likewise achieves an improvement in the signal-to-noise ratio.

Wird die Antenne mit Dauerstrich-Laserstrahlung angeregt so ist es besonders vorteilhaft wenn die Resonanzfrequenz der Resonatoren nahe der Differenzfrequenz der anregenden Lasermoden liegt, da dann eine besonders effiziente Konversion von Laser- zu Terahertz-Leistung möglich ist.If the antenna is excited by continuous wave laser radiation, it is particularly advantageous if the resonance frequency of the resonators is close to the difference frequency of the exciting laser modes, since then a particularly efficient conversion of laser to terahertz power is possible.

Günstig ist, wenn die resonante Struktur den Antennengewinn in denjenigen Bereichen abschwächt, in denen ungewünschte Frequenzkomponenten entstehen würden, welche die Signaldetektion und/oder Auswertung erschweren.It is favorable if the resonant structure attenuates the antenna gain in those areas in which unwanted frequency components would arise which make the signal detection and / or evaluation more difficult.

Besonders bevorzugt umfassen die resonanten Strukturen solche, welche in ihrer Güte (ihrer spektralen Resonanzbreite) modulierbar sind, etwa über eine Veränderung der Impedanz zwischen zwei Teilsegmenten des Resonators oder eine Veränderung der Impedanz zwischen benachbarten Resonator-Elementen, und somit eine Modulation des resultierenden Antennengewinns der photoleitenden Antenne ermöglichen.Particularly preferably, the resonant structures include those which can be modulated in their quality (their spectral resonance width), for example via a Changing the impedance between two sub-segments of the resonator or a change in the impedance between adjacent resonator elements, and thus allow a modulation of the resulting antenna gain of the photoconductive antenna.

Weiterhin vorteilhaft sind Ausführungen der erfindungsgemäßen Terahertz-Antenne, welche die Hauptabstrahl- und Empfangsrichtung der Antenne um einen räumlichen Winkel durchstimmen können. Diese Durchstimmbarkeit kann beispielsweise durch Einflußnahme auf die Impedanz zwischen einzelnen Resonator-Segmenten oder zwischen einer Mehrzahl von Resonatoren erreicht werden.Further advantageous embodiments of the terahertz antenna according to the invention, which can tune the main emission and reception direction of the antenna by a spatial angle. This tunability can be achieved, for example, by influencing the impedance between individual resonator segments or between a plurality of resonators.

Diese Impedanzänderungen können durch eine optische Anregung eines photoleitenden Anregungsortes innerhalb der Resonator-Struktur oder durch ein elektronisches Bauelement erfolgen, welches sich in Hinblick auf seine Kapazität, seine Induktivität oder seinen ohmschen Widerstand durch Anlegen eines Steuersignals verändern lässt.These changes in impedance can be made by an optical excitation of a photoconductive excitation site within the resonator structure or by an electronic component which can be modified in terms of its capacitance, its inductance or its ohmic resistance by applying a control signal.

Weiterhin vorteilhaft sind Ausführungen der erfindungsgemäßen Terahertz-Antenne mit durchstimmbarer Resonanzfrequenz. Ein Durchstimmen der Resonanzfrequenz ist unter anderem über elektrische oder optische Schaltbereiche möglich. Beispielsweise können die Resonatoren aus mehreren Ringsegmenten bestehen, wobei über einen Schaltbereich zwei Ringe zueinander kurzgeschlossen werden können um somit eine Änderung der Resonanzbedingung zu ermöglichen. In diesem Ausführungsbeispiel würde die effektive Länge des Resonators vergrößert, so dass die Resonanzfrequenz zu tieferen Frequenzen verschoben würde. Durch mehrere zuschaltbare Resonatorelemente ist es somit möglich verschiedene Resonanzfrequenzen einzustellen.Further advantageous embodiments of the terahertz antenna according to the invention with tunable resonant frequency. A tuning of the resonance frequency is possible, inter alia, via electrical or optical switching areas. For example, the resonators may consist of a plurality of ring segments, wherein two rings can be short-circuited to each other over a switching range, thus changing the To allow resonance condition. In this embodiment, the effective length of the resonator would be increased so that the resonant frequency would be shifted to lower frequencies. By means of several switchable resonator elements, it is thus possible to set different resonance frequencies.

Ebenfalls möglich ist ein Durchstimmen der Resonanzfrequenz durch auf die Resonatoren aufgebrachte Dielektrika wie Öle oder Polymere zu erreichen. Die aufgebrachten Dielektrika weisen eine von Luft verschiedene Permittivität auf, so dass die Resonanzbedingung der Resonatoren zu kleineren Frequenzen hin verschoben wird. Bei Verwendung eines Ölgemisches aus wenigstens zwei Anteilen mit verschiedenen Permittivitäten ist ein kontinuierliches Durchstimmen der Resonanzfrequenz möglich.It is also possible to achieve a tuning of the resonance frequency by means of dielectrics applied to the resonators, such as oils or polymers. The applied dielectrics have a different permittivity from air, so that the resonant condition of the resonators is shifted towards lower frequencies. When using an oil mixture of at least two portions with different Permittivitäten a continuous tuning of the resonant frequency is possible.

Weiterhin können Flüssigkristalle (engl. Liquid Crystals) auf die Resonatoren aufgebracht werden. Diese verändern, bei Anlegen eines elektrischen Feldes, ihre dielektrischen Eigenschaften. Hierdurch wird eine Änderung der Resonanzbedingung der Resonatoren und somit eine Verschiebung der Resonanzfrequenz bewirkt.Furthermore, liquid crystals (English Liquid Crystals) can be applied to the resonators. These change their dielectric properties when an electric field is applied. This causes a change in the resonant condition of the resonators and thus a shift in the resonant frequency.

Weiterhin können erfindungsgemäße Strukturen als Sensoren eingesetzt werden, die durch die Veränderung der Resonanzeigenschaften bei Aufbringung einer Probe Rückschlüsse auf das Probenmaterial ermöglichen. Insbesondere verändern sich die Resonanzfrequenz und die Resonanzbreite gemäß der Materialeigenschaften der Probe je nach Probenmaterial charakteristisch. Besonders bevorzugt weisen die Zuleitungen der Antennenstruktur ferner Anpassglieder auf, welche die parasitären Resonanzen durch Rückreflexe von den elektrischen Kontakten minimieren. Weiterhin können die Anpassglieder zusätzlich mit Verlustelementen, wie absorbierende Beschichtungen und/oder niederohmigen Metallstrukturen, versehen werden, um die Rückreflexionen weiter zu minimieren.Furthermore, structures according to the invention can be used as sensors which allow conclusions to be drawn about the sample material by changing the resonance properties when a sample is applied. In particular, the resonance frequency and the resonance width vary characteristically according to the material properties of the sample depending on the sample material. Particularly preferably, the feed lines of the antenna structure further comprise matching elements which minimize the parasitic resonances due to back reflections from the electrical contacts. Furthermore, the matching elements can additionally be provided with loss elements, such as absorbing coatings and / or low-resistance metal structures, in order to further minimize the back reflections.

Die erfindungsgemäße Ausführung ist nachfolgend erläutert, wobei die Erfindung alle nachfolgend aufgeführten bevorzugten Ausführungsformen einzeln und in Kombination umfasst.The embodiment according to the invention is explained below, wherein the invention comprises all the following preferred embodiments individually and in combination.

[Ausführungsbeispiele][Embodiments]

Es wird eine Anordnung aus Bauteilen (Sender und Empfänger) aufgebaut, die THz-Strahlung emittiert und detektiert.An arrangement of components (transmitter and receiver) is constructed which emits and detects THz radiation.

In Fig. 1 ist eine photoleitende Terahertzantenne skizziert. Diese besteht aus einem halbleitenden Substrat (z.B. Gallium-Arsenid, Silizium auf Saphir oder Indium-Gallium-Arsenid) 101, auf dem eine oder mehrere elektrische Zuleitungen 102 aufgebracht sind. Um die Antenne zu betreiben, wird Laserstrahlung 104 auf einen photoleitenden Bereich 106 gerichtet. Die erfindungsgemäßen Antennenstrukturen beinhalten zusätzlich einen oder mehrere leitfähige Resonatoren 105 (siehe Fig. 2).In Fig. 1 is sketched a photoconductive terahertz antenna. This consists of a semiconductive substrate (eg gallium arsenide, silicon on sapphire or indium gallium arsenide) 101, on which one or more electrical leads 102 are applied. To operate the antenna, laser radiation 104 is directed to a photoconductive region 106 . The antenna structures according to the invention additionally include one or more conductive resonators 105 (see Fig. 2 ).

Die Antenne kann als Empfänger oder als Sender geschaltet werden. Durch das Anlegen einer Spannung 109 an die elektrischen Zuleitungen 102 emittiert die Antenne Terahertzstrahlung und arbeitet als Sender. Alternativ kann ein Messgerät 103 an die Zuleitungen 102 angeschlossen werden, um Terahertzwellen zu detektieren.The antenna can be switched as a receiver or as a transmitter. By applying a voltage 109 to the electrical leads 102, the antenna emits terahertz radiation and operates as a transmitter. Alternatively, a meter 103 may be connected to the leads 102 to detect terahertz waves.

Die Teilflächen der leitfähigen Resonatoren 105 können über Schaltbereich 107 verbunden werden. Die Leitfähigkeit der Schaltbereiche ist modulierbar indem eine Spannung oder ein Strom an diese angelegt wird. Ferner können die Schaltbereiche 107 in Form von photoleitenden Bereichen realisiert werden, deren Leitfähigkeit optisch (z.B. durch einen Laser) geschaltet werden kann. Durch eine Modulation der Schaltbereiche kann die spektrale Charakteristik der Resonatoren verändert und damit der spektrale Antennengewinn oder die Abstrahlcharakteristik der Antenne beeinflusst werden.The partial areas of the conductive resonators 105 can be connected via switching area 107. The conductivity of the switching ranges can be modulated by applying a voltage or a current to them. Further, the switching regions 107 may be realized in the form of photoconductive regions whose conductivity can be switched optically (e.g., by a laser). By modulating the switching ranges, the spectral characteristics of the resonators can be changed and thus the spectral antenna gain or the radiation characteristic of the antenna can be influenced.

Besonders bevorzugt werden Spalt-Ring-Resonatoren (Figur 2 bis 5), eine periodischen Anordnung von Rechteckleitern (Figur 6) oder einer periodische Anordnung von Spalt-Ring-Resonatoren (frequenzselektive Oberfläche (engl. Frequency-Selective-Surface (FSS)) (Figur 7) verwendet. Die Resonatoren können sowohl eckig als auch runde Formen aufweisen und entweder seitlich zu den elektrischen Zuleitungen (Figur 2 bis 4) angeordnet oder aber als Teil von diesen (Figur 5) ausgeführt werden.Particularly preferred are gap-ring resonators ( FIGS. 2 to 5 ), a periodic arrangement of rectangular conductors ( FIG. 6 ) or a periodic arrangement of gap-ring resonators (Frequency-Selective-Surface (FSS)) ( FIG. 7 ) used. The resonators can have both angular and round shapes and either laterally to the electrical leads ( FIGS. 2 to 4 ) or as part of these ( FIG. 5 ).

Figur 9 zeigt die spektrale Intensität eines in einem THz-Zeitbereichsspektrometer gemessenen Signales, wobei zum einen eine photoleitende Antenne mit resonanter Struktur gemäß der Erfindung und zum anderen eine Referenzantenne gemäß dem Stand der Technik als Emitter eingesetzt wurde. In dem Frequenzbereich um 500 GHz ist eine deutliche Erhöhung der emittierten Strahlung, hervorgerufen durch die resonante Struktur, zu erkennen. FIG. 9 shows the spectral intensity of a measured in a THz time domain spectrometer signal, on the one hand, a photoconductive antenna resonant structure according to the invention and, secondly, a reference antenna according to the prior art was used as an emitter. By doing Frequency range around 500 GHz, a significant increase in the emitted radiation, caused by the resonant structure can be seen.

Figur 10 zeigt schematisch die spektrale Intensität des Signals eines THz-Zeitbereichsspektrometers, in dem eine photoleitende Antenne mit resonanter Struktur gemäß der Erfindung als Sensor eingesetzt wird. Durch das Aufbringen einer Probe 108 kann die Resonanzfrequenz der Resonatorstruktur verändert werden. Anhand der Signalform kann auf die dielektrischen Eigenschaften des Probenmaterials rückgeschlossen werden. FIG. 10 schematically shows the spectral intensity of the signal of a THz time domain spectrometer, in which a resonant structure photoconductive antenna according to the invention is used as a sensor. By applying a sample 108 , the resonant frequency of the resonator structure can be changed. Based on the waveform can be deduced on the dielectric properties of the sample material.

[Abbildungslegenden und Bezugszeichenliste][Illustration legends and reference list]

  • Fig. 1: seitliches Schema des Detektors (ohne 109) oder des Senders (ohne 103) ohne Resonatoren Fig. 1 : lateral scheme of the detector (without 109) or the transmitter (without 103) without resonators
  • Fig. 2: vordere Ansicht der Antenne - symmetrische Resonatoren mit Schaltbereichen: seitlich angeordnet von der photoleitenden Lücke, rechteckige Resonator-Ausführung Fig. 2 : front view of the antenna - symmetrical resonators with switching areas: arranged laterally from the photoconductive gap, rectangular resonator design
  • Fig. 3: vordere Ansicht der Antenne - Spalt-Ring Resonatoren als Sensorkonfiguration mit aufgebrachter Probe, seitlich angeordnet von der photoleitenden Lücke, runde Ausführung Fig. 3 : front view of the antenna - slit-ring resonators as a sensor configuration with applied sample, arranged laterally from the photoconductive gap, round design
  • Fig. 4: vordere Ansicht der Antenne - asymmetrische Resonatoren mit Schaltbereichen: seitlich angeordnet von der photoleitenden Lücke, rechteckige Resonator-Ausführung Fig. 4 : front view of the antenna - asymmetric resonators with switching areas: arranged laterally from the photoconductive gap, rectangular resonator design
  • Fig. 5: seitliche Ansicht der Antenne -Sensorkonfiguration mit aufgebrachter Probe auf die Resonatoren Fig. 5 : Side view of the antenna -Sensor configuration with applied sample on the resonators
  • Fig. 6: vordere Ansicht der Antenne - Resonatoren integriert in die elektrischen Zuleitungen, rechteckige Ausführung Fig. 6 : front view of the antenna - resonators integrated into the electrical leads, rectangular design
  • Fig. 7: vordere Ansicht der Antenne - Resonatoren integriert in die elektrischen Zuleitungen, Streifenform Fig. 7 : front view of the antenna - resonators integrated into the electrical leads, strip shape
  • Fig. 8: vordere Ansicht der Antenne - Resonatoren seitlich angeordnet von der photoleitenden Lücke. Mehrere Resonatoren in einer periodischen Anordnung (Frequenzselektive Oberfläche) mit Schaltbereichen. Fig. 8 : front view of the antenna - resonators arranged laterally from the photoconductive gap. Several resonators in a periodic arrangement (frequency-selective surface) with switching areas.
  • Fig. 9: Diagramm mit Messdaten der emittierten Strahlung als Funktion der Frequenz einer erfindungsgemäßen Antenne im Vergleich zu der emittierten Strahlung von einer Struktur gemäß dem Stand der Technik. Fig. 9 : Diagram with measured data of the emitted radiation as a function of the frequency of an antenna according to the invention in comparison to the emitted radiation of a structure according to the prior art.
  • Fig. 10: Diagramm mit Simulationsdaten der emittierten Strahlung als Funktion der Frequenz einer erfindungsgemäßen Antenne in Sensorkonfiguration. Durch aufbringen der Probe verändern sich die Resonanzeigenschaften. Fig. 10 : Diagram with simulation data of the emitted radiation as a function of the frequency of an antenna according to the invention in sensor configuration. By applying the sample, the resonance properties change.

Claims (11)

Photoleitende Antenne zum Senden und Empfangen von elektromagnetischer Strahlung im Terahertz-Frequenzbereich, mindestens bestehend aus einem Substratmaterial, einer darauf aufgebrachten, widerstandsarmen Struktur zur Spannungsversorgung bzw. Stromführung und einem photoleitenden Anregungsort, die dadurch gekennzeichnet ist, dass neben der widerstandsarmen Struktur zur Spannungsversorgung bzw. Stromführung zusätzlich ein Resonator oder mehrere Resonatoren in der Nähe des photoleitenden Anregungsorts auf dem Substratmaterial aufgebracht sind, welche den frequenzselektiven Antennengewinn und/oder die Abstrahlcharakteristik der Antenne verbessern.Photoconductive antenna for transmitting and receiving electromagnetic radiation in the terahertz frequency range, at least consisting of a substrate material, a low resistance structure applied thereon for power supply and a photoconductive excitation site, which is characterized in that in addition to the low-resistance structure for power supply or Conduction additionally a resonator or a plurality of resonators are applied in the vicinity of the photoconductive excitation locus on the substrate material, which improve the frequency-selective antenna gain and / or the emission characteristic of the antenna. Eine Antenne nach Anspruch 1 dadurch gekennzeichnet, dass mindestens einer der Resonatoren in Hinblick auf die Güte und/oder die Resonanzfrequenz schaltbar sind.An antenna according to claim 1, characterized in that at least one of the resonators with respect to the quality and / or the resonant frequency can be switched. Eine Antenne nach Ansprüchen 1 bis 2 dadurch gekennzeichnet, dass mindestens einer der Resonatoren in der gleichen räumlichen Ebene wie die Zuleitungen angeordnet ist.An antenna according to claims 1 to 2, characterized in that at least one of the resonators is arranged in the same spatial plane as the supply lines. Eine Antenne nach Ansprüchen 1 bis 3 dadurch gekennzeichnet, dass die Schaltung mindestens eines Resonators über Schaltbereiche erfolgt, die aus halbleitenden Materialien bestehen, welche durch das Anlegen einer Spannung oder durch Bestrahlung mittels Licht in einen elektrisch leitenden Zustand überführt werden.An antenna according to claims 1 to 3, characterized in that the circuit of at least one resonator via switching areas, which consist of semiconducting materials, which are converted by the application of a voltage or by irradiation by means of light in an electrically conductive state. Eine Antenne nach Ansprüchen 1 bis 4 dadurch gekennzeichnet, dass die Schaltung mindestens eines Resonators durch das Aufbringen einer dielektrischen Substanz, beispielsweise einem Öl, einem Polymer oder einem Flüssigkristall, erfolgt.An antenna according to claims 1 to 4, characterized in that the circuit of at least one resonator by the application of a dielectric substance, for example an oil, a polymer or a liquid crystal takes place. Eine Antenne nach Ansprüchen 1 bis 5 dadurch gekennzeichnet, dass die Schaltung mindestens eines Resonators so ausgeführt ist, dass diese eine Modulation des frequenzselektiven Antennengewinns der Antenne ermöglicht.An antenna according to claims 1 to 5, characterized in that the circuit of at least one resonator is designed so that this allows a modulation of the frequency-selective antenna gain of the antenna. Eine Antenne nach Ansprüchen 1 bis 6 dadurch gekennzeichnet, dass die Schaltung mindestens eines Resonators so ausgeführt ist, dass diese eine Modulation des räumlichen Abstrahlbereichs der Antenne ermöglicht.An antenna according to claims 1 to 6, characterized in that the circuit of at least one resonator is designed so that this allows a modulation of the spatial radiation range of the antenna. Eine Antenne nach Ansprüchen 1 bis 7 dadurch gekennzeichnet, dass als Resonatoren symmetrische oder asymmetrische Einzel- oder Mehrfach-Spalt-Ring- oder Rechteck-Resonatoren verwendet werden.An antenna according to claims 1 to 7, characterized in that as resonators symmetrical or asymmetrical single or multiple gap ring or rectangular resonators are used. Eine Antenne nach Ansprüchen 1 bis 8 dadurch gekennzeichnet, dass eine periodische oder aperiodische Anordnung von mehreren gleichen oder unterschiedlichen Resonatorelementen verwendet wird.An antenna according to claims 1 to 8, characterized in that a periodic or aperiodic arrangement of a plurality of identical or different resonator elements is used. Eine Antenne nach einem der Ansprüche 1 bis 9 dadurch gekennzeichnet, dass die Anordnung mindestens einen Resonator mit einer laterale Dimension aufweist, welche maximal der Resonanzwellenlänge, bevorzugt maximal der halben Resonanzwellenlänge und besonders bevorzugt maximal einem Drittel bis einem Viertel der Resonanzwellenlänge, entspricht.An antenna according to one of claims 1 to 9, characterized in that the arrangement has at least one resonator with a lateral dimension which corresponds at most to the resonance wavelength, preferably at most half the resonance wavelength and particularly preferably at most one third to one quarter of the resonance wavelength. Verwendung einer Antenne gemäß einem der Ansprüche 1 bis 10 als Sensor für eine Probe, wobei durch Aufbringen der Probe auf die Antenne die Resonanzeigenschaften und somit sowohl die Sende- als auch die EmpfangsCharakteristik der Antenne verändert werden.Use of an antenna according to any one of claims 1 to 10 as a sensor for a sample, wherein by applying the sample to the antenna, the resonance characteristics and thus both the transmission and the reception characteristics of the antenna are changed.
EP10195245A 2010-12-15 2010-12-15 Antenna for transmitting and receiving GHz and or THz radiation with optimised frequency characteristics Withdrawn EP2466686A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10195245A EP2466686A1 (en) 2010-12-15 2010-12-15 Antenna for transmitting and receiving GHz and or THz radiation with optimised frequency characteristics
PCT/EP2011/072276 WO2012080105A1 (en) 2010-12-15 2011-12-09 Antenna for transmitting and receiving ghz and/or thz radiation with an optimized frequency characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP10195245A EP2466686A1 (en) 2010-12-15 2010-12-15 Antenna for transmitting and receiving GHz and or THz radiation with optimised frequency characteristics

Publications (1)

Publication Number Publication Date
EP2466686A1 true EP2466686A1 (en) 2012-06-20

Family

ID=43982340

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10195245A Withdrawn EP2466686A1 (en) 2010-12-15 2010-12-15 Antenna for transmitting and receiving GHz and or THz radiation with optimised frequency characteristics

Country Status (2)

Country Link
EP (1) EP2466686A1 (en)
WO (1) WO2012080105A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150285687A1 (en) * 2012-07-03 2015-10-08 Massachusetts Institute Of Technology Detection of electromagnetic radiation using nonlinear materials

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728428A (en) * 2018-12-29 2019-05-07 中国科学院半导体研究所 Photoconductive antenna and preparation method based on sub-wavelength structure modulation terahertz emission

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123203A (en) 1982-01-19 1983-07-22 Tokyo Keiki Co Ltd Dual-conductor spiral antenna
US5729017A (en) 1996-05-31 1998-03-17 Lucent Technologies Inc. Terahertz generators and detectors
US5789750A (en) 1996-09-09 1998-08-04 Lucent Technologies Inc. Optical system employing terahertz radiation
CA2292635A1 (en) 1998-04-03 1999-10-14 Raytheon Company Compact spiral antenna
JP2001060821A (en) 1999-08-19 2001-03-06 Tokimec Inc Spiral antenna
WO2002060017A1 (en) 2001-01-26 2002-08-01 Nikon Corporation Terahertz light generating element, terahertz light generating device and terahertz light detection device
WO2003047036A1 (en) 2001-11-29 2003-06-05 Picometrix, Inc. Amplified photoconductive gate
CA2575130A1 (en) 2004-08-13 2006-02-23 Sensormatic Electronics Corporation Tunable spiral antenna for security tag
US20060152412A1 (en) 2002-09-04 2006-07-13 Evans Michael J Electrodes on a photoconductive substrate for generation and detection of terahertz radiation
WO2007006552A1 (en) * 2005-07-12 2007-01-18 Technische Universität Braunschweig Thz-transmitter and thz-receiver
JP2008028872A (en) 2006-07-24 2008-02-07 Hoko Denshi Kk Slot spiral antenna, square-shaped slot spiral antenna, and adjustment method thereof
WO2008054846A2 (en) 2006-03-29 2008-05-08 The Regents Of The University Of California Photomixer for generation of coherent terahertz radiation and radiation detection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562952B1 (en) 2003-08-05 2006-03-22 박익모 Multi Functional Microstrip Spiral Antenna for Multiple-Band Operation Having Multi-Pattern Control

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123203A (en) 1982-01-19 1983-07-22 Tokyo Keiki Co Ltd Dual-conductor spiral antenna
US5729017A (en) 1996-05-31 1998-03-17 Lucent Technologies Inc. Terahertz generators and detectors
US5789750A (en) 1996-09-09 1998-08-04 Lucent Technologies Inc. Optical system employing terahertz radiation
CA2292635A1 (en) 1998-04-03 1999-10-14 Raytheon Company Compact spiral antenna
JP2001060821A (en) 1999-08-19 2001-03-06 Tokimec Inc Spiral antenna
WO2002060017A1 (en) 2001-01-26 2002-08-01 Nikon Corporation Terahertz light generating element, terahertz light generating device and terahertz light detection device
WO2003047036A1 (en) 2001-11-29 2003-06-05 Picometrix, Inc. Amplified photoconductive gate
US20060152412A1 (en) 2002-09-04 2006-07-13 Evans Michael J Electrodes on a photoconductive substrate for generation and detection of terahertz radiation
CA2575130A1 (en) 2004-08-13 2006-02-23 Sensormatic Electronics Corporation Tunable spiral antenna for security tag
WO2007006552A1 (en) * 2005-07-12 2007-01-18 Technische Universität Braunschweig Thz-transmitter and thz-receiver
WO2008054846A2 (en) 2006-03-29 2008-05-08 The Regents Of The University Of California Photomixer for generation of coherent terahertz radiation and radiation detection
JP2008028872A (en) 2006-07-24 2008-02-07 Hoko Denshi Kk Slot spiral antenna, square-shaped slot spiral antenna, and adjustment method thereof

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
AL-NAIB IBRAHEEM ET AL: "Thin-film sensing with planar asymmetric metamaterial resonators", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, vol. 93, no. 8, 27 August 2008 (2008-08-27), pages 83507 - 83507, XP012113707, ISSN: 0003-6951, DOI: 10.1063/1.2976636 *
HOU-TONG CHEN: "Active Terahertz metamaterial devices", PHOTONICS SOCIETY WINTER TOPICALS MEETING SERIES (WTM), 2010, 11 January 2010 (2010-01-11), IEEE, IEEE, PISCATAWAY, NJ, USA, pages 28 - 29, XP031643083, ISBN: 978-1-4244-5240-8 *
J. F. O'HARA, H. CHEN, A. J. TAYLOR, R. D. AVERITT, AND W. J. PADILLA: "Split-Ring Resonator Enhanced Terahertz Antenna", NONLINEAR OPTICS: MATERIALS, FUNDAMENTALS AND APPLICATIONS, OSA TECHNICAL DIGEST (CD), no. paper TuB2, 30 July 2007 (2007-07-30), Kona, Hawaii, XP002637844 *
JANSEN C ET AL: "Terahertz metasurfaces with high Q-factors", APPLIED PHYSICS LETTERS, vol. 98, no. 5, 051109, January 2011 (2011-01-01), AMERICAN INSTITUTE OF PHYSICS USA, XP002637845, ISSN: 0003-6951, DOI: 10.1063/1.3553193 *
LI-MING SI ET AL: "Characterization and application of planar terahertz narrow bandpass filter with metamaterial resonators", INTERNATIONAL WORKSHOP ON METAMATERIALS, 2008, 9 November 2008 (2008-11-09), IEEE, PISCATAWAY, NJ, USA, pages 351 - 354, XP031378613, ISBN: 978-1-4244-2608-9, DOI: 10.1109/META.2008.4723612 *
O'HARA J F ET AL: "Active THz metamaterials", 33RD INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES. IRMMW-THZ 2008., 15 September 2008 (2008-09-15), pages 1 - 3, XP031398253, ISBN: 978-1-4244-2119-0 *
SINGH R ET AL: "Asymmetric planar terahertz metamaterials", OPTICS EXPRESS, vol. 18, no. 12, 2 June 2010 (2010-06-02), OPTICAL SOCIETY OF AMERICA USA, pages 13044 - 13050, XP002637846, ISSN: 1094-4087, DOI: 10.1364/OE.18.013044 *
TAKANO K ET AL: "Enhanced terahertz emission from metaatom-loaded photoconductive antennas", 35TH INTERNATIONAL CONFERENCE ON INFRARED MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 5 September 2010 (2010-09-05), IEEE, PISCATAWAY, NJ, USA, pages 1 - 2, XP031782897, ISBN: 978-1-4244-6655-9 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150285687A1 (en) * 2012-07-03 2015-10-08 Massachusetts Institute Of Technology Detection of electromagnetic radiation using nonlinear materials
US9366576B2 (en) * 2012-07-03 2016-06-14 Massachusetts Institute Of Technology Detection of electromagnetic radiation using nonlinear materials
US10024723B2 (en) 2012-07-03 2018-07-17 Massachusetts Institute Of Technology Detection of electromagnetic radiation using nonlinear materials

Also Published As

Publication number Publication date
WO2012080105A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
EP2296227B1 (en) Antenna for receiving circular polarised satellite radio signals
EP1905125B1 (en) Thz-transmitter and thz-receiver
EP1825530B1 (en) Coherent terahertz radiation source
DE102006059573B3 (en) Terahertz-radiation radiating or receiving arrangement, has photoconductive antenna with periodic structure having lens array, where focal points of individual lens of array are arranged at surface of semiconductor material between fingers
JP5656428B2 (en) Photoconductive element
DE102009000644A1 (en) Device for transmitting and / or receiving electromagnetic RF signals, and measuring device and machine tool monitoring device with such a device
EP2424036A2 (en) Receiver antenna for circular polarised satellite radio signals
DE102014100350B4 (en) Large-area array type photonic crystal mixer for generating and detecting broadband terahertz waves
DE2550715B2 (en) Circuit arrangement for geophysical prospecting out of a vehicle
EP2466686A1 (en) Antenna for transmitting and receiving GHz and or THz radiation with optimised frequency characteristics
DE102008047103B4 (en) Apparatus and method for three-dimensional imaging with THz radiation
CN102810814A (en) Waveguide technique for multiplex terahertz pulses
WO2014090565A1 (en) Fill state measuring device
DE102008031751B3 (en) Photo-conductive antenna for material analysis in terahertz spectral range, has lens array comprising flat-convex lenses, whose focal points are found at surface between beginnings of spiral arms in center of antenna rows
EP3256824B1 (en) Device having two coupling elements for determining and monitoring a fill level
DE102010018812A1 (en) Photoconductive measuring tip, metrological arrangement and method for generating and / or detecting electromagnetic field signals
DE102019100945B4 (en) High frequency device and associated method for generating and detecting electromagnetic THz radiation
EP2120291A1 (en) Scalable terahertz antennas
DE102013107265B4 (en) Optoelectronic high-frequency device
DE102006012817B4 (en) Photoconductive terahertz emitter
WO2012084232A1 (en) Device, production plant and method for characterising material boundary surfaces with thz radiation, and use thereof
DE102016116900B3 (en) THz antenna and device for transmitting and / or receiving THz radiation
DE102011015384A1 (en) Photoconductive antenna array for receiving terahertz radiation in terahertz spectrometer for determining e.g. material thickness of objects, has dipoles whose signals are amplified such that signals form measure for course of radiation
DE102008004417A1 (en) Device for transmitting and / or receiving electromagnetic RF signals
DE102016011383A1 (en) Photoconductive antenna for generating or receiving terahertz radiation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20121220

17Q First examination report despatched

Effective date: 20130219

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160701