EP2396670A1 - Method and system for determining the distance, speed, and/or direction of movement of an rfid transponder - Google Patents

Method and system for determining the distance, speed, and/or direction of movement of an rfid transponder

Info

Publication number
EP2396670A1
EP2396670A1 EP09782850A EP09782850A EP2396670A1 EP 2396670 A1 EP2396670 A1 EP 2396670A1 EP 09782850 A EP09782850 A EP 09782850A EP 09782850 A EP09782850 A EP 09782850A EP 2396670 A1 EP2396670 A1 EP 2396670A1
Authority
EP
European Patent Office
Prior art keywords
radar
signal
transponder
rfid
rfid transponder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09782850A
Other languages
German (de)
French (fr)
Inventor
Robert Bieber
Daniel Evers
Dieter Horst
Gerhard Metz
Stefan Schwarzer
Claus Seisenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2396670A1 publication Critical patent/EP2396670A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/75Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems using transponders powered from received waves, e.g. using passive transponders, or using passive reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/825Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted with exchange of information between interrogator and responder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/62Sense-of-movement determination

Definitions

  • UHF RFID transponders for example RFID tags or so-called RFID tags
  • RFID tags are now on the market in large numbers. They simplify processes in logistics and industry.
  • an RFID transponder (hereinafter referred to as “transponder”) in connection with an RFID reader (hereinafter referred to as “reader”) in a variety of applications such as.
  • the inventory inventory or for identification purposes in the field of security technology Commitment. Their main tasks are to provide a unique identification number and to record a typically small amount of data.
  • the query or readout of the transponder which usually has at least one antenna and a chip with a backscatter modulator, a logic controller and a data memory, is done with the aid of electromagnetic waves according to the so-called and known backscatter principle.
  • the reading device transmits a constant, uniformly modulated signal which, on the one hand, causes an RFID chip integrated in the transponder to emit a response signal, which in turn is registered by the reading device.
  • the response signal includes at least a unique identification of the transponder and possibly further data.
  • the signal emitted by the reading device can also be used to supply power to the transponder.
  • a transponder is usually irradiated by the reader at the operating frequency with an electromagnetic signal which is picked up by a transponder antenna and converted by a rectifier for use.
  • the signal emitted by the reading device consists of a supply carrier signal, hereinafter also referred to as carrier, onto which any data to be transmitted to the transponder are modulated in a known manner. For example. can be made by the reader a request to release the identification number of the transponder or to read the memory of the transponder. However, after the transmission of the data, the carrier is not shut down immediately because otherwise the transponder would be de-energized and could not respond.
  • the carrier is maintained unmodulated and the transponder changes the reflection factor of its antenna for so-called backscatter modulation, also known as backscatter modulation in professional circles.
  • backscatter modulation also known as backscatter modulation in professional circles.
  • the transponder can send a response to the reader with almost zero energy.
  • the energy supply of the transponder is the critical path, ie the detection of the transponder response would still be possible at a greater distance.
  • the power consumption of modern transponders limits the range to a maximum of about 10m.
  • ISM band Industrial, Scientific, and Medical Band
  • the maximum reading range is, with radiation of the maximum permitted transmission power, not more than 10m.
  • a problem in the operation of RFID systems in the UHF band are so-called overreach, which may occur in particular in closed rooms: A far away from the reader transponder can be powered and identified due to constructive interference emitted by the reader electromagnetic waves with energy, although he is actually outside the target range of the reader. By measuring the distance from the reader to the transponder, this overreach could be detected as such. Apart from this concrete example, the measurement of the transponder distance, the transponder speed and / or the transponder movement direction is generally of great interest.
  • a sufficiently high-resolution distance measurement is known to require a large bandwidth of the signals used for the measurement.
  • R c / B
  • B the bandwidth of the electromagnetic signal.
  • the signal propagation via indirect paths, e.g. due to reflections on the room walls, with differences of less than 1.875m the measurement result can be seriously distorted. Only with larger differences in gears, the multipaths can be separated from the distance estimation and ensure only a small error.
  • Gate readers are gates or passages, etc., which contain antennas to which an RFID reader is connected, and if one wishes to identify a good equipped with a transponder, one pushes it through In this case, several readers are at a large distance from each other and register the successful identification of a transponder. The temporal sequence of the identifications allows for the direction of movement and speed of the transponder
  • the "position" of the transponder to be determined can be 1-dimensional, 2-dimensional or 3-dimensional Be size. As a 1-dimensional size, the position would simply correspond to a distance between the transponder and a reference point, the bpsw. the reader can be.
  • the invention makes use of the fact that, for cost reasons in particular, the transponder chip of an RFID transponder in which, for example, the backscatter modulation is executed, will not be designed narrowband only for a specific operating frequency but rather for a comparatively broadband. This ensures that only one chip variant has to be developed, which can be used, for example, for transponder labels of different regions such as Europe, USA and Asia. Also from a technical point of view, it is better not to restrict the backscatter modulator in its frequency response explicitly.
  • the backscatter modulator in the transponder chip provides a sufficiently large change in its reflection factor even at a deviating from the selected RFID operating frequency, in particular higher frequency, to the backscatter functionality of the chip even at higher frequencies Use to be able to do.
  • an RFID transponder whose position and possibly speed and / or direction of movement is to be determined is not only irradiated by the reader with the corresponding interrogation signal with a typical RFID operating frequency, but also ideally simultaneously from at least one radar module with a corresponding high bandwidth radar signal and at a frequency different from the RFID operating frequency.
  • the RFID transponder In the inventive method for determining a position of an RFID transponder, which is adapted to receive and reflect both a supply carrier signal emitted by an RFID reader having an RFID frequency and a radar signal emitted by a radar module having a radar frequency, the RFID transponder irradiated by the radar module with the radar signal. The radar signal is then reflected by the RFID transponder and the reflected radar signal is received at the radar module. The position of the RFID transponder can now be determined from the reflected radar signal received at the radar module.
  • the radar signal is preferably transmitted simultaneously with the supply carrier signal.
  • Phase-wise interrogation data for interrogation and / or read-out of the transponder are modulated onto the supply carrier signal.
  • the radar signal is transmitted only if no data is modulated onto the supply carrier signal.
  • the radar signal is sent out in a particular embodiment as soon as the modulating of the query data to the supply carrier signal has ended.
  • the supply carrier signal and the radar signal have different frequencies.
  • the bandwidth of the radar signal is greater than the bandwidth of the supply carrier signal.
  • Radar module received reflected radar signal further determines a speed and / or direction of movement of the RFID transponder.
  • the radar signal is modulated in the RFID transponder prior to the reflection, in particular backscatter-modulated, wherein in the modulation data at least comprising an identification number of the RFID transponders and / or a content of a data memory of the RFID transponder on the radar signal are modulated.
  • the thus-modulated reflected signal is received in the radar module and evaluated with respect to the modulated data.
  • the query data can also be determined independently of the RFID reader.
  • the arrangement according to the invention for determining a position of an RFID transponder has a radar module for emitting a radar signal having a radar frequency.
  • the RFID transponder is designed to receive and reflect both the transmitted radar signal and a supply carrier signal emitted by an RFID reader with an RFID frequency.
  • the radar module is in turn designed to receive the radar signal reflected by the RFID transponder.
  • the arrangement furthermore has an evaluation device connected to the radar module for determining the position of the RFID transponder on the basis of the received, reflected radar signal.
  • the RFID reader and the radar module are firmly connected to each other, in particular housed in a common housing. This results in a compact device with which an exact position measurement of the transponder is possible in addition to the identification of the transponder.
  • the supply carrier signal and the radar signal have different frequencies and the bandwidth of the radar signal is greater than the bandwidth of the supply carrier signal.
  • the RFID transponder advantageously has a modulator, in particular a backscatter modulator, which is designed to Anlagenmodulieren the radar signal before reflection data comprising an identification number of the RFID transponder and / or a content of a data memory of the RFID transponder, and that the evaluation device is designed to evaluate the modulated, reflected radar signal with regard to the modulated data.
  • a modulator in particular a backscatter modulator, which is designed to slaughtermodulieren the radar signal before reflection data comprising an identification number of the RFID transponder and / or a content of a data memory of the RFID transponder
  • the evaluation device is designed to evaluate the modulated, reflected radar signal with regard to the modulated data. This ensures that data can not only be modulated on the RFID signal, but also on the radar signal.
  • the radar module can be used both for measuring the position of the transponder and for its identification.
  • FIG. 1 shows the time sequence of the distance measurement according to the invention.
  • FIG. 1A shows an RFID reader 10, an RFID transponder 20 and a radar module 30, each with an antenna 11, 21, 31. The position, the speed and the direction of movement of the transponder 20 are to be determined.
  • a computer 40 is provided and the transponder 20 has, in addition to the antenna 21, a transponder chip 22 with a data memory 23 and a backscatter modulator 24.
  • the radar module 30 has an evaluation device 32.
  • FIG. 1B illustrates the situation at a later point in time at which the transmission of data from the reading device 10 to the transponder 20 has ended, ie to which no query data M A is modulated onto the carrier signal S r f ld .
  • the unmodulated supply carrier S rfld is still transmitted in order to supply power to the transponder 20, so that the backscatter modulation effected by the backscatter modulator 24 of the transponders 20 and thus the response A rfld of the transponder 20 is possible.
  • the radar module 30 illuminates the transponder 20 with a broadband electromagnetic signal S r Rada to determine the distance, speed and direction of movement of the transponder.
  • the reader 10 receives the backscatter-modulated response signal A rfld the transponder 20 and evaluates this in a known manner according to the requested data such as. Identification number and content of the memory 23 of the transponder 20 from.
  • the transponder 20 uses its backscatter modulator 24 in order to communicate to the reader 10, the RFID response signal A, the transponder 20 according to the invention at the same time with the signal S r Rada of the radar module 30 is irradiated. Thereby un- the radar frequency f r of the radar signal differs Rada
  • the 5.8GHz ISM band with a bandwidth B Rada r of about 150 MHz is suitable that.
  • the radar signal S r is Rada as well as the supply carrier signal Srf I d from the transponder 20 reflects and finally back EMP in the form of a response signal A Rada r from the radar module 30 to catch.
  • the desired measured values, ie the position, speed and / or direction of movement of the transponder 20 can then be determined in an evaluation device 32 of the radar module 30 from the radar signal A radar reflected by the transponder 20 high bandwidth B radar small error can be determined.
  • the reference point of the measurement of the position, the speed and the direction of movement is no longer the antenna 11 of the reader 10, but the antenna 31 of the radar module 30.
  • the reader 10 is connected to a computer 40, on which a corresponding software, for example. A so-called middleware, is installed.
  • the measured values ascertained by the radar module 30 are transmitted, for example, via a radio link to the computer 40, where finally the measured values are calculated in relation to the reading device 10.
  • the computer 40 may be integrated into a housing of the reader 10. Alternatively, a central computer (not shown) may be used which communicates with the reader 10 via a radio link.
  • the radar module 30 it would also be advisable for the radar module 30 to communicate with the computer 40 via a radio link in order to transmit the measured values to the computer 40.
  • the aforementioned conversions may then take place in the computer 40 in measured values related to the reading device 10.
  • the abovementioned evaluation device 32 of the radar module 30 is realized by the central computer 40, ie that no data processing takes place in the radar module 30 itself and the actual determination of the measured values position, speed and / or direction of movement is outsourced to the computer 40 ,
  • the radar module 30 and the reader 10 may be firmly connected to each other, for example. By being housed in a common housing. In this case, you can be taken that the determined with the radar module 30 position of the transponder 20, which initially refers only to the radar module 30, is equivalent to a position of the transponder 20 with respect to the reading device 10th
  • a common method of radar technology for determining the distance or the distance between radar module 30 and transponder 20 is, for example, the measurement of the transit time, while a speed of the transponder 20 can be determined by means of a Doppler measurement or via the time variation of the distance.
  • the direction of movement can also be determined by means of a Doppler measurement, wherein only the sign of the Doppler shift must be evaluated.
  • the direction of movement can also be determined by the temporal change of the distance.
  • other methods for determining the measured values distance, speed and direction of movement can also be used and are well known to a person skilled in the art.
  • the radar signal Sr ada r emitted by the radar module 30 and received at the transponder 20 is also modulated by the backscatter modulator 24 before being reflected. Accordingly, the signal A radar reflected back from the transponder 20 and in turn received at the radar module 30 is a backscatter-modulated signal, due to which the identification number of the transponder 20 and the content of the memory 23 of the transponder 20 can also be determined on the radar module 30, for example.
  • the backscatter modulation of the radar signal causes the transponder 20 to stand out against so-called passive radar targets such as, for example, walls, ceilings, steel girders, goods, people etc., and is clearly visible in the received signal of the radar module 30.
  • the radar module 30 can be used not only for determining the measured values, but also for demodulating the data sent by the transponder 20 by backscatter modulation.
  • the radar module 30 can, for example, receive the identification number of the transponder 20 and connect the determined distance etc. with the identification number. In a decentralized system in which the reading device 10 and one or even several radar modules 30 are arranged spatially distributed, this is of great advantage since the measured variable can then be provided with the identification number of the transponder 20 for unambiguous assignment.
  • the reader 10 can be simplified in its functionality such that it merely provides the supply carrier Srfi d at the operating frequency f r ld and modulates the request, while the reception and the evaluation of the backscattered data are completely shifted into the radar module 30.
  • the identification of the transponder 20 can take place in the reader 10, while in the radar module 30 in addition to the determination of the position, the speed and / or the direction of movement of the transponder 20 and the backscatter-modulated response of the transponder 20 is evaluated.
  • the reading device 10 would only have the task of providing or transmitting the supply carrier signal Srfi d , which was modulated in phase with query data, and the task of identifying the transponder 20.
  • Radar module 30 is a special embodiment of the backscatter modulation advantageous.
  • the data to be transmitted from the transponder 20 to the reading device 10 are coded before being transmitted, whereby coding types FMO, Miller and Manchester are customary. Care is taken here that, for example, the transmission of a bit sequence "000000000" does not cause the backscatter never to switch, since such a response would not be detectable.
  • the coding types ensure that the backscatter modulator has an average switching frequency, This variation of the switching frequency then represents the bit sequence to be transmitted and can be detected in the reading device 10. It is particularly advantageous for the radar module 30 if the Backscatter modulation frequency is constant. This can be achieved by describing the memory area 23 of the transponder 20 before the distance measurement with a bit sequence whose readout causes a backscatter modulation with a constant frequency.
  • the antenna 21 of the transponder 20 will not be optimized for one of the RFID operating frequency f RFID deviating frequency range. Accordingly, to optimize the maximum measuring distance, an adaptation of the antenna 21 for the use of the backscatter method at higher frequencies may be necessary, for example, by adapting the antenna impedance to the chip such that the desired backscatter signal is optimally strong.
  • radar modules which according to the method described above and additionally advantageously either at different operating frequencies, i. in the so-called frequency division multiplex mode, or in temporal change, i. In the so-called time division multiplex mode, work, different accuracies can be realized by different bandwidths and different measurement ranges by different operating frequencies. If the radar modules are distributed spatially, a multi-dimensional location of the transponder is also possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention relates to a method and a system for determining the distance, speed, and/or direction of movement of an RFID transponder. The transponder is interrogated by an RFID reading device as commonly known, so the reading device transmits a power supply carrier signal that is modulated during some phases. A radar module simultaneously transmits a radar signal which is received and reflected by the transponder. The reflected radar signal is finally received again by the radar module. The position of the RFID transponder can be determined from the reflected, received radar signal. The radar signal is transmitted especially when no interrogation data is modulated onto the power supply carrier signal. Furthermore, the power supply carrier signal and the radar signal have different frequencies.

Description

Beschreibungdescription
Verfahren und System zur Bestimmung der Entfernung, der Geschwindigkeit und/oder der Bewegungsrichtung eines RFID- TranspondersMethod and system for determining the distance, the speed and / or the direction of movement of an RFID transponder
Die inzwischen weithin bekannte RFID-Technologie („radio fre- quency identification" bzw. Radiofrequenz-Identifikation) hat sich in den vergangenen Jahren schnell entwickelt. Speziell die günstigen passiven Ultra-Hochfrequenz-RFID-TransponderThe well-known RFID technology ("radio frequency identification") has developed rapidly in recent years, especially the low-cost passive ultra-high-frequency RFID transponders
(UHF-RFID-Transponder) , bspw. RFID-Etiketten oder sogenannte RFID-Tags, sind mittlerweile in sehr großer Stückzahl auf dem Markt. Sie vereinfachen Abläufe in der Logistik und in der Industrie. So kommt ein RFID-Transponder (im Folgenden nur noch als „Transponder" bezeichnet) in Verbindung mit einem RFID-Lesegerät (im Folgenden nur noch „Lesegerät") in verschiedensten Anwendungsgebieten wie bspw. der Lagerinventarisierung oder auch zu Identifikationszwecken im Bereich der Sicherheitstechnik zum Einsatz. Ihre Hauptaufgaben liegen in der Bereitstellung einer eindeutigen Identifikationsnummer und in der Aufnahme einer in der Regel geringen Menge an Daten .(UHF RFID transponders), for example RFID tags or so-called RFID tags, are now on the market in large numbers. They simplify processes in logistics and industry. Thus, an RFID transponder (hereinafter referred to as "transponder") in connection with an RFID reader (hereinafter referred to as "reader") in a variety of applications such as. The inventory inventory or for identification purposes in the field of security technology Commitment. Their main tasks are to provide a unique identification number and to record a typically small amount of data.
Die Abfrage bzw. Auslese des Transponders, der in der Regel zumindest eine Antenne und einen Chip mit einem Backscatter- Modulator, einem Logikschaltwerk und einem Datenspeicher aufweist, geschieht mit Hilfe elektromagnetischer Wellen nach dem sogenannten und an sich bekannten Backscatter-Prinzip . Bei diesem sendet das Lesegerät ein konstantes, gleichmäßig moduliertes Signal, welches zum Einen einen im Transponder integrierten RFID-Chip veranlasst, ein Antwortsignal auszusenden, welches wiederum von dem Lesegerät registriert wird. Das Antwortsignal beinhaltet zumindest eine eindeutige Identifizierung des Transponders und ggf. weitere Daten. Zum An- deren kann das vom Lesegerät ausgesendete Signal auch zur Stromversorgung des Transponders genutzt werden. Ein Transponder wird vom Lesegerät üblicherweise bei der Betriebsfrequenz mit einem elektromagnetischen Signal bestrahlt, welches über eine Transponderantenne aufgenommen und von einem Gleichrichter zur Nutzung umgewandelt wird. Das vom Lesegerät ausgesendete Signal besteht aus einem Versorgungsträgersignal, im Folgenden auch als Träger bezeichnet, auf das evtl. an den Transponder zu übertragende Daten in bekannter Weise aufmoduliert sind. Bspw. kann hiermit vom Lesegerät eine Anfrage zur Herausgabe der Identifikationsnummer des Transponders oder zum Auslesen des Speichers des Transponders gestellt werden. Nach der Übertragung der Daten wird der Träger jedoch nicht sofort abgeschaltet, da der Transponder sonst energielos wäre und nicht antworten könnte. Stattdessen wird der Träger unmoduliert aufrechterhalten und der Transponder ändert den Reflektionsfaktor seiner Antenne zur sogenannten Rückstreumodulation, in Fachkreisen auch Back- scatter-Modulation genannt. Auf diese Weise kann der Transponder nahezu energielos eine Antwort an das Lesegerät senden. Bei dieser Kommunikationsart ist die Energieversor- gung des Transponders der kritische Pfad, d.h. die Detektion der Transponderantwort wäre noch in größerer Entfernung möglich. Doch die Stromaufnahme moderner Transponder beschränkt die Reichweite auf maximal ca. 10m.The query or readout of the transponder, which usually has at least one antenna and a chip with a backscatter modulator, a logic controller and a data memory, is done with the aid of electromagnetic waves according to the so-called and known backscatter principle. In this case, the reading device transmits a constant, uniformly modulated signal which, on the one hand, causes an RFID chip integrated in the transponder to emit a response signal, which in turn is registered by the reading device. The response signal includes at least a unique identification of the transponder and possibly further data. On the other hand, the signal emitted by the reading device can also be used to supply power to the transponder. A transponder is usually irradiated by the reader at the operating frequency with an electromagnetic signal which is picked up by a transponder antenna and converted by a rectifier for use. The signal emitted by the reading device consists of a supply carrier signal, hereinafter also referred to as carrier, onto which any data to be transmitted to the transponder are modulated in a known manner. For example. can be made by the reader a request to release the identification number of the transponder or to read the memory of the transponder. However, after the transmission of the data, the carrier is not shut down immediately because otherwise the transponder would be de-energized and could not respond. Instead, the carrier is maintained unmodulated and the transponder changes the reflection factor of its antenna for so-called backscatter modulation, also known as backscatter modulation in professional circles. In this way, the transponder can send a response to the reader with almost zero energy. In this type of communication, the energy supply of the transponder is the critical path, ie the detection of the transponder response would still be possible at a greater distance. But the power consumption of modern transponders limits the range to a maximum of about 10m.
Weit verbreitet ist die Benutzung des ISM-Bandes (Industrial, Scientific, and Medical Band) bei 868MHz in Europa bzw. bei 915MHz in den USA. Die maximale Lesereichweite liegt, bei Abstrahlung der maximal erlaubten Sendeleistung, bei nicht mehr als 10m. Ein Problem beim Betrieb von RFID-Systemen im UHF- Band sind sogenannte Überreichweiten, die insbesondere in geschlossenen Räumen auftreten können: Ein weit vom Lesegerät entfernter Transponder kann aufgrund von konstruktiver Interferenz der vom Lesegerät ausgesendeten elektromagnetischen Wellen mit Energie versorgt und identifiziert werden, obwohl er sich eigentlich außerhalb der Sollreichweite des Lesegeräts befindet. Durch eine Entfernungsmessung vom Lesegerät zum Transponder könnte diese Überreichweite als solche erkannt werden. Abgesehen von diesem konkreten Beispiel ist die Messung der Transponder-Entfernung, der Transponder-Geschwindigkeit und/oder der Transponder-Bewegungsrichtung generell von gro- ßem Interesse.Widely used is the use of the ISM band (Industrial, Scientific, and Medical Band) at 868MHz in Europe and at 915MHz in the US. The maximum reading range is, with radiation of the maximum permitted transmission power, not more than 10m. A problem in the operation of RFID systems in the UHF band are so-called overreach, which may occur in particular in closed rooms: A far away from the reader transponder can be powered and identified due to constructive interference emitted by the reader electromagnetic waves with energy, although he is actually outside the target range of the reader. By measuring the distance from the reader to the transponder, this overreach could be detected as such. Apart from this concrete example, the measurement of the transponder distance, the transponder speed and / or the transponder movement direction is generally of great interest.
Eine ausreichend hoch aufgelöste Entfernungsmessung benötigt bekanntermaßen eine große Bandbreite der Signale, die zur Messung herangezogen werden. Das Auflösungsvermögen R eines Radarsystems berechnet sich gemäß R=c/B, wobei c die Lichtgeschwindigkeit und B die Bandbreite des elektromagnetischen Signals ist. Bspw. ein FMCW-Radar (Frequency Modulated Conti- nuous Wave bzw. frequenzmoduliertes Dauerstrichradar) mit einer Bandbreite B=80MHz bietet ein Auflösungsvermögen von R=I, 875m. Das bedeutet, dass die Signalausbreitung über indirekte Wege, z.B. durch Reflexionen an den Raumwänden, mit Gangunterschieden von unter 1,875m das Messergebnis stark verfälschen kann. Erst bei größeren Gangunterschieden können die Mehrwege von der Entfernungsschätzung abgetrennt werden und sorgen nur noch für einen geringen Fehler. Geht man von einer sogenannten Line-of-Sight-Situation (LOS) aus, bei der die direkte Sichtverbindung zwischen den Antennen von Lesegerät und Transponder ungestört ist, so kann man den Fehler durch Mehrwege in den meisten Messumgebungen auf einen Betrag kleiner R/10 minimieren, was bei dem beispielhaft vorgestellten Radar einen Fehler in einer Größenordnung von maximal 20cm bedeuten würde. Sollte die direkte Sichtverbindung allerdings gedämpft sein, so ist mit einem deutlich größeren Fehler zu rechnen.A sufficiently high-resolution distance measurement is known to require a large bandwidth of the signals used for the measurement. The resolution R of a radar system is calculated according to R = c / B, where c is the speed of light and B is the bandwidth of the electromagnetic signal. For example. An FMCW (Frequency Modulated Continuous Wave) radar with a bandwidth B = 80MHz offers a resolution of R = I, 875m. This means that the signal propagation via indirect paths, e.g. due to reflections on the room walls, with differences of less than 1.875m, the measurement result can be seriously distorted. Only with larger differences in gears, the multipaths can be separated from the distance estimation and ensure only a small error. Assuming a so-called line-of-sight situation (LOS), in which the direct line of sight between the antennas of the reader and transponder is undisturbed, so you can multipath error in most measurement environments to an amount less than R / 10 minimize, which would mean an error of the order of maximum 20cm in the exemplified radar. However, if the direct line of sight is damped, a much larger error can be expected.
Bei einem üblichen RFID-System beträgt die Bandbreite des backscatter-modulierten Antwortsignals maximal 50OkHz. Das ergibt ein Auflösungsvermögen von R=300m und einen Restfehler von ca. R/10=30m. In Kombination mit der bereits erwähnten Reichweite des RFID-Systems von nur 10m ist direkt ersichtlich, dass dieser anzunehmende Fehler eine Entfernungsmessung praktisch unmöglich macht. Abhilfe schaffen könnte eine Kombination mehrerer Entfernungsmessungen bei unterschiedlichen Mittenfrequenzen, jedoch steht für UHF-RFID-Systeme bei den angegebenen Frequenzen nur eine sehr limitierte Bandbreite von ca. 2MHz in Europa und 15MHz in den USA zur Verfügung.In a conventional RFID system, the bandwidth of the backscatter-modulated response signal is a maximum of 50 kHz. This results in a resolution of R = 300m and a residual error of about R / 10 = 30m. In combination with the already mentioned range of the RFID system of only 10m, it is immediately apparent that this assumed error makes a distance measurement virtually impossible. A combination of several distance measurements at different levels could remedy this situation Center frequencies, however, for the UHF RFID systems at the specified frequencies only a very limited bandwidth of about 2MHz in Europe and 15MHz in the US is available.
Eine weitere Möglichkeit zur Bestimmung der Transponder-Another way to determine the transponder
Bewegungsrichtung und -Geschwindigkeit besteht in der Zuhilfenahme sogenannter Gates. Derartige Gates, auch of als „Gate-Reader" bezeichnet, sind Tore oder Durchgänge o. ä., die Antennen beinhalten, an die ein RFID-Lesegerät angeschlossen ist. Will man ein mit einem Transponder ausgestattetes Gut identifizieren, so schiebt man es durch ein solches Gate. Dabei stehen mehrere Lesegeräte in großem Abstand zueinander und registrieren die erfolgreiche Identifikation eines Transponders . Die zeitliche Abfolge der Identifizierungen lässt auf die Bewegungsrichtung und Geschwindigkeit desDirection of movement and speed consists in the use of so-called gates. Such gates, also referred to as "gate readers", are gates or passages, etc., which contain antennas to which an RFID reader is connected, and if one wishes to identify a good equipped with a transponder, one pushes it through In this case, several readers are at a large distance from each other and register the successful identification of a transponder.The temporal sequence of the identifications allows for the direction of movement and speed of the transponder
Transponders schließen. Die genaue Position und Geschwindigkeit des Transponders zwischen den Gates bleibt jedoch unbekannt. Auch Überreichweiten können an dieser Stelle zu Fehlinformationen führen, bspw. dann, wenn ein Transponder ein Gate gar nicht passiert hat, sondern nur ungünstig in dessen Nähe gelangt ist.Close transponders. However, the exact location and speed of the transponder between the gates remains unknown. Excessive ranges can also lead to misinformation at this point, for example when a transponder has not passed a gate at all, but has only reached its vicinity unfavorably.
Eine Möglichkeit, Überreichweiten zumindest zum Teil zu vermeiden besteht weiterhin in der Verwendung spezieller Anten- nen und hinsichtlich der Sendeleistung fein abgestimmter Lesegeräte. Auch mit dieser Methode lässt sich das Problem der Überreichweite jedoch nicht vollständig ausschließen.One way to avoid overreaching, at least in part, continues to be the use of special antennas and the transmission power of finely tuned readers. Even with this method, however, the problem of the overreach can not be completely ruled out.
Es ist daher die Aufgabe der vorliegenden Erfindung, ein Ver- fahren und eine Vorrichtung zur Bestimmung der Position eines RFID-Transponders anzugeben.It is therefore the object of the present invention to specify a method and a device for determining the position of an RFID transponder.
Diese Aufgabe wird durch die in den unabhängigen Ansprüchen angegebenen Erfindungen gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.This object is achieved by the inventions specified in the independent claims. Advantageous embodiments emerge from the dependent claims.
Die zu ermittelnde „Position" des Transponders kann eine 1- dimensionale, eine 2-dimensionale oder eine 3-dimensionale Größe sein. Als 1-dimensionale Größe entspräche die Position einfach einer Entfernung zwischen dem Transponder und einem Bezugspunkt, der bpsw. das Lesegerät sein kann.The "position" of the transponder to be determined can be 1-dimensional, 2-dimensional or 3-dimensional Be size. As a 1-dimensional size, the position would simply correspond to a distance between the transponder and a reference point, the bpsw. the reader can be.
Für die Erfindung wird ausgenutzt, dass insbesondere aus Kostengründen der Transponder-Chip eines RFID-Transponders, in dem bspw. die Backscatter-Modulation ausgeführt wird, nicht schmalbandig nur auf eine bestimmte Betriebsfrequenz sondern vergleichsweise breitbandig ausgelegt sein wird. Hierdurch wird erreicht, dass nur eine Chipvariante entwickelt werden muss, die bspw. für Transponder-Etiketten verschiedener Regionen wie Europa, USA und Asien einsetzbar ist. Auch aus technischer Sicht ist es günstiger, den Backscatter-Modulator in seiner Frequenzantwort nicht explizit einzuschränken. Daher kann davon ausgegangen werden, dass der Backscatter-Modulator im Transponder-Chip auch bei einer von der gewählten RFID- Betriebsfrequenz abweichenden, insbesondere höheren Frequenz eine ausreichend große Änderung seines Reflektionsfaktors zur Verfügung stellt, um sich auch bei höheren Frequenzen die Backscatterfunktionalität des Chips zu Nutze machen zu können .The invention makes use of the fact that, for cost reasons in particular, the transponder chip of an RFID transponder in which, for example, the backscatter modulation is executed, will not be designed narrowband only for a specific operating frequency but rather for a comparatively broadband. This ensures that only one chip variant has to be developed, which can be used, for example, for transponder labels of different regions such as Europe, USA and Asia. Also from a technical point of view, it is better not to restrict the backscatter modulator in its frequency response explicitly. Therefore, it can be assumed that the backscatter modulator in the transponder chip provides a sufficiently large change in its reflection factor even at a deviating from the selected RFID operating frequency, in particular higher frequency, to the backscatter functionality of the chip even at higher frequencies Use to be able to do.
Ausgehend hiervon baut die erfindungsgemäße Lösung darauf auf, dass ein RFID-Transponder, dessen Position und evtl. Ge- schwindigkeit und/oder Bewegungsrichtung bestimmt werden soll, nicht nur von dem Lesegerät mit dem entsprechenden Abfragesignal mit einer typischen RFID-Betriebsfrequenz bestrahlt wird, sondern idealerweise gleichzeitig von zumindest einem Radarmodul mit einem entsprechenden Radarsignal mit großer Bandbreite und mit einer Frequenz, die sich von der RFID-Betriebsfrequenz unterscheidet .Proceeding from this, the solution according to the invention builds on the fact that an RFID transponder whose position and possibly speed and / or direction of movement is to be determined is not only irradiated by the reader with the corresponding interrogation signal with a typical RFID operating frequency, but also ideally simultaneously from at least one radar module with a corresponding high bandwidth radar signal and at a frequency different from the RFID operating frequency.
Beim erfindungsgemäßen Verfahren zur Bestimmung einer Position eines RFID-Transponders, der augebildet ist, um sowohl ein von einem RFID-Lesegerät mit einer RFID-Frequenz ausgesendetes Versorgungsträgersignal als auch ein von einem Radarmodul mit einer Radarfrequenz ausgesendetes Radarsignal zu empfangen und zu reflektieren, wird der RFID-Transponder von dem Radarmodul mit dem Radarsignal bestrahlt. Das Radarsignal wird daraufhin vom RFID-Transponder reflektiert und das reflektierte Radarsignal wird am Radarmodul empfangen. Aus dem am Radarmodul empfangenen reflektierten Radarsignal lässt sich nun die Position des RFID-Transponders bestimmen.In the inventive method for determining a position of an RFID transponder, which is adapted to receive and reflect both a supply carrier signal emitted by an RFID reader having an RFID frequency and a radar signal emitted by a radar module having a radar frequency, the RFID transponder irradiated by the radar module with the radar signal. The radar signal is then reflected by the RFID transponder and the reflected radar signal is received at the radar module. The position of the RFID transponder can now be determined from the reflected radar signal received at the radar module.
Das Radarsignal wird vorzugsweise gleichzeitig mit dem Versorgungsträgersignal ausgesendet .The radar signal is preferably transmitted simultaneously with the supply carrier signal.
Auf das Versorgungsträgersignal werden phasenweise Abfragedaten zur Abfrage und/oder zum Auslesen des Transponders aufmoduliert. Dabei wird das Radarsignal nur dann ausgesendet, wenn auf das Versorgungsträgersignal keine Daten aufmoduliert werden .Phase-wise interrogation data for interrogation and / or read-out of the transponder are modulated onto the supply carrier signal. In this case, the radar signal is transmitted only if no data is modulated onto the supply carrier signal.
Das Radarsignal wird in einer besonderen Ausgestaltung ausgesendet, sobald das Aufmodulieren der Abfragedaten auf das Versorgungsträgersignal beendet ist.The radar signal is sent out in a particular embodiment as soon as the modulating of the query data to the supply carrier signal has ended.
In einer bevorzugten Ausführung weisen das Versorgungsträgersignal und das Radarsignal unterschiedliche Frequenzen auf. Außerdem ist die Bandbreite des Radarsignals größer als die Bandbreite des Versorgungsträgersignals.In a preferred embodiment, the supply carrier signal and the radar signal have different frequencies. In addition, the bandwidth of the radar signal is greater than the bandwidth of the supply carrier signal.
Neben der Position wird vorteilhafterweise aus dem amIn addition to the position is advantageously from the am
Radarmodul empfangenen reflektierten Radarsignal weiterhin eine Geschwindigkeit und/oder eine Bewegungsrichtung des RFID-Transponders bestimmt.Radar module received reflected radar signal further determines a speed and / or direction of movement of the RFID transponder.
Das Radarsignal wird im RFID-Transponder vor der Reflektion moduliert, insbesondere backscatter-moduliert, wobei bei der Modulation Daten zumindest umfassend eine Identifikationsnummer der RFID-Transponders und/oder einen Inhalt eines Datenspeichers des RFID-Transponders auf das Radarsignal aufmodu- liert werden. Das so modulierte reflektierte Signal wird im Radarmodul empfangen und hinsichtlich der aufmodulierten Daten ausgewertet. Somit können die Abfragedaten auch unabhängig vom RFID-Lesegerät ermittelt werden. Die erfindungsgemäße Anordnung zur Bestimmung einer Position eines RFID-Transponders weist ein Radarmodul zum Aussenden eines Radarsignals mit einer Radarfrequenz auf. Der RFID- Transponder ist ausgebildet, sowohl das ausgesendete Radarsignal als auch ein von einem RFID-Lesegerät mit einer RFID- Frequenz ausgesendetes Versorgungsträgersignal zu empfangen und zu reflektieren. Das Radarmodul ist seinerseits ausgebildet, das vom RFID-Transponder reflektierte Radarsignal zu empfangen. Die Anordnung weist darüber hinaus eine mit dem Radarmodul verbundene Auswerteeinrichtung zum Bestimmen der Position des RFID-Transponders anhand des empfangenen, reflektierten Radarsignals auf.The radar signal is modulated in the RFID transponder prior to the reflection, in particular backscatter-modulated, wherein in the modulation data at least comprising an identification number of the RFID transponders and / or a content of a data memory of the RFID transponder on the radar signal are modulated. The thus-modulated reflected signal is received in the radar module and evaluated with respect to the modulated data. Thus, the query data can also be determined independently of the RFID reader. The arrangement according to the invention for determining a position of an RFID transponder has a radar module for emitting a radar signal having a radar frequency. The RFID transponder is designed to receive and reflect both the transmitted radar signal and a supply carrier signal emitted by an RFID reader with an RFID frequency. The radar module is in turn designed to receive the radar signal reflected by the RFID transponder. The arrangement furthermore has an evaluation device connected to the radar module for determining the position of the RFID transponder on the basis of the received, reflected radar signal.
Vorteilhafterweise sind das RFID-Lesegerät und das Radarmodul fest miteinander verbunden, insbesondere in einem gemeinsamen Gehäuse untergebracht. Dies resultiert in einem kompakten Gerät, mit dem neben der Identifikation des Transponders eine genaue Positionsmessung des Transponders möglich ist.Advantageously, the RFID reader and the radar module are firmly connected to each other, in particular housed in a common housing. This results in a compact device with which an exact position measurement of the transponder is possible in addition to the identification of the transponder.
Weiterhin weisen das Versorgungsträgersignal und das Radarsignal unterschiedliche Frequenzen auf und die Bandbreite des Radarsignals ist größer als die Bandbreite des Versorgungsträgersignals .Furthermore, the supply carrier signal and the radar signal have different frequencies and the bandwidth of the radar signal is greater than the bandwidth of the supply carrier signal.
Der RFID-Transponder weist vorteilhafterweise einen Modulator, insbesondere einen Backscatter-Modulator, auf, der ausgebildet ist, auf das Radarsignal vor der Reflektion Daten umfassend eine Identifikationsnummer der RFID-Transponders und/oder einen Inhalt eines Datenspeichers des RFID- Transponders aufzumodulieren, und dass die Auswerteeinrichtung ausgebildet ist, um das modulierte, reflektierte Radarsignal hinsichtlich der aufmodulierten Daten auszuwerten. Hierdurch wird erreicht, dass nicht nur auf das RFID-Signal Daten aufmoduliert werden können, sondern auch auf das Radarsignal. Somit kann das Radarmodul sowohl zur Messung der Position des Transponders als auch zu dessen Identifikation verwendet werden. Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus dem im Folgenden beschriebenen Ausführungsbeispiel sowie anhand der Zeichnungen.The RFID transponder advantageously has a modulator, in particular a backscatter modulator, which is designed to aufzumodulieren the radar signal before reflection data comprising an identification number of the RFID transponder and / or a content of a data memory of the RFID transponder, and that the evaluation device is designed to evaluate the modulated, reflected radar signal with regard to the modulated data. This ensures that data can not only be modulated on the RFID signal, but also on the radar signal. Thus, the radar module can be used both for measuring the position of the transponder and for its identification. Further advantages, features and details of the invention will become apparent from the embodiment described below and with reference to the drawings.
Dabei zeigt die Figur 1 die zeitliche Abfolge der erfindungsgemäßen Entfernungsmessung.FIG. 1 shows the time sequence of the distance measurement according to the invention.
In den Figuren sind identische bzw. einander entsprechende Bereiche, Bauteile, Bauteilgruppen oder Verfahrensschritte mit denselben Bezugsziffern gekennzeichnet.In the figures, identical or corresponding areas, components, component groups or method steps are identified by the same reference numerals.
In der Figur IA sind ein RFID-Lesegerät 10, ein RFID- Transponder 20 sowie ein Radarmodul 30, jeweils mit einer An- tenne 11, 21, 31, dargestellt. Die Position, die Geschwindigkeit und die Bewegungsrichtung des Transponders 20 sollen ermittelt werden. Im Lesegerät 10 ist ein Computer 40 vorgesehen und der Transponder 20 weist neben der Antenne 21 einen Transponder-Chip 22 mit einem Datenspeicher 23 und einem Backscatter-Modulator 24 auf. Das Radarmodul 30 weist eine Auswerteeinrichtung 32 auf.FIG. 1A shows an RFID reader 10, an RFID transponder 20 and a radar module 30, each with an antenna 11, 21, 31. The position, the speed and the direction of movement of the transponder 20 are to be determined. In the reader 10, a computer 40 is provided and the transponder 20 has, in addition to the antenna 21, a transponder chip 22 with a data memory 23 and a backscatter modulator 24. The radar module 30 has an evaluation device 32.
Das Lesegerät 10 stellt ein Versorgungsträgersignal Srfld bspw. bei einer RFID-Betriebsfrequenz von frfld=868MHz zur Verfügung und moduliert ggf. Abfragedaten MA auf das Trägersignal Srfid auf, um eine Identifikationsnummer des Transponders 20 abzufragen und um den Inhalt des Speichers 23 des Transponders 20 auszulesen. Es werden nur phasenweise, d.h. zeitlich nicht ununterbrochen, Abfragedaten M auf das Versor- gungsträgersignal Srfld aufmoduliert, d.h. das Versorgungsträgersignal Srfid wird zum Teil auch unmoduliert ausgesendet.The reader 10 provides a Versorgungssträgersignal S r f ld, for example, at an RFID operating frequency of f rfld = 868MHz available and modulates, if necessary, query data M A on the carrier signal Srfi d to query an identification number of the transponder 20 and the content of the Memory 23 of the transponder 20 read. Only phase-wise, ie, not continuous in time, query data M is modulated onto the supply carrier signal S r ld , ie the supply carrier signal Srfid is also partly transmitted unmodulated.
Alternativ kann bspw. auch eine Betriebsfrequenz von gewählt werden. Der Transponder 20 wird durch das Versorgungsträgersignal Srfld mit Energie versorgt, wacht auf und demoduliert die Anfrage. Diese Prozesse sind soweit hinlänglich bekannt. In der Figur IB ist die Situation zu einem späteren Zeitpunkt dargestellt, zu dem die Übertragung von Daten vom Lesegerät 10 zum Transponder 20 beendet ist, zu dem also keine Abfragedaten MA mehr auf das Trägersignal Srfld aufmoduliert werden. Der unmodulierte Versorgungsträger Srfld wird jedoch weiterhin übertragen, um den Transponder 20 mit Energie zu versorgen, so dass die Backscatter-Modulation, die durch den Back- scatter-Modulator 24 der Transponders 20 bewirkt wird, und damit die Antwort Arfld des Transponders 20 ermöglicht wird. Gleichzeitig bestrahlt das Radarmodul 30 den Transponder 20 mit einem breitbandigen elektromagnetischen Signal Sradar, um die Entfernung, die Geschwindigkeit und die Bewegungsrichtung des Transponders zu bestimmen.Alternatively, for example, an operating frequency of to get voted. The transponder 20 is powered by the supply carrier signal S r ld , wakes up and demodulates the request. These processes are so far well known. FIG. 1B illustrates the situation at a later point in time at which the transmission of data from the reading device 10 to the transponder 20 has ended, ie to which no query data M A is modulated onto the carrier signal S r f ld . However, the unmodulated supply carrier S rfld is still transmitted in order to supply power to the transponder 20, so that the backscatter modulation effected by the backscatter modulator 24 of the transponders 20 and thus the response A rfld of the transponder 20 is possible. At the same time, the radar module 30 illuminates the transponder 20 with a broadband electromagnetic signal S r Rada to determine the distance, speed and direction of movement of the transponder.
Das Lesegerät 10 empfängt das backscatter-modulierte Antwortsignal Arfld des Transponders 20 und wertet dieses in bekannter Weise entsprechend den angefragten Daten wie bspw. Identifikationsnummer und Inhalt des Speichers 23 des Transponders 20 aus.The reader 10 receives the backscatter-modulated response signal A rfld the transponder 20 and evaluates this in a known manner according to the requested data such as. Identification number and content of the memory 23 of the transponder 20 from.
Während der Transponder 20 seinen Backscatter-Modulator 24 benutzt, um dem Lesegerät 10 das Antwortsignal Arfld zukommen zu lassen, wird der Transponder 20 erfindungsgemäß zeitgleich mit dem Signal Sradar des Radarmoduls 30 bestrahlt. Dabei un- terscheidet sich die Radarfrequenz fradar des RadarsignalsWhile the transponder 20 uses its backscatter modulator 24 in order to communicate to the reader 10, the RFID response signal A, the transponder 20 according to the invention at the same time with the signal S r Rada of the radar module 30 is irradiated. Thereby un- the radar frequency f r of the radar signal differs Rada
Sradar von der RFID-Frequenz des Versorgungsträgers Srfid- Bspw. kann hier ein Signal Sradar aus dem ISM-Band mit einer Mittenfrequenz von fradar=2, 45GHz und einer Bandbreite von Bradar=80MHz verwendet werden. Ebenso eignet sich das das 5,8GHz ISM-Band mit einer Bandbreite Bradar von etwa 150MHz.Sr ada r of the RFID frequency of the care provider Srfid-Bspw. Here, a signal S ra can be used from the ISM band with a center frequency of f radar = 2, 45GHz and a bandwidth of B rada r = 80MHz. Likewise, the 5.8GHz ISM band with a bandwidth B Rada r of about 150 MHz is suitable that.
Grundsätzlich ist bei der Auswahl eines Frequenzbereichs für die Entfernungsmessung mit Hilfe des Radarmoduls 30 entscheidend, dass ein Frequenzbereich ausgewählt wird, bei dem eine möglichst hohe Bandbreite zur Verfügung steht.In principle, when selecting a frequency range for the distance measurement with the aid of the radar module 30, it is crucial that a frequency range is selected in which the highest possible bandwidth is available.
Das Radarsignal Sradar wird ebenso wie das Versorgungsträgersignal Srfid vom Transponder 20 reflektiert und schließlich in Form eines Antwortsignals Aradar wieder vom Radarmodul 30 emp- fangen. Mit üblichen Methoden der Radartechnologie (siehe unten) können dann in einer Auswerteeinrichtung 32 des Radarmoduls 30 aus dem vom Transponder 20 reflektierten Radarsignal Aradar die gesuchten Messwerte, d.h. die Position, Geschwin- digkeit und/oder Bewegungsrichtung des Transponders 20, mit einem aufgrund der hohen Bandbreite Bradar geringen Fehler bestimmt werden.The radar signal S r is Rada as well as the supply carrier signal Srf I d from the transponder 20 reflects and finally back EMP in the form of a response signal A Rada r from the radar module 30 to catch. With customary methods of radar technology (see below), the desired measured values, ie the position, speed and / or direction of movement of the transponder 20 can then be determined in an evaluation device 32 of the radar module 30 from the radar signal A radar reflected by the transponder 20 high bandwidth B radar small error can be determined.
Zu beachten ist hierbei, dass der Bezugspunkt der Messung der Position, der Geschwindigkeit und der Bewegungsrichtung nicht mehr die Antenne 11 des Lesegeräts 10 ist, sondern die Antenne 31 des Radarmoduls 30. Um die Messwerte des Radarmoduls 30 auf das Lesegerät 10 zu beziehen, muss eine entsprechende Umrechnung stattfinden. Typischerweise ist das Lesegerät 10 mit einem Computer 40 verbunden, auf dem eine entsprechende Software, bspw. eine sogenannte Middleware, installiert ist. Die vom Radarmodul 30 ermittelten Messwerte werden bspw. über eine Funkverbindung an den Computer 40 übertragen, wo schließlich die Messwerte in Relation zu dem Lesegerät 10 berechnet werden. Der Computer 40 kann in ein Gehäuse des Lesegerätes 10 integriert sein. Alternativ kann ein zentraler Computer (nicht dargestellt) genutzt werden, der mit dem Lesegerät 10 über eine Funkverbindung kommuniziert. In letzterem Fall würde es sich anbieten, dass auch das Radarmodul 30 über eine Funkverbindung mit dem Computer 40 kommuniziert, um die Messwerte an den Computer 40 zu übertragen. Im Computer 40 können dann ggf. die erwähnten Umrechnungen in auf das Lesegerät 10 bezogene Messwerte stattfinden. Auch ist es denkbar, dass die oben erwähnte Auswerteeinrichtung 32 des Radarmoduls 30 durch den zentralen Computer 40 realisiert wird, dass also im Radarmodul 30 selbst keine Datenverarbeitung stattfindet und die eigentliche Bestimmung der Messwerte Position, Geschwindigkeit und/oder Bewegungsrichtung in den Computer 40 ausgelagert ist.It should be noted here that the reference point of the measurement of the position, the speed and the direction of movement is no longer the antenna 11 of the reader 10, but the antenna 31 of the radar module 30. In order to relate the measured values of the radar module 30 to the reader 10, must a corresponding conversion take place. Typically, the reader 10 is connected to a computer 40, on which a corresponding software, for example. A so-called middleware, is installed. The measured values ascertained by the radar module 30 are transmitted, for example, via a radio link to the computer 40, where finally the measured values are calculated in relation to the reading device 10. The computer 40 may be integrated into a housing of the reader 10. Alternatively, a central computer (not shown) may be used which communicates with the reader 10 via a radio link. In the latter case, it would also be advisable for the radar module 30 to communicate with the computer 40 via a radio link in order to transmit the measured values to the computer 40. The aforementioned conversions may then take place in the computer 40 in measured values related to the reading device 10. It is also conceivable that the abovementioned evaluation device 32 of the radar module 30 is realized by the central computer 40, ie that no data processing takes place in the radar module 30 itself and the actual determination of the measured values position, speed and / or direction of movement is outsourced to the computer 40 ,
Weiterhin können das Radarmodul 30 und das Lesegerät 10 fest miteinander verbunden sein, bspw. indem sie in einem gemeinsamen Gehäuse untergebracht sind. In diesem Fall kann ange- nommen werden, dass die mit dem Radarmodul 30 bestimmte Position des Transponders 20, die sich zunächst nur auf das Radarmodul 30 bezieht, gleichzusetzen ist mit einer Position des Transponders 20 bezüglich des Lesegerätes 10.Furthermore, the radar module 30 and the reader 10 may be firmly connected to each other, for example. By being housed in a common housing. In this case, you can be taken that the determined with the radar module 30 position of the transponder 20, which initially refers only to the radar module 30, is equivalent to a position of the transponder 20 with respect to the reading device 10th
Eine übliche Methode der Radartechnologie zur Bestimmung des Abstands bzw. der Entfernung zwischen Radarmodul 30 und Transponder 20 ist bspw. die Messung der Laufzeit, während eine Geschwindigkeit des Transponders 20 mit Hilfe einer Dopplermessung oder über die zeitliche Veränderung der Ent- fernung bestimmt werden kann. Die Bewegungsrichtung kann ebenfalls mittels einer Dopplermessung ermittelt werden, wobei lediglich das Vorzeichen der Dopplerverschiebung ausgewertet werden muss. Die Bewegungsrichtung kann auch über die zeitliche Änderung der Entfernung bestimmt werden. Andere Verfahren zur Ermittlung der Messwerte Entfernung, Geschwindigkeit und Bewegungsrichtung sind natürlich auch einsetzbar und einem Fachmann wohlbekannt.A common method of radar technology for determining the distance or the distance between radar module 30 and transponder 20 is, for example, the measurement of the transit time, while a speed of the transponder 20 can be determined by means of a Doppler measurement or via the time variation of the distance. The direction of movement can also be determined by means of a Doppler measurement, wherein only the sign of the Doppler shift must be evaluated. The direction of movement can also be determined by the temporal change of the distance. Of course, other methods for determining the measured values distance, speed and direction of movement can also be used and are well known to a person skilled in the art.
Ebenso wie das Trägersignal Srfld wird auch das vom Radarmodul 30 ausgesendete und am Transponder 20 empfangene Radarsignal Sradar vor der Reflektion durch den Backscatter-Modulator 24 moduliert. Dementsprechend ist das vom Transponder 20 reflektierte und wiederum am Radarmodul 30 empfangene Signal Aradar ein backscatter-moduliertes Signal, aufgrund dessen auch am Radarmodul 30 bspw. die Identifikationsnummer des Transponders 20 und der Inhalt des Speichers 23 des Transponders 20 ermittelt werden können. Die Backscatter-Modulation des Radarsignals bewirkt insbesondere, dass sich der Transponder 20 gegenüber sogenannten passiven Radarzielen wie bspw. Wänden, Decken, Stahlträgern, Waren, Personen etc. abhebt und im Empfangssignal des Radarmoduls 30 eindeutig sichtbar ist.Like the carrier signal S r f ld , the radar signal Sr ada r emitted by the radar module 30 and received at the transponder 20 is also modulated by the backscatter modulator 24 before being reflected. Accordingly, the signal A radar reflected back from the transponder 20 and in turn received at the radar module 30 is a backscatter-modulated signal, due to which the identification number of the transponder 20 and the content of the memory 23 of the transponder 20 can also be determined on the radar module 30, for example. In particular, the backscatter modulation of the radar signal causes the transponder 20 to stand out against so-called passive radar targets such as, for example, walls, ceilings, steel girders, goods, people etc., and is clearly visible in the received signal of the radar module 30.
Ebenfalls vorteilhaft ist, dass das Radarmodul 30 nicht bloß zur Ermittlung der Messwerte eingesetzt werden kann, sondern auch zur Demodulation der vom Transponder 20 durch Backscatter-Modulation gesendeten Daten. Das Radarmodul 30 kann bspw. die Identifikationsnummer des Transponders 20 empfangen und die ermittelte Entfernung etc. mit der Identifikationsnummer verknüpfen. In einem dezentral angelegten System, bei dem das Lesegerät 10 und eines oder sogar mehrere Radarmodule 30 räumlich verteilt angeordnet sind, ist dies von großem Vor- teil, da die Messgröße dann zur eindeutigen Zuordnung mit der Identifikationsnummer des Transponders 20 versehen werden kann. Auch kann das Lesegerät 10 in seiner Funktionalität derart vereinfacht werden, dass es bloß noch den Versorgungsträger Srfid bei der Betriebsfrequenz frfld bereitstellt und die Anfrage aufmoduliert, während der Empfang und die Auswertung der rückgestreuten Daten komplett in das Radarmodul 30 verlagert werden. Eine große Zahl günstiger Lesegeräte, die bloß zur Energieversorgung der Transponder dienen, wäre damit denkbar. Alternativ kann auch die Identifikation des Transponders 20 im Lesegerät 10 stattfinden, während im Radarmodul 30 neben der Bestimmung der Position, der Geschwindigkeit und/oder der Bewegungsrichtung des Transponders 20 auch die backscatter-modulierte Antwort des Transponders 20 ausgewertet wird. Dem Lesegerät 10 würden in dieser Ausfüh- rungsform lediglich die Aufgabe der Bereitstellung bzw. der Aussendung des phasenweise mit Abfragedaten modulierten Versorgungsträgersignals Srfid und die Aufgabe der Identifikation des Transponders 20 zufallen.It is also advantageous that the radar module 30 can be used not only for determining the measured values, but also for demodulating the data sent by the transponder 20 by backscatter modulation. The radar module 30 can, for example, receive the identification number of the transponder 20 and connect the determined distance etc. with the identification number. In a decentralized system in which the reading device 10 and one or even several radar modules 30 are arranged spatially distributed, this is of great advantage since the measured variable can then be provided with the identification number of the transponder 20 for unambiguous assignment. Also, the reader 10 can be simplified in its functionality such that it merely provides the supply carrier Srfi d at the operating frequency f r ld and modulates the request, while the reception and the evaluation of the backscattered data are completely shifted into the radar module 30. A large number of cheap readers, which merely serve to power the transponder, would be conceivable. Alternatively, the identification of the transponder 20 can take place in the reader 10, while in the radar module 30 in addition to the determination of the position, the speed and / or the direction of movement of the transponder 20 and the backscatter-modulated response of the transponder 20 is evaluated. In this embodiment, the reading device 10 would only have the task of providing or transmitting the supply carrier signal Srfi d , which was modulated in phase with query data, and the task of identifying the transponder 20.
Für die Auswertung des reflektierten Radarsignals Aradar imFor the evaluation of the reflected radar signal A radar im
Radarmodul 30 ist eine spezielle Ausgestaltung der Backscat- ter-Modulation vorteilhaft. Üblicherweise werden die vom Transponder 20 an das Lesegerät 10 zu übermittelnden Daten vor dem Aussenden kodiert, wobei Kodierungsarten FMO, Miller und Manchester üblich sind. Dabei wird darauf geachtet, dass z.B. das Aussenden einer Bitfolge „000000000" nicht dazu führt, dass der Backscatter niemals umschaltet, da solch eine Antwort nicht detektierbar wäre. Daher sorgen die Kodierungsarten dafür, dass der Backscatter-Modulator eine mittlere Um- schaltfrequenz hat, die im Takt der Bitfolge variiert. Diese Variation der Umschaltfrequenz stellt dann die zu übertragende Bitfolge dar und kann im Lesegerät 10 detektiert werden. Besonders vorteilhaft für das Radarmodul 30 ist es, wenn die Backscatter-Modulationsfrequenz konstant ist. Dies kann dadurch erreicht werden, dass der Speicherbereich 23 des Transponders 20 vor der Entfernungsmessung mit einer Bitfolge beschrieben wird, deren Auslesen eine Backscatter-Modulation mit konstanter Frequenz bewirkt.Radar module 30 is a special embodiment of the backscatter modulation advantageous. Usually, the data to be transmitted from the transponder 20 to the reading device 10 are coded before being transmitted, whereby coding types FMO, Miller and Manchester are customary. Care is taken here that, for example, the transmission of a bit sequence "000000000" does not cause the backscatter never to switch, since such a response would not be detectable.Therefore, the coding types ensure that the backscatter modulator has an average switching frequency, This variation of the switching frequency then represents the bit sequence to be transmitted and can be detected in the reading device 10. It is particularly advantageous for the radar module 30 if the Backscatter modulation frequency is constant. This can be achieved by describing the memory area 23 of the transponder 20 before the distance measurement with a bit sequence whose readout causes a backscatter modulation with a constant frequency.
Während der Transponder-Chip 22 wie erwähnt in der Regel breitbandig ausgelegt ist, wird die Antenne 21 des Transponders 20 für einen von der RFID-Betriebsfrequenz frfld abwei- chenden Frequenzbereich nicht optimiert sein. Dementsprechend könnte zur Optimierung der maximalen Messentfernung eine Anpassung der Antenne 21 für die Nutzung des Backscatter- Verfahrens bei höheren Frequenzen notwendig sein, indem bspw. die Antennenimpedanz derart an den Chip angepasst wird, dass das gewünschte Backscattersignal optimal stark ausfällt.Is broadband during the transponder chip 22, as mentioned, as a rule, the antenna 21 of the transponder 20 will not be optimized for one of the RFID operating frequency f RFID deviating frequency range. Accordingly, to optimize the maximum measuring distance, an adaptation of the antenna 21 for the use of the backscatter method at higher frequencies may be necessary, for example, by adapting the antenna impedance to the chip such that the desired backscatter signal is optimally strong.
Durch die Verwendung mehrerer Radarmodule, die nach dem oben beschriebenen Verfahren und zusätzlich vorteilhafterweise entweder bei unterschiedlichen Betriebsfrequenzen, d.h. im sogenannten Frequenzmultiplex-Modus, oder im zeitlichen Wechsel, d.h. im sogenannten Zeitmultiplex-Modus, arbeiten, lassen sich unterschiedliche Genauigkeiten durch verschiedene Bandbreiten und unterschiedliche Messreichweiten durch verschiedene Betriebsfrequenzen realisieren. Sind die Radarmodu- Ie räumlich verteilt angeordnet, so ist auch eine mehrdimensionale Ortung des Transponders möglich. By using a plurality of radar modules, which according to the method described above and additionally advantageously either at different operating frequencies, i. in the so-called frequency division multiplex mode, or in temporal change, i. In the so-called time division multiplex mode, work, different accuracies can be realized by different bandwidths and different measurement ranges by different operating frequencies. If the radar modules are distributed spatially, a multi-dimensional location of the transponder is also possible.

Claims

Patentansprüche claims
1. Verfahren zur Bestimmung einer Position eines RFID- Transponders (20), der augebildet ist, um sowohl ein von einem RFID-Lesegerät (10) mit einer RFID-Frequenz (frfld) ausgesendetes Versorgungsträgersignal (Srfld) als auch ein von einem Radarmodul (30) mit einer Radarfrequenz (fradar) ausgesendetes Radarsignal (Sradar) zu empfangen und zu reflektieren, bei dem - das Radarmodul (30) den RFID-Transponder (20) mit demA method of determining a position of an RFID transponder (20) adapted to receive both a carrier signal (S r f ld ) emitted by an RFID reader (10) having an RFID frequency (f rfld ) and a from a radar module (30) with a radar frequency (f radar ) emitted radar signal (S ra dar) to receive and reflect, in which - the radar module (30) the RFID transponder (20) with the
Radarsignal (Sradar) bestrahlt,Radar signal (S ra dar) irradiated,
— das Radarsignal (Sraciar) vom RFID-Transponder (20) reflektiert und das reflektierte Radarsignal (Aradar) am Radarmodul (30) empfangen wird und - aus dem am Radarmodul (30) empfangenen reflektierten- The radar signal (S rac i ar ) from the RFID transponder (20) reflected and the reflected radar signal (A radar ) is received at the radar module (30) and - from the radar module (30) received reflected
Radarsignal (Aradar) die Position des RFID-Transponders (20) bestimmt wird.Radar signal (A radar ) the position of the RFID transponder (20) is determined.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Radarsignal (Sradar) gleichzeitig mit dem2. The method according to claim 1, characterized in that the radar signal (S radar ) simultaneously with the
Versorgungsträgersignal (Srfld) ausgesendet wird.Supply carrier signal (S rfld ) is sent out.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass auf das Versorgungsträgersignal (Srfld) phasenweise Ab- fragedaten zur Abfrage und/oder zum Auslesen des Transponders (20) aufmoduliert werden, wobei das Radarsignal (Sradar) nur dann ausgesendet wird, wenn auf das Versorgungsträgersignal (Srfid) keine Daten aufmoduliert werden.3. The method of claim 1 or 2, characterized in that on the supply carrier signal (S rfld ) phased query data for interrogation and / or readout of the transponder (20) are modulated, wherein the radar signal (S radar ) is only transmitted if no data is modulated onto the supply carrier signal (Srfid).
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Radarsignal (Sradar) ausgesendet wird, sobald das Aufmodulieren der Abfragedaten auf das Versorgungsträgersignal (Srfid) beendet ist.4. The method according to claim 3, characterized in that the radar signal (S radar ) is sent out as soon as the modulating of the query data to the supply carrier signal (Srfid) is completed.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Versorgungsträgersignal (Srfld) und das Radarsignal (Sradar) unterschiedliche Frequenzen (frfld, fradar) aufweisen und dass die Bandbreite (Bradar) des Radarsig- nals (Sradar) größer ist als die Bandbreite (Brfld) des Versorgungsträgersignals (Srfid) •5. The method according to any one of the preceding claims, characterized in that the supply carrier signal (S rfld ) and the radar signal (S radar ) have different frequencies (f rfld , f radar ) and that the bandwidth (B radar ) of Radarsig- nals (S rada r) is greater than the bandwidth (B rfld ) of the supply carrier signal (Srfid)
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass aus dem am Radarmodul (30) empfangenen reflektierten Radarsignal (Aradar) weiterhin eine Geschwindigkeit und/oder eine Bewegungsrichtung des RFID-Transponders (20) bestimmt werden.6. The method according to any one of the preceding claims, characterized in that from the radar module (30) received reflected radar signal (A radar ), a speed and / or a direction of movement of the RFID transponder (20) are further determined.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass7. The method according to any one of the preceding claims, characterized in that
- das Radarsignal (Sradar) im RFID-Transponder (20) vor der Reflektion moduliert, insbesondere backscatter-moduliert, wird, wobei bei der Modulation Daten zumindest umfassend eine Identifikationsnummer der RFID-Transponders (20) und/oder einen Inhalt eines Datenspeichers (23) des RFID- Transponders (20) auf das Radarsignal (Sradar) aufmoduliert werden, und- the radar signal (S Rada r) modulated in the RFID transponder (20) before the reflection, particularly backscatter-modulated is, wherein in the modulation data at least comprising an identification number of the RFID transponder (20) and / or a content of a data memory (23) of the RFID transponder (20) are modulated onto the radar signal (S ra dar), and
- das modulierte reflektierte Signal (Aradar) im Radarmodul (30) empfangen und hinsichtlich der aufmodulierten Daten ausgewertet wird.- Receives the modulated reflected signal (A radar ) in the radar module (30) and evaluated with respect to the modulated data.
8. Anordnung zur Bestimmung einer Position eines RFID- Transponders (20), wobei - die Anordnung ein Radarmodul (30) zum Aussenden eines Radarsignals (Sradar) mit einer Radarfrequenz (fradar) aufweist,8. Arrangement for determining a position of an RFID transponder (20), wherein - the arrangement has a radar module (30) for emitting a radar signal (S radar ) having a radar frequency (f radar ),
- der RFID-Transponder (20) ausgebildet ist, sowohl das ausgesendete Radarsignal (Sradar) als auch ein von einem RFID- Lesegerät (10) mit einer RFID-Frequenz (frfld) ausgesendetes Versorgungsträgersignal (Srfld) zu empfangen und zu reflektieren,- The RFID transponder (20) is adapted to receive both the emitted radar signal (S radar ) and one of an RFID reader (10) with an RFID frequency (f rfld ) emitted supply carrier signal (S rfld ) and reflect .
- das Radarmodul (30) ausgebildet ist, ein vom RFID- Transponder (20) reflektiertes Radarsignal (Aradar) zu empfangen, und - die Anordnung eine mit dem Radarmodul (30) verbundene Auswerteeinrichtung (32, 40) zum Bestimmen der Position des RFID-Transponders (20) anhand des empfangenen, reflektierten Radarsignals (Aradar) aufweist. - The radar module (30) is adapted to receive a radar signal (A radar ) reflected by the RFID transponder (20), and - the arrangement comprises an evaluation device (32, 40) connected to the radar module (30) for determining the position of the RFID Transponders (20) based on the received, reflected radar signal (A radar ).
9. Anordnung nach Anspruch 8, dadurch gekennzeichnet, dass das RFID-Lesegerät (10) und das Radarmodul (30) fest miteinander verbunden, insbesondere in einem gemeinsamen Gehäuse untergebracht sind.9. Arrangement according to claim 8, characterized in that the RFID reader (10) and the radar module (30) are fixedly connected to each other, in particular housed in a common housing.
10. Anordnung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das Versorgungsträgersignal (Srfld) und das Radarsignal (Sradar) unterschiedliche Frequenzen (frfld, fra_ dar) aufweisen und dass die Bandbreite (Bradar) des Radarsignals (Sradar) größer ist als die Bandbreite (Brfld) des Versorgungsträgersignals (Srfid) •10. Arrangement according to one of claims 8 to 10, characterized in that the supply carrier signal (S r f ld ) and the radar signal (S rada r) have different frequencies (f rfld , f ra _ da r) and that the bandwidth (B radar ) of the radar signal (S rada r) is greater than the bandwidth (B rfld ) of the carrier signal (Srfid) •
11. Anordnung nach einem der Ansprüche 8 bis 10, dadurch ge- kennzeichnet, dass der RFID-Transponder (20) einen Modulator11. Arrangement according to one of claims 8 to 10, character- ized in that the RFID transponder (20) has a modulator
(24), insbesondere einen Backscatter-Modulator, aufweist, der ausgebildet ist, auf das Radarsignal (Sradar) vor der Reflek- tion Daten umfassend eine Identifikationsnummer der RFID- Transponders (20) und/oder einen Inhalt eines Datenspeichers (23) des RFID-Transponders (20) aufzumodulieren, und dass die Auswerteeinrichtung (32, 40) ausgebildet ist, um das modulierte, reflektierte Radarsignal (Aradar) hinsichtlich der aufmodulierten Daten auszuwerten. (24), in particular a backscatter modulator, which is formed on the radar signal (S ra dar) before the reflection data comprising an identification number of the RFID transponders (20) and / or a content of a data memory (23) modulate the RFID transponder (20) and that is formed the evaluation device (32, 40) to the modulated, reflected radar signal (A Rada r) with respect to the data modulated evaluated.
EP09782850A 2009-02-10 2009-09-10 Method and system for determining the distance, speed, and/or direction of movement of an rfid transponder Withdrawn EP2396670A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009008174A DE102009008174A1 (en) 2009-02-10 2009-02-10 Method and system for determining the distance, the speed and / or the direction of movement of an RFID transponder
PCT/EP2009/061729 WO2010091746A1 (en) 2009-02-10 2009-09-10 Method and system for determining the distance, speed, and/or direction of movement of an rfid transponder

Publications (1)

Publication Number Publication Date
EP2396670A1 true EP2396670A1 (en) 2011-12-21

Family

ID=41432752

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09782850A Withdrawn EP2396670A1 (en) 2009-02-10 2009-09-10 Method and system for determining the distance, speed, and/or direction of movement of an rfid transponder

Country Status (5)

Country Link
US (1) US20120050016A1 (en)
EP (1) EP2396670A1 (en)
CN (2) CN102301256A (en)
DE (1) DE102009008174A1 (en)
WO (1) WO2010091746A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010043854B4 (en) * 2010-11-12 2016-01-14 Deere & Company Control arrangement for controlling the transfer of agricultural crop from a harvester to a transport vehicle
AT511750B1 (en) 2011-08-04 2013-06-15 Univ Wien Tech METHOD AND SYSTEM FOR LOCATING OBJECTS
DE102012202920A1 (en) * 2012-02-27 2013-08-29 Siemens Aktiengesellschaft Device for detecting object marked with radio frequency identification label identified by electromagnetic waves, has reading devices with frequency bands for supplying energy to transponder of label and for data exchange with transponder
US9116237B2 (en) 2013-01-01 2015-08-25 Disney Enterprises Phase-based ranging for backscatter RFID tags
US10613213B2 (en) * 2016-05-13 2020-04-07 Google Llc Systems, methods, and devices for utilizing radar with smart devices
EP3290948B1 (en) * 2016-08-31 2020-03-25 Siemens Aktiengesellschaft Position detecting sensor and system
US11412347B2 (en) * 2017-01-17 2022-08-09 Phasorlab, Inc. High-resolution high-dynamic range doppler-effect measurement using modulated carrier signals
CN107290737A (en) * 2017-06-23 2017-10-24 南京采薇且歌信息科技有限公司 A kind of indoor positioning device and localization method recognized based on miniradar and ID
CN110097726B (en) * 2018-01-30 2022-05-17 保定市天河电子技术有限公司 Method and system for monitoring target in precautionary area
US11201775B2 (en) * 2018-02-14 2021-12-14 Telefonaktiebolaget Lm Ericsson (Publ) Technique for backscattering transmission
EP3604131B1 (en) * 2018-07-31 2024-03-20 HENSOLDT Sensors GmbH System and method for detecting flight movements
CN109831786B (en) * 2019-01-29 2020-09-08 华中科技大学 Wireless communication method and system based on backscattering antenna array
CN113498480A (en) * 2019-03-05 2021-10-12 宝洁公司 Wireless monitoring system
EP3726241A1 (en) * 2019-04-19 2020-10-21 Siemens Mobility GmbH Method and system for locating an object
EP3798664A1 (en) 2019-09-30 2021-03-31 Siemens Aktiengesellschaft Object identification device and method for operating a radio-based and/or optical object identification device and object identification system
CN113702962A (en) * 2020-05-22 2021-11-26 云米互联科技(广东)有限公司 Real-time positioning method, cloud server, real-time positioning system and storage medium
EP3916419A1 (en) 2020-05-27 2021-12-01 Siemens Aktiengesellschaft Method for operating a wireless location system and base station
EP3933428A1 (en) 2020-06-30 2022-01-05 Siemens Aktiengesellschaft Method for operating a wireless location system, base station and evaluation device
EP3992659A1 (en) 2020-10-30 2022-05-04 Siemens Aktiengesellschaft Method for operating a wireless location system, wireless location system and base station
CN112666548B (en) * 2020-12-11 2023-09-29 中国人民解放军63921部队 Method, device and system for determining working mode of speed measuring transponder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005037582A1 (en) * 2005-08-09 2007-02-22 Siemens Ag Locatable and energy self-sufficient backscatter transponder for the acquisition of measured variables

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3522602A (en) * 1968-10-30 1970-08-04 Sylvania Electric Prod System for measuring range and relative velocity
IL107636A (en) * 1992-11-18 1998-02-08 Csir Detection of multiple articles
US6700491B2 (en) * 2002-06-14 2004-03-02 Sensormatic Electronics Corporation Radio frequency identification tag with thin-film battery for antenna
DE10261098A1 (en) * 2002-12-20 2004-07-15 Siemens Ag Method for determining the distance between a base station and a mobile object and base station and identification system for such a method
US7154396B2 (en) * 2004-12-30 2006-12-26 Nokia Corporation Ultra wideband radio frequency identification techniques
DE102005009579B4 (en) * 2005-02-28 2010-04-22 ASTRA Gesellschaft für Asset Management mbH & Co. KG Method for locating a detector wafer
US20070046467A1 (en) * 2005-08-31 2007-03-01 Sayan Chakraborty System and method for RFID reader to reader communication
US20080012689A1 (en) * 2006-07-12 2008-01-17 Yfy Rfid Technologies Company Limited Radio frequency identification system and method thereof
US20080111688A1 (en) * 2006-11-09 2008-05-15 Pavel Nikitin Method and apparatus to increase the range of rfid systems
US8294554B2 (en) * 2006-12-18 2012-10-23 Radiofy Llc RFID location systems and methods
US7830250B2 (en) * 2007-10-22 2010-11-09 Honeywell International Inc. Apparatus and method for location estimation using power supply voltage levels of signal transmitters
US8253570B1 (en) * 2008-04-01 2012-08-28 Mcbride William B RFID-based person location device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005037582A1 (en) * 2005-08-09 2007-02-22 Siemens Ag Locatable and energy self-sufficient backscatter transponder for the acquisition of measured variables

Also Published As

Publication number Publication date
CN105022058A (en) 2015-11-04
DE102009008174A1 (en) 2010-08-19
WO2010091746A1 (en) 2010-08-19
US20120050016A1 (en) 2012-03-01
CN102301256A (en) 2011-12-28

Similar Documents

Publication Publication Date Title
WO2010091746A1 (en) Method and system for determining the distance, speed, and/or direction of movement of an rfid transponder
EP2739989B1 (en) Method and system for locating rfid tags
DE102006004023A1 (en) Device and method for multi-dimensional location of target objects, in particular RFID transponders
EP2824433B1 (en) Universal detection of measurement data in bodies of water
DE102005037582A1 (en) Locatable and energy self-sufficient backscatter transponder for the acquisition of measured variables
WO2014006013A1 (en) Method and arrangement for the relative position detection of stations by means of radio location
WO2009000283A1 (en) Filling level measuring transducer
DE102006037247A1 (en) Device and method for locating a target object
DE102005009579B4 (en) Method for locating a detector wafer
EP2442255A1 (en) RFID reader
EP2745139A1 (en) Method for determining the angles of moving components, and a device
EP2517146A1 (en) Mobile reading device, and method for locating an object that is marked with an active transponder
EP2927838B1 (en) System and method for identifying and locating objects
DE102006049862A1 (en) Object position's information providing device for positioning e.g. passive high frequency-transponder, has position determining device computing information about object-position from relative phase positions of received signals
EP3414589B1 (en) Device for determining a position of a transmitter and corresponding method
DE102005037583A1 (en) Method of detecting a transponder via a base station in a microwave radio frequency identification system
EP1820139B1 (en) Communication device
EP1638036B1 (en) RFID reader and method for evaluation and adjustment the transmitting channel and power
WO2017137525A1 (en) Device and method for determining the position of a transmitter in relation to a detection area
EP1672386B1 (en) Continuous wave radarsystem for distance measurements and data transmission
DE102019201742A1 (en) Transceiver and method for distance measurement
DE102011111121A1 (en) System for positioning and communicating with i.e. radio frequency identification readers, for locating objects or people in retail store, has position determination unit to determine probable position of transponders using movement model
DE102016207424A1 (en) Transponder, in particular RFID transponder, and method for operating a, in particular RFID, transponder
Elawamry Realistic chipless RFID: protocol, encoding and system latency
EP3767518A1 (en) Rfid device and method for communicating with at least one rfid transponder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20160616

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180404