EP2059973B1 - Polarization diversity multi-antenna system - Google Patents

Polarization diversity multi-antenna system Download PDF

Info

Publication number
EP2059973B1
EP2059973B1 EP07803182.0A EP07803182A EP2059973B1 EP 2059973 B1 EP2059973 B1 EP 2059973B1 EP 07803182 A EP07803182 A EP 07803182A EP 2059973 B1 EP2059973 B1 EP 2059973B1
Authority
EP
European Patent Office
Prior art keywords
antenna
patch
slot
antennas
earth plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07803182.0A
Other languages
German (de)
French (fr)
Other versions
EP2059973A1 (en
Inventor
Lionel Rudant
Christophe Delaveaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2059973A1 publication Critical patent/EP2059973A1/en
Application granted granted Critical
Publication of EP2059973B1 publication Critical patent/EP2059973B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Definitions

  • the present invention relates to the field of antennas, in particular that of polarization diversity antennas for telecommunication terminals.
  • Mobile terminals are unfortunately poorly suited to the implementation of diversity techniques.
  • the small dimensions of mobile terminals generally do not make it possible to sufficiently separate the reception antennas at the operating frequencies commonly used (80 MHz - 6 GHz).
  • the signals received by the different antennas are correlated due to neighboring propagation conditions or due to the coupling between antennas.
  • the signals received can then exhibit simultaneous fading and the mobile terminal does not fully benefit from the advantages of diversity.
  • a polarization diversity multi-antenna system for a mobile terminal has been proposed in the article by N. Michishita et al. titled "A polarization diversity antenna by printed dipole and a patch with a hole" published in Proc. of IEEE Antennas and Propagation Society International Symposium, vol. No. 3, May 2001, pages 368-371 .
  • This system consists of a patch antenna (also called a flat antenna) and a dipole antenna. The patch is pierced with a hole through which passes the dipole antenna printed on a substrate.
  • This system is not flat and does not easily lend itself to integration into a mobile terminal.
  • a polarization diversity multi-antenna system for a base station has been proposed in the article by N. Kuga et al. titled "A patch-slot composite antenna for VH-polarization diversity base stations ”published in Proc. of Asia-Pacific Microwave Conference, Dec. 2000 . It comprises two interlaced antenna arrays: a first array consisting of horizontally polarized patch type elements and a second array consisting of vertically polarized patch type elements. The elements of the first network are excited by slots cut out in the ground plane while the elements of the second network are excited by microstrip lines.
  • This multi-antenna system is not compatible with integration into a mobile terminal either.
  • the document EP1401050 discloses a multiband system which comprises a multiband patch type antenna and one or more slot (s) in the ground plane.
  • the aim of the present invention is to remedy the aforementioned drawbacks, that is to say to propose a multi-antenna system with diversity, compact and easily integrable in a mobile terminal while having only a weak coupling between antennas.
  • the present invention is defined by the object of the first claim.
  • the idea underlying the invention consists in associating on the same ground plane a patch-type antenna and a slot-type antenna, the patch at least partially overhanging the slot.
  • the geometry and orientation of the patch and slot are chosen so that the patch type antenna and the antenna of slot type can each transmit and / or receive according to a rectilinear polarization, the polarization directions associated with the two antennas being orthogonal to each other.
  • reception mode the signals respectively received by the patch antenna and the slot antenna are combined so as to provide reception diversity.
  • the geometry and the orientation of the patch and of the slot are chosen so that the respective directions of establishment of the resonance in the patch and the slot are substantially parallel.
  • the distribution of the electric field along the direction of establishment of the resonance is sinusoidal and has two maxima at each end of the patch.
  • the electric field distribution along the direction of resonance establishment is sinusoidal and has two zeros at each end of the slit.
  • the number of periods of the sinusoidal distribution depends on the order of the resonance.
  • the electromagnetic field generated by the patch is conventionally denoted TM n0 where n gives the order of the resonance according to the direction of resonance x, the electric field being directed in this direction.
  • the electromagnetic field generated by the slit is conventionally denoted TE n'0 where n 'gives the order of the resonance according to the direction of resonance x', the electric field being orthogonal to x 'and parallel to the plane of the slit .
  • the co-location of the slot-type antenna and the patch-type antenna according to the invention does not significantly modify the characteristics of the two antennas taken in isolation.
  • the level of coupling between the antennas is remarkably low.
  • the impedance matching can be performed independently for either antenna in a common operating frequency band.
  • the Fig. 1 schematically illustrates an example of the multi-antenna system according to the invention.
  • a perspective view and in (B) a vertical section of the system in its median plane.
  • This comprises a metal ground plane 10 common to the patch type antenna and the slot type antenna.
  • the ground plane is typically produced by a metal plate or by a metal layer deposited on a dielectric substrate 15.
  • a slot 20 is provided in the ground plane and a metal patch 30 is arranged so as to at least partially overhang the slot.
  • the patch can be made either by a metal plate or by depositing metal layer (s) on a dielectric substrate. The latter can be the same as that of the ground plane. In this case, the patch is deposited on the face of the substrate opposite to that on which the ground plane is deposited.
  • the slot has a trapezoidal shape elongated in a longitudinal direction.
  • it can be of any form symmetrical, for example rectangular or elliptical, or even non-symmetrical.
  • the metal patch 30 has an elongated elliptical shape in a longitudinal direction. It can however be of any symmetrical shape, for example rectangular or trapezoidal, or even non-symmetrical.
  • FF ′ and PP ′ The directions of resonance of the slot and of the patch have been denoted FF ′ and PP ′ respectively. As seen above, these two axes are chosen to be substantially parallel. These axes coincide here respectively with the axes of longitudinal symmetry of the slot and of the patch.
  • the axes FF 'and PP' can be offset laterally with respect to each other in a plane parallel to the ground plane or else contained in the same plane orthogonal to the ground plane in which case the orthogonal projection of the PP axis 'on the ground plane advantageously coincides with the axis FF'.
  • the two axes FF 'and PP' belong to the median plane of the system, orthogonal to the ground plane.
  • the electric field generated by the slot-type antenna has a rectilinear polarization orthogonal to the midplane.
  • the electric field generated by the patch type antenna has a rectilinear polarization parallel to the axis PP '.
  • the signal received by the slot-type antenna is maximum when the electric field has a rectilinear polarization orthogonal to the mid-plane and the signal received by the patch-type antenna is maximum when the electric field has a polarization parallel to the PP 'axis.
  • the orthogonal projection of the patch on the metallic plane presents a non-empty intersection therewith.
  • the orthogonal projection of the patch on the ground plane entirely includes the shape of the slot.
  • the slot-type antenna can be excited by means of a coaxial cable or a coplanar line in a manner known to those skilled in the art.
  • the slot can be excited by coupling with a microstrip line printed on the substrate on the side opposite to the ground plane.
  • the patch type antenna can be excited by means of a metal probe 35 as shown in Fig. 1 or a coaxial cable, the core of which is connected to a point on the patch, the mass being connected to the ground plane.
  • the patch can be excited by coupling with a microstrip line printed on the face of a substrate possibly dedicated to the excitation.
  • patch type and slot type antennas can be excited by direct electrical contact and / or by electromagnetic coupling.
  • the length of the slit along the axis FF ' is chosen to be substantially equal to an integer multiple of the guided half-wavelength, associated with the operating frequency.
  • the length of the patch along the axis PP ' is chosen to be substantially equal to a multiple integer of the guided half wavelength, associated with the operating frequency.
  • the guided wavelength differs slightly from the wavelength in free propagation due to the presence of the edge fields. It is twice the fundamental resonance length in the guide.
  • An analytical expression of the guided wavelength for a slot antenna can be found for example in the article by R. Garg et al. titled "Expressions for wavelength and impedance of a slotline" published in IEEE Trans. on Microwave Theory, August 1976, page 532 .
  • the operating frequencies of the slot and patch antennas are advantageously chosen to be identical. More generally, as will be seen below, it is possible to use the slot antenna and the patch antenna in the same operating frequency band without significant coupling between the two antennas.
  • the operating frequency will be of the order of 2 GHz and the slot and patch lengths of the order of 6 to 7.5. cm. These lengths are compatible with the dimensions of a mobile terminal.
  • a half-slot instead of a whole slot. More precisely, the slot is open on one side 21 over its entire width.
  • This embodiment is shown in Fig. 2 .
  • the half-slit 20 is in the form of a notch on the periphery of the ground plane 10.
  • the length of the notch along the axis FF ' is equal to an integer multiple of a quarter of the guided wavelength. at the operating frequency.
  • a metallic return 37 to the ground plane is provided at the edge of the patch.
  • This metallic return can be wired or, as in the embodiment shown in Fig. 4 , produced by means of a metal plate 37 substantially orthogonal to the ground plane. This plate then makes the electrical junction between the edge of the patch, orthogonal to the longitudinal axis PP ′, located on the side opposite the slot, with the ground plane.
  • the length of the patch along the axis PP ′ is then advantageously chosen equal to an integer multiple of a quarter of the guided wavelength (in the patch), associated with the operating frequency.
  • the slit 20 remains of length equal to an integer multiple of the guided half-wavelength (in the slit) as in the example illustrated on figure 1 .
  • the Fig. 4 schematically illustrates a third particularly advantageous embodiment of the multi-antenna system according to the invention.
  • the slit 20 and the patch 30 have respective lengths substantially equal to integer multiples of a quarter of the guided wavelengths (respectively in the slit and in the patch), associated with the operating frequency.
  • the slot opens out at the periphery of the ground plane as in the second embodiment and a metal return 37 is provided in the form of a plate at the edge of the patch, as already described.
  • the metallic return can be wired, as shown in Fig. 3 .
  • the slot and patch lengths will be of the order of 3 cm and the height of the plate 37 acting as a ground return is of the order of 1 cm.
  • the excitation of the slot and of the patch can be carried out according to the same variants exposed for the example of figure 1 .
  • the Fig. 5 schematically represents the section of a multi-antenna system according to a fourth mode of embodiment of the invention, in which a plurality of patch antennas 31, 32 of different lengths overhanging the slot is provided.
  • the return to ground 37 is advantageously common, but separate ground returns can also be envisaged.
  • the ground return can be wired or of the plate type as already seen above.
  • the excitation probe 35 is advantageously common to the various patch antennas, but separate probes can also be envisaged.
  • Layered patches correspond to the same resonant frequency. More precisely, the lengths of these patches are substantially equal to odd multiples of a quarter of the wavelength guided in these patches. As previously, the operating frequency of the patches is the same as that of the half-slot antenna 20. The advantage of such an arrangement is to obtain a particularly compact high gain system.
  • the Fig. 6 schematically shows the section of a multi-antenna system according to a fifth embodiment of the invention, in which the patch antenna 30 is folded under the ground plane.
  • the resonance frequency is defined by the total length of the “unfolded” patch. A more compact arrangement is thus obtained than those described above. If necessary, several superimposed patch antennas can be folded under the ground plane.
  • the Fig. 7 schematically represents a multi-antenna system according to a sixth embodiment of the invention.
  • the slot antenna 20 as well as the patch antenna 30 which overhangs it, although substantially elongated in a longitudinal direction, have a slight transverse setback at 40.
  • the term “slight transverse setback” means a setback of substantially smaller amplitude than the spatial extension of the system in the longitudinal direction.
  • Each of the two antennas comprises a first and a second part, oriented in the same longitudinal direction, as well as an intermediate part joining the first and second parts, oriented in a transverse direction. The transverse separation of the patch and slot antennas allows each of them to receive according to two distinct polarization modes.
  • the multi-antenna systems according to the invention can be associated so as to constitute a composite system with higher gain and / or higher order of diversity.
  • the Figs. 8 and 9 show two examples of arrangement of such multi-antenna systems on the ground plane of a mobile terminal.
  • the two multi-antenna systems 51 and 52 are arranged head-to-tail.
  • the respective resonance establishment axes of the two antenna systems are substantially parallel.
  • the directions of resonance establishment of the two systems are chosen to be substantially orthogonal.
  • the use of systems 51 and 52 makes it possible to obtain both spatial diversity, due to the spacing between antennas, and polarization diversity.
  • the Fig. 10 gives the moduli of the coefficients of the matrix S as a function of the operating frequency for a multi-antenna system according to the third embodiment of the invention, with a slit and a quarter-wave patch.
  • represent respectively the proportion of energy reflected on the input port of antenna 1 (slot type antenna) and the input port of antenna 2 (patch type antenna), in other words the reflection coefficients on these input ports, expressed in dB.
  • respectively represent the energy coupling from antenna 1 to antenna 2 and from antenna 2 to antenna 1.
  • are both less than -10 dB, which reflects the good impedance matching of the system in a common frequency band.
  • are less than -30 dB. The low level of coupling between the two antennas makes it possible to make the best use of the diversity of polarization.
  • the Fig. 11 shows the directivity diagrams of the slot-type antenna and the patch-type antenna for a vertically polarized electric field and a horizontally polarized electric field, in a section plane parallel to and equidistant between the ground plane and the plane containing the metal patch 30. Note that for a given polarization of the electric field, the maximum of the directivity diagram of one antenna corresponds to the minimum of the directivity diagram of the other.

Landscapes

  • Waveguide Aerials (AREA)

Description

DOMAINE TECHNIQUETECHNICAL AREA

La présente invention concerne le domaine des antennes, notamment celui des antennes à diversité de polarisation pour terminaux de télécommunication.The present invention relates to the field of antennas, in particular that of polarization diversity antennas for telecommunication terminals.

ÉTAT DE LA TECHNIQUE ANTÉRIEURESTATE OF THE PRIOR ART

Parmi les nombreuses mesures pour améliorer le rapport signal à bruit dans un système de télécommunication mobile, il est connu de recourir à des techniques de diversité en émission et/ou en réception. Au niveau de la station de base, on pourra utiliser par exemple des antennes suffisamment éloignées les unes des autres (d'une distance supérieure au moins à la demi-longueur d'onde à la fréquence de fonctionnement), un réseau d'antennes pour former des faisceaux pointant dans des directions angulaires distinctes ou encore des antennes émettant selon des polarisations distinctes : on parle selon le cas de diversité spatiale, de diversité angulaire ou de diversité de polarisation. De manière similaire, les mêmes techniques de diversité sont en principe applicables au terminal mobile. On utilisera soit des antennes suffisamment éloignées les unes des autres de sorte que les signaux reçus aient subi des conditions de propagation non corrélées, des antennes présentant des diagrammes de réception pointant dans des directions angulaires distinctes ou encore des antennes de polarisations distinctes, par exemple selon des polarisations linéaires orthogonales entre elles.Among the many measures for improving the signal-to-noise ratio in a mobile telecommunications system, it is known to use diversity techniques in transmission and / or reception. At the level of the base station, it is possible to use, for example, antennas sufficiently distant from each other (by a distance greater than at least half the wavelength at the operating frequency), an antenna array for forming beams pointing in distinct angular directions or even antennas emitting according to distinct polarizations: this is referred to as spatial diversity, angular diversity or polarization diversity. Similarly, the same diversity techniques are in principle applicable to the mobile terminal. One will use either antennas sufficiently distant from each other so that the signals received have undergone uncorrelated propagation conditions, antennas having reception patterns pointing in distinct angular directions or else antennas of distinct polarizations, for example according to linear polarizations orthogonal to each other.

Les terminaux mobiles se prêtent malheureusement mal à la mise en œuvre des techniques de diversité. En effet, les faibles dimensions des terminaux mobiles ne permettent généralement pas de séparer suffisamment les antennes de réception aux fréquences de fonctionnement couramment utilisées (80 MHz - 6 GHz). Il en résulte que les signaux reçus par les différentes antennes sont corrélés en raison de conditions de propagation voisines ou en raison du couplage entre antennes. Les signaux reçus peuvent alors présenter un évanouissement simultané et le terminal mobile ne bénéficie pas pleinement des avantages de la diversité.Mobile terminals are unfortunately poorly suited to the implementation of diversity techniques. In fact, the small dimensions of mobile terminals generally do not make it possible to sufficiently separate the reception antennas at the operating frequencies commonly used (80 MHz - 6 GHz). As a result, the signals received by the different antennas are correlated due to neighboring propagation conditions or due to the coupling between antennas. The signals received can then exhibit simultaneous fading and the mobile terminal does not fully benefit from the advantages of diversity.

Un système multi-antenne à diversité de polarisation pour terminal mobile a été proposé dans l'article de N. Michishita et al. intitulé « A polarization diversity antenna by printed dipole and a patch with a hole » publié dans Proc. of IEEE Antennas and Propagation Society International Symposium, vol. No. 3, Mai 2001, pages 368-371 . Ce système est constitué d'une antenne patch (dite aussi antenne plaquée) et d'une antenne dipôle. Le patch est percé d'un trou à travers lequel passe l'antenne dipôle imprimée sur un substrat. Ce système n'est pas plan et ne se prête pas aisément à une intégration dans un terminal mobile.A polarization diversity multi-antenna system for a mobile terminal has been proposed in the article by N. Michishita et al. titled "A polarization diversity antenna by printed dipole and a patch with a hole" published in Proc. of IEEE Antennas and Propagation Society International Symposium, vol. No. 3, May 2001, pages 368-371 . This system consists of a patch antenna (also called a flat antenna) and a dipole antenna. The patch is pierced with a hole through which passes the dipole antenna printed on a substrate. This system is not flat and does not easily lend itself to integration into a mobile terminal.

Un système multi-antenne à diversité de polarisation pour station de base a été proposé dans l'article de N. Kuga et al. intitulé « A patch-slot composite antenna for VH-polarization diversity base stations » publié dans Proc. of Asia-Pacific Microwave Conference, Dec. 2000 . Il comprend deux réseaux d'antennes entrelacés : un premier réseau constitué d'éléments de type patch à polarisation horizontale et un second réseau constitué d'éléments de type patch à polarisation verticale. Les éléments du premier réseau sont excités par des fentes découpées dans le plan de masse alors que les éléments du second réseau sont excités par des lignes microruban. Ce système multi-antenne n'est pas non plus compatible avec une intégration dans un terminal mobile. Le document EP1401050 divulgue un système multibande qui comprend une antenne de type patch multibande et une ou plusieurs fente(s) dans le plan de masse.A polarization diversity multi-antenna system for a base station has been proposed in the article by N. Kuga et al. titled "A patch-slot composite antenna for VH-polarization diversity base stations ”published in Proc. of Asia-Pacific Microwave Conference, Dec. 2000 . It comprises two interlaced antenna arrays: a first array consisting of horizontally polarized patch type elements and a second array consisting of vertically polarized patch type elements. The elements of the first network are excited by slots cut out in the ground plane while the elements of the second network are excited by microstrip lines. This multi-antenna system is not compatible with integration into a mobile terminal either. The document EP1401050 discloses a multiband system which comprises a multiband patch type antenna and one or more slot (s) in the ground plane.

Le but de la présente invention est de remédier aux inconvénients précités, c'est-à-dire de proposer un système multi-antenne à diversité, compact et aisément intégrable dans un terminal mobile tout en ne présentant qu'un faible couplage entre antennes.The aim of the present invention is to remedy the aforementioned drawbacks, that is to say to propose a multi-antenna system with diversity, compact and easily integrable in a mobile terminal while having only a weak coupling between antennas.

EXPOSÉ DE L'INVENTIONDISCLOSURE OF THE INVENTION

La présente invention est définie par l'objet de la première revendication.The present invention is defined by the object of the first claim.

Des modes particuliers de réalisation de l'invention sont définis dans les revendications dépendantes.Particular embodiments of the invention are defined in the dependent claims.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture d'un mode de réalisation préférentiel de l'invention fait en référence aux figures jointes parmi lesquelles :

  • la Fig. 1 représente schématiquement un système multi-antenne selon un premier exemple
  • la Fig. 2 représente schématiquement un système multi-antenne selon un premier mode de réalisation de l'invention ;
  • la Fig. 3 représente schématiquement un système multi-antenne selon un deuxième mode de réalisation de l'invention ;
  • la Fig. 4 représente schématiquement un système multi-antenne selon un troisième mode de réalisation de l'invention ;
  • la Fig. 5 représente schématiquement un système multi-antenne selon un quatrième mode de réalisation de l'invention ;
  • la Fig. 6 représente schématiquement un système multi-antenne selon un cinquième mode de réalisation de l'invention ;
  • la Fig. 7 représente schématiquement un système multi-antenne selon un sixième mode de réalisation de l'invention ;
  • la Fig. 8 représente un premier exemple de disposition de systèmes multi-antenne selon l'invention sur le plan de masse d'un terminal mobile ;
  • la Fig. 9 représente un second exemple de disposition de systèmes multi-antenne selon l'invention sur le plan de masse d'un terminal mobile ;
  • la Fig. 10 représente les coefficients de réflexion et de couplage en fonction de la fréquence de fonctionnement d'un système multi-antenne selon l'invention ;
  • la Fig. 11 représente les diagrammes de directivité en fonction de la polarisation des antennes constitutives d'un système multi-antenne selon l'invention.
Other characteristics and advantages of the invention will become apparent on reading a preferred embodiment of the invention made with reference to the accompanying figures, among which:
  • the Fig. 1 schematically represents a multi-antenna system according to a first example
  • the Fig. 2 schematically represents a multi-antenna system according to a first embodiment of the invention;
  • the Fig. 3 schematically represents a multi-antenna system according to a second embodiment of the invention;
  • the Fig. 4 schematically represents a multi-antenna system according to a third embodiment of the invention;
  • the Fig. 5 schematically represents a multi-antenna system according to a fourth embodiment of the invention;
  • the Fig. 6 schematically represents a multi-antenna system according to a fifth embodiment of the invention;
  • the Fig. 7 schematically represents a multi-antenna system according to a sixth embodiment of the invention;
  • the Fig. 8 represents a first example of an arrangement of multi-antenna systems according to the invention on the ground plane of a mobile terminal;
  • the Fig. 9 represents a second exemplary arrangement of multi-antenna systems according to the invention on the ground plane of a mobile terminal;
  • the Fig. 10 represents the reflection and coupling coefficients as a function of the operating frequency of a multi-antenna system according to the invention;
  • the Fig. 11 represents the directivity diagrams as a function of the polarization of the constituent antennas of a multi-antenna system according to the invention.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS

L'idée à la base de l'invention consiste à associer sur un même plan de masse une antenne de type patch et une antenne de type fente, le patch surplombant au moins partiellement la fente. La géométrie et l'orientation du patch et de la fente sont choisies de manière à ce que l'antenne de type patch et l'antenne de type fente puissent chacune émettre et/ou recevoir selon une polarisation rectiligne, les directions de polarisation associées aux deux antennes étant orthogonales entre elles. En mode réception, les signaux respectivement reçus par l'antenne patch et l'antenne fente sont combinés de manière à fournir une diversité de réception.The idea underlying the invention consists in associating on the same ground plane a patch-type antenna and a slot-type antenna, the patch at least partially overhanging the slot. The geometry and orientation of the patch and slot are chosen so that the patch type antenna and the antenna of slot type can each transmit and / or receive according to a rectilinear polarization, the polarization directions associated with the two antennas being orthogonal to each other. In reception mode, the signals respectively received by the patch antenna and the slot antenna are combined so as to provide reception diversity.

Plus précisément, la géométrie et l'orientation du patch et de la fente sont choisies de manière à ce que les directions respectives d'établissement de la résonance dans le patch et la fente soient sensiblement parallèles. Classiquement, on sait que pour un patch la distribution du champ électrique selon la direction d'établissement de la résonance est sinusoïdale et présente deux maxima à chaque extrémité du patch. De manière similaire, pour une fente, la distribution de champ électrique selon la direction d'établissement de la résonance est sinusoïdale et présente deux zéros à chaque extrémité de la fente. Dans un cas comme dans l'autre, le nombre de périodes de la distribution sinusoïdale dépend de l'ordre de la résonance. Le champ électromagnétique généré par le patch est noté conventionnellement TMn0 où n donne l'ordre de la résonance selon la direction de résonance x, le champ électrique étant dirigé selon cette direction. De même, le champ électromagnétique généré par la fente est noté conventionnellement TEn'0 où n' donne l'ordre de la résonance selon la direction de résonance x', le champ électrique étant orthogonal à x' et parallèle au plan de la fente.More precisely, the geometry and the orientation of the patch and of the slot are chosen so that the respective directions of establishment of the resonance in the patch and the slot are substantially parallel. Conventionally, it is known that for a patch the distribution of the electric field along the direction of establishment of the resonance is sinusoidal and has two maxima at each end of the patch. Similarly, for a slit, the electric field distribution along the direction of resonance establishment is sinusoidal and has two zeros at each end of the slit. In either case, the number of periods of the sinusoidal distribution depends on the order of the resonance. The electromagnetic field generated by the patch is conventionally denoted TM n0 where n gives the order of the resonance according to the direction of resonance x, the electric field being directed in this direction. Likewise, the electromagnetic field generated by the slit is conventionally denoted TE n'0 where n 'gives the order of the resonance according to the direction of resonance x', the electric field being orthogonal to x 'and parallel to the plane of the slit .

De manière surprenante, il a été constaté que la co-localisation de l'antenne de type fente et de l'antenne de type patch selon l'invention ne modifiait pas de manière significative les caractéristiques des deux antennes prises isolément. En particulier le niveau couplage entre les antennes est remarquablement faible. En outre, l'adaptation d'impédance peut être réalisée de manière indépendante pour l'une et l'autre antenne dans une bande de fréquence de fonctionnement commune.Surprisingly, it has been observed that the co-location of the slot-type antenna and the patch-type antenna according to the invention does not significantly modify the characteristics of the two antennas taken in isolation. In particular, the level of coupling between the antennas is remarkably low. Further, the impedance matching can be performed independently for either antenna in a common operating frequency band.

La Fig. 1 illustre de manière schématique un exemple du système multi-antenne selon l'invention. On a représenté en (A) une vue en perspective et en (B) une coupe verticale du système dans son plan médian. Celui-ci comprend un plan de masse métallique 10 commun à l'antenne de type patch et l'antenne de type fente. Le plan de masse est réalisé typiquement par une plaque métallique ou par une couche métallique déposée sur un substrat diélectrique 15. Une fente 20 est aménagée dans le plan de masse et un patch métallique 30 est disposé de manière à surplomber au moins partiellement la fente. Le patch peut être réalisé soit par une plaque métallique soit par un dépôt de couche(s) métallique(s) sur un substrat diélectrique. Ce dernier peut être le même que celui du plan de masse. Dans ce cas, le patch est déposé sur la face du substrat opposée à celle sur laquelle est déposé le plan de masse.The Fig. 1 schematically illustrates an example of the multi-antenna system according to the invention. There is shown in (A) a perspective view and in (B) a vertical section of the system in its median plane. This comprises a metal ground plane 10 common to the patch type antenna and the slot type antenna. The ground plane is typically produced by a metal plate or by a metal layer deposited on a dielectric substrate 15. A slot 20 is provided in the ground plane and a metal patch 30 is arranged so as to at least partially overhang the slot. The patch can be made either by a metal plate or by depositing metal layer (s) on a dielectric substrate. The latter can be the same as that of the ground plane. In this case, the patch is deposited on the face of the substrate opposite to that on which the ground plane is deposited.

Préférentiellement, la fente présente une forme trapézoïdale allongée selon une direction longitudinale. Elle peut toutefois être de toute forme symétrique, par exemple rectangulaire ou elliptique, voire non symétrique. De même, le patch métallique 30 présente une forme elliptique allongée selon une direction longitudinale. Il peut toutefois être de toute forme symétrique, par exemple rectangulaire ou trapézoïdale, voire non symétrique.Preferably, the slot has a trapezoidal shape elongated in a longitudinal direction. However, it can be of any form symmetrical, for example rectangular or elliptical, or even non-symmetrical. Likewise, the metal patch 30 has an elongated elliptical shape in a longitudinal direction. It can however be of any symmetrical shape, for example rectangular or trapezoidal, or even non-symmetrical.

On a noté FF' et PP' respectivement les directions de résonance de la fente et du patch. Comme on l'a vu plus haut, ces deux axes sont choisis sensiblement parallèles. Ces axes coïncident ici respectivement avec les axes de symétrie longitudinale de la fente et du patch.The directions of resonance of the slot and of the patch have been denoted FF ′ and PP ′ respectively. As seen above, these two axes are chosen to be substantially parallel. These axes coincide here respectively with the axes of longitudinal symmetry of the slot and of the patch.

Les axes FF' et PP' peuvent être décalés latéralement l'un par rapport à l'autre dans un plan parallèle au plan de masse ou bien contenus dans un même plan orthogonal au plan de masse auquel cas la projection orthogonale de l'axe PP' sur le plan de masse coïncide avantageusement avec l'axe FF'. En Fig. 1, les deux axes FF' et PP' appartiennent au plan médian du système, orthogonal au plan de masse.The axes FF 'and PP' can be offset laterally with respect to each other in a plane parallel to the ground plane or else contained in the same plane orthogonal to the ground plane in which case the orthogonal projection of the PP axis 'on the ground plane advantageously coincides with the axis FF'. In Fig. 1 , the two axes FF 'and PP' belong to the median plane of the system, orthogonal to the ground plane.

Le champ électrique généré par l'antenne de type fente possède une polarisation rectiligne orthogonale au plan médian. En revanche, le champ électrique généré par l'antenne de type patch possède une polarisation rectiligne parallèle à l'axe PP'. De manière réciproque, le signal reçu par l'antenne de type fente est maximal lorsque le champ électrique a une polarisation rectiligne orthogonale au plan médian et le signal reçu par l'antenne de type patch est maximal lorsque le champ électrique a une polarisation parallèle à l'axe PP'.The electric field generated by the slot-type antenna has a rectilinear polarization orthogonal to the midplane. On the other hand, the electric field generated by the patch type antenna has a rectilinear polarization parallel to the axis PP '. Conversely, the signal received by the slot-type antenna is maximum when the electric field has a rectilinear polarization orthogonal to the mid-plane and the signal received by the patch-type antenna is maximum when the electric field has a polarization parallel to the PP 'axis.

Etant donné que le patch surplombe au moins partiellement la fente, la projection orthogonale du patch sur le plan métallique présente une intersection non vide avec cette dernière. Selon une variante de réalisation, la projection orthogonale du patch sur le plan de masse inclut entièrement la forme de la fente. Les antennes de type fente et de type patch sont ainsi co-localisées et le système multi-antenne est particulièrement compact.Since the patch at least partially overhangs the slit, the orthogonal projection of the patch on the metallic plane presents a non-empty intersection therewith. According to an alternative embodiment, the orthogonal projection of the patch on the ground plane entirely includes the shape of the slot. The slot type and patch type antennas are thus co-located and the multi-antenna system is particularly compact.

L'antenne de type fente peut être excitée au moyen d'un câble coaxial ou d'une ligne coplanaire de manière connue de l'homme du métier. Alternativement, la fente peut être excitée par couplage avec une ligne microruban imprimée sur le substrat du côté opposé au plan de masse.The slot-type antenna can be excited by means of a coaxial cable or a coplanar line in a manner known to those skilled in the art. Alternatively, the slot can be excited by coupling with a microstrip line printed on the substrate on the side opposite to the ground plane.

L'antenne de type patch peut être excitée au moyen d'une sonde métallique 35 comme représenté en Fig. 1 ou un câble coaxial dont l'âme est reliée en un point du patch, la masse étant reliée au plan de masse. Alternativement, le patch peut être excité par couplage avec une ligne microruban imprimée sur la face d'un substrat éventuellement dédié à l'excitation.The patch type antenna can be excited by means of a metal probe 35 as shown in Fig. 1 or a coaxial cable, the core of which is connected to a point on the patch, the mass being connected to the ground plane. Alternatively, the patch can be excited by coupling with a microstrip line printed on the face of a substrate possibly dedicated to the excitation.

De manière plus générale, les antennes de type patch et de type fente peuvent être excitées par un contact électrique direct et/ou par couplage électromagnétique.More generally, patch type and slot type antennas can be excited by direct electrical contact and / or by electromagnetic coupling.

La longueur de la fente selon l'axe FF' est choisie sensiblement égale à un multiple entier de la demi-longueur d'onde guidée, associée à la fréquence de fonctionnement. De même, la longueur du patch selon l'axe PP' est choisie sensiblement égale à un multiple entier de la demi-longueur d'onde guidée, associée à la fréquence de fonctionnement. On rappelle que la longueur d'onde guidée diffère légèrement de la longueur d'onde en propagation libre du fait de la présence des champs de bord. Elle égale à deux fois la longueur de résonance fondamentale dans le guide. On trouvera une expression analytique de la longueur d'onde guidée pour une antenne fente par exemple dans l'article de R. Garg et al. intitulé « Expressions for wavelength and impedance of a slotline » paru dans IEEE Trans. on Microwave Theory, Août 1976, page 532 . De même, on peut généralement approximer la longueur d'onde guidée λg dans un patch par λg ≈ 0.98λ où λ est la longueur d'onde en propagation libre dans le milieu constitutif du guide (air ou diélectrique).The length of the slit along the axis FF 'is chosen to be substantially equal to an integer multiple of the guided half-wavelength, associated with the operating frequency. Likewise, the length of the patch along the axis PP 'is chosen to be substantially equal to a multiple integer of the guided half wavelength, associated with the operating frequency. It is recalled that the guided wavelength differs slightly from the wavelength in free propagation due to the presence of the edge fields. It is twice the fundamental resonance length in the guide. An analytical expression of the guided wavelength for a slot antenna can be found for example in the article by R. Garg et al. titled "Expressions for wavelength and impedance of a slotline" published in IEEE Trans. on Microwave Theory, August 1976, page 532 . Likewise, one can generally approximate the guided wavelength λ g in a patch by λ g ≈ 0.98λ where λ is the wavelength in free propagation in the medium constituting the guide (air or dielectric).

Les fréquences de fonctionnement des antennes fente et patch sont avantageusement choisies identiques. De manière plus générale, comme on le verra plus loin, il est possible d'utiliser l'antenne fente et l'antenne patch dans une même bande de fréquence de fonctionnement sans couplage significatif entre les deux antennes. Typiquement, pour un système destiné à être utilisé dans un terminal UMTS (Universal Mobile Telecommunication System), la fréquence de fonctionnement sera de l'ordre de 2 GHz et les longueurs de fente et de patch de l'ordre de 6 à 7,5 cm. Ces longueurs sont compatibles avec les dimensions d'un terminal mobile.The operating frequencies of the slot and patch antennas are advantageously chosen to be identical. More generally, as will be seen below, it is possible to use the slot antenna and the patch antenna in the same operating frequency band without significant coupling between the two antennas. Typically, for a system intended for use in a UMTS ( Universal Mobile Telecommunication System ) terminal, the operating frequency will be of the order of 2 GHz and the slot and patch lengths of the order of 6 to 7.5. cm. These lengths are compatible with the dimensions of a mobile terminal.

Afin de réduire davantage les dimensions du système, il est proposé, selon un premier mode de réalisation, d'utiliser une demi-fente au lieu d'une fente entière. Plus précisément, la fente est ouverte d'un côté 21 sur toute sa largeur. Ce mode de réalisation est représenté en Fig. 2. Sur cette figure, on a supposé pour les besoins de l'illustration, que la fente totale était un rectangle et que le patch 30 était également rectangulaire mais d'autres formes peuvent être envisagées, comme précédemment indiqué. La demi-fente 20 se présente sous la forme d'une encoche à la périphérie du plan de masse 10. La longueur de l'encoche selon l'axe FF' est égale à un multiple entier du quart de la longueur d'onde guidée à la fréquence de fonctionnement.In order to further reduce the dimensions of the system, it is proposed, according to a first embodiment, to use a half-slot instead of a whole slot. More precisely, the slot is open on one side 21 over its entire width. This embodiment is shown in Fig. 2 . In this figure, it has been assumed for the purposes of illustration that the total slit is a rectangle and that the patch 30 is also rectangular but other shapes can be envisaged, as previously indicated. The half-slit 20 is in the form of a notch on the periphery of the ground plane 10. The length of the notch along the axis FF 'is equal to an integer multiple of a quarter of the guided wavelength. at the operating frequency.

Il est également possible de réduire la longueur du patch dans la direction PP' comme indiqué en Fig. 3, selon un deuxième mode de réalisation du système multi-antenne selon l'invention. Dans ce mode, un retour métallique 37 vers le plan de masse est prévu en bordure du patch. Ce retour métallique peut être filaire ou, comme dans le mode de réalisation représenté en Fig. 4, réalisé au moyen d'une plaque métallique 37 sensiblement orthogonale au plan de masse. Cette plaque effectue alors la jonction électrique entre le bord du patch, orthogonal à l'axe longitudinal PP', situé du côté opposé à la fente, avec le plan de masse. La longueur du patch selon l'axe PP' est alors avantageusement choisie égale à un multiple entier du quart de la longueur d'onde guidée (dans le patch), associée à la fréquence de fonctionnement. La fente 20 reste de longueur égale à un multiple entier de la demi-longueur d'onde guidée (dans la fente) comme dans l'exemple illustré sur la figure 1.It is also possible to reduce the length of the patch in the direction PP 'as shown in Fig. 3 , according to a second embodiment of the multi-antenna system according to the invention. In this mode, a metallic return 37 to the ground plane is provided at the edge of the patch. This metallic return can be wired or, as in the embodiment shown in Fig. 4 , produced by means of a metal plate 37 substantially orthogonal to the ground plane. This plate then makes the electrical junction between the edge of the patch, orthogonal to the longitudinal axis PP ′, located on the side opposite the slot, with the ground plane. The length of the patch along the axis PP ′ is then advantageously chosen equal to an integer multiple of a quarter of the guided wavelength (in the patch), associated with the operating frequency. The slit 20 remains of length equal to an integer multiple of the guided half-wavelength (in the slit) as in the example illustrated on figure 1 .

La Fig. 4 illustre schématiquement un troisième mode de réalisation particulièrement avantageux du système multi-antenne selon l'invention. Dans ce mode, la fente 20 et le patch 30 ont des longueurs respectives sensiblement égales à des multiples entiers du quart des longueurs d'onde guidées (respectivement dans la fente et dans le patch), associées à la fréquence de fonctionnement. La fente débouche à la périphérie du plan de masse comme dans le second mode de réalisation et un retour métallique 37 est prévu sous forme de plaque en bordure du patch, comme déjà décrit. Bien entendu, le retour métallique peut être filaire, comme représenté en Fig. 3. Typiquement, pour un système destiné à être utilisé dans un terminal UMTS, les longueurs de fente et de patch seront de l'ordre de 3 cm et la hauteur de la plaque 37 faisant office de retour à la masse est de l'ordre de 1 cm.The Fig. 4 schematically illustrates a third particularly advantageous embodiment of the multi-antenna system according to the invention. In this mode, the slit 20 and the patch 30 have respective lengths substantially equal to integer multiples of a quarter of the guided wavelengths (respectively in the slit and in the patch), associated with the operating frequency. The slot opens out at the periphery of the ground plane as in the second embodiment and a metal return 37 is provided in the form of a plate at the edge of the patch, as already described. Of course, the metallic return can be wired, as shown in Fig. 3 . Typically, for a system intended for use in a UMTS terminal, the slot and patch lengths will be of the order of 3 cm and the height of the plate 37 acting as a ground return is of the order of 1 cm.

Afin de réduire encore davantage les dimensions des antennes précitées, on peut envisager de travailler à des fractions de longueur d'onde guidée encore plus faibles (λg /8,λg /10,...) et/ou utiliser des matériaux de constantes diélectriques plus élevées, permettant de réduire λg et/ou charger les antennes avec des éléments (capacités, inductances,..) discrets ou distribués comme connu de l'homme du métier.In order to further reduce the dimensions of the aforementioned antennas, it is possible to envisage working at even smaller fractions of guided wavelength ( λ g / 8, λ g / 10, etc.) and / or using materials of higher dielectric constants, making it possible to reduce λ g and / or charge the antennas with discrete or distributed elements (capacitors, inductors, etc.) as known to those skilled in the art.

Dans les premier, deuxième et troisième modes de réalisation, l'excitation de la fente et du patch peut être réalisée selon les mêmes variantes exposées pour l'exemple de la figure 1.In the first, second and third embodiments, the excitation of the slot and of the patch can be carried out according to the same variants exposed for the example of figure 1 .

La Fig. 5 représente schématiquement la coupe d'un système multi-antenne selon un quatrième mode de réalisation de l'invention, dans lequel est prévue une pluralité d'antennes patch 31, 32 de différentes longueurs surplombant la fente. Le retour à la masse 37 est avantageusement commun mais des retours de masse distincts peuvent être également envisagés. Le retour masse peut être filaire ou de type plaque comme déjà vu plus haut. De la même façon, la sonde d'excitation 35 est avantageusement commune aux différentes antennes patch mais des sondes distinctes peuvent être aussi envisagées. Les patchs superposés correspondent à la même fréquence de résonance. Plus précisément, les longueurs de ces patchs sont sensiblement égales à des multiples impairs du quart de la longueur d'onde guidée dans ces patchs. Comme précédemment, la fréquence de fonctionnement des patch est la même que celle de l'antenne demi-fente 20. L'avantage d'un tel montage est d'obtenir un système à gain élevé particulièrement compact.The Fig. 5 schematically represents the section of a multi-antenna system according to a fourth mode of embodiment of the invention, in which a plurality of patch antennas 31, 32 of different lengths overhanging the slot is provided. The return to ground 37 is advantageously common, but separate ground returns can also be envisaged. The ground return can be wired or of the plate type as already seen above. Likewise, the excitation probe 35 is advantageously common to the various patch antennas, but separate probes can also be envisaged. Layered patches correspond to the same resonant frequency. More precisely, the lengths of these patches are substantially equal to odd multiples of a quarter of the wavelength guided in these patches. As previously, the operating frequency of the patches is the same as that of the half-slot antenna 20. The advantage of such an arrangement is to obtain a particularly compact high gain system.

La Fig. 6 représente schématiquement la coupe d'un système multi-antenne selon un cinquième mode de réalisation de l'invention, dans lequel l'antenne patch 30 est repliée sous le plan de masse. La fréquence de résonnance est définie par la longueur totale du patch « déplié ». On obtient ainsi un arrangement plus compact que ceux exposés précédemment. Le cas échéant, plusieurs antennes patch superposées peuvent être repliées sous le plan de masse.The Fig. 6 schematically shows the section of a multi-antenna system according to a fifth embodiment of the invention, in which the patch antenna 30 is folded under the ground plane. The resonance frequency is defined by the total length of the “unfolded” patch. A more compact arrangement is thus obtained than those described above. If necessary, several superimposed patch antennas can be folded under the ground plane.

La Fig. 7 représente schématiquement un système multi-antenne selon un sixième mode de réalisation de l'invention. Dans ce mode de réalisation, l'antenne fente 20 ainsi que l'antenne patch 30 qui la surplombe, bien que substantiellement allongées selon une direction longitudinale, présentent un léger décrochement transversal en 40. On entend par léger décrochement transversal, un décrochement d'amplitude sensiblement plus faible que l'extension spatial du système dans le sens longitudinal. Chacune des deux antennes comprend une première et une seconde parties, orientées selon une même direction longitudinale, ainsi qu'une partie intermédiaire joignant les première et seconde parties, orientée selon une direction transversale. Le décrochement transversal des antennes patch et fente permet à chacune d'entre elles de recevoir selon deux modes de polarisation distincts.The Fig. 7 schematically represents a multi-antenna system according to a sixth embodiment of the invention. In this embodiment, the slot antenna 20 as well as the patch antenna 30 which overhangs it, although substantially elongated in a longitudinal direction, have a slight transverse setback at 40. The term “slight transverse setback” means a setback of substantially smaller amplitude than the spatial extension of the system in the longitudinal direction. Each of the two antennas comprises a first and a second part, oriented in the same longitudinal direction, as well as an intermediate part joining the first and second parts, oriented in a transverse direction. The transverse separation of the patch and slot antennas allows each of them to receive according to two distinct polarization modes.

Les systèmes multi-antenne selon l'invention peuvent être associés de manière à constituer un système composite à gain et/ou ordre de diversité plus élevés. En particulier, les Figs. 8 et 9 montrent deux exemples d'arrangement de tels systèmes multi-antenne sur le plan de masse d'un terminal mobile. Dans l'arrangement de la Fig. 9, les deux systèmes multi-antenne 51 et 52 sont disposés tête-bêche. Les axes d'établissement de résonance respectifs des deux systèmes d'antennes sont sensiblement parallèles. En Fig. 9, les directions d'établissement de résonance des deux systèmes sont choisies sensiblement orthogonales. L'utilisation des systèmes 51 et 52 permet d'obtenir à la fois une diversité spatiale, due à l'espacement entre antennes et une diversité de polarisation.The multi-antenna systems according to the invention can be associated so as to constitute a composite system with higher gain and / or higher order of diversity. In particular, the Figs. 8 and 9 show two examples of arrangement of such multi-antenna systems on the ground plane of a mobile terminal. In the arrangement of the Fig. 9 , the two multi-antenna systems 51 and 52 are arranged head-to-tail. The respective resonance establishment axes of the two antenna systems are substantially parallel. In Fig. 9 , the directions of resonance establishment of the two systems are chosen to be substantially orthogonal. The use of systems 51 and 52 makes it possible to obtain both spatial diversity, due to the spacing between antennas, and polarization diversity.

La Fig. 10 donne les modules des coefficients de la matrice S en fonction de la fréquence de fonctionnement pour un système multi-antenne selon le troisième mode de réalisation de l'invention, avec une fente et un patch quart d'onde. |S 11| et |S 22| représentent respectivement la proportion d'énergie réfléchie sur le port d'entrée de l'antenne 1 (antenne de type fente) et le port d'entrée de l'antenne 2 (antenne de type patch), autrement dit les coefficients de réflexion sur ces ports d'entrée, exprimés en dB. |S 12| et |S 21| représentent respectivement le couplage d'énergie de l'antenne 1 vers l'antenne 2 et de l'antenne 2 vers l'antenne 1.The Fig. 10 gives the moduli of the coefficients of the matrix S as a function of the operating frequency for a multi-antenna system according to the third embodiment of the invention, with a slit and a quarter-wave patch. | S 11 | and | S 22 | represent respectively the proportion of energy reflected on the input port of antenna 1 (slot type antenna) and the input port of antenna 2 (patch type antenna), in other words the reflection coefficients on these input ports, expressed in dB. | S 12 | and | S 21 | respectively represent the energy coupling from antenna 1 to antenna 2 and from antenna 2 to antenna 1.

On voit que dans une plage de fréquence autour de 2 GHz, les coefficients de réflexion |S 11| et |S 22| sont tous deux inférieurs à -10 dB, ce qui traduit la bonne adaptation d'impédance du système dans une bande de fréquence commune. En outre, dans cette même bande de fréquence les coefficients de couplage |S 12| et |S 21| sont inférieurs à -30 dB. Le faible niveau de couplage entre les deux antennes permet d'exploiter au mieux la diversité de polarisation.It can be seen that in a frequency range around 2 GHz, the reflection coefficients | S 11 | and | S 22 | are both less than -10 dB, which reflects the good impedance matching of the system in a common frequency band. In addition, in this same frequency band the coupling coefficients | S 12 | and | S 21 | are less than -30 dB. The low level of coupling between the two antennas makes it possible to make the best use of the diversity of polarization.

La Fig. 11 montre les diagrammes de directivité de l'antenne de type fente et de l'antenne de type patch pour un champ électrique polarisé verticalement et un champ électrique polarisé horizontalement, dans un plan de coupe parallèle au plan de masse et équidistant entre celui-ci et le plan contenant le patch métallique 30. On remarque que pour une polarisation donnée du champ électrique, le maximum du diagramme de directivité d'une antenne correspond au minimum du diagramme de directivité de l'autre.The Fig. 11 shows the directivity diagrams of the slot-type antenna and the patch-type antenna for a vertically polarized electric field and a horizontally polarized electric field, in a section plane parallel to and equidistant between the ground plane and the plane containing the metal patch 30. Note that for a given polarization of the electric field, the maximum of the directivity diagram of one antenna corresponds to the minimum of the directivity diagram of the other.

Claims (10)

  1. A receive polarisation diversity multi-antenna system comprising an earth plane (10), a first slot type antenna (20) and at least one second patch-type antenna (30), said first and second antennas sharing the same earth plane (10), the slot of the first antenna being arranged in said earth plane and the patch of the second antenna at least partially overhanging said slot, said first and second antennas having a common operating frequency band, characterised in that:
    - said slot is open on one side over its width and its length is substantially equal to an odd multiple of the quarter of the wavelength guided in the slot, in said operating frequency band and/or
    - the patch is electrically connected to the earth plane and its length is substantially equal to an odd multiple of the quarter of the wavelength guided in the patch, in said operating frequency band,
    the system being configured so that signals respectively received by the first antenna and second antenna are combined to provide said receive polarisation diversity.
  2. The multi-antenna system according to claim 1, characterised in that said first and second antennas have substantially parallel resonance establishing directions.
  3. The multi-antenna system according to claim 2, characterised in that the patch has a first elongate shape along a first axis of symmetry, in that the slot has a second elongate shape along a second axis of symmetry, and in that said first and second axes of symmetry are substantially parallel to each other.
  4. The multi-antenna system according to one of the previous claims, characterised in that said antennas are excited by a direct electric contact and/or by electromagnetic coupling.
  5. The multi-antenna system according to claim 1, characterised in that it comprises a plurality of second patch type antennas having a common operating frequency band with the first antenna, the patches being electrically connected with the earth plane and having lengths substantially equal at odd multiples of the quarter of the wavelength guided in these patches, in said operating frequency band.
  6. The multi-antenna system according to claim 5, characterised in that said first antenna and said second antennas have substantially parallel resonance establishing directions.
  7. The multi-antenna system according to claim 1 or 2, characterised in that said slot is open on one side, the second antenna entirely overhangs and extends at one of its ends beyond said side of said slot, said end of the second antenna being folded back under said earth plane.
  8. The multi-antenna system according to claim 1 or 2, characterised in that said first and second antennas respectively have a first and a second substantially elongate shapes along a longitudinal axis, said first and second shapes having along this axis a small step along a transverse direction.
  9. A mobile terminal comprising an earth plane and at least two multi-antenna systems according to the previous claims, said multi-antenna systems extending along two parallel axes and being disposed head to tail on said earth plane.
  10. The mobile terminal comprising an earth plane and at least two multi-antenna systems according to the previous claims, said multi-antenna systems extending along two orthogonal axes on said earth plane.
EP07803182.0A 2006-09-04 2007-09-03 Polarization diversity multi-antenna system Active EP2059973B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0653562A FR2905526B1 (en) 2006-09-04 2006-09-04 MULTI-ANTENNA SYSTEM WITH POLARIZATION DIVERSITY
PCT/EP2007/059197 WO2008028892A1 (en) 2006-09-04 2007-09-03 Polarization diversity multi-antenna system

Publications (2)

Publication Number Publication Date
EP2059973A1 EP2059973A1 (en) 2009-05-20
EP2059973B1 true EP2059973B1 (en) 2020-12-09

Family

ID=37130952

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07803182.0A Active EP2059973B1 (en) 2006-09-04 2007-09-03 Polarization diversity multi-antenna system

Country Status (4)

Country Link
US (1) US8094082B2 (en)
EP (1) EP2059973B1 (en)
FR (1) FR2905526B1 (en)
WO (1) WO2008028892A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8214003B2 (en) * 2009-03-13 2012-07-03 Pong Research Corporation RF radiation redirection away from portable communication device user
US8779999B2 (en) 2011-09-30 2014-07-15 Google Inc. Antennas for computers with conductive chassis
JP6398653B2 (en) * 2014-11-26 2018-10-03 富士通株式会社 Patch antenna
JP6437942B2 (en) * 2016-02-23 2018-12-12 株式会社Soken Antenna device
TWI732931B (en) * 2016-09-29 2021-07-11 仁寶電腦工業股份有限公司 Antenna structure
KR102402411B1 (en) * 2017-06-28 2022-05-27 삼성전자주식회사 Antenna device and electronic device comprising antenna
KR102608773B1 (en) * 2019-02-14 2023-12-04 삼성전자주식회사 Antenna module and electronic device including the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2211357A (en) * 1987-09-23 1989-06-28 Philips Electronic Associated Integrated millimetre-wave transceiver
US5241321A (en) * 1992-05-15 1993-08-31 Space Systems/Loral, Inc. Dual frequency circularly polarized microwave antenna
GB2302773B (en) * 1995-06-29 1999-12-22 Pyronix Ltd Improvements in or relating to motion detection units
SE511497C2 (en) * 1997-02-25 1999-10-11 Ericsson Telefon Ab L M Device for receiving and transmitting radio signals
US6160512A (en) * 1997-10-20 2000-12-12 Nec Corporation Multi-mode antenna
US6424300B1 (en) * 2000-10-27 2002-07-23 Telefonaktiebolaget L.M. Ericsson Notch antennas and wireless communicators incorporating same
FR2819109A1 (en) * 2001-01-04 2002-07-05 Cit Alcatel MULTI-BAND ANTENNA FOR MOBILE DEVICES
GB2383471A (en) * 2001-12-19 2003-06-25 Harada Ind High-bandwidth multi-band antenna
FI114836B (en) * 2002-09-19 2004-12-31 Filtronic Lk Oy Internal antenna
WO2004102744A1 (en) * 2003-05-14 2004-11-25 Koninklijke Philips Electronics N.V. Improvements in or relating to wireless terminals
US8115686B2 (en) * 2005-07-21 2012-02-14 Fractus, S.A. Handheld device with two antennas, and method of enhancing the isolation between the antennas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2059973A1 (en) 2009-05-20
FR2905526B1 (en) 2010-06-25
WO2008028892A1 (en) 2008-03-13
US20090273528A1 (en) 2009-11-05
FR2905526A1 (en) 2008-03-07
US8094082B2 (en) 2012-01-10

Similar Documents

Publication Publication Date Title
EP2059973B1 (en) Polarization diversity multi-antenna system
EP0108463B1 (en) Radiating element for cross-polarized microwave signals and planar antenna consisting of an array of such elements
EP1407512B1 (en) Antenna
EP1849213B1 (en) Multiband printed dipole antenna
EP1145378B1 (en) Dual-band transmission device and antenna therefor
FR2810164A1 (en) IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS FOR SATELLITE TELECOMMUNICATIONS SYSTEMS
FR2817661A1 (en) DEVICE FOR RECEIVING AND / OR TRANSMITTING MULTI-BEAM SIGNALS
EP1075043A1 (en) Antenna with stacked resonating structures and multiband radiocommunication device using the same
EP3146593B1 (en) Antenna system for reducing the electromagnetic coupling between antennas
FR2761532A1 (en) CAVITY MICRO-TAPE DIPOLAR NETWORK ANTENNA
WO2019034760A1 (en) Patch antenna having two different radiation modes with two separate working frequencies, device using such an antenna
CA2267536A1 (en) Radiocommunication device and dual frequency antenna produced using microstrip technology
EP3843202B1 (en) Horn for ka dual-band satellite antenna with circular polarisation
EP3602689B1 (en) Electromagnetic antenna
EP2643886B1 (en) Planar antenna having a widened bandwidth
EP1225655B1 (en) Dual-band planar antenna and apparatus including such an antenna device
EP1466384B1 (en) Device for receiving and/or emitting electromagnetic waves with radiation diversity
EP1949496B1 (en) Flat antenna system with a direct waveguide access
FR2831734A1 (en) DEVICE FOR RECEIVING AND / OR TRANSMITTING RADIATION DIVERSITY ELECTROMAGNETIC SIGNALS
EP3692598B1 (en) Antenna with partially saturated dispersive ferromagnetic substrate
EP0831550B1 (en) Versatile array antenna
FR3049775B1 (en) ANTENNA V / UHF WITH OMNIDIRECTIONAL RADIATION AND SCANNING A BROADBAND FREQUENCY
EP4167378A1 (en) Insulated radio frequency antenna device
EP3902059A1 (en) Directional broadband antenna with longitudinal transmission
EP1475860A1 (en) Device forming antenna, sensor or electromagnetic probe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090304

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20091015

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602007060832

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01Q0025000000

Ipc: H01Q0001480000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 21/24 20060101ALI20190830BHEP

Ipc: H01Q 9/04 20060101ALI20190830BHEP

Ipc: H01Q 1/38 20060101ALI20190830BHEP

Ipc: H01Q 13/10 20060101ALI20190830BHEP

Ipc: H01Q 1/48 20060101AFI20190830BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191204

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200630

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1344337

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007060832

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1344337

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210309

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210409

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007060832

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210409

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

26N No opposition filed

Effective date: 20210910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210409

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210903

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210903

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070903

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230922

Year of fee payment: 17

Ref country code: DE

Payment date: 20230919

Year of fee payment: 17