EP2164705B1 - A method for manufacturing a seamless continuous material for security elements, a seamless continuous material for security elements and methods for manufacturing impression or embossing cylinders - Google Patents

A method for manufacturing a seamless continuous material for security elements, a seamless continuous material for security elements and methods for manufacturing impression or embossing cylinders Download PDF

Info

Publication number
EP2164705B1
EP2164705B1 EP08758776.2A EP08758776A EP2164705B1 EP 2164705 B1 EP2164705 B1 EP 2164705B1 EP 08758776 A EP08758776 A EP 08758776A EP 2164705 B1 EP2164705 B1 EP 2164705B1
Authority
EP
European Patent Office
Prior art keywords
lattice
grid
motif
elements
vectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08758776.2A
Other languages
German (de)
French (fr)
Other versions
EP2164705A2 (en
Inventor
Wittich Kaule
Wolfgang Rauscher
Marius Dichtl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient GmbH filed Critical Giesecke and Devrient GmbH
Publication of EP2164705A2 publication Critical patent/EP2164705A2/en
Application granted granted Critical
Publication of EP2164705B1 publication Critical patent/EP2164705B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B93/00Stitches; Stitch seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F19/00Apparatus or machines for carrying out printing operations combined with other operations
    • B41F19/02Apparatus or machines for carrying out printing operations combined with other operations with embossing
    • B41F19/06Printing and embossing between a negative and a positive forme after inking and wiping the negative forme; Printing from an ink band treated with colour or "gold"
    • B41F19/062Presses of the rotary type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/342Moiré effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/355Security threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • B42D2035/44
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/324Reliefs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0524Plural cutting steps
    • Y10T83/0538Repetitive transverse severing from leading edge of work

Definitions

  • the invention relates to a continuous material for security elements with micro-optical moiré magnification arrangements and to a method for producing such continuous material.
  • Data carriers such as valuables or identity documents, but also other valuables, such as branded goods, are often provided with security elements for the purpose of security, which permit verification of the authenticity of the data carrier and at the same time serve as protection against unauthorized reproduction.
  • the security elements can be embodied, for example, in the form of a security thread embedded in a banknote, a covering film for a banknote with a hole, an applied security strip or a self-supporting transfer element which is applied to a value document after its manufacture.
  • Security elements with optically variable elements which give the viewer a different image impression under different viewing angles, play a special role, since they can not be reproduced even with high-quality color copying machines.
  • the security elements can be equipped with security features in the form of diffraction-optically effective microstructures or nanostructures, such as with conventional embossed holograms or other hologram-like diffraction structures, as described, for example, in the publications EP 0 330 33 A1 or EP 0 064 067 A1 are described.
  • lens systems it is also known to use lens systems as security features.
  • a security thread of a transparent material described on the surface of a grid of several parallel cylindrical lenses is imprinted.
  • the Thickness of the security thread is chosen so that it corresponds approximately to the focal length of the cylindrical lenses.
  • the print image is designed taking into account the optical properties of the cylindrical lenses. Due to the focusing effect of the cylindrical lenses and the position of the printed image in the focal plane different subregions of the printed image are visible depending on the viewing angle.
  • By appropriate design of the printed image so that information can be introduced, which are visible only at certain angles.
  • By appropriate design of the printed image while "moving" images can be generated.
  • the subject moves only approximately continuously from one location on the security thread to another location.
  • Moire magnification arrangements are used as security features.
  • the principal operation of such Moire magnification arrangements is in the article "The Moire Magnifier", MC Hutley, R. Hunt, RF Stevens and P. Savander, Pure Appl. Opt. 3 (1994), pp. 133-142 , described.
  • moiré magnification thereafter refers to a phenomenon that occurs when viewing a raster of identical image objects through a lenticular of approximately the same pitch. As with each pair of similar rasters, this results in a moire pattern, in which case each of the moire fringes appears in the form of an enlarged and / or rotated image of the repeated element of the image raster.
  • an endless security element film is usually first produced as roll material, with the use of conventional production methods always being used Breakage, especially gaps or misalignment in the appearance of the security elements occur. These fractures are due to the fact that the precursors for the stamping tools used in the manufacture are generally manufactured as flat sheets which are mounted on a printing or embossing cylinder. At the seams, the mutually adjacent image patterns usually do not match and lead after printing or embossing in the appearance of the finished security elements to motive disorders of the type mentioned.
  • the publication DE 10 2005 028162 A1 relates to a security element and a method for its production.
  • the publication DE 199 47 397 A1 discloses a method for seamless engraving of patterns.
  • the object of the invention is to avoid the disadvantages of the prior art and, in particular, to provide a method for producing security elements with micro-optical moiré magnification arrangements with trouble-free motif images, as well as a corresponding continuous material.
  • the invention relates to a method for producing continuous material for security elements with micro-optical moiré magnification arrangements according to claim 1.
  • the distortion according to the invention can relate only to the motif grid, only the focusing element grid or both screens.
  • the motif grid and the focusing element grid may also require different distortions, as explained in more detail below.
  • a repeat q is set in step c) along the endless longitudinal direction of the endless material.
  • the longitudinal direction repeat q is given by the circumference of a stamping or printing cylinder for the generation of the motif grid and / or the focusing element grid.
  • a grid point P of the first and / or the second grid is selected, which is close to the end point Q of the vector given by the longitudinal direction repeat 0 q and a linear transformation V is detected which maps P to Q.
  • a grid point P whose distance from Q along the grid vector or the two grid vectors is less than 10 grid periods, preferably less than 5, more preferably less than 2 and in particular less than one grid period, is chosen as the grid point lying near the end point Q is.
  • the grid point closest to the end point Q can be selected as the grid point P.
  • the vectors differ a and b with advantage for amount and direction only a little or are even the same.
  • the grid points located near the end points Q and B are those grid points P and A whose distances of Q or B along the grid vector or the two grid vectors are each less than 10 grid periods, preferably less than 5, particularly preferably less than 2 and in particular less than one grating period.
  • the grid point closest to the end point Q can be selected as grid point P and the grid point closest to the end point B can be selected as grid point A.
  • the cross direction repeat b can be specified.
  • the vectors u 1 and u 2 , or w 1 and w 2 are spatially dependent, with the local period parameters
  • , ⁇ ( w 1 , w 2 ) change only slowly in relation to the periodicity length.
  • the motif grid and the focusing element grid are expediently arranged on opposite surfaces of an optical spacer layer.
  • the spacer layer may comprise, for example, a plastic film and / or a lacquer layer.
  • step e) comprises providing a printing or embossing cylinder with the distorted focusing element grid.
  • a flat plate may be provided with the distorted focusing element grid, and the flat plate or a flat impression of the plate may be mounted on a printing or embossing cylinder to form a cylinder with sutures having a cylinder circumference q.
  • a coated cylinder with cylinder circumference q can be provided with the distorted focusing element grid by a material-removing method, in particular by laser ablation.
  • Method step e) may comprise impressing the distorted focusing element grid in an embossable lacquer layer, in particular in a thermoplastic lacquer or UV lacquer, which is arranged on the front side of an optical spacer layer.
  • the step e) comprises providing a printing or embossing cylinder with the distorted motif grid.
  • a flat plate may be provided with the distorted motif grid, and the flat plate or a flat impression of the plate may be mounted on a printing or embossing cylinder so that a cylinder with seams with a cylinder circumference q is formed.
  • a coated cylinder with cylinder circumference q can be provided with the distorted motif grid by a material-removing method, in particular by laser ablation.
  • Method step e) may also include impressing the distorted motif grid in an embossable lacquer layer, in particular in a thermoplastic lacquer or UV lacquer, which is arranged on the back of an optical spacer layer.
  • step e) comprises printing the distorted motif grid on a carrier layer, in particular on the back side of an optical spacer layer.
  • the invention further relates to a continuous material for security elements for security papers, documents of value and the like according to claim 12.
  • the motif grid and the focusing element grid of the continuous material are arranged with a repeat q along the endless longitudinal direction of the endless material and with a repeat b along the transverse direction of the endless material.
  • the invention further comprises a method for producing a security element for security papers, value documents and the like, in which an endless material of the described type is produced and cut in the desired form of the security element.
  • the endless material is thereby cut into longitudinal strips of the same width and with an identical arrangement of the micro-optical moire magnification arrangements.
  • a security element for security papers, value documents and the like can be made from a continuous material of the type described are produced, in particular with the method just mentioned.
  • the invention comprises a method for producing a printing or embossing cylinder according to claim 14 for the production of the focusing element grid in a production method for continuous material of the type described.
  • a flat plate can be provided with the distorted focusing element grid, and the flat plate or a flat impression of the plate is mounted on a printing or embossing cylinder, so that a cylinder with seams with a cylinder circumference q is formed.
  • a coated cylinder with cylinder circumference q is provided with the distorted focusing element grid by a material-removing method, in particular by laser ablation.
  • the first and second grids are two-dimensional Bravais grids.
  • the invention comprises a method for producing a printing or embossing cylinder according to claim 15 for the production of the motif grid in a production method for continuous material of the type described.
  • a flat plate with the distorted motif grid can be provided, and the flat plate or a flat impression of the plate is mounted on a printing or embossing cylinder, so that a cylinder with seams with a cylinder circumference q is formed.
  • a coated cylinder with cylinder circumference q provided with the distorted motif grid by a material-removing process, in particular by laser ablation.
  • the first and second grids are two-dimensional Bravais grids.
  • the moiré magnification arrangements as sierelementraster, in particular lenticular, but also other types of grid, such as hole grids or grid of concave mirrors, have.
  • the inventive method can be used with advantage when cylindrical tools are used for embossing or printing.
  • Fig. 1 shows a schematic representation of a banknote 10, which is provided with two security elements 12 and 16.
  • the first security element represents a security thread 12 that emerges at certain window areas 14 on the surface of the banknote 10, while it is embedded in the intervening areas inside the banknote 10.
  • the second security element is formed by a glued transfer element 16 of any shape.
  • the security element 16 can also be designed in the form of a cover film, which is arranged over a window area or a through opening of the banknote.
  • Both the security thread 12 and the transfer element 16 may include a moire magnification arrangement.
  • the mode of operation and the production method according to the invention for such arrangements will be described in more detail below with reference to the security thread 12.
  • Fig. 2 schematically shows the layer structure of the security thread 12 in cross section, wherein only the parts of the layer structure required for the explanation of the functional principle are shown.
  • the security thread 12 includes a carrier 20 in the form of a transparent plastic film, in the embodiment an approximately 20 micron thick polyethylene terephthalate (PET) film.
  • PET polyethylene terephthalate
  • the upper side of the carrier film 20 is provided with a grid-like arrangement of microlenses 22 which form on the surface of the carrier film a two-dimensional Bravais grid with a preselected symmetry.
  • the Bravais lattice has a hexagonal lattice symmetry or the symmetry of a parallelogram lattice.
  • the spacing of adjacent microlenses 22 is preferably chosen as small as possible in order to ensure the highest possible area coverage and thus a high-contrast representation.
  • the spherically or aspherically configured microlenses 22 preferably have a diameter between 5 ⁇ m and 50 ⁇ m and in particular a diameter between only 10 ⁇ m and 35 ⁇ m and are therefore not visible to the naked eye. It is understood that in other designs, larger or smaller dimensions come into question.
  • the microlenses can have a diameter of between 50 ⁇ m and 5 mm for decorative purposes, while in the case of Moire Magnifier structures, which are to be decipherable only with a magnifying glass or a microscope, dimensions below 5 ⁇ m are also used can come.
  • a motif layer 26 is arranged, which also contains a grid-like arrangement of identical micromotif elements 28.
  • the arrangement of the micromotif elements 28 forms a two-dimensional Bravais lattice with a preselected symmetry, again assuming a parallelogram lattice for illustration.
  • the Bravais lattice of the micromotif elements differs 28 in its symmetry and / or in the size of its lattice parameters according to the invention slightly from the Bravais lattice of the microlenses 22 to produce the desired moire magnification effect.
  • the grating period and the diameter of the micromotif elements 28 are of the same order of magnitude as those of the microlenses 22, ie preferably in the range of 5 .mu.m to 50 .mu.m and in particular in the range of 10 .mu.m to 35 .mu.m, so that the micromotif elements 28 themselves are visible to the naked eye are not recognizable. In designs with the above-mentioned larger or smaller microlenses, of course, the micromotif elements are correspondingly larger or smaller.
  • the optical thickness of the carrier film 20 and the focal length of the microlenses 22 are coordinated so that the micromotif elements 28 are located approximately at the distance of the lens focal length.
  • the carrier foil 20 thus forms an optical spacer layer which ensures a desired constant spacing of the microlenses 22 and the micromotif elements 28.
  • the observer sees a slightly different subregion of the micromotif elements 28 when viewed from above through the microlenses 22, so that the multiplicity of microlenses 22 as a whole produces an enlarged image of the micromotif elements 28.
  • the resulting moiré magnification depends on the relative difference of the lattice parameters of the Bravais gratings used. If, for example, the grating periods of two hexagonal gratings differ by 1%, the result is a 100-fold moire magnification.
  • an endless security element film is usually first produced as a roll material, with known production methods always breaking points 30 occur in appearance 32, as in Fig. 3 (a) illustrated. These breakages in appearance are due to the fact that the precursors for the stamping tools used in the manufacture are generally made as flat sheets which are mounted on a printing or embossing cylinder 34, as shown schematically in FIG Fig. 3 (b) shown.
  • the adjacent motif grids 38, 38 'and / or the associated lenticular grid generally do not coincide and, after printing or embossing, lead to motif disturbances in the form of gaps or an offset in the appearance of the finished security elements.
  • the micromotif elements 28 and the microlenses 22 are each in the form of a raster, wherein in the context of this description raster is understood to mean a two-dimensional periodic or at least locally periodic arrangement of the lenses or the motif elements.
  • a periodic raster can always be described here by a two-dimensional Bravais lattice with constant lattice parameters.
  • the period parameters may change from place to place, but only slowly in relation to the periodicity length, so that the microasters can always be described locally with sufficient accuracy by means of Bravais gratings with constant grid parameters.
  • a periodic arrangement of the microelements is therefore always assumed below.
  • FIGS. 4 and 5 schematically show a non-scale illustrated moire magnification arrangement 50 with a motif plane 52 in which a in Fig. 4 more precisely arranged motif grid 40 is arranged and with a lens plane 54 in which the microlens grid is located.
  • the moiré magnification arrangement 50 produces a moiré image plane 56 in which the magnified image perceived by the viewer 58 is described.
  • the motif grid 40 includes a plurality of micromotif elements 42 in the form of the letter "F" arranged at the lattice sites of a low-symmetry Bravais lattice 44.
  • the unit cell of in Fig. 4 shown parallelogram grating can by vectors u 1 and u 2 (with the components u 11 , u 21 and u 12 , u 22 ) are shown.
  • the arrangement of microlenses in the lens plane 54 is described by a two-dimensional Bravais lattice whose lattice cell is represented by the vectors w 1 and w 2 (with the components w 11 , w 21 and w 12 , w 22 ) is given.
  • the vectors t 1 and t 2 With the vectors t 1 and t 2 (with the components t 11 , t 21 and t 12 , t 22 ), the grid cell in the moire image plane 56 is described.
  • the grating vectors of the micromotif element array result from the lenticular grid and the desired moiré image grating
  • U ⁇ W ⁇ ⁇ T ⁇ + W ⁇ - 1 ⁇ T ⁇
  • r ⁇ W ⁇ ⁇ T ⁇ + W ⁇ - 1 ⁇ R ⁇ + r ⁇ 0 ,
  • the transformation matrix A also describes the movement of a moire image as the moire-forming assembly 50 moves, resulting from the movement of the motif plane 52 against the lens plane 54.
  • the vector a 1 indicates in which direction the moiré image moves when tilting the arrangement of motif and lenticular raster laterally
  • the vector a 2 indicates in which direction the Moirestory moves, if one tilts the arrangement of subject and lenticular grid forward.
  • the images given in particular by (M1) to (M4) are now supplemented by further linear transformations which describe a distortion of the Bravais grid of the motif grid or of the lens grid, and which are selected so that the motif grid and / or the Lenticular grid periodically repeated in a predetermined repeat.
  • the procedure according to the invention will now be explained in more detail with reference to a few concrete examples.
  • the procedure according to the invention is as follows:
  • All grid points of the given motif grid are through m ⁇ u ⁇ 1 + n ⁇ u ⁇ 2 recorded with integers m and n.
  • the end point Q of this vector defined by the circumference of the cylinder 0 q is in Fig. 6 also marked.
  • a motif grid calculated according to aspects such as motif size, magnification, movement or a correspondingly calculated lenticular grid usually do not satisfy condition (1).
  • the Bravais lattice of the motif grid 70 is slightly distorted by a linear transformation so that the condition (1) for the distorted Bravais lattice is satisfied.
  • the distorted grid then repeats periodically with a longitudinal direction repeat q and therefore fits without gaps and without offset on an associated printing or embossing cylinder with circumference q.
  • a grid point P p x p y of the undistorted Bravais lattice located near the endpoint Q. For as little distortion as possible, such as in Fig. 6 , the grid point P closest to the end point Q is selected.
  • the concrete selection of the grid point P can be effected, for example, by the coordinates of all grid points in the computer be determined a surface which is slightly larger than a roll of the cylinder (at least some grid cells larger in size and in width) and that from these grid points then the one with the smallest distance to Q is determined.
  • the effect of lattice distortion can be estimated from the typical dimensions of the embossing cylinders and grid cells.
  • the grid cell dimensions are on the order of 20 microns, the circumference of a suitable embossing cylinder at about 20 cm or more.
  • a relative change of the grating of only 1: 10000 results.
  • the properties of the generated moiré image such as magnification and movement angle, change only in the per thousand range and are therefore not recognizable to a viewer.
  • the above-mentioned larger distances between grid point P and end point Q still provide very good to acceptable results with relative changes in the grid in the range of up to several percent.
  • Example 2 proceeds from a given motif image from a motif grid in the form of a two-dimensional Bravais grid with the unit cell side vectors u 1 , and u 2 and the circumference q of the intended for the generation of the motif grid printing cylinder.
  • the untransformed grating and the transformed grating differ as little as possible when the vectors b and a differ as little as possible or even equal.
  • Example 3 As in Example 1, a motif image 80 having a motif grid in the form of a two-dimensional Bravais lattice with the unit cell side vectors is shown u 1 and u 2 and the circumference q of the intended for the generation of the motif grid printing or embossing cylinder specified.
  • the embossed endless material is to be cut in a subsequent process step in strips of width b, the moire pattern on all strips should be the same side.
  • the distorted Bravais grid of the motif image 80 in this example should therefore be repeated periodically in the ⁇ direction with the longitudinal direction repeat q and periodically in the x direction with the transverse direction repeat b.
  • a lattice point P p x p y of the undistorted Bravais lattice located near the endpoint Q.
  • a grid point A a x a y selected near the endpoint B of the vector given by the desired cross-direction repeat b 0 lies.
  • the motive image transformed via the relationships (2c) and (3) and the motive image transformed via the relations (2c) and (4) are structurally repeated in the x-direction with period b and in the ⁇ -direction with period q.
  • the motif image therefore fits seamlessly and without offset on the given printing or embossing cylinder and can be cut after production in identical strips of width b.
  • a motif image arranged in a motif grid grid calculated according to the relationship (5) will generally not fit without interruption to an independently given cylinder diameter, so that one with This cylinder-embossed film material in the rhythm of the cylinder circumference disturbances in the motif image and thus also in the moiré image shows.
  • This also gives you a new motion matrix A ', by the motion matrix A 'described new magnification and movement behavior in accordance with inventive method only insignificantly from that by the original motion matrix A described, desired magnification and movement behavior deviates.
  • Example 5 gives a calculation example for moiré-forming gratings for the procedures explained in Examples 1 to 4. The simpler For the sake of illustration, a hexagonal lattice symmetry is assumed for each raster.
  • the lenticular grid is a hexagonal lattice with 20 ⁇ m side length.
  • the motif grid should have the same side length, but be rotated by an angle of 0.573 ° relative to the lenticular grid.
  • the moire pattern should have an approximately 100-fold magnification and approximately orthoparallactic motion in the image plane.
  • the moire magnification of the original motif grid is by design 100.0 times, the magnification with the transformed motif grid is horizontally 100.4-fold and vertically 100.0-fold, so has changed only insignificantly.
  • the transformed motif grid grid results in a trouble-free motif image on a printing or embossing cylinder with a circumference of 200 mm, whereas the original motif grid lattice creates motif distortions in the motif Fig. 3 (a) shown type leads.
  • Example 6 is based on Example 5, in addition to the endless material produced in this example is cut into identical strips with a width of 40 mm.
  • the moiré magnification of the original motif grid lattice is 100.0-fold by design, the magnification with the transformed motif grid is horizontally 100.4-fold and perpendicular 102.6-fold, so has changed only slightly.
  • results with the transformed motif grid grid on a printing or embossing cylinder with 200 mm circumference a trouble-free motif image, which has adjacent strips of a width of 40 mm adjacent to each other for further processing.
  • moiré magnifiers can be realized not only with two-dimensional gratings but also with linear translation structures, for example with cylindrical lenses as microfocusing elements and with motifs that are arbitrarily extended in one direction as micromotif elements. Even with such linear translation structures, the Moire Magnifier data can be adapted to a given rapport with advantage, as now with reference to the motif images 90 and 95 of FIGS. 8 and 9 explained.
  • a linear translation structure can be defined by a translation vector u describe, so by a displacement width d and a shift direction ⁇ , as in Fig. 8 shown.
  • the parallel lines 92 in FIG Fig. 8 stand schematically for a with the translation vector u moved repeatedly arranged motif.
  • a vector of length q is drawn with the end point Q, which stands for the given longitudinal repeat.
  • a transformation matrix V can be found with the aid of which the motif structure and the movement behavior can be adapted to the repeat with a minimum change.
  • Fig. 8 is a point P located on the translation structure near the point Q.
  • an adaptation to a transverse repeat can also be effected in the case of a linear translation structure in addition to adaptation to the longitudinal repeat, as can be seen from the motif image 95 of FIG Fig. 9 explained.
  • the longitudinal repeat is in Fig. 9 represented by a vector (0, q) with end point Q, the transverse repeat by a vector (b, 0) with end point B. Furthermore, points P and A are selected with the coordinates (p x , p y ) and (a x , a y ) in the translation structure, which are close to Q and B, respectively.
  • this information provides a transformation matrix V, with the help of which the motif structure and the movement behavior can be adapted with minimal change to both repetitions, namely with equation (2c):
  • V b 0 0 q ⁇ a x p x a y p y - 1
  • the printing or embossing cylinders themselves have seams
  • the design of moire magnification arrangements is inventively designed so that it fits together before and after a seam.
  • plates can be produced with latticed, free-standing, generally cylindrical resist structures, which are referred to as lacquer points. These paint spots are produced in a lattice-like arrangement which results for the lenticular grid using the above-described relationships (1) to (8).
  • Such plates can be produced for example by means of classical photolithography, by means of lithographic direct-write methods, such as laser-writing or e-beam lithography, or by suitable combinations of both approaches.
  • the plate is then heated with the paint dots, so that the resist structures flow away and generally form lattice-shaped arranged small hills, preferably small spherical caps. Shaped in transparent materials These hill lens properties, lens diameter, lens curvature, focal length on the geometric structure of the paint dots, especially their diameter and the thickness of the paint layer, can be determined.
  • Another possibility is the direct structuring of the plates with latticed, free-standing hills, for example by means of laser ablation.
  • plastic, ceramic or metal surfaces are processed with high-energy laser radiation, for example with excimer laser radiation.
  • a nickel layer for example 0.05 to 0.2 mm thick, is deposited and this is lifted off the plate.
  • This nickel foil is suitable as an embossing stamp for embossing a lenticular grid.
  • the nickel foil is precisely cut to size and welded with the embossing recesses outwards to a cylindrical tube, the sleeve.
  • the sleeve can be attached to an embossing cylinder.
  • the grating period also fits in the area of the weld.
  • the calculated lens grid is then embossed into an embossable lacquer layer, for example a thermoplastic lacquer or UV lacquer, on the front side of a foil.
  • an embossable lacquer layer for example a thermoplastic lacquer or UV lacquer
  • the production takes place analogously to the lenticular cylinder, wherein plates are prepared with lattice-shaped, free-standing, freely designed motifs.
  • lens raster, motif raster and cylinder circumference are in the relationships given by equations (1) to (8), so that the grating period also fits in the area of the weld seam.
  • the motif grid is embossed into an embossable lacquer layer, for example a thermoplastic lacquer or UV lacquer, on the back side of the foil, which contains the associated lenticular grid on the front side.
  • an embossable lacquer layer for example a thermoplastic lacquer or UV lacquer
  • the motif grid can be colored.
  • the further processing of the double-sided with lenticular grid and motif grid embossed film can be done in different ways.
  • the motif grid can be metallized over the entire area, or the motif grid can be obliquely vapor-deposited, and then a two-dimensional application of a color layer to the partially metallized areas can take place, or the embossed motif grid can be applied by full-surface application of Colored layers and subsequent wiping be colored.
  • Seamless cylinders for use in embossing or printing machines as such are state of the art and, for example, from the documents WO 2005/036216 A2 or DE 10126264 A1 known. However, there is no teaching how to design such cylinders to meet the special requirements of moire magnification arrangements.
  • a lenticular grid is mounted on one side of a film and a matching motif grid on the other side of the film.
  • embossing or impression cylinders are imaged, for example, according to the methods described in the prior art, wherein the design is carried out according to the above-described inventive calculation using the relationships (1) to (8).
  • Such cylinders can be made, for example, as follows.
  • trough-shaped lattice-like recesses created which serve as embossing or printing forms for a lenticular grid.
  • the programming of the laser feed control according to the invention is carried out using the relationships (1) to (8), so that a seamless pattern without interruption arises on the cylinder.
  • a metal, ceramic or plastic-coated cylinder lattice-like arranged recessed motifs or relief-like raised motifs are introduced in recessed environment by laser ablation, in particular by material removal using a computer-controlled laser, which serve as embossing or printing forms for a motif grid.
  • the programming of the laser feed control according to the invention is carried out using the relationships (1) to (8), so that a seamless pattern without interruption arises on the cylinder.
  • embossable layers of lacquer for example thermoplastic lacquer or UV lacquer
  • the motif grid can be colored, as described in Example 7.
  • lenticular, motif and cylinder circumferences are in the relationships given by equations (1) to (8) so as to obtain moiré magnification arrangements having an enlarged and moved motive, and moreover exhibit no discontinuities in roll material in periodicity ,
  • the cylinder circumferences of lens and motif cylinders may be the same or different, and the calculation by the relationships (1) to (8) provides the desired results in magnification and motion performance of the moiré magnification arrangement in the latter case in the latter case as well.
  • the further processing of the double-sided impressed with lenticular grid and motif grid film can be done in the manner described in Example 7 types.
  • the mentioned lenticular and motif grid cylinders can be used as printing forms. This is particularly suitable for the motif grid cylinder.
  • a particularly preferred production method is obtained when a lenticular grid is introduced by means of embossing in an embossable lacquer layer, for example a thermoplastic lacquer or UV lacquer, of a foil, and the associated motif grid is applied to the opposite side of the foil by means of classical printing processes.
  • an embossable lacquer layer for example a thermoplastic lacquer or UV lacquer

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Credit Cards Or The Like (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

Die Erfindung betrifft ein Endlosmaterial für Sicherheitselemente mit mikrooptischen Moiré-Vergrößerungsanordnungen sowie ein Verfahren zum Herstellen derartigen Endlosmaterials.The invention relates to a continuous material for security elements with micro-optical moiré magnification arrangements and to a method for producing such continuous material.

Datenträger, wie Wert- oder Ausweisdokumente, aber auch andere Wertgegenstände, wie etwa Markenartikel, werden zur Absicherung oft mit Sicherheitselementen versehen, die eine Überprüfung der Echtheit des Datenträgers gestatten und die zugleich als Schutz vor unerlaubter Reproduktion dienen. Die Sicherheitselemente können beispielsweise in Form eines in eine Banknote eingebetteten Sicherheitsfadens, einer Abdeckfolie für eine Banknote mit Loch, eines aufgebrachten Sicherheitsstreifens oder eines selbsttragenden Transferelements ausgebildet sein, das nach seiner Herstellung auf ein Wertdokument aufgebracht wird.Data carriers, such as valuables or identity documents, but also other valuables, such as branded goods, are often provided with security elements for the purpose of security, which permit verification of the authenticity of the data carrier and at the same time serve as protection against unauthorized reproduction. The security elements can be embodied, for example, in the form of a security thread embedded in a banknote, a covering film for a banknote with a hole, an applied security strip or a self-supporting transfer element which is applied to a value document after its manufacture.

Eine besondere Rolle spielen dabei Sicherheitselemente mit optisch variablen Elementen, die dem Betrachter unter unterschiedlichen Betrachtungswinkeln einen unterschiedlichen Bildeindruck vermitteln, da diese selbst mit hochwertigen Farbkopiergeräten nicht reproduziert werden können. Die Sicherheitselemente können dazu mit Sicherheitsmerkmalen in Form beugungsoptisch wirksamer Mikro- oder Nanostrukturen ausgestattet werden, wie etwa mit konventionellen Prägehologrammen oder anderen hologrammähnlichen Beugungsstrukturen, wie sie beispielsweise in den Druckschriften EP 0 330 33 A1 oder EP 0 064 067 A1 beschrieben sind.Security elements with optically variable elements, which give the viewer a different image impression under different viewing angles, play a special role, since they can not be reproduced even with high-quality color copying machines. For this purpose, the security elements can be equipped with security features in the form of diffraction-optically effective microstructures or nanostructures, such as with conventional embossed holograms or other hologram-like diffraction structures, as described, for example, in the publications EP 0 330 33 A1 or EP 0 064 067 A1 are described.

Es ist auch bekannt, Linsensysteme als Sicherheitsmerkmale einzusetzen. So ist beispielsweise in der Druckschrift EP 0 238 043 A2 ein Sicherheitsfaden aus einem transparenten Material beschrieben, auf dessen Oberfläche ein Raster aus mehreren parallel laufenden Zylinderlinsen eingeprägt ist. Die Dicke des Sicherheitsfadens ist dabei so gewählt, dass sie in etwa der Fokuslänge der Zylinderlinsen entspricht. Auf der gegenüberliegenden Oberfläche ist ein Druckbild registergenau aufgebracht, wobei das Druckbild unter Berücksichtigung der optischen Eigenschaften der Zylinderlinsen gestaltet ist. Aufgrund der fokussierenden Wirkung der Zylinderlinsen und der Lage des Druckbilds in der Fokusebene sind je nach Betrachtungswinkel unterschiedliche Teilbereiche des Druckbilds sichtbar. Durch entsprechende Gestaltung des Druckbilds können damit Informationen eingebracht werden, die jedoch lediglich unter bestimmten Blickwinkeln sichtbar sind. Durch entsprechende Ausgestaltung des Druckbilds können zwar auch "bewegte" Bilder erzeugt werden. Das Motiv bewegt sich bei Drehung des Dokuments um eine zu den Zylinderlinsen parallel laufende Achse allerdings nur annähernd kontinuierlich von einem Ort auf dem Sicherheitsfaden zu einem anderen Ort.It is also known to use lens systems as security features. For example, in the document EP 0 238 043 A2 a security thread of a transparent material described on the surface of a grid of several parallel cylindrical lenses is imprinted. The Thickness of the security thread is chosen so that it corresponds approximately to the focal length of the cylindrical lenses. On the opposite surface of a printed image is applied register accurate, the print image is designed taking into account the optical properties of the cylindrical lenses. Due to the focusing effect of the cylindrical lenses and the position of the printed image in the focal plane different subregions of the printed image are visible depending on the viewing angle. By appropriate design of the printed image so that information can be introduced, which are visible only at certain angles. By appropriate design of the printed image while "moving" images can be generated. However, as the document rotates about an axis parallel to the cylindrical lenses, the subject moves only approximately continuously from one location on the security thread to another location.

Seit einiger Zeit werden auch sogenannte Moire-Vergrößerungsanordnungen als Sicherheitsmerkmale eingesetzt. Die prinzipielle Funktionsweise derartiger Moire-Vergrößerungsanordnungen ist in dem Artikel "The moire magnifier", M.C. Hutley, R. Hunt, R.F. Stevens and P. Savander, Pure Appl. Opt. 3 (1994), pp. 133-142 , beschrieben. Kurz gesagt bezeichnet Moire-Vergrößerung danach ein Phänomen, das bei der Betrachtung eines Rasters aus identischen Bildobjekten durch ein Linsenraster mit annähernd demselben Rastermaß auftritt. Wie bei jedem Paar ähnlicher Raster ergibt sich dabei ein Moiremuster, wobei in diesem Fall jeder der Moirestreifen in Gestalt eines vergrößerten und/oder gedrehten Bildes des wiederholten Elements des Bildrasters erscheint.For some time, so-called Moire magnification arrangements are used as security features. The principal operation of such Moire magnification arrangements is in the article "The Moire Magnifier", MC Hutley, R. Hunt, RF Stevens and P. Savander, Pure Appl. Opt. 3 (1994), pp. 133-142 , described. In short, moiré magnification thereafter refers to a phenomenon that occurs when viewing a raster of identical image objects through a lenticular of approximately the same pitch. As with each pair of similar rasters, this results in a moire pattern, in which case each of the moire fringes appears in the form of an enlarged and / or rotated image of the repeated element of the image raster.

Bei der Herstellung derartiger Moiré-Vergrößerungsanordnungen wird in der Regel zunächst eine endlose Sicherheitselement-Folie als Rollenmaterial hergestellt, wobei bei Einsatz herkömmlicher Herstellungsverfahren stets Bruchstellen, insbesondere Lücken oder ein Versatz im Erscheinungsbild der Sicherheitselemente auftreten. Diese Bruchstellen rühren daher, dass die Vorprodukte für die bei der Herstellung verwendeten Prägewerkzeuge im Allgemeinen als flache Platten hergestellt werden, die auf einen Druck- oder Prägezylinder aufgezogen werden. An den Nahtstellen stimmen die beiderseitig angrenzenden Bildmuster in aller Regel nicht überein und führen nach dem Druck oder der Prägung im Erscheinungsbild der fertigen Sicherheitselemente zu Motivstörungen der genannten Art.In the production of such moiré magnification arrangements, an endless security element film is usually first produced as roll material, with the use of conventional production methods always being used Breakage, especially gaps or misalignment in the appearance of the security elements occur. These fractures are due to the fact that the precursors for the stamping tools used in the manufacture are generally manufactured as flat sheets which are mounted on a printing or embossing cylinder. At the seams, the mutually adjacent image patterns usually do not match and lead after printing or embossing in the appearance of the finished security elements to motive disorders of the type mentioned.

Die Druckschrift DE 10 2005 028162 A1 betrifft ein Sicherheitselement und ein Verfahren zu seiner Herstellung. Die Druckschrift DE 199 47 397 A1 offenbart ein Verfahren zur nahtlosen Gravur von Mustern.The publication DE 10 2005 028162 A1 relates to a security element and a method for its production. The publication DE 199 47 397 A1 discloses a method for seamless engraving of patterns.

Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, die Nachteile des Standes der Technik zu vermeiden und insbesondere ein Verfahren zur Erzeugung von Sicherheitselementen mit mikrooptischen Moire-Vergrößerungsanordnungen mit störungsfreien Motivbildern, sowie ein entsprechendes Endlosmaterial anzugeben.Based on this, the object of the invention is to avoid the disadvantages of the prior art and, in particular, to provide a method for producing security elements with micro-optical moiré magnification arrangements with trouble-free motif images, as well as a corresponding continuous material.

Diese Aufgabe wird durch das Verfahren zum Herstellen von Endlosmaterial für Sicherheitselemente mit den Merkmalen des Anspruchs 1 gelöst. Ein Endlosmaterial für Sicherheitselemente, ein Herstellungsverfahren für Sicherheitselemente und Verfahren zur Herstellung von Druck- oder Prägezylindern sind in den nebengeordneten Ansprüchen angegeben. Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.This object is achieved by the method for producing continuous material for security elements with the features of claim 1. An endless material for security elements, a manufacturing method for security elements and method for the production of printing or embossing cylinders are given in the independent claims. Further developments of the invention are the subject of the dependent claims.

Die Erfindung betrifft ein Verfahren zum Herstellen von Endlosmaterial für Sicherheitselemente mit mikrooptischen Moiré-Vergrößerungsanordnungen nach Anspruch 1.The invention relates to a method for producing continuous material for security elements with micro-optical moiré magnification arrangements according to claim 1.

Die erfindungsgemäße Verzerrung kann nur das Motivraster, nur das Fokussierelementraster oder beide Raster betreffen. Je nach den vorgegebenen Rastern können das Motivraster und das Fokussierelementraster auch unterschiedliche Verzerrungen erfordern, wie weiter unten genauer erläutert.The distortion according to the invention can relate only to the motif grid, only the focusing element grid or both screens. Depending on the given grids, the motif grid and the focusing element grid may also require different distortions, as explained in more detail below.

Bei diesem Verfahren wird in Schritt c) ein Rapport q entlang der endlosen Längsrichtung des Endlosmaterials vorgegeben. Insbesondere ist der Längsrichtungs-Rapport q durch den Umfang eines Präge- oder Druckzylinders für die Erzeugung des Motivrasters und/oder des Fokussierelementrasters gegeben.In this method, a repeat q is set in step c) along the endless longitudinal direction of the endless material. In particular, the longitudinal direction repeat q is given by the circumference of a stamping or printing cylinder for the generation of the motif grid and / or the focusing element grid.

In Schritt d) wird ein Gitterpunkt P des ersten und/oder des zweiten Gitters ausgewählt, der in der Nähe des Endpunkts Q des durch den Längsrichtungs-Rapport gegebenen Vektors 0 q

Figure imgb0001
liegt, und es wird eine lineare Transformation V ermittelt, die P auf Q abbildet. Als in der Nähe des Endpunkts Q liegender Gitterpunkt wird mit Vorteil ein Gitterpunkt P gewählt, dessen Abstand von Q entlang des Gittervektors oder der beiden Gittervektoren jeweils weniger als 10 Gitterperioden, bevorzugt weniger als 5, besonders bevorzugt weniger als 2 und insbesondere weniger als eine Gitterperiode beträgt. Insbesondere kann der dem Endpunkt Q nächstliegende Gitterpunkt als Gitterpunkt P gewählt werden.In step d), a grid point P of the first and / or the second grid is selected, which is close to the end point Q of the vector given by the longitudinal direction repeat 0 q
Figure imgb0001
and a linear transformation V is detected which maps P to Q. Advantageously, a grid point P whose distance from Q along the grid vector or the two grid vectors is less than 10 grid periods, preferably less than 5, more preferably less than 2 and in particular less than one grid period, is chosen as the grid point lying near the end point Q is. In particular, the grid point closest to the end point Q can be selected as the grid point P.

Die lineare Transformation V wird zweckmäßig unter Verwendung der Beziehung V = b x 0 b y q ˙ a x p x a y p y 1

Figure imgb0002
berechnet, wobei p x p y
Figure imgb0003
und 0 q
Figure imgb0004
die Koordinatenvektoren des Gitterpunkts P bzw. des Endpunkts Q und b = b x b y
Figure imgb0005
und a = a x a y
Figure imgb0006
beliebige Vektoren darstellen. Um gering verzerrte Gitter zu erhalten, unterscheiden sich die Vektoren a und b dabei mit Vorteil nach Betrag und Richtung nur wenig oder sind sogar gleich. Nach einem einfachen Spezialfall wird die lineare Transformation V unter Verwendung der Beziehung V = 1 0 0 q 1 p x 0 p y 1 = 1 p x / p y 0 q / p y
Figure imgb0007
berechnet.The linear transformation V will be useful using the relationship V = b x 0 b y q ˙ a x p x a y p y - 1
Figure imgb0002
calculated, where p x p y
Figure imgb0003
and 0 q
Figure imgb0004
the coordinate vectors of the grid point P and the end point Q and b = b x b y
Figure imgb0005
and a = a x a y
Figure imgb0006
represent any vectors. To obtain slightly distorted lattices, the vectors differ a and b with advantage for amount and direction only a little or are even the same. After a simple special case, the linear transformation V is calculated using the relationship V = 1 0 0 q 1 p x 0 p y - 1 = 1 - p x / p y 0 q / p y
Figure imgb0007
calculated.

Zusätzlich zur Vorgabe eines Längsrichtungs-Rapports kann in Schritt c) ein Rapport b entlang der Querrichtung des Endlosmaterials vorgegeben werden. Insbesondere kann vorgesehen sein, dass das Endlosmaterial in einem späteren Verfahrensschritt in parallele Längsstreifen geschnitten wird, wobei der Querrichtungs-Rapport b durch die Breite dieser Längsstreifen gegeben ist. Zweckmäßig wird dann in Schritt d)

  • ein Gitterpunkt P des ersten und/oder des zweiten Gitters ausgewählt, der in der Nähe des Endpunkts Q des durch den Längsrichtungs-Rapport gegebenen Vektors 0 q
    Figure imgb0008
    liegt,
  • ein Gitterpunkt A des ersten und/ oder des zweiten Gitters ausgewählt, der in der Nähe des Endpunkts B des durch den Querrichtungs-Rapport gegebenen Vektors b 0
    Figure imgb0009
    liegt, und
  • eine lineare Transformation V ermittelt, die P auf Q und A auf B abbildet.
In addition to specifying a longitudinal direction repeat, in step c) a repeat b along the transverse direction of the endless material can be specified. In particular, it can be provided that the continuous material is cut into parallel longitudinal strips in a later method step, wherein the transverse direction repeat b is given by the width of these longitudinal strips. Appropriately, in step d)
  • a grid point P of the first and / or the second grid selected near the end point Q of the vector given by the longitudinal direction repeat 0 q
    Figure imgb0008
    lies,
  • a grid point A of the first and / or the second grid selected near the end point B of the vector given by the cross-direction repeat b 0
    Figure imgb0009
    lies, and
  • determines a linear transformation V that maps P to Q and A to B.

Als die in der Nähe der Endpunkte Q und B liegende Gitterpunkte werden vorzugsweise solche Gitterpunkte P bzw. A gewählt, deren Abstände von Q bzw. B entlang des Gittervektors oder der beiden Gittervektoren jeweils weniger als 10 Gitterperioden, bevorzugt weniger als 5, besonders bevorzugt weniger als 2 und insbesondere weniger als eine Gitterperiode betragen. Insbesondere kann der dem Endpunkt Q nächstliegende Gitterpunkt als Gitterpunkt P und der dem Endpunkt B nächstliegende Gitterpunkt als Gitterpunkt A gewählt werden.Preferably, the grid points located near the end points Q and B are those grid points P and A whose distances of Q or B along the grid vector or the two grid vectors are each less than 10 grid periods, preferably less than 5, particularly preferably less than 2 and in particular less than one grating period. In particular, the grid point closest to the end point Q can be selected as grid point P and the grid point closest to the end point B can be selected as grid point A.

Die lineare Transformation V wird vorteilhaft unter Verwendung der Beziehung V = b 0 0 q a x p x a y p y 1

Figure imgb0010
berechnet, wobei p x p y
Figure imgb0011
und 0 q
Figure imgb0012
die Koordinatenvektoren des Gitterpunkts P bzw. des Endpunkts Q darstellen, und a x a y
Figure imgb0013
und b 0
Figure imgb0014
die Koordinatenvektoren des Gitterpunkts A bzw. des Endpunkts B darstellen.The linear transformation V becomes advantageous using the relationship V = b 0 0 q a x p x a y p y - 1
Figure imgb0010
calculated, where p x p y
Figure imgb0011
and 0 q
Figure imgb0012
represent the coordinate vectors of the grid point P and the end point Q, and a x a y
Figure imgb0013
and b 0
Figure imgb0014
represent the coordinate vectors of the grid point A and the end point B, respectively.

Zusätzlich zu dem Längsrichtungs-Rapport kann der Querrichtungs-Rapport b vorgegeben werden.In addition to the longitudinal direction repeat, the cross direction repeat b can be specified.

In einer bevorzugten Weiterbildung des Herstellungsverfahrens ist vorgesehen, dass

  • ein gewünschtes, bei Betrachtung zu sehendes Bild mit einem oder mehreren Moire-Bildelementen festgelegt wird, wobei die Anordnung von vergrößerten Moire-Bildelementen in Form eines zweidimensionalen Bravais-Gitters, dessen Gitterzellen durch Vektoren t 1 und t 2 gegeben sind, gewählt werden,
  • das Fokussierelementeraster in Schritt b) als eine Anordnung von Mikrofokussierelementen in Form eines zweidimensionalen Bravais-Gitters, dessen Gitterzellen durch Vektoren w 1 und w 2 gegeben sind, bereitgestellt wird, und
  • in Schritt a) das Motivraster mit den Mikromotivelementen unter Verwendung der Beziehungen
U = W T + W 1 T
Figure imgb0015
r = W T + W 1 R + r 0
Figure imgb0016
berechnet wird, wobei R = X Y
Figure imgb0017
einen Bildpunkt des gewünschten Bilds, r = x y
Figure imgb0018
einen Bildpunkt des Motivrasters, r 0 = x 0 y 0
Figure imgb0019
eine Verschiebung zwischen der Anordnung von Mikrofokussierelementen und der Anordnung von Mikromotivelementen darstellt, und die Matrizen T, W und U durch T = t 11 t 12 t 21 t 22 , W = w 11 w 12 w 21 w 22
Figure imgb0020
bzw. U = u 11 u 12 u 21 u 22
Figure imgb0021
gegeben sind, wobei t1i, t2i, u1i, u2i bzw. w1i, w2i die Komponenten der Gitterzellenvektoren t i, u i und w i , mit i =1, 2 darstellen.In a preferred embodiment of the manufacturing method is provided that
  • a desired image to be viewed with one or more Moire pixels is determined, the arrangement of enlarged moire pixels in the form of a two-dimensional Bravais lattice, the lattice cells thereof by vectors t 1 and t 2 are given to be chosen
  • the focussing element raster in step b) as an array of microfocusing elements in the form of a two-dimensional Bravais lattice, whose lattice cells are represented by vectors w 1 and w 2 are provided, and
  • in step a) the motif grid with the micromotif elements using the relationships
U = W T + W - 1 T
Figure imgb0015
r = W T + W - 1 R + r 0
Figure imgb0016
is calculated, where R = X Y
Figure imgb0017
a pixel of the desired image, r = x y
Figure imgb0018
a pixel of the motif grid, r 0 = x 0 y 0
Figure imgb0019
represents a displacement between the array of microfocusing elements and the array of micromotif elements, and the matrices T . W and U by T = t 11 t 12 t 21 t 22 . W = w 11 w 12 w 21 w 22
Figure imgb0020
respectively. U = u 11 u 12 u 21 u 22
Figure imgb0021
where t 1i , t 2i , u 1i , u 2i and w 1i , w 2i are the components of the lattice cell vectors t i , u i and w i , with i = 1, 2 represent.

In einer anderen ebenfalls bevorzugten Weiterbildung des Herstellungsverfahrens ist vorgesehen, dass

  • ein gewünschtes, bei Betrachtung zu sehendes Bild mit einem oder mehreren Moire-Bildelementen festgelegt wird,
  • das Fokussierelementeraster in Schritt b) als eine Anordnung von Mikrofokussierelementen in Form eines zweidimensionalen Bravais-Gitters, dessen Gitterzellen durch Vektoren w 1 und w 2 gegeben sind, bereitgestellt wird,
  • eine gewünschte Bewegung des zu sehenden Bildes beim seitlichen Kippen und beim vor-rückwärtigen Kippen der Moiré-Vergrößerungsanordnung festgelegt wird, wobei die gewünschte Bewegung in Form der Matrixelemente einer Transformationsmatrix A vorgegeben wird, und
  • in Schritt a) das Motivraster mit den Mikromotivelementen unter Verwendung der Beziehungen U = I A 1 W
    Figure imgb0022
    und r = A 1 R + r 0
    Figure imgb0023
    berechnet wird, wobei R = X Y
    Figure imgb0024
    einen Bildpunkt des gewünschten Bilds, r = x y
    Figure imgb0025
    einen Bildpunkt des Motivbilds, r 0 = x 0 y 0
    Figure imgb0026
    eine Verschiebung zwischen der Anordnung von Mikrofokussierelementen und der Anordnung von Mikromotivelementen darstellt, und die Matrizen A, W und U durch A = a 11 a 12 a 21 a 22 ,
    Figure imgb0027
    W = w 11 w 12 w 21 w 22
    Figure imgb0028
    bzw. U = u 11 u 12 u 21 u 22
    Figure imgb0029
    gegeben sind, wobei u1i, u2i bzw. w1i, w2i die Komponenten der Gitterzellenvektoren u i und w i, mit i =1, 2 darstellen.
In another likewise preferred embodiment of the production method, it is provided that
  • determining a desired image to be viewed with one or more moire pixels,
  • the focussing element raster in step b) as an array of microfocusing elements in the form of a two-dimensional Bravais lattice, whose lattice cells are represented by vectors w 1 and w 2 are provided,
  • determining a desired movement of the image to be seen in the case of lateral tilting and tilting of the moiré magnification arrangement back and forth, the desired movement being in the form of the matrix elements of a transformation matrix A is given, and
  • in step a) the motif grid with the micromotif elements using the relationships U = I - A - 1 W
    Figure imgb0022
    and r = A - 1 R + r 0
    Figure imgb0023
    is calculated, where R = X Y
    Figure imgb0024
    a pixel of the desired image, r = x y
    Figure imgb0025
    a pixel of the motif image, r 0 = x 0 y 0
    Figure imgb0026
    represents a displacement between the array of microfocusing elements and the array of micromotif elements, and the matrices A . W and U by A = a 11 a 12 a 21 a 22 .
    Figure imgb0027
    W = w 11 w 12 w 21 w 22
    Figure imgb0028
    respectively. U = u 11 u 12 u 21 u 22
    Figure imgb0029
    where u 1i , u 2i and w 1i , w 2i are the components of the lattice cell vectors u i and w i , with i = 1, 2 represent.

In beiden genannten Varianten können die Vektoren u 1 und u 2, bzw. w 1 und w 2 ortsabhängig moduliert werden, wobei sich die lokalen Periodenparameter | u 1|, | u 2|, ( u 1 , u 2) bzw. | w 1|, | w 2|, ∠( w 1, w 2) im Verhältnis zur Periodizitätslänge nur langsam ändern.In both variants mentioned, the vectors u 1 and u 2 , or w 1 and w 2 are spatially dependent, with the local period parameters | u 1 |, | u 2 |, ( u 1 , u 2 ) or | w 1 |, | w 2 |, ∠ ( w 1 , w 2 ) change only slowly in relation to the periodicity length.

Das Motivraster und das Fokussierelementraster sind zweckmäßig an gegenüberliegenden Flächen einer optischen Abstandsschicht angeordnet. Die Abstandsschicht kann beispielsweise eine Kunststofffolie und/ oder eine Lackschicht umfassen.The motif grid and the focusing element grid are expediently arranged on opposite surfaces of an optical spacer layer. The spacer layer may comprise, for example, a plastic film and / or a lacquer layer.

In einer vorteilhaften Ausgestaltung des Verfahrens umfasst der Schritt e) das Versehen eines Druck- oder Prägezylinders mit dem verzerrten Fokussierelementeraster. Im Schritt e) kann eine flache Platte mit dem verzerrten Fokussierelementraster versehen werden, und die flache Platte oder eine flache Abformung der Platte kann auf einen Druck- oder Prägezylinder aufgezogen werden, so dass ein Zylinder mit Nähten mit einem Zylinderumfang q entsteht. Alternativ kann im Schritt e) ein beschichteter Zylinder mit Zylinderumfang q durch ein materialabtragendes Verfahren, insbesondere durch Laserablation, mit dem verzerrten Fokussierelementraster versehen werden.In an advantageous embodiment of the method, step e) comprises providing a printing or embossing cylinder with the distorted focusing element grid. In step e), a flat plate may be provided with the distorted focusing element grid, and the flat plate or a flat impression of the plate may be mounted on a printing or embossing cylinder to form a cylinder with sutures having a cylinder circumference q. Alternatively, in step e), a coated cylinder with cylinder circumference q can be provided with the distorted focusing element grid by a material-removing method, in particular by laser ablation.

Der Verfahrensschritt e) kann das Einprägen des verzerrten Fokussierelementrasters in eine prägbare Lackschicht umfassen, insbesondere in einen thermoplastischen Lack oder UV-Lack, der auf der Vorderseite einer optischen Abstandsschicht angeordnet ist.Method step e) may comprise impressing the distorted focusing element grid in an embossable lacquer layer, in particular in a thermoplastic lacquer or UV lacquer, which is arranged on the front side of an optical spacer layer.

In einer weiteren vorteilhaften Ausgestaltung des Verfahrens umfasst der Schritt e) das Versehen eines Druck- oder Prägezylinders mit dem verzerrten Motivraster. Im Schritt e) kann eine flache Platte mit dem verzerrten Motivraster versehen werden, und die flache Platte oder eine flache Abformung der Platte kann auf einen Druck- oder Prägezylinder aufgezogen werden, so dass ein Zylinder mit Nähten mit einem Zylinderumfang q entsteht. Alternativ kann im Schritt e) ein beschichteter Zylinder mit Zylinderumfang q durch ein materialabtragendes Verfahren, insbesondere durch Laserablation, mit dem verzerrten Motivraster versehen werden.In a further advantageous embodiment of the method, the step e) comprises providing a printing or embossing cylinder with the distorted motif grid. In step e), a flat plate may be provided with the distorted motif grid, and the flat plate or a flat impression of the plate may be mounted on a printing or embossing cylinder so that a cylinder with seams with a cylinder circumference q is formed. Alternatively, in step e), a coated cylinder with cylinder circumference q can be provided with the distorted motif grid by a material-removing method, in particular by laser ablation.

Der Verfahrensschritt e) kann auch das Einprägen des verzerrten Motivrasters in eine prägbare Lackschicht umfassen, insbesondere in einen thermoplastischen Lack oder UV-Lack, der auf der Rückseite einer optischen Abstandsschicht angeordnet ist. Bei einer anderen Verfahrensvariante umfasst der Schritt e) das Aufdrucken des verzerrten Motivrasters auf eine Trägerschicht, insbesondere auf die Rückseite einer optischen Abstandsschicht.Method step e) may also include impressing the distorted motif grid in an embossable lacquer layer, in particular in a thermoplastic lacquer or UV lacquer, which is arranged on the back of an optical spacer layer. In another variant of the method, step e) comprises printing the distorted motif grid on a carrier layer, in particular on the back side of an optical spacer layer.

Die Erfindung betrifft weiter ein Endlosmaterial für Sicherheitselemente für Sicherheitspapiere, Wertdokumente und dergleichen nach Anspruch 12.The invention further relates to a continuous material for security elements for security papers, documents of value and the like according to claim 12.

Das Motivraster und das Fokussierelementraster des Endlosmaterials sind mit einem Rapport q entlang der endlosen Längsrichtung des Endlosmaterials und mit einem Rapport b entlang der Querrichtung des Endlosmaterials angeordnet.The motif grid and the focusing element grid of the continuous material are arranged with a repeat q along the endless longitudinal direction of the endless material and with a repeat b along the transverse direction of the endless material.

Die Erfindung umfasst weiter ein Verfahren zum Herstellen eines Sicherheitselements für Sicherheitspapiere, Wertdokumente und dergleichen, bei dem ein Endlosmaterial der beschriebenen Art hergestellt und in der gewünschten Form des Sicherheitselements geschnitten wird. Insbesondere wird das Endlosmaterial dabei in Längsstreifen gleicher Breite und mit identischer Anordnung der mikrooptischen Moire-Vergrößerungsanordnungen geschnitten. Ein Sicherheitselement für Sicherheitspapiere, Wertdokumente und dergleichen, kann aus einem Endlosmaterial der beschriebenen Art hergestellt werden, insbesondere mit dem eben genannten Verfahren.The invention further comprises a method for producing a security element for security papers, value documents and the like, in which an endless material of the described type is produced and cut in the desired form of the security element. In particular, the endless material is thereby cut into longitudinal strips of the same width and with an identical arrangement of the micro-optical moire magnification arrangements. A security element for security papers, value documents and the like can be made from a continuous material of the type described are produced, in particular with the method just mentioned.

In einem weiteren Aspekt umfasst die Erfindung ein Verfahren zur Herstellung eines Druck- oder Prägezylinders nach Anspruch 14 für die Erzeugung des Fokussierelementrasters in einem Herstellungsverfahren für Endlosmaterial der beschriebenen Art.In a further aspect, the invention comprises a method for producing a printing or embossing cylinder according to claim 14 for the production of the focusing element grid in a production method for continuous material of the type described.

Eine flache Platte kann dabei mit dem verzerrten Fokussierelementraster versehen, und die flache Platte oder eine flache Abformung der Platte wird auf einen Druck- oder Prägezylinder aufgezogen, so dass ein Zylinder mit Nähten mit einem Zylinderumfang q entsteht. Gemäß einer Alternative wird ein beschichteter Zylinder mit Zylinderumfang q durch ein materialabtragendes Verfahren, insbesondere durch Laserablation, mit dem verzerrten Fokussierelementraster versehen. Bei dem ersten und zweiten Gitter handelt es sich um zweidimensionale Bravais-Gitter.A flat plate can be provided with the distorted focusing element grid, and the flat plate or a flat impression of the plate is mounted on a printing or embossing cylinder, so that a cylinder with seams with a cylinder circumference q is formed. According to an alternative, a coated cylinder with cylinder circumference q is provided with the distorted focusing element grid by a material-removing method, in particular by laser ablation. The first and second grids are two-dimensional Bravais grids.

In einem weiteren Aspekt umfasst die Erfindung ein Verfahren zur Herstellung eines Druck- oder Prägezylinders nach Anspruch 15 für die Erzeugung des Motivrasters in einem Herstellungsverfahren für Endlosmaterial der beschriebenen Art.In a further aspect, the invention comprises a method for producing a printing or embossing cylinder according to claim 15 for the production of the motif grid in a production method for continuous material of the type described.

Dabei kann eine flache Platte mit dem verzerrten Motivraster versehen werden, und die flache Platte oder eine flache Abformung der Platte wird auf einen Druck- oder Prägezylinder aufgezogen, so dass ein Zylinder mit Nähten mit einem Zylinderumfang q entsteht. Nach einer Alternative wird ein beschichteter Zylinder mit Zylinderumfang q durch ein materialabtragendes Verfahren, insbesondere durch Laserablation, mit dem verzerrten Motivraster versehen. Bei dem ersten und zweiten Gitter handelt es sich um zweidimensionale Bravais-Gitter.In this case, a flat plate with the distorted motif grid can be provided, and the flat plate or a flat impression of the plate is mounted on a printing or embossing cylinder, so that a cylinder with seams with a cylinder circumference q is formed. As an alternative, a coated cylinder with cylinder circumference q provided with the distorted motif grid by a material-removing process, in particular by laser ablation. The first and second grids are two-dimensional Bravais grids.

In allen Varianten können die Moiré-Vergrößerungsanordnungen als Fokussierelementraster, insbesondere Linsenraster, aber auch andersartige Raster, wie etwa Lochrastern oder Raster von Hohlspiegeln, aufweisen. In all diesen Fällen kann das erfindungsgemäße Verfahren mit Vorteil zum Einsatz kommen, wenn zylindrische Werkzeuge zum Prägen oder Drucken eingesetzt werden.In all variants, the moiré magnification arrangements as Fokussierelementraster, in particular lenticular, but also other types of grid, such as hole grids or grid of concave mirrors, have. In all these cases, the inventive method can be used with advantage when cylindrical tools are used for embossing or printing.

Weitere Ausführungsbeispiele sowie Vorteile der Erfindung werden nachfolgend anhand der Figuren erläutert. Zur besseren Anschaulichkeit wird in den Figuren auf eine maßstabs- und proportionsgetreue Darstellung verzichtet.Further embodiments and advantages of the invention are explained below with reference to the figures. For better clarity, a scale and proportioned representation is omitted in the figures.

Es zeigen:

Fig. 1
eine schematische Darstellung einer Banknote mit einem eingebetteten Sicherheitsfaden und einem aufgeklebten Transferelement,
Fig. 2
schematisch den Schichtaufbau eines Sicherheitsfadens im Querschnitt,
Fig. 3
in (a) und (b) eine Illustration der bei Herstellungsverfahren nach dem Stand der Technik auftretenden Bruchstellen im Erscheinungsbild von Sicherheitselementen mit Moire-Vergrößerungsanordnungen,
Fig. 4
ein Motivraster, dessen Mikromotivelemente durch auf den Gitterplätzen eines niedrigsymmetrischen Bravais-Gitters liegende Buchstaben "F" gebildet sind,
Fig. 5
schematisch die Verhältnisse bei der Betrachtung einer MoireVergrößerungsanordnung zur Definition der auftretenden Größen,
Fig. 6
ein Motivraster in Form eines zweidimensionalen BravaisGitters mit den Einheitszellen-Seitenvektoren u 1 und u 2 und dem eingezeichneten Umfang q des für die Erzeugung des Motivrasters vorgesehenen Druckzylinders,
Fig. 7
ein Motivraster wie in Fig. 6 mit dem eingezeichneten Umfang q und der Breite b der Streifen, in die das geprägte Endlosmaterial geschnitten werden soll,
Fig. 8
ein Motivraster in Form eines eindimensionalen Translationsgitters mit einem Translationsvektor u und dem vorgegebenen Längsrapport q, und
Fig. 9
ein Motivraster wie in Fig. 8 mit eingezeichnetem Längsrapport q und Querrapport b.
Show it:
Fig. 1
a schematic representation of a banknote with an embedded security thread and a glued transfer element,
Fig. 2
schematically the layer structure of a security thread in cross section,
Fig. 3
in (a) and (b) an illustration of the breakages in the appearance of security elements with moiré magnification arrangements occurring in prior art production methods,
Fig. 4
a motif grid whose micromotif elements are formed by letters "F" lying on the lattice sites of a low-symmetry Bravais lattice,
Fig. 5
schematically the conditions when considering a MoireVergrößerungsanordnung to define the occurring sizes,
Fig. 6
a motif grid in the form of a two-dimensional Bravais grid with the unit cell side vectors u 1 and u 2 and the marked circumference q of the printing cylinder provided for the generation of the motif grid,
Fig. 7
a motif grid like in Fig. 6 with the drawn circumference q and the width b of the strips into which the embossed continuous material is to be cut,
Fig. 8
a motif grid in the form of a one-dimensional translation grid with a translation vector u and the predetermined longitudinal repeat q, and
Fig. 9
a motif grid like in Fig. 8 with drawn longitudinal repeat q and transverse repeat b.

Das erfindungsgemäße Verfahren wird nun am Beispiel der Herstellung eines Sicherheitselements für eine Banknote erläutert. Fig. 1 zeigt dazu eine schematische Darstellung einer Banknote 10, die mit zwei Sicherheitselementen 12 und 16 versehen ist. Das erste Sicherheitselement stellt einen Sicherheitsfaden 12 dar, der an bestimmten Fensterbereichen 14 an der Oberfläche der Banknote 10 hervortritt, während er in den dazwischen liegenden Bereichen im Inneren der Banknote 10 eingebettet ist. Das zweite Sicherheitselement ist durch ein aufgeklebtes Transferelement 16 beliebiger Form gebildet. Das Sicherheitselement 16 kann auch in Form einer Abdeckfolie ausgebildet sein, die über einem Fensterbereich oder einer durchgehenden Öffnung der Banknote angeordnet ist.The method according to the invention will now be explained using the example of the production of a security element for a banknote. Fig. 1 shows a schematic representation of a banknote 10, which is provided with two security elements 12 and 16. The first security element represents a security thread 12 that emerges at certain window areas 14 on the surface of the banknote 10, while it is embedded in the intervening areas inside the banknote 10. The second security element is formed by a glued transfer element 16 of any shape. The security element 16 can also be designed in the form of a cover film, which is arranged over a window area or a through opening of the banknote.

Sowohl der Sicherheitsfaden 12 als auch das Transferelement 16 können eine Moiré-Vergrößerungsanordnung enthalten. Die Funktionsweise und das erfindungsgemäße Herstellungsverfahren für derartige Anordnungen werden im Folgenden anhand des Sicherheitsfadens 12 näher beschrieben.Both the security thread 12 and the transfer element 16 may include a moire magnification arrangement. The mode of operation and the production method according to the invention for such arrangements will be described in more detail below with reference to the security thread 12.

Fig. 2 zeigt schematisch den Schichtaufbau des Sicherheitsfadens 12 im Querschnitt, wobei nur die für die Erläuterung des Funktionsprinzips erforderlichen Teile des Schichtaufbaus dargestellt sind. Der Sicherheitsfaden 12 enthält einen Träger 20 in Form einer transparenten Kunststofffolie, im Ausführungsbeispiel einer etwa 20 µm dicke Polyethylenterephthalat (PET)-Folie. Die Oberseite der Trägerfolie 20 ist mit einer rasterförmigen Anordnung von Mikrolinsen 22 versehen, die auf der Oberfläche der Trägerfolie ein zweidimensionales Bravais-Gitter mit einer vorgewählten Symmetrie bilden. Das Bravais-Gitter weist eine hexagonale Gittersymmetrie oder die Symmetrie eines Parallelogramm-Gitters auf. Fig. 2 schematically shows the layer structure of the security thread 12 in cross section, wherein only the parts of the layer structure required for the explanation of the functional principle are shown. The security thread 12 includes a carrier 20 in the form of a transparent plastic film, in the embodiment an approximately 20 micron thick polyethylene terephthalate (PET) film. The upper side of the carrier film 20 is provided with a grid-like arrangement of microlenses 22 which form on the surface of the carrier film a two-dimensional Bravais grid with a preselected symmetry. The Bravais lattice has a hexagonal lattice symmetry or the symmetry of a parallelogram lattice.

Der Abstand benachbarter Mikrolinsen 22 ist vorzugsweise so gering wie möglich gewählt, um eine möglichst hohe Flächendeckung und damit eine kontrastreiche Darstellung zu gewährleisten. Die sphärisch oder asphärisch ausgestalteten Mikrolinsen 22 weisen vorzugsweise einen Durchmesser zwischen 5 µm und 50 µm und insbesondere einen Durchmesser zwischen lediglich 10 µm und 35 µm auf und sind daher mit bloßem Auge nicht zu erkennen. Es versteht sich, dass bei anderen Gestaltungen auch größere oder kleinere Abmessungen infrage kommen. Beispielsweise können die Mikrolinsen bei Moire-Magnifier-Strukturen für Dekorationszwecke einen Durchmesser zwischen 50 µm und 5 mm aufweisen, während bei Moire-Magnifier-Strukturen, die nur mit einer Lupe oder einem Mikroskop entschlüsselbar sein sollen, auch Abmessung unterhalb von 5 µm zum Einsatz kommen können.The spacing of adjacent microlenses 22 is preferably chosen as small as possible in order to ensure the highest possible area coverage and thus a high-contrast representation. The spherically or aspherically configured microlenses 22 preferably have a diameter between 5 μm and 50 μm and in particular a diameter between only 10 μm and 35 μm and are therefore not visible to the naked eye. It is understood that in other designs, larger or smaller dimensions come into question. For example, in the case of Moire Magnifier structures, the microlenses can have a diameter of between 50 μm and 5 mm for decorative purposes, while in the case of Moire Magnifier structures, which are to be decipherable only with a magnifying glass or a microscope, dimensions below 5 μm are also used can come.

Auf der Unterseite der Trägerfolie 20 ist eine Motivschicht 26 angeordnet, die eine ebenfalls rasterförmige Anordnung von identischen Mikromotivelementen 28 enthält. Auch die Anordnung der Mikromotivelemente 28 bildet ein zweidimensionales Bravais-Gitter mit einer vorgewählten Symmetrie, wobei zur Illustration wieder ein Parallelogramm-Gitter angenommen wird. Wie in Fig. 2 durch den Versatz der Mikromotivelemente 28 gegenüber den Mikrolinsen 22 angedeutet, unterscheidet sich das Bravais-Gitter der Mikromotivelemente 28 in seiner Symmetrie und/oder in der Größe seiner Gitterparameter erfindungsgemäß geringfügig von dem Bravais-Gitter der Mikrolinsen 22, um den gewünschten Moire-Vergrößerungseffekt zu erzeugen. Die Gitterperiode und der Durchmesser der Mikromotivelemente 28 liegen dabei in derselben Größenordnung wie die der Mikrolinsen 22, also vorzugsweise im Bereich von 5 µm bis 50 µm und insbesondere im Bereich von 10 µm bis 35 µm, so dass auch die Mikromotivelemente 28 selbst mit bloßem Auge nicht zu erkennen sind. Bei Gestaltungen mit den oben erwähnten größeren oder kleineren Mikrolinsen sind selbstverständlich auch die Mikromotivelemente entsprechend größer oder kleiner ausgebildet.On the underside of the carrier film 20, a motif layer 26 is arranged, which also contains a grid-like arrangement of identical micromotif elements 28. The arrangement of the micromotif elements 28 forms a two-dimensional Bravais lattice with a preselected symmetry, again assuming a parallelogram lattice for illustration. As in Fig. 2 indicated by the offset of the micromotif elements 28 relative to the microlenses 22, the Bravais lattice of the micromotif elements differs 28 in its symmetry and / or in the size of its lattice parameters according to the invention slightly from the Bravais lattice of the microlenses 22 to produce the desired moire magnification effect. The grating period and the diameter of the micromotif elements 28 are of the same order of magnitude as those of the microlenses 22, ie preferably in the range of 5 .mu.m to 50 .mu.m and in particular in the range of 10 .mu.m to 35 .mu.m, so that the micromotif elements 28 themselves are visible to the naked eye are not recognizable. In designs with the above-mentioned larger or smaller microlenses, of course, the micromotif elements are correspondingly larger or smaller.

Die optische Dicke der Trägerfolie 20 und die Brennweite der Mikrolinsen 22 sind so aufeinander abgestimmt, dass die Mikromotivelemente 28 sich etwa im Abstand der Linsenbrennweite befinden. Die Trägerfolie 20 bildet somit eine optische Abstandsschicht, die einen gewünschten konstanten Abstand der Mikrolinsen 22 und der Mikromotivelemente 28 gewährleistet.The optical thickness of the carrier film 20 and the focal length of the microlenses 22 are coordinated so that the micromotif elements 28 are located approximately at the distance of the lens focal length. The carrier foil 20 thus forms an optical spacer layer which ensures a desired constant spacing of the microlenses 22 and the micromotif elements 28.

Aufgrund der sich geringfügig unterscheidenden Gitterparameter sieht der Betrachter bei Betrachtung von oben durch die Mikrolinsen 22 hindurch jeweils einen etwas anderen Teilbereich der Mikromotivelemente 28, so dass die Vielzahl der Mikrolinsen 22 insgesamt ein vergrößertes Bild der Mikromotivelemente 28 erzeugt. Die sich ergebende Moiré-Vergrößerung hängt dabei von dem relativen Unterschied der Gitterparameter der verwendeten Bravais-Gitter ab. Unterscheiden sich beispielsweise die Gitterperioden zweier hexagonaler Gitter um 1%, so ergibt sich eine 100-fache Moiré-Vergrößerung.Due to the slightly different lattice parameters, the observer sees a slightly different subregion of the micromotif elements 28 when viewed from above through the microlenses 22, so that the multiplicity of microlenses 22 as a whole produces an enlarged image of the micromotif elements 28. The resulting moiré magnification depends on the relative difference of the lattice parameters of the Bravais gratings used. If, for example, the grating periods of two hexagonal gratings differ by 1%, the result is a 100-fold moire magnification.

Bei der Herstellung von Sicherheitselementen mit derartigen Moire-Vergrößerungsanordnungen wird in der Regel zunächst eine endlose Sicherheitselement-Folie als Rollenmaterial hergestellt, wobei bei bekannten Herstellungsverfahren stets Bruchstellen 30 im Erscheinungsbild 32 auftreten, wie in Fig. 3(a) illustriert. Diese Bruchstellen im Erscheinungsbild rühren daher, dass die Vorprodukte für die bei der Herstellung verwendeten Prägewerkzeuge im Allgemeinen als flache Platten hergestellt werden, die auf einen Druck- oder Prägezylinder 34 aufgezogen werden, wie schematisch in Fig. 3(b) gezeigt. An den Nahtstellen 36 stimmen die angrenzenden Motivraster 38, 38' und/ oder die zugehörigen Linsenraster in aller Regel nicht überein und führen nach dem Druck oder der Prägung zu Motivstörungen in Form von Lücken oder einem Versatz im Erscheinungsbild der fertigen Sicherheitselemente.In the production of security elements with such Moire magnification arrangements, an endless security element film is usually first produced as a roll material, with known production methods always breaking points 30 occur in appearance 32, as in Fig. 3 (a) illustrated. These breakages in appearance are due to the fact that the precursors for the stamping tools used in the manufacture are generally made as flat sheets which are mounted on a printing or embossing cylinder 34, as shown schematically in FIG Fig. 3 (b) shown. At the seams 36, the adjacent motif grids 38, 38 'and / or the associated lenticular grid generally do not coincide and, after printing or embossing, lead to motif disturbances in the form of gaps or an offset in the appearance of the finished security elements.

Selbst wenn man die für Moiré-Vergrößerungsanordnungen erforderlichen Designs ohne Umweg über flache Platten direkt in zylindrischer Form erzeugt, passen die komplizierten Muster des Linsenrasters und des Motivrasters in der Regel nicht bruchlos, also lückenlos und versatzfrei, auf einen vorgegebenen Zylindermantel.Even if the designs required for moiré magnification arrangements are generated directly in cylindrical form without going over flat plates, the complicated patterns of the lenticular grid and the motif grid usually do not fit seamlessly, ie completely and without offset, onto a given cylinder surface.

Für die Erläuterung der erfindungsgemäßen Vorgehensweise werden zunächst mit Bezug auf die Figuren 4 und 5 die benötigten Größen definiert und kurz beschrieben.For the explanation of the procedure according to the invention, first with reference to FIGS FIGS. 4 and 5 the required sizes are defined and briefly described.

Die Mikromotivelemente 28 und die Mikrolinsen 22 liegen erfindungsgemäß jeweils in Form eines Rasters vor, wobei im Rahmen dieser Beschreibung unter Raster eine zweidimensionale periodische oder zumindest lokal periodische Anordnung der Linsen bzw. der Motivelemente verstanden wird. Ein periodisches Raster kann hier stets durch ein zweidimensionales Bravais-Gitter mit konstanten Gitterparametern beschrieben werden. Bei einer lokal periodischen Anordnung können sich die Periodenparameter von Ort zu Ort ändern, allerdings nur langsam im Verhältnis zur Periodizitätslänge, so dass die Mikroraster lokal stets mit hinreichender Genauigkeit durch Bravais-Gitter mit konstanten Gitterparametern beschrieben werden können. Der einfacheren Darstellung halber wird daher nachfolgend stets von einer periodischen Anordnung der Mikroelemente ausgegangen.According to the invention, the micromotif elements 28 and the microlenses 22 are each in the form of a raster, wherein in the context of this description raster is understood to mean a two-dimensional periodic or at least locally periodic arrangement of the lenses or the motif elements. A periodic raster can always be described here by a two-dimensional Bravais lattice with constant lattice parameters. In the case of a locally periodic arrangement, the period parameters may change from place to place, but only slowly in relation to the periodicity length, so that the microasters can always be described locally with sufficient accuracy by means of Bravais gratings with constant grid parameters. For the sake of simplicity of illustration, a periodic arrangement of the microelements is therefore always assumed below.

Die Figuren 4 und 5 zeigen schematisch eine nicht maßstäblich dargestellte Moiré-Vergrößerungsanordnung 50 mit einer Motivebene 52, in der ein in Fig. 4 genauer dargestelltes Motivraster 40 angeordnet ist und mit einer Linsenebene 54, in der sich das Mikrolinsenraster befindet. Die Moire-Vergrößerungsanordnung 50 erzeugt eine Moiré-Bildebene 56, in der das vom Betrachter 58 wahrgenommene vergrößerte Bild beschrieben wird.The FIGS. 4 and 5 schematically show a non-scale illustrated moire magnification arrangement 50 with a motif plane 52 in which a in Fig. 4 more precisely arranged motif grid 40 is arranged and with a lens plane 54 in which the microlens grid is located. The moiré magnification arrangement 50 produces a moiré image plane 56 in which the magnified image perceived by the viewer 58 is described.

Das Motivraster 40 enthält eine Vielzahl von Mikromotivelementen 42 in Form des Buchstabens "F", die an den Gitterplätzen eines niedrigsymmetrischen Bravais-Gitters 44 angeordnet sind. Die Einheitszelle des in Fig. 4 gezeigten Parallelogramm-Gitters kann durch Vektoren u 1 und u 2 (mit den Komponenten u 11, u 21 bzw. u 12, u 22) dargestellt werden. In kompakter Schreibweise kann die Einheitszelle auch in Matrixform durch eine Motivrastermatrix u angegeben werden: U = u 1 , u 2 = u 11 u 12 u 21 u 22

Figure imgb0030
The motif grid 40 includes a plurality of micromotif elements 42 in the form of the letter "F" arranged at the lattice sites of a low-symmetry Bravais lattice 44. The unit cell of in Fig. 4 shown parallelogram grating can by vectors u 1 and u 2 (with the components u 11 , u 21 and u 12 , u 22 ) are shown. In compact notation, the unit cell can also be represented in matrix form by a motif grid matrix u be specified: U = u 1 . u 2 = u 11 u 12 u 21 u 22
Figure imgb0030

In gleicher Weise wird die Anordnung von Mikrolinsen in der Linsenebene 54 durch ein zweidimensionales Bravais-Gitter beschrieben, dessen Gitterzelle durch die Vektoren w 1 und w 2 (mit den Komponenten w 11, w 21 bzw. w 12, w 22) angegeben wird. Mit den Vektoren t 1und t 2 (mit den Komponenten t 11, t 21 bzw. t 12 , t 22) wird die Gitterzelle in der Moiré-Bildebene 56 beschrieben.In the same way, the arrangement of microlenses in the lens plane 54 is described by a two-dimensional Bravais lattice whose lattice cell is represented by the vectors w 1 and w 2 (with the components w 11 , w 21 and w 12 , w 22 ) is given. With the vectors t 1 and t 2 (with the components t 11 , t 21 and t 12 , t 22 ), the grid cell in the moire image plane 56 is described.

Mit r = x y

Figure imgb0031
ist ein allgemeiner Punkt der Motivebene 52 bezeichnet, mit R = X Y
Figure imgb0032
ein allgemeiner Punkt der Moire-Bildebene 56. Diese Größen genügen bereits, um eine senkrechte Betrachtung (Betrachtungsrichtung 60) der Moire-Vergrößerungsanordnung zu beschreiben. Um auch nicht-senkrechte Betrachtungsrichtungen wie etwa die Richtung 62 berücksichtigen zu können, wird zusätzlich eine Verschiebung zwischen Linsenebene 54 und Motivebene 52 zugelassen, die durch einen Verschiebungsvektor r 0 = x 0 y 0
Figure imgb0033
in der Motivebene 52 angegeben wird. Analog zur Motivrastermatrix werden zur kompakten Beschreibung des Linsenrasters und des Bildrasters die Matrizen W = w 11 w 12 w 21 w 22
Figure imgb0034
und T = t 11 t 12 t 21 t 22
Figure imgb0035
verwendet.With r = x y
Figure imgb0031
is a general point of the motif level 52, with R = X Y
Figure imgb0032
a general point of moire image plane 56. These quantities are already sufficient to describe a perpendicular viewing (viewing direction 60) of the moiré magnification arrangement. In order to be able to take into account non-perpendicular viewing directions, such as the direction 62, a shift between the lens plane 54 and the motive plane 52 is additionally permitted by a displacement vector r 0 = x 0 y 0
Figure imgb0033
is indicated in the motif level 52. Analogous to the motif grid matrix, the matrices are used to compactly describe the lens raster and the image raster W = w 11 w 12 w 21 w 22
Figure imgb0034
and T = t 11 t 12 t 21 t 22
Figure imgb0035
used.

Das Moire-Bild-Gitter ergibt sich aus den Gittervektoren der Mikromotivelement-Anordnung und der Mikrolinsen-Anordnung zu T = W W U 1 U

Figure imgb0036
und die Bildpunkte der Moiré-Bildebene 56 können mithilfe der Beziehung R = W W U 1 r r 0
Figure imgb0037
aus den Bildpunkten der Motivebene 52 bestimmt werden. Umgekehrt ergeben sich die Gittervektoren der Mikromotivelement-Anordnung aus dem Linsenraster und dem gewünschten Moiré-Bild-Gitter durch U = W T + W 1 T
Figure imgb0038
und r = W T + W 1 R + r 0 .
Figure imgb0039
The moiré image grating results from the grating vectors of the micromotif element array and the microlens array T = W W - U - 1 U
Figure imgb0036
and the pixels of the moiré image plane 56 can be determined using the relationship R = W W - U - 1 r - r 0
Figure imgb0037
be determined from the pixels of the motif level 52. Conversely, the grating vectors of the micromotif element array result from the lenticular grid and the desired moiré image grating U = W T + W - 1 T
Figure imgb0038
and r = W T + W - 1 R + r 0 ,
Figure imgb0039

Definiert man die Transformationsmatrix A = W W U 1 ,

Figure imgb0040
die die Koordinaten der Punkte der Motivebene 52 und der Punkte der Moire-Bildebene 56 ineinander überführt, R = A r r 0 , bzw . r = A 1 R + r 0 ,
Figure imgb0041
so können aus jeweils zwei der vier Matrizen U, W, T, A die beiden anderen berechnet werden. Insbesondere gilt: T = A U = W W U 1 U = A I W
Figure imgb0042
U = W T + W 1 T = A 1 T = I A 1 W
Figure imgb0043
W = U T U 1 T = A I 1 T = A I 1 A U
Figure imgb0044
A = W W U 1 = T + W W 1 = T U ) 1
Figure imgb0045
Define the transformation matrix A = W W - U - 1 .
Figure imgb0040
which converts the coordinates of the points of the motif plane 52 and the points of the moire image plane 56 into each other, R = A r - r 0 . respectively , r = A - 1 R + r 0 .
Figure imgb0041
so can each have two of the four matrices U . W . T . A the other two are calculated. In particular: T = A U = W W - U - 1 U = A - I W
Figure imgb0042
U = W T + W - 1 T = A - 1 T = I - A - 1 W
Figure imgb0043
W = U T - U - 1 T = A - I - 1 T = A - I - 1 A U
Figure imgb0044
A = W W - U - 1 = T + W W - 1 = T U ) - 1
Figure imgb0045

Die Transformationsmatrix A beschreibt auch die Bewegung eines Moire-Bildes bei der Bewegung der moirébildenden Anordnung 50, die von der Verschiebung der Motivebene 52 gegen die Linsenebene 54 herrührt. Die Spalten der Transformationsmatrix A lassen sich als Vektoren interpretieren, wobei A = a 11 a 12 a 21 a 22 , a 1 = a 11 a 21 , a 2 = a 12 a 22 .

Figure imgb0046
The transformation matrix A also describes the movement of a moire image as the moire-forming assembly 50 moves, resulting from the movement of the motif plane 52 against the lens plane 54. The columns of the transformation matrix A can be interpreted as vectors, where A = a 11 a 12 a 21 a 22 . a 1 = a 11 a 21 . a 2 = a 12 a 22 ,
Figure imgb0046

Man sieht nun, dass der Vektor a 1 angibt, in welcher Richtung sich das Moirébild bewegt, wenn man die Anordnung aus Motiv- und Linsenraster seitlich kippt, und dass der Vektor a 2 angibt, in welcher Richtung sich das Moirebild bewegt, wenn man die Anordnung aus Motiv- und Linsenraster vorrückwärts kippt.You can see now that the vector a 1 indicates in which direction the moiré image moves when tilting the arrangement of motif and lenticular raster laterally, and that the vector a 2 indicates in which direction the Moirebild moves, if one tilts the arrangement of subject and lenticular grid forward.

Die Bewegungsrichtung ergibt sich bei vorgegebenem A wie folgt: Bei seitlicher Kippung der Motivebene bewegt sich das Moire unter einem Winkel γ1 zur Waagrechten, gegeben durch tan γ 1 = a 21 a 11 .

Figure imgb0047
The direction of movement results at a given A as follows: With lateral tilting of the motif plane, the moire moves at an angle γ 1 to the horizontal, given by tan γ 1 = a 21 a 11 ,
Figure imgb0047

Analog bewegt sich das Moire bei vor-rückwärtiger Kippung unter einem Winkel γ2 zur Waagrechten, gegeben durch tan γ 2 = a 22 a 12 .

Figure imgb0048
Analogously, the moire moves in front-rearward tilting at an angle γ 2 to the horizontal, given by tan γ 2 = a 22 a 12 ,
Figure imgb0048

Erfindungsgemäß werden die insbesondere durch (M1) bis (M4) gegebenen Abbildungen nun um weitere lineare Transformationen ergänzt, die eine Verzerrung der Bravais-Gitter des Motivrasters bzw. des Linsenrasters beschreiben, und die so gewählt werden, dass sich das Motivraster und/ oder das Linsenraster in einem vorgegebenen Rapport periodisch wiederholt. Das erfindungsgemäße Vorgehen wird nun anhand einiger konkreter Beispiele näher erläutert.According to the invention, the images given in particular by (M1) to (M4) are now supplemented by further linear transformations which describe a distortion of the Bravais grid of the motif grid or of the lens grid, and which are selected so that the motif grid and / or the Lenticular grid periodically repeated in a predetermined repeat. The procedure according to the invention will now be explained in more detail with reference to a few concrete examples.

Beispiel 1:Example 1:

Mit Bezug auf Fig. 6 ist ein Motivbild 70 mit einem Motivraster in Form eines zweidimensionalen Bravais-Gitters mit den Einheitszellen-Seitenvektoren u 1 und u 2 vorgegeben sowie der Umfang q des für die Erzeugung des Motivrasters vorgesehenen Druck- oder Prägezylinders. Um das vorgegebene Motivbild nun einerseits bruchlos auf dem Zylinder unterzubringen, das vorgegebene Motivraster dabei aber möglichst wenig zu verändern, wird erfindungsgemäß wie folgt vorgegangen:Regarding Fig. 6 is a motif image 70 with a motif grid in the form of a two-dimensional Bravais grid with the unit cell side vectors u 1 and u 2 and the circumference q of the intended for the generation of the motif grid printing or embossing cylinder. In order to accommodate the given motif image, on the one hand, without breakage on the cylinder, but to change the given motif raster as little as possible, the procedure according to the invention is as follows:

Alle Gitterpunkte des vorgegebenen Motivrasters sind durch m u 1 + n u 2

Figure imgb0049
mit ganzen Zahlen m und n erfasst. Das Motivbild 70 kann unterbrechungsfrei genau dann auf einem Zylinder mit dem Umfang q angebracht werden, wenn es ganze Zahlen M und N gibt, für die gilt: M u 1 + N u 2 = 0 q
Figure imgb0050
wobei die Umfangsrichtung im Folgenden ohne Beschränkung der Allgemeinheit als γ-Richtung in einem kartesischen Koordinatensystem gewählt wird. Der Endpunkt Q dieses durch den Umfang des Zylinders definierten Vektors 0 q
Figure imgb0051
ist in Fig. 6 ebenfalls eingezeichnet. Ein nach Gesichtspunkten wie Motivgröße, Vergrößerung, Bewegung berechnetes Motivgitter oder auch ein entsprechend berechnetes Linsenraster genügen in der Regel der Bedingung (1) nicht.All grid points of the given motif grid are through m u 1 + n u 2
Figure imgb0049
recorded with integers m and n. The motif image 70 can be applied without interruption to a cylinder with the circumference q if and only if there are integers M and N for which: M u ~ 1 + N u ~ 2 = 0 q
Figure imgb0050
wherein the circumferential direction is chosen in the following without restriction of the generality as γ-direction in a Cartesian coordinate system. The end point Q of this vector defined by the circumference of the cylinder 0 q
Figure imgb0051
is in Fig. 6 also marked. A motif grid calculated according to aspects such as motif size, magnification, movement or a correspondingly calculated lenticular grid usually do not satisfy condition (1).

Erfindungsgemäß wird das Bravais-Gitter des Motivrasters 70 daher durch eine lineare Transformation geringfügig so verzerrt, dass die Bedingung (1) für das verzerrte Bravais-Gitters erfüllt ist. Das verzerrte Gitter wiederholt sich dann periodisch mit einem Längsrichtungs-Rapport q und passt daher ohne Lücken und ohne Versatz auf einen zugehörigen Druck- oder Prägezylinder mit Umfang q.Therefore, according to the invention, the Bravais lattice of the motif grid 70 is slightly distorted by a linear transformation so that the condition (1) for the distorted Bravais lattice is satisfied. The distorted grid then repeats periodically with a longitudinal direction repeat q and therefore fits without gaps and without offset on an associated printing or embossing cylinder with circumference q.

Zur Bestimmung einer geeigneten Transformation wird ein Gitterpunkt P = p x p y

Figure imgb0052
des unverzerrten Bravais-Gitters ausgewählt, der in der Nähe des Endpunkts Q liegt. Für eine möglichst geringe Verzerrung kann dazu, wie etwa in Fig. 6, der dem Endpunkt Q nächstliegende Gitterpunkt P ausgewählt werden. Die konkrete Auswahl des Gitterpunkts P kann beispielsweise dadurch erfolgen, dass per Computer die Koordinaten aller Gitterpunkte in einer Fläche ermittelt werden, die etwas größer ist als eine Abrollung des Zylinders (mindestens einige Gitterzellen größer im Umfang und in der Breite) und dass aus diesen Gitterpunkten dann derjenige mit dem kleinsten Abstand zu Q bestimmt wird.To determine a suitable transformation, a grid point P = p x p y
Figure imgb0052
of the undistorted Bravais lattice located near the endpoint Q. For as little distortion as possible, such as in Fig. 6 , the grid point P closest to the end point Q is selected. The concrete selection of the grid point P can be effected, for example, by the coordinates of all grid points in the computer be determined a surface which is slightly larger than a roll of the cylinder (at least some grid cells larger in size and in width) and that from these grid points then the one with the smallest distance to Q is determined.

Wie leicht zu sehen, bildet die lineare Transformation V = 1 0 0 q 1 p x 0 p y 1 = 1 p x / p y 0 q / p y

Figure imgb0053
den Gitterpunkt P auf den Endpunkt Q ab, und bewirkt daher die gewünschte Verzerrung. Als neues, geringfügig verzerrtes Bravais-Gitter für das Motivbild wird das durch U = V U
Figure imgb0054
gegebene Motivraster-Gitter verwendet. Entsprechend können die neuen Koordinaten r = x y
Figure imgb0055
eines allgemeinen Punktes r = x y
Figure imgb0056
der Motivebene 52 mittels x ' y ' = V x y = x y p x / p y y q / p y
Figure imgb0057
berechnet werden.
Auf diese Weise erhält man ein Motivbild mit einem Motivraster in Form eines Bravais-Gitters mit Einheitszellen-Seitenvektoren u '1 und u '2 und Bildpunkten r ', gegeben durch die Beziehungen (2a), (3) und (4), das lückenlos und ohne Versatz auf den vorgegebenen Druck- oder Prägezylinder passt.How easy to see forms the linear transformation V = 1 0 0 q 1 p x 0 p y - 1 = 1 - p x / p y 0 q / p y
Figure imgb0053
the grid point P on the end point Q, and therefore causes the desired distortion. As a new, slightly distorted Bravais grid for the motif image is through U ' = V U
Figure imgb0054
given motif grid grid used. Accordingly, the new coordinates r ' = x ' y '
Figure imgb0055
a general point r = x y
Figure imgb0056
the motif level 52 means x ' y ' = V x y = x - y p x / p y y q / p y
Figure imgb0057
be calculated.
In this way one obtains a motif image with a motif grid in the form of a Bravais lattice with unit cell side vectors u ' 1 and u ' 2 and pixels r 'given by the relationships (2a), (3) and (4), which fits seamlessly and without offset on the given printing or embossing cylinder.

Die Auswirkung der durchgeführten Gitterverzerrung kann anhand der typischen Abmessung der Prägezylinder und der Gitterzellen abgeschätzt werden. Üblicherweise liegen die Gitterzellenabmessungen in der Größenordnung von 20 µm, der Umfang eines geeigneten Prägezylinders bei etwa 20 cm oder mehr. Bei einer Verzerrung in der Größenordnung einer Gitterzellenabmessung ergibt sich somit bezogen auf den Zylinderumfang eine relative Änderung des Gitters von nur 1 : 10000. Somit ändern sich die Eigenschaften des erzeugten Moirébildes, wie Vergrößerung und Bewegungswinkel, nur im Promillebereich und sind daher für einen Betrachter nicht erkennbar. Auch die oben erwähnten größeren Abstände zwischen Gitterpunkt P und Endpunkt Q liefern bei relativen Änderungen des Gitters im Bereich von bis zu einigen Prozent immer noch sehr gute bis akzeptable Ergebnisse.The effect of lattice distortion can be estimated from the typical dimensions of the embossing cylinders and grid cells. Usually, the grid cell dimensions are on the order of 20 microns, the circumference of a suitable embossing cylinder at about 20 cm or more. For a distortion on the order of a grid cell dimension Thus, based on the cylinder circumference, a relative change of the grating of only 1: 10000 results. Thus, the properties of the generated moiré image, such as magnification and movement angle, change only in the per thousand range and are therefore not recognizable to a viewer. Also, the above-mentioned larger distances between grid point P and end point Q still provide very good to acceptable results with relative changes in the grid in the range of up to several percent.

Beispiel 2:Example 2:

Wie Beispiel 1 geht Beispiel 2 von einem vorgegebenen Motivbild aus einem Motivraster in Form eines zweidimensionalen Bravais-Gitters mit den Einheitszellen-Seitenvektoren u 1, und u 2 aus sowie dem Umfang q des für die Erzeugung des Motivrasters vorgesehenen Druckzylinders.Like Example 1, Example 2 proceeds from a given motif image from a motif grid in the form of a two-dimensional Bravais grid with the unit cell side vectors u 1 , and u 2 and the circumference q of the intended for the generation of the motif grid printing cylinder.

Für die Gittertransformation wird allerdings anstelle der durch Gleichung (2a) definierten linearen Transformation die allgemeinere lineare Transformation V = b x 0 b y q a x p x a y p y 1

Figure imgb0058
mit beliebigen Vektoren b = b x b y
Figure imgb0059
und a = a x a y
Figure imgb0060
verwendet, die ebenfalls den Punkt P auf den Endpunkt Q abbildet.However, for the lattice transformation, instead of the linear transformation defined by equation (2a), the more general linear transformation becomes V = b x 0 b y q a x p x a y p y - 1
Figure imgb0058
with any vectors b = b x b y
Figure imgb0059
and a = a x a y
Figure imgb0060
which also maps the point P to the end point Q.

Das untransformierte Gitter und das transformierte Gitter unterscheiden sich dabei möglichst wenig, wenn die Vektoren b und a sich möglichst wenig unterscheiden oder sogar gleich sind.The untransformed grating and the transformed grating differ as little as possible when the vectors b and a differ as little as possible or even equal.

Zur Illustration werden einige Spezialfälle herausgegriffen:

  • 2.1 Wählt man b und a gleich groß und beide gleichgerichtet senkrecht zur Umfangsrichtung des Zylinders, also a = b = b 0 ,
    Figure imgb0061
    so vereinfacht sich die Transformation (2b) zur oben angegebene Transformation (2a).
  • 2.2 Wählt man b = a = u 1 ,
    Figure imgb0062
    so bleibt bei der Transformation der Gittervektor u 1 erhalten, lediglich der Gittervektor u 2 wird geringfügig so geändert, dass das verzerrte Gitter auf den Zylinder passt.
  • 2.3 Wählt man b = a = u 2 ,
    Figure imgb0063
    so bleibt bei der Transformation der Gittervektor u 2 erhalten und der Gittervektor u 1 wird geringfügig so geändert, dass das verzerrte Gitter auf den Zylinder passt.
For illustration, some special cases are picked out:
  • 2.1 Choosing one b and a the same size and both rectified perpendicular to the circumferential direction of the cylinder, ie a = b = b 0 .
    Figure imgb0061
    thus, the transformation (2b) simplifies the transformation (2a) given above.
  • 2.2 Choosing one b = a = u 1 .
    Figure imgb0062
    so the grid vector remains in the transformation u 1 , only the grid vector u 2 is slightly changed so that the distorted grid fits the cylinder.
  • 2.3 Choosing one b = a = u 2 .
    Figure imgb0063
    so the grid vector remains in the transformation u 2 and the grid vector u 1 is slightly changed so that the distorted grid fits the cylinder.

Beispiel 3:Example 3:

Mit Bezug auf Fig. 7 ist bei Beispiel 3, wie bei Beispiel 1, ein Motivbild 80 mit einem Motivraster in Form eines zweidimensionalen Bravais-Gitters mit den Einheitszellen-Seitenvektoren u 1 und u 2 sowie der Umfang q des für die Erzeugung des Motivrasters vorgesehenen Druck- oder Prägezylinders vorgegeben. Darüber hinaus soll das geprägte Endlosmaterial in einem nachfolgenden Verfahrensschritt in Streifen der Breite b geschnitten werden, wobei das Moiré-Muster auf allen Streifen seitlich gleich liegen soll.Regarding Fig. 7 In Example 3, as in Example 1, a motif image 80 having a motif grid in the form of a two-dimensional Bravais lattice with the unit cell side vectors is shown u 1 and u 2 and the circumference q of the intended for the generation of the motif grid printing or embossing cylinder specified. In addition, the embossed endless material is to be cut in a subsequent process step in strips of width b, the moire pattern on all strips should be the same side.

Das verzerrte Bravais-Gitter des Motivbilds 80 soll sich bei diesem Beispiel also in γ-Richtung periodisch mit dem Längsrichtungs-Rapport q und in x-Richtung periodisch mit dem Querrichtungs-Rapport b wiederholen. Zur Bestimmung einer geeigneten Transformation wird erfindungsgemäß ein Gitterpunkt P = p x p y

Figure imgb0064
des unverzerrten Bravais-Gitters ausgewählt, der in der Nähe des Endpunkts Q liegt. Zusätzlich wird ein Gitterpunkt A = a x a y
Figure imgb0065
ausgewählt, der in der Nähe des Endpunkts B des durch den gewünschten Querrichtungs-Rapport gegebenen Vektors b 0
Figure imgb0066
liegt.The distorted Bravais grid of the motif image 80 in this example should therefore be repeated periodically in the γ direction with the longitudinal direction repeat q and periodically in the x direction with the transverse direction repeat b. To determine a suitable transformation, according to the invention a lattice point P = p x p y
Figure imgb0064
of the undistorted Bravais lattice located near the endpoint Q. In addition, a grid point A = a x a y
Figure imgb0065
selected near the endpoint B of the vector given by the desired cross-direction repeat b 0
Figure imgb0066
lies.

Als lineare Transformation wird dann die Transformation V = b 0 0 q a x p x a y p y 1

Figure imgb0067
verwendet, die, wie man unmittelbar sieht, einen Spezialfall der allgemeinen Transformation (2b) mit b = b 0
Figure imgb0068
darstellt. Diese Transformation V bildet den Gitterpunkt P auf den Endpunkt Q und den Gitterpunkt A auf den Endpunkt B ab. Da P und A jeweils in der Nähe der Endpunkte Q bzw. B gewählt wurden, ist die resultierende Verzerrung des Gitters klein.The transformation then becomes a linear transformation V = b 0 0 q a x p x a y p y - 1
Figure imgb0067
which, as one immediately sees, involves a special case of the general transformation (2b) b = b 0
Figure imgb0068
represents. This transformation V maps the grid point P to the end point Q and the grid point A to the end point B. Since P and A are respectively selected near the endpoints Q and B, the resulting distortion of the grating is small.

Das über die Beziehungen (2c) und (3) transformierte Motivgitter und das über die Beziehungen (2c) und (4) transformierte Motivbild wiederholen sich konstruktionsgemäß in x-Richtung mit Periode b und in γ-Richtung mit Periode q. Das Motivbild passt daher lückenlos und ohne Versatz auf den vorgegebenen Druck- oder Prägezylinder und kann nach der Herstellung in identische Streifen der Breite b geschnitten werden.The motive image transformed via the relationships (2c) and (3) and the motive image transformed via the relations (2c) and (4) are structurally repeated in the x-direction with period b and in the γ-direction with period q. The motif image therefore fits seamlessly and without offset on the given printing or embossing cylinder and can be cut after production in identical strips of width b.

Beispiel 4:Example 4:

Beispiel 4 beschreibt eine bevorzugte Vorgehensweise bei der Herstellung einer gesamten Moiré-Vergrößerungsanordnung:

  • Zunächst wird eine Gitteranordnung W = w 1 , w 2 = w 11 w 12 w 21 w 22
    Figure imgb0069
    für ein Linsenraster beliebig vorgegeben. Falls diese Gitteranordnung nicht zu dem für die Herstellung des Linsenrasters vorgesehenen Zylinderumfang passt, wird sie, wie bei Beispiel 1 oder 2 mit Bezug beschrieben, in eine passende Anordnung umgerechnet.
Example 4 describes a preferred approach in making an overall moiré magnification arrangement:
  • First, a grid arrangement W = w 1 . w 2 = w 11 w 12 w 21 w 22
    Figure imgb0069
    arbitrarily specified for a lenticular grid. If this grid arrangement does not match the cylinder circumference provided for the production of the lenticular grid, it is converted into a suitable arrangement as described in example 1 or 2 with reference to FIG.

Weiterhin wird für das Moirémuster ein Vergrößerungs- und Bewegungs-Verhalten vorgegeben, das sich, wie oben erläutert, durch eine Bewegungsmatrix A ausdrücken lässt. Aus dem Linsenraster-Gitter W und der Bewegungsmatrix A lässt sich mithilfe der Beziehung (M2) das Motivraster-Gitter U bestimmen: U = W A 1 W

Figure imgb0070
Furthermore, an enlargement and movement behavior is specified for the moire pattern, which, as explained above, is determined by a motion matrix A can express. From the lenticular grid W and the motion matrix A you can use the relationship (M2) to create the motif grid grid U determine: U = W - A - 1 W
Figure imgb0070

Das sich ergebende Moirémuster erscheint in der Bildebene mit einer Gitter-Anordnung T , die durch T = A U

Figure imgb0071
gegeben ist.The resulting moiré pattern appears in the image plane with a grid array T , by T = A U
Figure imgb0071
given is.

Ein Motivbild, das in einem gemäß Beziehung (5) berechnetem Motivraster-Gitter angeordnet ist, wird im Allgemeinen nicht unterbrechungsfrei auf einen unabhängig vorgegebenen Zylinderdurchmesser passen, so dass ein mit diesem Zylinder geprägtes Folienmaterial im Rhythmus des Zylinderumfangs Störungen im Motivbild und damit auch im Moiré-Bild zeigt.A motif image arranged in a motif grid grid calculated according to the relationship (5) will generally not fit without interruption to an independently given cylinder diameter, so that one with This cylinder-embossed film material in the rhythm of the cylinder circumference disturbances in the motif image and thus also in the moiré image shows.

Erfindungsgemäß wird das Motivraster-Gitter U daher, wie in Beispiel 1 oder 2 beschrieben, durch ein transformiertes Motivraster-Gitter U = V U

Figure imgb0072
ersetzt. Damit erhält man auch eine neue Bewegungsmatrix A', wobei das durch diese Bewegungsmatrix A ' beschriebene neue Vergrößerungs- und Bewegungs-Verhalten bei erfindungsgemäßem Vorgehen lediglich unwesentlich von dem durch die ursprüngliche Bewegungsmatrix A beschriebenen, gewünschten Vergrößerungs- und Bewegungs-Verhalten abweicht.According to the invention, the motif grid grid U therefore, as described in Example 1 or 2, by a transformed motif grid U ' = V U
Figure imgb0072
replaced. This also gives you a new motion matrix A ', by the motion matrix A 'described new magnification and movement behavior in accordance with inventive method only insignificantly from that by the original motion matrix A described, desired magnification and movement behavior deviates.

Konkret ist die neue Bewegungsmatrix A ', die das Vergrößerungs- und Bewegungs-Verhalten des transformierten Gitters beschreibt, gegeben durch A = V A V 1

Figure imgb0073
und das sich ergebende transformierte Moirémuster erscheint in der Bildebene mit einer Gitter-Anordnung T ', die durch T = A U = V T
Figure imgb0074
gegeben ist.Concrete is the new movement matrix A ', which describes the magnification and motion behavior of the transformed grid, given by A ' = V A V - 1
Figure imgb0073
and the resulting transformed moiré pattern appears in the image plane with a grid array T ', by T ' = A ' U ' = V T
Figure imgb0074
given is.

Beispiel 5:Example 5:

In Beispiel 5 wird ein Berechnungsbeispiel für moirébildende Gitter für die in den Beispielen 1 bis 4 erläuterten Vorgehensweisen angegeben. Der einfacheren Darstellung halber wird für die Raster jeweils eine hexagonale Gittersymmetrie angenommen.Example 5 gives a calculation example for moiré-forming gratings for the procedures explained in Examples 1 to 4. The simpler For the sake of illustration, a hexagonal lattice symmetry is assumed for each raster.

Als Linsenraster wird ein hexagonales Gitter mit 20 µm Seitenlänge vorgegeben. Das Motivraster soll dieselbe Seitenlänge haben, jedoch um einen Winkel von 0,573° gegenüber dem Linsenraster verdreht sein. Das Moiremuster soll in der Bildebene eine etwa 100-fache Vergrößerung und näherungsweise orthoparallaktische Bewegung aufweisen.The lenticular grid is a hexagonal lattice with 20 μm side length. The motif grid should have the same side length, but be rotated by an angle of 0.573 ° relative to the lenticular grid. The moire pattern should have an approximately 100-fold magnification and approximately orthoparallactic motion in the image plane.

Das Linsenraster-Gitter W ist so gewählt, dass es bereits auf einen Zylinder mit 200 mm Umfang passt: W = w 11 w 12 w 21 w 22 = 0,02 cos 30 ° cos 30 ° sin 30 ° sin 30 ° = 0,02 0,866025 0,866025 0,5 0,5

Figure imgb0075
The lenticular grid W is chosen so that it already fits on a cylinder with 200 mm circumference: W = w 11 w 12 w 21 w 22 = 0.02 cos 30 ° cos - 30 ° sin 30 ° sin - 30 ° = 0.02 0.866025 ... 0.866025 ... 0.5 - 0.5
Figure imgb0075

Für das um 0,573° verdrehte Motivraster-Gitter ergibt sich bei der gewünschten 100-fachen Vergrößerung und näherungsweise orthoparallaktischer Bewegung: U = 0,01741965 0,01721964 0,00982628 0,01017271

Figure imgb0076
For the motif grid grid rotated by 0.573 °, the desired magnification of 100 times and approximately orthoparallactic motion results: U = 0.01741965 0.01721964 0.00982628 - 0.01017271
Figure imgb0076

Dieses Motivraster-Gitter passt allerdings nicht unterbrechungsfrei auf einen Zylinder mit 200 mm Umfang und wird daher erfindungsgemäß durch ein transformiertes Motivraster-Gitter U = V U

Figure imgb0077
ersetzt, wobei V = 1 0 0 200 · 1 p x 0 p y 1
Figure imgb0078
mit (px ; py) = (0,00811617; 199,99992) gewählt wird, so dass sich U = 0,01741924 0,01722006 0,00982630 0,01017271
Figure imgb0079
ergibt.However, this motif grid grid does not fit without interruption on a cylinder with a 200 mm circumference and is therefore according to the invention by a transformed motif grid grid U ' = V U
Figure imgb0077
replaced, where V = 1 0 0 200 · 1 p x 0 p y - 1
Figure imgb0078
with (p x ; p y ) = (0.00811617; 199.99992) is chosen so that U ' = 0.01741924 0.01722006 0.00982630 - 0.01017271
Figure imgb0079
results.

Die ursprüngliche und die transformierte Bewegungsmatrix sind dabei durch A = 0.50000 99,99875 99,99875 0.50000 bzw . A = 0,49796 99,99874 100,40622 0,49796

Figure imgb0080
gegeben.The original and the transformed motion matrix are through A = 0.50000 99.99875 - 99.99875 0.50000 respectively , A ' = 0.49796 99.99874 - 100.40622 0.49796
Figure imgb0080
given.

Die Moire-Vergrößerung beträgt beim ursprünglichen Motivraster-Gitter konstruktionsgemäß 100,0-fach, die Vergrößerung mit dem transformierten Motivraster-Gitter beträgt waagrecht 100,4-fach und senkrecht 100,0-fach, hat sich also nur unbedeutend verändert. Mit dem transformierten Motivraster-Gitter ergibt sich auf einem Druck- oder Prägezylinder mit 200 mm Umfang ein störungsfreies Motivbild, während das ursprüngliche Motivraster-Gitter zu Motivstörungen der in Fig. 3(a) gezeigten Art führt.The moire magnification of the original motif grid is by design 100.0 times, the magnification with the transformed motif grid is horizontally 100.4-fold and vertically 100.0-fold, so has changed only insignificantly. The transformed motif grid grid results in a trouble-free motif image on a printing or embossing cylinder with a circumference of 200 mm, whereas the original motif grid lattice creates motif distortions in the motif Fig. 3 (a) shown type leads.

Beispiel 6:Example 6:

Beispiel 6 basiert auf Beispiel 5, zusätzlich soll das erzeugte Endlosmaterial in diesem Beispiel in identische Streifen mit einer Breite von 40 mm geschnitten werden.Example 6 is based on Example 5, in addition to the endless material produced in this example is cut into identical strips with a width of 40 mm.

Zunächst wird wie in Beispiel 5 aus dem Linsenraster-Gitter und dem gewünschten Vergrößerungs- und Bewegungs-Verhalten das unverzerrte Motivraster-Gitter berechnet: U = 0,01741965 0,01721964 0,00982628 0,01017271

Figure imgb0081
First, as in Example 5, the undistorted motif grid is calculated from the lenticular grid and the desired magnification and motion behaviors: U = 0.01741965 0.01721964 0.00982628 - 0.01017271
Figure imgb0081

Dieses Motivraster-Gitter passt allerdings weder unterbrechungsfrei auf einen Zylinder mit 200 mm Umfang, noch wiederholt es sich im Abstand von 40 mm periodisch. Es wird daher erfindungsgemäß durch ein transformiertes Motivraster-Gitter U = V U

Figure imgb0082
ersetzt, wobei V = 40 0 0 200 a x p x a y p y 1
Figure imgb0083
gewählt wird mit (px; py) = (0,00811617; 199,99992) und (ax ; ay) = (39,99495; -0,00994503), so dass sich U = 0,01742912 0,01722982 0,0098363 0,01015558
Figure imgb0084
ergibt.However, this motif grid does not fit nondisruptively on a cylinder with a circumference of 200 mm, nor does it repeat periodically at a distance of 40 mm. It is therefore according to the invention by a transformed motif grid grid U ' = V U
Figure imgb0082
replaced, where V = 40 0 0 200 a x p x a y p y - 1
Figure imgb0083
is chosen with (p x ; p y ) = (0.00811617; 199.99992) and (a x ; a y ) = (39.99495; -0.00994503), so that U ' = 0.01742912 0.01722982 0.0098363 - 0.01015558
Figure imgb0084
results.

Für die transformierte Bewegungsmatrix ergibt sich in diesem Fall: A = 0,485129 102,55493 100,39976 0,788365

Figure imgb0085
For the transformed motion matrix results in this case: A ' = 0.485129 102.55493 100.39976 - 0.788365
Figure imgb0085

Die Moire-Vergrößerung beträgt beim ursprünglichen Motivraster-Gitter konstruktionsgemäß 100,0-fach, die Vergrößerung mit dem transformierten Motivraster-Gitter beträgt waagrecht 100,4-fach und senkrecht 102,6-fach, hat sich also nur wenig verändert. Darüber hinaus ergibt sich mit dem transformierten Motivraster-Gitter auf einem Druck- oder Prägezylinder mit 200 mm Umfang ein störungsfreies Motivbild, das für die weitere Verarbeitung nebeneinander liegende, identische Streifen einer Breite von 40 mm aufweist.The moiré magnification of the original motif grid lattice is 100.0-fold by design, the magnification with the transformed motif grid is horizontally 100.4-fold and perpendicular 102.6-fold, so has changed only slightly. In addition, results with the transformed motif grid grid on a printing or embossing cylinder with 200 mm circumference a trouble-free motif image, which has adjacent strips of a width of 40 mm adjacent to each other for further processing.

Beispiel 7:Example 7:

Wie oben erläutert, lassen sich Moire-Magnifier nicht nur mit zweidimensionalen Gittern, sondern auch mit linearen Translationsstrukturen realisieren , beispielsweise mit Zylinderlinsen als Mikrofokussierelemente und mit in einer Richtung beliebig ausgedehnten Motiven als Mikromotivelemente. Auch bei solchen linearen Translationsstrukturen können die Moire-Magnifier-Daten mit Vorteil an einen vorgegebenen Rapport angepasst werden, wie nunmehr mit Bezug auf die Motivbilder 90 und 95 der Figuren 8 und 9 erläutert.As explained above, moiré magnifiers can be realized not only with two-dimensional gratings but also with linear translation structures, for example with cylindrical lenses as microfocusing elements and with motifs that are arbitrarily extended in one direction as micromotif elements. Even with such linear translation structures, the Moire Magnifier data can be adapted to a given rapport with advantage, as now with reference to the motif images 90 and 95 of FIGS. 8 and 9 explained.

Eine lineare Translationsstruktur lässt sich durch einen Translationsvektor u beschreiben, also durch eine Verschiebungsweite d und eine Verschiebungsrichtung ψ, wie in Fig. 8 gezeigt. Die parallelen Linien 92 in Fig. 8 stehen schematisch für ein mit dem Translationsvektor u verschoben wiederholt angeordnetes Motiv. Außerdem ist ein Vektor der Länge q mit dem Endpunkt Q eingezeichnet, der für den vorgegebenen Längsrapport steht.A linear translation structure can be defined by a translation vector u describe, so by a displacement width d and a shift direction ψ , as in Fig. 8 shown. The parallel lines 92 in FIG Fig. 8 stand schematically for a with the translation vector u moved repeatedly arranged motif. In addition, a vector of length q is drawn with the end point Q, which stands for the given longitudinal repeat.

Eine solche Translationsstruktur lässt sich dann stoßstellenfrei im Rapport unterbringen wenn ψ= 0 ist, oder wenn es eine ganze Zahl n gibt, so dass n d / sin ψ = q

Figure imgb0086
gilt. Wenn dies, wie im in Fig. 8 dargestellten Ausführungsbeispiel, nicht der Fall ist, kann diese Bedingung in der folgenden Weise durch eine geringfügige Änderung der Größen d, ψ oder q erfüllt werden.Such a translation structure can then be accommodated in the repeat without impact position if ψ = 0, or if there is an integer n such that nd / sin ψ = q
Figure imgb0086
applies. If this, as in in Fig. 8 is not the case, this condition can be met in the following manner by a slight change of the quantities d, ψ or q.

Wie bereits bei Beispiel 1 beschrieben, lässt sich eine Transformationsmatrix V finden, mit deren Hilfe die Motivstruktur und das Bewegungsverhalten mit minimaler Änderung an den Rapport angepasst werden kann. In Fig. 8 ist ein Punkt P eingezeichnet der auf der Translationsstruktur nahe dem Punkt Q liegt.As already described in example 1, a transformation matrix V can be found with the aid of which the motif structure and the movement behavior can be adapted to the repeat with a minimum change. In Fig. 8 is a point P located on the translation structure near the point Q.

Die durch die obige Gleichung (2a) beschriebene Transformation V V = 1 0 0 q 1 p x 0 p y 1 = 1 p x / p y 0 q / p y

Figure imgb0087
bildet dann den Punkt P auf den Punkt Q ab.The transformation V described by the above equation (2a) V = 1 0 0 q 1 p x 0 p y - 1 = 1 - p x / p y 0 q / p y
Figure imgb0087
then maps the point P to the point Q.

Als neues, geringfügig verzerrtes und zum vorgegebenen Rapport passendes Motiv-Translationsgitter wird dann ein Gitter mit dem Translationsvektor u = V u

Figure imgb0088
verwendet. Die neuen Koordinaten eines Punktes (x',y') in der zum vorgegebenen Rapport passenden Motivebene, die gegenüber den alten Koordinaten (x,y) in der nicht zum vorgegebenen Rapport passenden alten Motivebene geringfügig geändert sind, sind dann wie bei Gleichung (4) gegeben durch x ' y ' = V x y = x y p x / p y y q / p y
Figure imgb0089
As a new, slightly distorted and the given rapport matching motif translation grid then becomes a grid with the translation vector u ' = V u
Figure imgb0088
used. The new coordinates of a point (x ', y') in the motif plane matching the given rapport, which are slightly changed compared to the old coordinates (x, y) in the old motive plane not matching the given repeat, are then as in equation (4 given by x ' y ' = V x y = x - y p x / p y y q / p y
Figure imgb0089

Die neue Bewegungsmatrix A' im zum vorgegebenen Rapport passenden Translationsgitter, die das gegenüber der alten Bewegungsmatrix A nur geringfügig geänderte Bewegungsverhalten beschreibt, ist wie bei Gleichung (7) gegeben durch: A = V A V 1

Figure imgb0090
The new motion matrix A 'in the translation grid matching the given repeat, which only slightly compared to the old motion matrix A. as described in equation (7) is given by: A ' = VAV - 1
Figure imgb0090

Analog zur Anpassung bei einem zweidimensionalen Bravaisgitter nach Beispiel 3 kann auch bei einer linearen Translationsstruktur zusätzlich zur Anpassung an den Längsrapport auch eine Anpassung an einen Querrapport erfolgen, wie anhand des Motivbilds 95 der Fig. 9 erläutert.Analogous to the adaptation in the case of a two-dimensional Bravais grid according to example 3, an adaptation to a transverse repeat can also be effected in the case of a linear translation structure in addition to adaptation to the longitudinal repeat, as can be seen from the motif image 95 of FIG Fig. 9 explained.

Der Längsrapport ist in Fig. 9 durch einen Vektor (0, q) mit Endpunkt Q, der Querrapport durch einen Vektor (b, 0) mit Endpunkt B dargestellt. Weiterhin werden Punkte P und A mit den Koordinaten (px,py) bzw. (ax, ay) in der Translationsstruktur gewählt, die nahe bei Q bzw. B liegen.The longitudinal repeat is in Fig. 9 represented by a vector (0, q) with end point Q, the transverse repeat by a vector (b, 0) with end point B. Furthermore, points P and A are selected with the coordinates (p x , p y ) and (a x , a y ) in the translation structure, which are close to Q and B, respectively.

Wie bei Beispiel 3 beschrieben, findet man mit diesen Angaben eine Transformationsmatrix V, mit deren Hilfe die Motivstruktur und das Bewegungsverhalten mit minimaler Änderung an beide Rapporte angepasst werden kann, nämlich mit Gleichung (2c): V = b 0 0 q a x p x a y p y 1

Figure imgb0091
As described in example 3, this information provides a transformation matrix V, with the help of which the motif structure and the movement behavior can be adapted with minimal change to both repetitions, namely with equation (2c): V = b 0 0 q a x p x a y p y - 1
Figure imgb0091

Es versteht sich dass die hier beschriebenen Methoden, ein Motivraster nahtlos in einem Rapport unterzubringen, auch anwendbar sind, um ein Linsenraster nahtlos in einem Rapport (z.B. auf einem Prägezylinder) unterzubringen.It will be appreciated that the methods described herein of seamlessly placing a motif grid in a repeat are also applicable for seamlessly placing a lenticular grid in a repeat (eg, on an embossing cylinder).

Beispiel 8: Präge- oder Druckzylinder mit NahtstellenExample 8 Embossing or impression cylinder with seams

Nachfolgend wird ein Beispiel für die Herstellung und nahtlose Bebilderung von Linsenraster-Zylindern und Motivraster-Zylindern, welche Nahtstellen aufweisen, genauer beschrieben.An example of the fabrication and seamless imaging of lenticular cylinders and motif grid cylinders having seams will now be described in greater detail.

In diesem Beispiel weisen die Druck- bzw. Prägezylinder selbst Nahtstellen auf, das Design der Moire-Vergrößerungsanordnungen wird erfindungsgemäß so gestaltet, dass es vor und nach einer Nahtstelle zusammenpasst.In this example, the printing or embossing cylinders themselves have seams, the design of moire magnification arrangements is inventively designed so that it fits together before and after a seam.

8. 1 Linsenraster-Zylinder :8. 1 lenticular cylinder:

Mittels unterschiedlicher Techniken lassen sich Platten mit gitterförmig angeordneten, frei stehenden, im Allgemeinen zylindrischen Resiststrukturen herstellen, die als Lackpunkte bezeichnet werden. Diese Lackpunkte werden in einer gitterförmigen Anordnung erzeugt, die sich für das Linsenraster bei Verwendung der oben erläuterten Beziehungen (1) bis (8) ergibt.By means of different techniques, plates can be produced with latticed, free-standing, generally cylindrical resist structures, which are referred to as lacquer points. These paint spots are produced in a lattice-like arrangement which results for the lenticular grid using the above-described relationships (1) to (8).

Derartige Platten lassen sich beispielsweise mittels klassischer Photolithographie, mittels lithographischer Direct-Write-Methoden, wie Laser-Writing oder E-Beam-Lithographie, oder durch geeignete Kombinationen beider Ansätze fertigen.Such plates can be produced for example by means of classical photolithography, by means of lithographic direct-write methods, such as laser-writing or e-beam lithography, or by suitable combinations of both approaches.

In einem thermal reflow process wird die Platte mit den Lackpunkten dann erwärmt, so dass die Resiststrukturen verfließen und sich im Allgemeinen gitterförmige angeordnete kleine Hügel, vorzugsweise kleine Kugelkalotten bilden. Abgeformt in transparente Materialien besitzen diese Hügel Linseneigenschaften, wobei Linsendurchmesser, Linsenkrümmung, Brennweite über die geometrische Struktur der Lackpunkte, vor allem ihren Durchmesser und die Dicke der Lackschicht, bestimmt werden können.In a thermal reflow process, the plate is then heated with the paint dots, so that the resist structures flow away and generally form lattice-shaped arranged small hills, preferably small spherical caps. Shaped in transparent materials These hill lens properties, lens diameter, lens curvature, focal length on the geometric structure of the paint dots, especially their diameter and the thickness of the paint layer, can be determined.

Ebenfalls in Betracht kommt die direkte Strukturierung der Platten mit gitterförmig angeordneten, frei stehenden Hügeln beispielsweise mithilfe von Laserablation. Dabei werden insbesondere Kunststoff-, Keramik- oder Metall-Oberflächen mit hochenergetischer Laserstrahlung, beispielsweise mit Excimer-Laserstrahlung, bearbeitet.Another possibility is the direct structuring of the plates with latticed, free-standing hills, for example by means of laser ablation. In particular, plastic, ceramic or metal surfaces are processed with high-energy laser radiation, for example with excimer laser radiation.

Auf eine so hergestellte Platte, dem sogenannten Resistmaster, wird eine beispielsweise 0,05 bis 0,2 mm dicke Nickelschicht abgelagert und diese von der Platte abgehoben. Man erhält eine Nickelfolie, den sogenannten Shim, mit Vertiefungen, die den oben genannten Hügeln im Resistmaster entsprechen. Diese Nickelfolie ist als Prägestempel zum Prägen eines Linsenrasters geeignet.On a plate produced in this way, the so-called resist master, a nickel layer, for example 0.05 to 0.2 mm thick, is deposited and this is lifted off the plate. This gives a nickel foil, the so-called shim, with depressions that correspond to the above hills in the Resistmaster. This nickel foil is suitable as an embossing stamp for embossing a lenticular grid.

Die Nickelfolie wird präzise zurechtgeschnitten und mit den prägenden Vertiefungen nach außen zu einem zylindrischen Rohr, dem Sleeve, verschweißt. Das Sleeve lässt sich auf einen Prägezylinder aufziehen. Da bei der Belichtungssteuerung für das Prägemuster der Zylinderumfang einschließlich Sleeve durch Verwendung der Beziehungen (1) bis (8) erfindungsgemäß berücksichtigt wurde, passt die Gitterperiode auch im Bereich der Schweißnaht.The nickel foil is precisely cut to size and welded with the embossing recesses outwards to a cylindrical tube, the sleeve. The sleeve can be attached to an embossing cylinder. In the exposure control for the emboss pattern, since the cylinder circumference including the sleeve has been taken into account by using the relationships (1) to (8) according to the present invention, the grating period also fits in the area of the weld.

Mithilfe dieses Prägezylinders wird dann das berechnete Linsenraster in eine prägbare Lackschicht, beispielsweise einen thermoplastischen Lack oder UV-Lack, auf der Vorderseite einer Folie eingeprägt.With the aid of this embossing cylinder, the calculated lens grid is then embossed into an embossable lacquer layer, for example a thermoplastic lacquer or UV lacquer, on the front side of a foil.

8. 2 Motivraster-Zylinder :8. 2 motif grid cylinders:

Die Herstellung erfolgt analog zum Linsenraster-Zylinder, wobei Platten mit gitterförmig angeordneten, frei stehenden, frei gestalteten Motiven hergestellt werden.The production takes place analogously to the lenticular cylinder, wherein plates are prepared with lattice-shaped, free-standing, freely designed motifs.

Erfindungsgemäß stehen dabei Linsenraster, Motivraster und Zylinderumfang in den durch die Gleichungen (1) bis (8) gegebenen Beziehungen, so dass die Gitterperiode auch im Bereich der Schweißnaht passt.According to the invention, lens raster, motif raster and cylinder circumference are in the relationships given by equations (1) to (8), so that the grating period also fits in the area of the weld seam.

Mithilfe dieses Prägezylinders wird das Motivraster in eine prägbare Lackschicht, beispielsweise einen thermoplastischen Lack oder UV-Lack, auf der Rückseite der Folie, die auf der Vorderseite das dazugehörige Linsenraster enthält, eingeprägt. Zur Kontrasterhöhung kann das Motivraster eingefärbt werden.Using this embossing cylinder, the motif grid is embossed into an embossable lacquer layer, for example a thermoplastic lacquer or UV lacquer, on the back side of the foil, which contains the associated lenticular grid on the front side. To increase the contrast, the motif grid can be colored.

Insgesamt erhält man eine Moire-Vergrößerungsanordnung, die ein vergrößertes und bewegtes Motiv zeigt und gegenüber dem Stand der Technik bei den bei Rollenmaterial auftretenden Prägenähten ein wesentlich verbessertes Verhalten zeigt.Overall, a moiré magnification arrangement is obtained, which shows an enlarged and moved motif and, compared to the prior art, shows a substantially improved behavior in the case of the embossing seams occurring in roll material.

Die weitere Verarbeitung der doppelseitig mit Linsenraster und Motivraster beprägten Folie kann auf unterschiedliche Art und Weise erfolgen. Beispielsweise kann das Motivraster vollflächig metallisiert werden, oder das Motivraster kann schräg bedampft werden und es kann anschließend eine flächige Aufbringung einer Farbschicht auf die teilmetallisierten Flächen erfolgen, oder das geprägte Motivraster kann durch vollflächiges Aufbringen von Farbschichten und anschließendem Abwischen eingefärbt werden.The further processing of the double-sided with lenticular grid and motif grid embossed film can be done in different ways. For example, the motif grid can be metallized over the entire area, or the motif grid can be obliquely vapor-deposited, and then a two-dimensional application of a color layer to the partially metallized areas can take place, or the embossed motif grid can be applied by full-surface application of Colored layers and subsequent wiping be colored.

Beispiel 9: Präge- oder Druckzylinder ohne NahtstellenExample 9 Embossing or impression cylinder without seams

Nahtlose Zylinder zur Anwendung in Präge- oder Druckmaschinen als solche sind Stand der Technik und beispielsweise aus den Druckschriften WO 2005/036216 A2 oder DE 10126264 A1 bekannt. Allerdings fehlt bisher eine Lehre, wie solche Zylinder zu gestalten sind, um den speziellen Anforderungen bei Moire-Vergrößerungsanordnungen zu genügen.Seamless cylinders for use in embossing or printing machines as such are state of the art and, for example, from the documents WO 2005/036216 A2 or DE 10126264 A1 known. However, there is no teaching how to design such cylinders to meet the special requirements of moire magnification arrangements.

Bei einer bevorzugten Moiré-Vergrößerungsanordnung wird ein Linsenraster auf einer Seite einer Folie angebracht und ein dazu passendes Motivraster an der anderen Seite der Folie. Dabei werden Präge- bzw. Druckzylinder beispielsweise nach den im Stand der Technik beschriebenen Verfahren bebildert, wobei das Design gemäß der oben aufgezeigten erfindungsgemäßen Berechnung unter Verwendung der Beziehungen (1) bis (8) ausgeführt wird.In a preferred moiré magnification arrangement, a lenticular grid is mounted on one side of a film and a matching motif grid on the other side of the film. In this case, embossing or impression cylinders are imaged, for example, according to the methods described in the prior art, wherein the design is carried out according to the above-described inventive calculation using the relationships (1) to (8).

Derartige Zylinder können beispielsweise wie folgt hergestellt werden.Such cylinders can be made, for example, as follows.

9.1 Linsenraster-Zylinder:9.1 Lens grid cylinder:

In einen metall-, keramik- oder kunststoffbeschichteten Zylinder werden durch Laserablation, insbesondere durch Materialabtragung mithilfe eines computergesteuerten Lasers, muldenförmige gitterartig angeordnete Vertiefungen erzeugt, die als Präge- oder Druckformen für ein Linsenraster dienen. Dabei erfolgt die Programmierung der Laservorschubsteuerung erfindungsgemäß unter Verwendung der Beziehungen (1) bis (8), so dass auf dem Zylinder ein nahtloses unterbrechungsfreies Muster entsteht.In a metal, ceramic or plastic-coated cylinder by laser ablation, in particular by material removal using a computer-controlled laser, trough-shaped lattice-like recesses created which serve as embossing or printing forms for a lenticular grid. In this case, the programming of the laser feed control according to the invention is carried out using the relationships (1) to (8), so that a seamless pattern without interruption arises on the cylinder.

9. 2 Motivraster-Zylinder :9. 2 motif grid cylinders:

In einen metall-, keramik- oder kunststoffbeschichteten Zylinder werden durch Laserablation, insbesondere durch Materialabtragung mithilfe eines computergesteuerten Lasers, gitterartig angeordnete vertiefte Motive oder reliefartige erhabene Motive in vertiefter Umgebung eingebracht, die als Präge- oder Druckformen für ein Motivraster dienen. Dabei erfolgt die Programmierung der Laservorschubsteuerung erfindungsgemäß unter Verwendung der Beziehungen (1) bis (8), so dass auf dem Zylinder ein nahtloses unterbrechungsfreies Muster entsteht.In a metal, ceramic or plastic-coated cylinder lattice-like arranged recessed motifs or relief-like raised motifs are introduced in recessed environment by laser ablation, in particular by material removal using a computer-controlled laser, which serve as embossing or printing forms for a motif grid. In this case, the programming of the laser feed control according to the invention is carried out using the relationships (1) to (8), so that a seamless pattern without interruption arises on the cylinder.

Mithilfe dieser Prägezylinder werden in prägbare Lackschichten, beispielsweise thermoplastischen Lack oder UV-Lack, auf Vorder- und Rückseite einer Folie zueinander gehörige Linsenraster und Motivraster eingeprägt. Zur Kontrasterhöhung kann das Motivraster eingefärbt werden, wie bei Beispiel 7 beschrieben.With the aid of these embossing cylinders, embossable layers of lacquer, for example thermoplastic lacquer or UV lacquer, on the front and back side of a foil imprint lenticular and motif grid. To increase the contrast, the motif grid can be colored, as described in Example 7.

Erfindungsgemäß stehen Linsenraster, Motivraster und Zylinderumfänge in den durch die Gleichungen (1) bis (8) gegebenen Beziehungen, so dass man Moiré-Vergrößerungsanordnungen erhält, die ein vergrößertes und bewegtes Motiv aufweisen, und die darüber hinaus bei Rollenmaterial in der Periodizität keine Unstetigkeiten zeigen.According to the present invention, lenticular, motif and cylinder circumferences are in the relationships given by equations (1) to (8) so as to obtain moiré magnification arrangements having an enlarged and moved motive, and moreover exhibit no discontinuities in roll material in periodicity ,

Es ist anzumerken, dass die Zylinderumfänge von Linsen- und Motivzylinder gleich oder unterschiedlich sein können, die Berechnung mithilfe der Beziehungen (1) bis (8) liefert auch im letzteren Fall die gewünschten Ergebnisse hinsichtlich Vergrößerung und Bewegungsverhalten der Moire-Vergrößerungsanordnung bei unterbrechungsfreiem Muster.It should be noted that the cylinder circumferences of lens and motif cylinders may be the same or different, and the calculation by the relationships (1) to (8) provides the desired results in magnification and motion performance of the moiré magnification arrangement in the latter case in the latter case as well.

Die weitere Verarbeitung der doppelseitig mit Linsenraster und Motivraster beprägten Folie kann auf die bei Beispiel 7 geschilderten Arten erfolgen. Ebenso können die erwähnten Linsenraster- und Motivraster-Zylinder als Druckformen verwendet werden. Dies bietet sich besonders für die Motivraster-Zylinder an.The further processing of the double-sided impressed with lenticular grid and motif grid film can be done in the manner described in Example 7 types. Likewise, the mentioned lenticular and motif grid cylinders can be used as printing forms. This is particularly suitable for the motif grid cylinder.

Ein besonders bevorzugtes Herstellungsverfahren erhält man, wenn in eine prägbare Lackschicht, beispielsweise einen thermoplastischen Lack oder UV-Lack, einer Folie ein Linsenraster mittels Prägung eingebracht wird, und das dazugehörige Motivraster auf die gegenüberliegende Seite der Folie mittels klassischer Druckverfahren aufgebracht wird.A particularly preferred production method is obtained when a lenticular grid is introduced by means of embossing in an embossable lacquer layer, for example a thermoplastic lacquer or UV lacquer, of a foil, and the associated motif grid is applied to the opposite side of the foil by means of classical printing processes.

Claims (15)

  1. A method for manufacturing endless material for security elements (12; 16) having micro-optical moiré magnification arrangements that exhibit a motif grid composed of a plurality of micromotif elements (28) and a focusing element grid composed of a plurality of microfocusing elements (22) for moiré-magnified viewing of the micromotif elements (28), in which
    a) a motif grid composed of an at least locally periodic arrangement of micromotif elements (28) in the form of a first two-dimensional lattice is provided,
    b) a focusing element grid composed of an at least locally periodic arrangement of a plurality of microfocusing elements (22) in the form of a second two-dimensional lattice is provided,
    - wherein the first and/or second lattice exhibits a hexagonal lattice symmetry or the symmetry of a parallelogram lattice, and is, in addition to the orientation of the lattice vectors with respect to each other, determined by a fixed orientation of the lattice to the endless material, especially to the longitudinal axis thereof, and wherein each lattice from the class of two-dimensional Bravais lattices with hexagonal lattice symmetry or the symmetry of a parallelogram lattice having a fixed orientation from 0-360° is selectable as the first and/ or second lattice,
    c) a pattern repeat of the motif grid and/or of the focusing element grid on the endless material is specified,
    d) it is checked whether the lattice of the motif grid and/or the lattice of the focusing element grid repeats periodically in the specified pattern repeat, and if this is not the case, a linear transformation is determined that distorts the first and/or the second lattice such that it repeats periodically in the specified pattern repeat, and
    e) for the further manufacture of the endless material, the motif grid or the focusing element grid is replaced by the motif grid that is distorted by the determined linear transformation, or the focusing element grid that is distorted by the determined linear transformation,
    wherein in step c), a pattern repeat q along the endless longitudinal direction of the endless material is specified, and
    wherein in step d), a lattice point P of the first and/or the second lattice is selected that lies near the endpoint Q of the vector 0 q
    Figure imgb0126
    given by the longitudinal pattern repeat, and a linear transformation V is determined that maps P to Q.
  2. The method according to claim 1, characterized in that, as the lattice point lying near the endpoint Q, a lattice point P is chosen whose distance from Q along the lattice vector or both lattice vectors is in each case less than 10 lattice periods, preferably less than 5, particularly preferably less than 2 and especially less than one lattice period, or that the lattice point closest to the endpoint Q is chosen as the lattice point P.
  3. The method according to claims 1 or 2, characterized in that the linear transformation V is calculated using the relationship V = b x 0 b y q a x p x a y p y 1 ,
    Figure imgb0127
    wherein p x p y
    Figure imgb0128
    and 0 q
    Figure imgb0129
    represent the coordinate vectors of the lattice point P and the endpoint Q, and b = b x b y
    Figure imgb0130
    and a = a x a y
    Figure imgb0131
    arbitrary vectors.
  4. The method according to at least one of claims 1 to 3, characterized in that the linear transformation V is calculated using the relationship V = 1 0 0 q 1 p x 0 p y 1 = 1 p x / p y 0 q / p y ,
    Figure imgb0132
    wherein p x p y
    Figure imgb0133
    and 0 q
    Figure imgb0134
    represent the coordinate vectors of the lattice point P and the endpoint Q.
  5. The method according to claim 1, wherein
    in step c), a pattern repeat q along the endless longitudinal direction of the endless material is specified and a pattern repeat b along the transverse direction of the endless material is specified, and
    in step d)
    - a lattice point P of the first and/or the second lattice is selected that lies near the endpoint Q of the vector 0 q
    Figure imgb0135
    given by the longitudinal pattern repeat,
    - a lattice point A of the first and/or the second lattice is selected that lies near the endpoint B of the vector b 0
    Figure imgb0136
    given by the transverse pattern repeat, and
    - a linear transformation V is determined that maps P to Q and A to B.
  6. The method according to claim 5, characterized in that, in a later method step, the endless material is cut into parallel longitudinal strips, and the transverse pattern repeat b is given by the width of these longitudinal strips.
  7. The method according to claim 5 or 6, characterized in that, as the lattice points lying near the endpoints Q and B, such lattice points P and A are chosen whose distances from Q and B along the lattice vector or both lattice vectors is in each case less than 10 lattice periods, preferably less than 5, particularly preferably less than 2 and especially less than one lattice period.
  8. The method according to claim 7, characterized in that the lattice point closest to the endpoint Q is chosen as the lattice point P, and the lattice point closest to the endpoint B as the lattice point A, wherein preferably the linear transformation V is calculated using the relationship V = b 0 b q a x p x a y p y 1 ,
    Figure imgb0137
    wherein p x p y
    Figure imgb0138
    and 0 q
    Figure imgb0139
    represent the coordinate vectors of the lattice point P and the endpoint Q, and a x a y
    Figure imgb0140
    and b 0
    Figure imgb0141
    the coordinate vectors of the lattice point A and the endpoint B.
  9. The method according to a least one of claims 1 to 8, characterized in that the first and second lattice are two-dimensional Bravais lattices, wherein preferably
    - a desired image that is visible when viewed and has one or more moire image elements is defined, the arrangement of magnified moiré image elements being chosen in the form of a two-dimensional Bravais lattice whose lattice cells are given by vectors t 1 and t 2,
    - the focusing element grid in step b) is provided as an arrangement of microfocusing elements in the form of a two-dimensional Bravais lattice whose lattice cells are given by vectors w 1 and w 2, and
    - in step a), the motif grid having the micromotif elements is calculated using the relationships U = W T + W 1 T
    Figure imgb0142
    and r = W T + W 1 R + r 0 ,
    Figure imgb0143
    wherein R = X Y
    Figure imgb0144
    represents an image point of the desired image, r = x y
    Figure imgb0145
    an image point of the motif grid, r 0 = x 0 y 0
    Figure imgb0146
    a displacement between the arrangement of microfocusing elements and the arrangement of micromotif elements, and the matrices T, W and U are given by T = t 11 t 12 t 21 t 22 ,
    Figure imgb0147
    W = w 11 w 12 w 21 w 22
    Figure imgb0148
    and U = u 11 u 12 u 21 u 22 ,
    Figure imgb0149
    with t1i, t2i, u1i, u2i and w1i, w2i representing the components of the lattice cell vectors t i , u i and w i , where i=1, 2.
  10. The method according to claim 9, characterized in that
    - a desired image that is visible when viewed and has one or more moiré image elements is defined,
    - the focusing element grid in step b) is provided as an arrangement of microfocusing elements in the form of a two-dimensional Bravais lattice whose lattice cells are given by vectors w 1 and w 2,
    - a desired movement of the visible image when the moiré magnification arrangement is tilted laterally and when tilted forward and back is defined, the desired movement being specified in the form of the matrix elements of a transformation matrix A , and
    - in step a), the motif grid having the micromotif elements is calculated using the relationships U = I + A 1 1 W
    Figure imgb0150
    and r = A 1 R + r 0 ,
    Figure imgb0151
    wherein R = X Y
    Figure imgb0152
    represents an image point of the desired image, r = x y
    Figure imgb0153
    an image point of the motif image, r 0 = x 0 y 0
    Figure imgb0154
    a displacement between the arrangement of microfocusing elements and the arrangement of micromotif elements, and the matrices A, W and U are given by A = a 11 a 12 a 21 a 22 ,
    Figure imgb0155
    W = w 11 w 12 w 21 w 22
    Figure imgb0156
    and U = u 11 u 12 u 21 u 22 ,
    Figure imgb0157
    with u1i, u2i and w1i, w2i representing the components of the lattice cell vectors u i and w i , where i=1,2.
  11. The method according to at least one of claims 1 to 10, characterized in that the motif grid and the focusing element grid are arranged at opposing surfaces of an optical spacing layer, and/or that step e) comprises providing an impression or embossing cylinder (34) with the distorted focusing element grid, and/or that step e) comprises providing an impression or embossing cylinder (34) with the distorted motif grid.
  12. An endless material for security elements for security papers, value documents and the like, manufacturable according to one of claims 1 to 11, having micro-optical moiré magnification arrangements that
    - exhibit a motif grid composed of an at least locally periodic arrangement of micromotif elements (28) in the form of a first two-dimensional Bravais lattice,
    - exhibit a focusing element grid composed of an at least locally periodic arrangement of a plurality of microfocusing elements (22) in the form of a second two-dimensional Bravais lattice for moiré-magnified viewing of the micromotif elements,
    - wherein the first and/or second Bravais lattice exhibits a hexagonal lattice symmetry or the symmetry of a parallelogram lattice, and is, in addition to the orientation of the lattice vectors with respect to each other also determined by a fixed orientation of the lattice to the endless material, especially to the longitudinal axis thereof, and wherein in the fixed orientation none of the two lattice vectors of the two-dimensional Bravais lattice is parallel to the longitudinal axis of the endless material,
    - the motif grid and the focusing element grid being arranged on the endless material, gaplessly and free of misalignment, with a specified pattern repeat, and
    - wherein the motif grid and the focusing element grid are arranged on the endless material, gaplessly and free of misalignment, with the specified pattern repeat, on a length of 10 meters or more, preferably on a length of 100 meters or more, and particularly preferably on a length of 1,000 meters or more.
  13. A method for manufacturing a security element (12; 16) for security papers, value documents and the like, in which an endless material according to one of claims 1 to 11 is manufactured and cut in the desired shape of the security element (12; 16), wherein the endless material is preferably cut into longitudinal strips of equal width and having an identical arrangement of the micro-optical moiré magnification arrangements.
  14. A method for manufacturing an impression or embossing cylinder (34) for producing the focusing element grid in the manufacturing method of claims 1 to 11, in which
    - a focusing element grid composed of an at least locally periodic arrangement of a plurality of microfocusing elements (22) in the form of a two-dimensional lattice, as well as the circumference q of the finished impression or embossing cylinder (34), is specified,
    - wherein the lattice exhibits a hexagonal lattice symmetry or the symmetry of a parallelogram lattice, and is, in addition to the orientation of the lattice vector with respect to each other, determined by a fixed orientation of the lattice to a cylinder surface of the impression or embossing cylinder, especially to the circumferential direction thereof, and wherein each lattice from the class of two-dimensional Bravais lattices with hexagonal lattice symmetry or the symmetry of a parallelogram lattice having a fixed orientation from 0-360° is selectable as said lattice,
    - the lattice of the focusing element grid is distorted by means of a linear transformation such that it repeats periodically in the pattern repeat of the specified circumference q, wherefore a lattice point P of the lattice of the focusing element grid is selected that lies near the endpoint Q of the vector 0 q
    Figure imgb0158
    given by the circumference of the finished impression or embossing cylinder (34), and a linear transformation V is determined that maps P to Q, and
    - an impression or embossing cylinder is provided with the distorted focusing element grid.
  15. A method for manufacturing an impression or embossing cylinder (34) for producing the motif grid in the manufacturing method of claims 1 to 11, in which
    - a motif grid composed of an at least locally periodic arrangement of a plurality of micromotif elements (28) in the form of a two-dimensional lattice, as well as the circumference q of the finished impression or embossing cylinder (34), is specified,
    - wherein the lattice exhibits a hexagonal lattice symmetry or the symmetry of a parallelogram lattice, and is, in addition to the orientation of the lattice vectors with respect to each other, determined by a fixed orientation of the lattice to a cylinder surface of the impression or embossing cylinder, especially to the circumferential direction thereof, and wherein each lattice from the class of two-dimensional Bravais lattices with hexagonal lattice symmetry or the symmetry of a parallelogram lattice having a fixed orientation from 0-360° is selectable as said lattice,
    - the motif grid is distorted by means of a linear transformation such that it repeats periodically in the pattern repeat of the specified circumference q, wherefore a lattice point P of the motif grid is selected that lies near the endpoint Q of the vector 0 q
    Figure imgb0159
    given by the circumference of the finished impression or embossing cylinder (34), and a linear transformation V is determined that maps P to Q, and
    - an impression or embossing cylinder is provided with the distorted motif grid.
EP08758776.2A 2007-06-01 2008-05-27 A method for manufacturing a seamless continuous material for security elements, a seamless continuous material for security elements and methods for manufacturing impression or embossing cylinders Active EP2164705B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710025667 DE102007025667A1 (en) 2007-06-01 2007-06-01 Endless material for security elements
PCT/EP2008/004190 WO2008145333A2 (en) 2007-06-01 2008-05-27 Seamless continuous material for security elements, and method and cylinder for the production thereof

Publications (2)

Publication Number Publication Date
EP2164705A2 EP2164705A2 (en) 2010-03-24
EP2164705B1 true EP2164705B1 (en) 2017-12-27

Family

ID=39917400

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08758776.2A Active EP2164705B1 (en) 2007-06-01 2008-05-27 A method for manufacturing a seamless continuous material for security elements, a seamless continuous material for security elements and methods for manufacturing impression or embossing cylinders

Country Status (5)

Country Link
US (1) US8783728B2 (en)
EP (1) EP2164705B1 (en)
CN (1) CN101687414B (en)
DE (1) DE102007025667A1 (en)
WO (1) WO2008145333A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011112554A1 (en) 2011-09-06 2013-03-07 Giesecke & Devrient Gmbh Method for producing a security paper and microlens thread
SE537104C2 (en) * 2012-11-02 2015-01-07 Rolling Optics Ab High-speed manufacturing of printed product micro-brands
DE102012021724A1 (en) * 2012-11-06 2014-05-08 Giesecke & Devrient Gmbh Security element with lenticular image
AU2014395153B2 (en) * 2014-05-20 2019-11-14 Lumenco, Llc Slant lens interlacing with linearly arranged lenses
NL2014690B1 (en) * 2015-04-22 2017-01-18 Morpho Bv Security document and method of manufacturing.
CN106378534B (en) * 2016-11-24 2018-03-16 天津大学 A kind of method that Laser Driven forms nearly spherical film flying
AU2017100354B4 (en) * 2017-03-27 2017-10-05 Ccl Secure Pty Ltd Method for manufacturing an embossing cylinder configured for producing microstructure image effects
US20190101662A1 (en) * 2017-10-04 2019-04-04 Westerngeco Llc Compressive sensing marine streamer system
EP3470231B1 (en) * 2017-10-10 2021-06-02 HP Scitex Ltd Printing fluid drying assembly, method and system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1527902C3 (en) * 1966-04-22 1974-02-28 Wuerttembergische Metallwarenfabrik, 7340 Geislingen Arrangement for plating hollow bodies
GB2036649A (en) 1978-12-08 1980-07-02 Ditzel Gmbh Gebr Embossing in register with printing
JPS5948567B2 (en) 1979-12-29 1984-11-27 富士通株式会社 schmitt trigger circuit
EP0064067B2 (en) 1980-11-05 2002-03-27 McGREW, Stephen Paul Method for generating a diffractive graphical composition
DE3609090A1 (en) 1986-03-18 1987-09-24 Gao Ges Automation Org SECURITY PAPER WITH SECURED THREAD STORED IN IT AND METHOD FOR THE PRODUCTION THEREOF
IT1216468B (en) 1988-02-26 1990-03-08 Sgs Thomson Microelectronics TRIANGULAR WAVE OSCILLATOR STAGE WITH NON SWITCHED THRESHOLDS CURRENTLY CONTROLLED, IN PARTICULAR FOR MONITORS AND HIGH DEFINITION TELEVISION.
US5365541A (en) * 1992-01-29 1994-11-15 Trw Inc. Mirror with photonic band structure
GB9309673D0 (en) * 1993-05-11 1993-06-23 De La Rue Holographics Ltd Security device
US5544584A (en) * 1994-12-09 1996-08-13 Thompson Urethane Products Process for producing polymer-covered flexographic printing sleeves
EP1015253B1 (en) * 1997-02-03 2002-08-28 Giesecke & Devrient GmbH Value on paper, and production
DE19947397B4 (en) * 1999-10-01 2006-12-14 Hell Gravure Systems Gmbh Method for seamless engraving of patterns
DE10126264A1 (en) 2001-05-29 2002-12-05 Giesecke & Devrient Gmbh Photogravure printing cylinder has roller body and ceramic coating that carries laser gravure pattern; ceramic coating has re-faced surface and is applied to roller body used at least once before
DE10128264A1 (en) 2001-06-11 2002-12-12 Infineon Technologies Ag Digital magnetic memory cell device e.g. for read- and/or write-operations, has magnetic layer arranged remote from anti-ferromagnetic layer
GB0129369D0 (en) * 2001-12-07 2002-01-30 Filtrona United Kingdom Ltd Method and apparatus for marking articles
GB0209564D0 (en) * 2002-04-25 2002-06-05 Rue De Int Ltd Improvements in substrates
US7190387B2 (en) 2003-09-11 2007-03-13 Bright View Technologies, Inc. Systems for fabricating optical microstructures using a cylindrical platform and a rastered radiation beam
DE10350212A1 (en) 2003-10-27 2005-05-25 Giesecke & Devrient Gmbh Process for producing sheet-like materials
DE50306763D1 (en) 2003-10-28 2007-04-19 Alcan Tech & Man Ltd Counterfeit-proof packaging material with a security feature
WO2006028077A1 (en) * 2004-09-07 2006-03-16 National Printing Bureau, Incorporated Administrative Agency Ovd examination method and examination instrument
DE102005028162A1 (en) * 2005-02-18 2006-12-28 Giesecke & Devrient Gmbh Security element for protecting valuable objects, e.g. documents, includes focusing components for enlarging views of microscopic structures as one of two authenication features
DE102005062132A1 (en) 2005-12-23 2007-07-05 Giesecke & Devrient Gmbh Security unit e.g. seal, for e.g. valuable document, has motive image with planar periodic arrangement of micro motive units, and periodic arrangement of lens for moire magnified observation of motive units
DE102006029852A1 (en) 2006-06-27 2008-01-03 Giesecke & Devrient Gmbh Method of applying a microstructure, mold and microstructured article

Also Published As

Publication number Publication date
DE102007025667A1 (en) 2008-12-04
US8783728B2 (en) 2014-07-22
WO2008145333A2 (en) 2008-12-04
WO2008145333A3 (en) 2009-03-26
CN101687414A (en) 2010-03-31
US20100187806A1 (en) 2010-07-29
EP2164705A2 (en) 2010-03-24
CN101687414B (en) 2012-01-25

Similar Documents

Publication Publication Date Title
EP2164705B1 (en) A method for manufacturing a seamless continuous material for security elements, a seamless continuous material for security elements and methods for manufacturing impression or embossing cylinders
EP1965990B1 (en) Security element
EP2164713B1 (en) Security element having a magnified, three-dimensional moiré image
EP2162294B1 (en) Security element
EP0330738B1 (en) Document
EP2040934B1 (en) Security element
EP2475529B1 (en) Multilayer body
EP1853763B1 (en) Security element and method for the production thereof
EP2331343B1 (en) Representation system
DE102015015991A1 (en) Security element with lenticular image
EP2897812B1 (en) Security element with display arrangement
DE112017001373T5 (en) Micro-optical device with double-sided optical effect
EP3126153B1 (en) Security element having a lenticular image
EP3423288A1 (en) Embossing plate, production method, and embossed security element
DE102012025262B4 (en) Method of manufacturing a security element
DE102009004251B3 (en) Security element and method for producing a security element
DE102012025264B4 (en) Method of manufacturing a security element
DE102022002471A1 (en) Method for producing a security feature, security feature for a data carrier, data carrier and laminating sheet
WO2023016670A1 (en) Method for the production of a security feature, security feature for a data medium, data medium, and lamination sheet
DE112020005412T5 (en) Micro-optical device for generating an enlarged image

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100104

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100602

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B41M 3/14 20060101ALI20170224BHEP

Ipc: B42D 25/342 20140101ALI20170224BHEP

Ipc: B41F 11/02 20060101AFI20170224BHEP

Ipc: B42D 25/355 20140101ALI20170224BHEP

Ipc: B41F 19/06 20060101ALI20170224BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170721

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 957946

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008015825

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH PARTNER AG, CH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180327

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180327

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180328

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 957946

Country of ref document: AT

Kind code of ref document: T

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH, DE

Effective date: 20180627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008015825

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

26N No opposition filed

Effective date: 20180928

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220523

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230517

Year of fee payment: 16

Ref country code: DE

Payment date: 20230531

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230516

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230522

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230531