EP2059973A1 - Polarization diversity multi-antenna system - Google Patents

Polarization diversity multi-antenna system

Info

Publication number
EP2059973A1
EP2059973A1 EP07803182A EP07803182A EP2059973A1 EP 2059973 A1 EP2059973 A1 EP 2059973A1 EP 07803182 A EP07803182 A EP 07803182A EP 07803182 A EP07803182 A EP 07803182A EP 2059973 A1 EP2059973 A1 EP 2059973A1
Authority
EP
European Patent Office
Prior art keywords
antenna
slot
patch
ground plane
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07803182A
Other languages
German (de)
French (fr)
Other versions
EP2059973B1 (en
Inventor
Lionel Rudant
Christophe Delaveaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2059973A1 publication Critical patent/EP2059973A1/en
Application granted granted Critical
Publication of EP2059973B1 publication Critical patent/EP2059973B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/106Microstrip slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Definitions

  • the present invention relates to the field of antennas, in particular that of polarization diversity antennas for telecommunication terminals.
  • transmission and / or reception diversity techniques At the base station, it is possible to use, for example, antennas sufficiently distant from each other (a distance greater than at least half the wavelength at the operating frequency), an antenna array for to form beams pointing in distinct angular directions or even antennas emitting in different polarizations: one speaks according to the case of spatial diversity, of angular diversity or diversity of polarization. Similarly, the same diversity techniques are in principle applicable to the mobile terminal.
  • Either antennas sufficiently distant from each other will be used so that the received signals have undergone uncorrelated propagation conditions, antennas having reception patterns pointing in different angular directions or antennas distinct polarizations, for example according to linear polarizations orthogonal to each other.
  • This system consists of a patch antenna (also called plated antenna) and a dipole antenna.
  • the patch is pierced with a hole through which the dipole antenna printed on a substrate passes.
  • This system is not flat and does not lend itself easily to integration into a mobile terminal.
  • a polarization diversity multi-antenna system for a base station has been proposed in the article by N. Kuga et al. entitled "A composite patch-slot antenna for VH-polarization diversity base stations "published in Proc. of Asia-Pacific Microwave Conference, Dec. 2000. It comprises two intertwined antenna arrays: a first network consisting of horizontally polarized patch elements and a second array of vertically polarized patch elements. The elements of the first network are excited by slots cut in the ground plane while the elements of the second network are excited by microstrip lines.
  • This multi-antenna system is also not compatible with integration into a mobile terminal.
  • the object of the present invention is to overcome the aforementioned drawbacks, that is to say to propose a multi-antenna system diversity, compact and easily integrated in a mobile terminal while having only a weak coupling between antennas.
  • the present invention is defined by a polarization diversity multi-antenna system comprising a first slot antenna and a second patch antenna, said first and second antennas sharing the same ground plane, the slot of the first antenna being arranged in said ground plane and the patch of the second antenna at least partially overhanging said slot, said first and second antennas having a common operating frequency band, wherein: said slot is open on one side over its width and its length is substantially equal to one an odd multiple of a quarter of the wavelength guided in the slot, in said operating frequency band and / or
  • the patch is electrically connected to the ground plane and its length is substantially equal to an odd multiple of a quarter of the wavelength guided in the patch, in said operating frequency band.
  • FIG. 1 schematically shows a multi-antenna system according to a first embodiment of the invention
  • FIG. 2 schematically shows a multi-antenna system according to a second embodiment of the invention
  • FIG. 3 schematically shows a multi-antenna system according to a third embodiment of the invention
  • FIG. 4 schematically shows a multi-antenna system according to a fourth embodiment of the invention
  • FIG. 5 schematically shows a multi-antenna system according to a fifth embodiment of the invention
  • FIG. 6 schematically shows a multi-antenna system according to a sixth embodiment of the invention
  • FIG. 1 schematically shows a multi-antenna system according to a first embodiment of the invention
  • FIG. 2 schematically shows a multi-antenna system according to a second embodiment of the invention
  • FIG. 3 schematically shows a multi-antenna system according to a third embodiment of the invention
  • FIG. 4 schematically shows a multi-antenna system according to a fourth
  • FIG. 7 schematically shows a multi-antenna system according to a seventh embodiment of the invention
  • FIG. 8 shows a first example of arrangement of multi-antenna systems according to the invention on the ground plane of a mobile terminal
  • FIG. 9 shows a second example of arrangement of multi-antenna systems according to the invention on the ground plane of a mobile terminal
  • FIG. 10 represents the reflection and coupling coefficients as a function of the operating frequency of a multi-antenna system according to the invention
  • FIG. 11 shows the directivity diagrams as a function of the polarization of the antennas constituting a multi-antenna system according to the invention.
  • the idea underlying the invention consists in associating on the same ground plane a patch-type antenna and a slot-type antenna, the patch overhanging at least partially the slot.
  • the geometry and orientation of the patch and slot are chosen so that the patch antenna and the antenna each slot type can emit and / or receive in a rectilinear polarization, the polarization directions associated with the two antennas being orthogonal to each other.
  • receive mode the signals respectively received by the patch antenna and the slot antenna can be combined to provide reception diversity.
  • the geometry and the orientation of the patch and the slot are chosen so that the respective directions of establishment of the resonance in the patch and the slot are substantially parallel.
  • Classically it is known that for a patch the distribution of the electric field in the direction of establishment of the resonance is sinusoidal and has two maxima at each end of the patch.
  • the electric field distribution in the direction of resonance establishment is sinusoidal and has two zeros at each end of the slot. In either case, the number of periods of the sinusoidal distribution depends on the order of the resonance.
  • the electromagnetic field generated by the patch is conventionally denoted by TM n where n gives the order of the resonance in the resonance direction x, the electric field being directed along this direction.
  • the electromagnetic field generated by the slot is conventionally denoted by TE n 0 where n 'gives the order of the resonance in the resonance direction x', the electric field being orthogonal to x 'and parallel to the plane of the slot.
  • Fig. 1 schematically illustrates a first embodiment of the multi-antenna system according to the invention.
  • A a perspective view and (B) a vertical section of the system in its median plane.
  • This includes a metal ground plane common to the patch-type antenna and the slot-type antenna.
  • the ground plane is typically made by a metal plate or a metal layer deposited on a dielectric substrate 15.
  • a slot 20 is provided in the ground plane and a metal patch 30 is arranged to at least partially overhang the slot.
  • the patch may be made either by a metal plate or by deposition of metal layer (s) on a dielectric substrate. The latter can be the same as that of the ground plane. In this case, the patch is deposited on the face of the substrate opposite to that on which the ground plane is deposited.
  • the slot has an elongated trapezoidal shape in a longitudinal direction. It can, however, be of any form symmetrical, for example rectangular or elliptical, or not symmetrical.
  • the metal patch 30 has an elongated elliptical shape in a longitudinal direction. It may, however, be of any symmetrical shape, for example rectangular or trapezoidal, or even unsymmetrical.
  • FF 'and PP' were noted respectively the resonance directions of the slot and the patch. As we have seen above, these two axes are chosen substantially parallel. These axes coincide here respectively with the axes of longitudinal symmetry of the slot and the patch.
  • the axes FF 'and PP' may be offset laterally relative to each other in a plane parallel to the ground plane or contained in the same plane orthogonal to the ground plane in which case the orthogonal projection of the axis PP 'on the ground plane advantageously coincides with the axis FF'.
  • the two axes FF 'and PP' belong to the median plane of the system, orthogonal to the ground plane.
  • the electric field generated by the slot-type antenna has a rectilinear polarization orthogonal to the median plane.
  • the electric field generated by the patch type antenna has a linear polarization parallel to the axis PP '.
  • the signal received by the slot-type antenna is maximum when the electric field has a rectilinear polarization orthogonal to the median plane and the signal received by the patch-type antenna is maximum when the electric field has a polarization parallel to the axis PP '. Since the patch at least partially overhangs the slot, the orthogonal projection of the patch on the metal plane has a nonempty intersection with the latter. According to an alternative embodiment, the orthogonal projection of the patch on the ground plane completely includes the shape of the slot.
  • the slot-type and patch type antennas are thus co-located and the multi-antenna system is particularly compact.
  • the slot-type antenna can be excited by means of a coaxial cable or a coplanar line in a manner known to those skilled in the art.
  • the slot may be excited by coupling with a microstrip line printed on the substrate on the opposite side to the ground plane.
  • the patch antenna can be excited by means of a metal probe 35 as shown in FIG. 1 or a coaxial cable whose core is connected to a point of the patch, the mass being connected to the ground plane.
  • the patch may be excited by coupling with a microstrip line printed on the face of a substrate possibly dedicated to excitation.
  • patch-type and slot-type antennas can be excited by direct electrical contact and / or electromagnetic coupling.
  • the length of the slot along the axis FF ' is chosen substantially equal to an integer multiple of the guided half-wavelength, associated with the operating frequency.
  • the length of the patch along the axis PP ' is chosen substantially equal to a multiple integer of the guided half-wavelength, associated with the operating frequency.
  • the guided wavelength differs slightly from the free propagation wavelength due to the presence of the edge fields. It equals twice the fundamental resonance length in the guide.
  • An analytical expression of the guided wavelength for a slot antenna can be found, for example, in the article by R. Garg et al. entitled “Expressions for wavelength and impedance of a slotline" published in IEEE Trans. on Microwave Theory, August 1976, page 532.
  • the operating frequencies of the slot and patch antennas are advantageously chosen to be identical. More generally, as will be seen below, it is possible to use the slot antenna and the patch antenna in the same operating frequency band without significant coupling between the two antennas.
  • the operating frequency will be of the order of 2 GHz and the slot and patch lengths of the order of 6 to 7.5 cm. These lengths are compatible with the dimensions of a mobile terminal.
  • a half-slot instead of a whole slot. More specifically, the slot is open on one side 21 over its entire width.
  • This embodiment is shown in FIG. 2.
  • the half-slot 20 is in the form of a notch at the periphery of the ground plane 10.
  • the length of the notch along the axis FF ' is equal to an integer multiple of a quarter of the guided wavelength at the operating frequency.
  • a metal return 37 to the ground plane is provided at the edge of the patch.
  • This metal return may be wired or, as in the embodiment shown in FIG. 4, realized by means of a metal plate 37 substantially orthogonal to the ground plane.
  • This plate then makes the electrical junction between the edge of the patch, orthogonal to the longitudinal axis PP ', located on the side opposite the slot, with the ground plane.
  • the length of the patch along the axis PP ' is then advantageously chosen equal to an integer multiple of a quarter of the wavelength guided (in the patch), associated with the operating frequency.
  • the slot 20 remains equal in length to an integer multiple of the guided half-wavelength (in the slot) as in the first embodiment.
  • Fig. 4 schematically illustrates a fourth particularly advantageous embodiment of the multi-antenna system according to the invention.
  • the slot 20 and the patch 30 have respective lengths substantially equal to integer multiples of the quarter of the guided wavelengths (respectively in the slot and in the patch), associated with the operating frequency.
  • the slot opens out at the periphery of the ground plane as in the second embodiment and a metal return 37 is provided in the form of a plate at the edge of the patch, as already described.
  • the metal return may be wired, as shown in FIG. 3.
  • the slit and patch lengths will be of the order of 3 cm and the height of the plate 37 serving as a return to ground is of the order of 1 cm.
  • capacitors, inductances, .. discrete or distributed as known to those skilled in the art.
  • Fig. 5 schematically represents the section of a multi-antenna system according to a fifth mode of embodiment of the invention, wherein there is provided a plurality of patch antennas 31, 32 of different lengths overlooking the slot.
  • the return to ground 37 is advantageously common but separate ground returns can also be envisaged.
  • the mass return can be wired or plate type as already seen above.
  • the excitation probe 35 is advantageously common to the different patch antennas, but separate probes can also be envisaged.
  • the superimposed patches correspond to the same resonance frequency.
  • the lengths of these patches are substantially equal to odd multiples of a quarter of the wavelength guided in these patches.
  • the operating frequency of the patch is the same as that of the half-slot antenna 20. The advantage of such an assembly is to obtain a particularly compact high gain system.
  • Fig. 6 schematically represents the section of a multi-antenna system according to a sixth embodiment of the invention, in which the patch antenna 30 is folded under the ground plane.
  • the resonance frequency is defined by the total length of the "unfolded" patch. This provides a more compact arrangement than those previously discussed. If necessary, several superimposed patch antennas can be folded under the ground plane.
  • Fig. 7 schematically shows a multi-antenna system according to a seventh embodiment of the invention.
  • a slight transverse recess is understood to mean a recess of substantially smaller amplitude than the spatial extension of the system in the longitudinal direction.
  • Each of the two antennas comprises a first and a second portion, oriented in the same longitudinal direction, and an intermediate portion joining the first and second portions, oriented in a transverse direction.
  • the transverse recess of the patch and slot antennas allows each of them to receive in two distinct polarization modes.
  • the multi-antenna systems according to the invention can be associated so as to constitute a composite system with higher gain and / or order of diversity.
  • Figs. 8 and 9 show two examples of arrangement of such multi-antenna systems on the ground plane of a mobile terminal.
  • the two multi-antenna systems 51 and 52 are arranged upside down.
  • the respective resonance establishment axes of the two antenna systems are substantially parallel.
  • the resonance establishment directions of the two systems are chosen substantially orthogonal.
  • the use of the systems 51 and 52 makes it possible to obtain both a spatial diversity, due to the spacing between antennas and a diversity of polarization.
  • Fig. 10 gives the modules of the coefficients of the matrix S as a function of the operating frequency for a multi-antenna system according to the fourth embodiment of the invention, with a slot and a quarter wave patch.
  • S 22 represent respectively the proportion of energy reflected on the input port of antenna 1 (slot antenna) and the input port of antenna 2 (patch antenna), otherwise says the reflection coefficients on these input ports, expressed in dB.
  • S 12 and S 21 respectively represent the energy coupling of the antenna 1 to the antenna 2 and of the antenna 2 to the antenna 1.
  • Fig. 11 shows the directivity diagrams of the slot-like antenna and the patch-type antenna for a vertically polarized electric field and a horizontally polarized electric field, in a section plane parallel to and equidistant from the ground plane. and the plane containing the metal patch 30. It should be noted that for a given polarization of the electric field, the maximum of the directivity diagram of one antenna corresponds to the minimum of the directivity diagram of the other.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

The invention relates to a polarization diversity multi-antenna system comprising a first, slot antenna (20) and at least one second, patch antenna (30), said first and second antennas sharing the same ground plane (10), the slot of the first antenna lying in said ground plane and the patch of the second antenna being at least partly plumb with said slot.

Description

SYSTEME MULTI-ANTENNE A DIVERSITE DE POLARISATION MULTI-ANTENNA SYSTEM WITH POLARIZATION DIVERSITY
DESCRIPTIONDESCRIPTION
DOMAINE TECHNIQUE La présente invention concerne le domaine des antennes, notamment celui des antennes à diversité de polarisation pour terminaux de télécommunication.TECHNICAL FIELD The present invention relates to the field of antennas, in particular that of polarization diversity antennas for telecommunication terminals.
ÉTAT DE LA TECHNIQUE ANTÉRIEURESTATE OF THE PRIOR ART
Parmi les nombreuses mesures pour améliorer le rapport signal à bruit dans un système de télécommunication mobile, il est connu de recourir à des techniques de diversité en émission et/ou en réception. Au niveau de la station de base, on pourra utiliser par exemple des antennes suffisamment éloignées les unes des autres (d'une distance supérieure au moins à la demi-longueur d'onde à la fréquence de fonctionnement), un réseau d'antennes pour former des faisceaux pointant dans des directions angulaires distinctes ou encore des antennes émettant selon des polarisations distinctes : on parle selon le cas de diversité spatiale, de diversité angulaire ou de diversité de polarisation. De manière similaire, les mêmes techniques de diversité sont en principe applicables au terminal mobile. On utilisera soit des antennes suffisamment éloignées les unes des autres de sorte que les signaux reçus aient subi des conditions de propagation non corrélées, des antennes présentant des diagrammes de réception pointant dans des directions angulaires distinctes ou encore des antennes de polarisations distinctes, par exemple selon des polarisations linéaires orthogonales entre elles.Among the many measures to improve the signal-to-noise ratio in a mobile telecommunication system, it is known to use transmission and / or reception diversity techniques. At the base station, it is possible to use, for example, antennas sufficiently distant from each other (a distance greater than at least half the wavelength at the operating frequency), an antenna array for to form beams pointing in distinct angular directions or even antennas emitting in different polarizations: one speaks according to the case of spatial diversity, of angular diversity or diversity of polarization. Similarly, the same diversity techniques are in principle applicable to the mobile terminal. Either antennas sufficiently distant from each other will be used so that the received signals have undergone uncorrelated propagation conditions, antennas having reception patterns pointing in different angular directions or antennas distinct polarizations, for example according to linear polarizations orthogonal to each other.
Les terminaux mobiles se prêtent malheureusement mal à la mise en œuvre des techniques de diversité. En effet, les faibles dimensions des terminaux mobiles ne permettent généralement pas de séparer suffisamment les antennes de réception aux fréquences de fonctionnement couramment utilisées (80 MHz - 6 GHz) . Il en résulte que les signaux reçus par les différentes antennes sont corrélés en raison de conditions de propagation voisines ou en raison du couplage entre antennes. Les signaux reçus peuvent alors présenter un évanouissement simultané et le terminal mobile ne bénéficie pas pleinement des avantages de la diversité. Un système multi-antenne à diversité de polarisation pour terminal mobile a été proposé dans l'article de N. Michishita et al. intitulé « A polarization diversity antenna by printed dipole and a patch with a hole » publié dans Proc. of IEEE Antennas and Propagation Society International Symposium, vol. No. 3, Mai 2001, pages 368-371. Ce système est constitué d'une antenne patch (dite aussi antenne plaquée) et d'une antenne dipôle. Le patch est percé d'un trou à travers lequel passe l'antenne dipôle imprimée sur un substrat. Ce système n'est pas plan et ne se prête pas aisément à une intégration dans un terminal mobile.Mobile terminals unfortunately lend themselves poorly to the implementation of diversity techniques. In fact, the small dimensions of the mobile terminals do not generally make it possible to sufficiently separate the receiving antennas at the operating frequencies currently used (80 MHz - 6 GHz). As a result, the signals received by the different antennas are correlated due to neighboring propagation conditions or because of the coupling between antennas. The received signals can then have simultaneous fading and the mobile terminal does not fully enjoy the benefits of diversity. A multi-antenna polarization diversity system for a mobile terminal has been proposed in the article by N. Michishita et al. entitled "A polarization diversity antenna by printed dipole and a patch with a hole" published in Proc. of IEEE Antennas and Propagation Society International Symposium, vol. No. 3, May 2001, pages 368-371. This system consists of a patch antenna (also called plated antenna) and a dipole antenna. The patch is pierced with a hole through which the dipole antenna printed on a substrate passes. This system is not flat and does not lend itself easily to integration into a mobile terminal.
Un système multi-antenne à diversité de polarisation pour station de base a été proposé dans l'article de N. Kuga et al. intitulé « A patch-slot composite antenna for VH-polarization diversity base stations » publié dans Proc. of Asia-Pacific Microwave Conférence, Dec. 2000. Il comprend deux réseaux d' antennes entrelacés : un premier réseau constitué d'éléments de type patch à polarisation horizontale et un second réseau constitué d'éléments de type patch à polarisation verticale. Les éléments du premier réseau sont excités par des fentes découpées dans le plan de masse alors que les éléments du second réseau sont excités par des lignes microruban. Ce système multi- antenne n'est pas non plus compatible avec une intégration dans un terminal mobile.A polarization diversity multi-antenna system for a base station has been proposed in the article by N. Kuga et al. entitled "A composite patch-slot antenna for VH-polarization diversity base stations "published in Proc. of Asia-Pacific Microwave Conference, Dec. 2000. It comprises two intertwined antenna arrays: a first network consisting of horizontally polarized patch elements and a second array of vertically polarized patch elements. The elements of the first network are excited by slots cut in the ground plane while the elements of the second network are excited by microstrip lines. This multi-antenna system is also not compatible with integration into a mobile terminal.
Le but de la présente invention est de remédier aux inconvénients précités, c'est-à-dire de proposer un système multi-antenne à diversité, compact et aisément intégrable dans un terminal mobile tout en ne présentant qu'un faible couplage entre antennes.The object of the present invention is to overcome the aforementioned drawbacks, that is to say to propose a multi-antenna system diversity, compact and easily integrated in a mobile terminal while having only a weak coupling between antennas.
EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION
La présente invention est définie par un système multi-antenne à diversité de polarisation comprenant une première antenne de type fente et une seconde antenne de type patch, lesdites première et seconde antennes partageant le même plan de masse, la fente de la première antenne étant aménagée dans ledit plan de masse et le patch de la seconde antenne surplombant au moins partiellement ladite fente, lesdites première et seconde antennes présentant une bande de fréquence de fonctionnement commune, dans lequel : - ladite fente est ouverte d'un côté sur sa largeur et sa longueur est sensiblement égale à un multiple impair du quart de la longueur d' onde guidée dans la fente, dans ladite bande de fréquence de fonctionnement et/ouThe present invention is defined by a polarization diversity multi-antenna system comprising a first slot antenna and a second patch antenna, said first and second antennas sharing the same ground plane, the slot of the first antenna being arranged in said ground plane and the patch of the second antenna at least partially overhanging said slot, said first and second antennas having a common operating frequency band, wherein: said slot is open on one side over its width and its length is substantially equal to one an odd multiple of a quarter of the wavelength guided in the slot, in said operating frequency band and / or
- le patch est relié électriquement au plan de masse et sa longueur est sensiblement égale à un multiple impair du quart de la longueur d' onde guidée dans le patch, dans ladite bande de fréquence de fonctionnement .- The patch is electrically connected to the ground plane and its length is substantially equal to an odd multiple of a quarter of the wavelength guided in the patch, in said operating frequency band.
Des modes particuliers de réalisation de l'invention sont définis dans les revendications dépendantes .Particular embodiments of the invention are defined in the dependent claims.
BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture d'un mode de réalisation préférentiel de l'invention fait en référence aux figures jointes parmi lesquelles : la Fig. 1 représente schématiquement un système multi-antenne selon un premier mode de réalisation de l'invention ; la Fig. 2 représente schématiquement un système multi-antenne selon un deuxième mode de réalisation de 1' invention ; la Fig. 3 représente schématiquement un système multi-antenne selon un troisième mode de réalisation de 1' invention ; la Fig. 4 représente schématiquement un système multi-antenne selon un quatrième mode de réalisation de 1' invention ; la Fig. 5 représente schématiquement un système multi-antenne selon un cinquième mode de réalisation de 1' invention ; la Fig. 6 représente schématiquement un système multi-antenne selon un sixième mode de réalisation de 1' invention ; la Fig. 7 représente schématiquement un système multi-antenne selon un septième mode de réalisation de 1' invention ; la Fig. 8 représente un premier exemple de disposition de systèmes multi-antenne selon l'invention sur le plan de masse d'un terminal mobile ; la Fig. 9 représente un second exemple de disposition de systèmes multi-antenne selon l'invention sur le plan de masse d'un terminal mobile ; la Fig. 10 représente les coefficients de réflexion et de couplage en fonction de la fréquence de fonctionnement d'un système multi-antenne selon 1' invention ; la Fig. 11 représente les diagrammes de directivité en fonction de la polarisation des antennes constitutives d'un système multi-antenne selon 1' invention .Other features and advantages of the invention will appear on reading a preferred embodiment of the invention with reference to the attached figures in which: FIG. 1 schematically shows a multi-antenna system according to a first embodiment of the invention; FIG. 2 schematically shows a multi-antenna system according to a second embodiment of the invention; FIG. 3 schematically shows a multi-antenna system according to a third embodiment of the invention; FIG. 4 schematically shows a multi-antenna system according to a fourth embodiment of the invention; FIG. 5 schematically shows a multi-antenna system according to a fifth embodiment of the invention; FIG. 6 schematically shows a multi-antenna system according to a sixth embodiment of the invention; FIG. 7 schematically shows a multi-antenna system according to a seventh embodiment of the invention; FIG. 8 shows a first example of arrangement of multi-antenna systems according to the invention on the ground plane of a mobile terminal; FIG. 9 shows a second example of arrangement of multi-antenna systems according to the invention on the ground plane of a mobile terminal; FIG. 10 represents the reflection and coupling coefficients as a function of the operating frequency of a multi-antenna system according to the invention; FIG. 11 shows the directivity diagrams as a function of the polarization of the antennas constituting a multi-antenna system according to the invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
L'idée à la base de l'invention consiste à associer sur un même plan de masse une antenne de type patch et une antenne de type fente, le patch surplombant au moins partiellement la fente. La géométrie et l'orientation du patch et de la fente sont choisies de manière à ce que l'antenne de type patch et l'antenne de type fente puissent chacune émettre et/ou recevoir selon une polarisation rectiligne, les directions de polarisation associées aux deux antennes étant orthogonales entre elles. En mode réception, les signaux respectivement reçus par l'antenne patch et l'antenne fente peuvent être combinés de manière à fournir une diversité de réception.The idea underlying the invention consists in associating on the same ground plane a patch-type antenna and a slot-type antenna, the patch overhanging at least partially the slot. The geometry and orientation of the patch and slot are chosen so that the patch antenna and the antenna each slot type can emit and / or receive in a rectilinear polarization, the polarization directions associated with the two antennas being orthogonal to each other. In receive mode, the signals respectively received by the patch antenna and the slot antenna can be combined to provide reception diversity.
Plus précisément, la géométrie et l'orientation du patch et de la fente sont choisies de manière à ce que les directions respectives d'établissement de la résonance dans le patch et la fente soient sensiblement parallèles. Classiquement, on sait que pour un patch la distribution du champ électrique selon la direction d'établissement de la résonance est sinusoïdale et présente deux maxima à chaque extrémité du patch. De manière similaire, pour une fente, la distribution de champ électrique selon la direction d'établissement de la résonance est sinusoïdale et présente deux zéros à chaque extrémité de la fente. Dans un cas comme dans l'autre, le nombre de périodes de la distribution sinusoïdale dépend de l'ordre de la résonance. Le champ électromagnétique généré par le patch est noté conventionnellement TMno où n donne l'ordre de la résonance selon la direction de résonance x, le champ électrique étant dirigé selon cette direction. De même, le champ électromagnétique généré par la fente est noté conventionnellement TEnO où n' donne l'ordre de la résonance selon la direction de résonance x' , le champ électrique étant orthogonal à x' et parallèle au plan de la fente. De manière surprenante, il a été constaté que la co-localisation de l'antenne de type fente et de l'antenne de type patch selon l'invention ne modifiait pas de manière significative les caractéristiques des deux antennes prises isolément. En particulier le niveau couplage entre les antennes est remarquablement faible. En outre, l'adaptation d'impédance peut être réalisée de manière indépendante pour l'une et l'autre antenne dans une bande de fréquence de fonctionnement commune.More precisely, the geometry and the orientation of the patch and the slot are chosen so that the respective directions of establishment of the resonance in the patch and the slot are substantially parallel. Classically, it is known that for a patch the distribution of the electric field in the direction of establishment of the resonance is sinusoidal and has two maxima at each end of the patch. Similarly, for a slot, the electric field distribution in the direction of resonance establishment is sinusoidal and has two zeros at each end of the slot. In either case, the number of periods of the sinusoidal distribution depends on the order of the resonance. The electromagnetic field generated by the patch is conventionally denoted by TM n where n gives the order of the resonance in the resonance direction x, the electric field being directed along this direction. Likewise, the electromagnetic field generated by the slot is conventionally denoted by TE n 0 where n 'gives the order of the resonance in the resonance direction x', the electric field being orthogonal to x 'and parallel to the plane of the slot. Surprisingly, it has been found that the co-location of the slot-type antenna and the patch-type antenna according to the invention does not significantly modify the characteristics of the two antennas taken in isolation. In particular the coupling level between the antennas is remarkably low. In addition, the impedance matching can be performed independently for both antennas in a common operating frequency band.
La Fig. 1 illustre de manière schématique un premier mode de réalisation du système multi-antenne selon l'invention. On a représenté en (A) une vue en perspective et en (B) une coupe verticale du système dans son plan médian. Celui-ci comprend un plan de masse métallique 10 commun à l'antenne de type patch et l'antenne de type fente. Le plan de masse est réalisé typiquement par une plaque métallique ou par une couche métallique déposée sur un substrat diélectrique 15. Une fente 20 est aménagée dans le plan de masse et un patch métallique 30 est disposé de manière à surplomber au moins partiellement la fente. Le patch peut être réalisé soit par une plaque métallique soit par un dépôt de couche (s) métallique (s) sur un substrat diélectrique. Ce dernier peut être le même que celui du plan de masse. Dans ce cas, le patch est déposé sur la face du substrat opposée à celle sur laquelle est déposé le plan de masse.Fig. 1 schematically illustrates a first embodiment of the multi-antenna system according to the invention. There is shown in (A) a perspective view and (B) a vertical section of the system in its median plane. This includes a metal ground plane common to the patch-type antenna and the slot-type antenna. The ground plane is typically made by a metal plate or a metal layer deposited on a dielectric substrate 15. A slot 20 is provided in the ground plane and a metal patch 30 is arranged to at least partially overhang the slot. The patch may be made either by a metal plate or by deposition of metal layer (s) on a dielectric substrate. The latter can be the same as that of the ground plane. In this case, the patch is deposited on the face of the substrate opposite to that on which the ground plane is deposited.
Préférentiellement, la fente présente une forme trapézoïdale allongée selon une direction longitudinale. Elle peut toutefois être de toute forme symétrique, par exemple rectangulaire ou elliptique, voire non symétrique. De même, le patch métallique 30 présente une forme elliptique allongée selon une direction longitudinale. Il peut toutefois être de toute forme symétrique, par exemple rectangulaire ou trapézoïdale, voire non symétrique.Preferably, the slot has an elongated trapezoidal shape in a longitudinal direction. It can, however, be of any form symmetrical, for example rectangular or elliptical, or not symmetrical. Similarly, the metal patch 30 has an elongated elliptical shape in a longitudinal direction. It may, however, be of any symmetrical shape, for example rectangular or trapezoidal, or even unsymmetrical.
On a noté FF' et PP' respectivement les directions de résonance de la fente et du patch. Comme on l'a vu plus haut, ces deux axes sont choisis sensiblement parallèles. Ces axes coïncident ici respectivement avec les axes de symétrie longitudinale de la fente et du patch.FF 'and PP' were noted respectively the resonance directions of the slot and the patch. As we have seen above, these two axes are chosen substantially parallel. These axes coincide here respectively with the axes of longitudinal symmetry of the slot and the patch.
Les axes FF' et PP' peuvent être décalés latéralement l'un par rapport à l'autre dans un plan parallèle au plan de masse ou bien contenus dans un même plan orthogonal au plan de masse auquel cas la projection orthogonale de l'axe PP' sur le plan de masse coïncide avantageusement avec l'axe FF'. En Fig. 1, les deux axes FF' et PP' appartiennent au plan médian du système, orthogonal au plan de masse.The axes FF 'and PP' may be offset laterally relative to each other in a plane parallel to the ground plane or contained in the same plane orthogonal to the ground plane in which case the orthogonal projection of the axis PP 'on the ground plane advantageously coincides with the axis FF'. In FIG. 1, the two axes FF 'and PP' belong to the median plane of the system, orthogonal to the ground plane.
Le champ électrique généré par l'antenne de type fente possède une polarisation rectiligne orthogonale au plan médian. En revanche, le champ électrique généré par l'antenne de type patch possède une polarisation rectiligne parallèle à l'axe PP' . De manière réciproque, le signal reçu par l'antenne de type fente est maximal lorsque le champ électrique a une polarisation rectiligne orthogonale au plan médian et le signal reçu par l'antenne de type patch est maximal lorsque le champ électrique a une polarisation parallèle à l'axe PP' . Etant donné que le patch surplombe au moins partiellement la fente, la projection orthogonale du patch sur le plan métallique présente une intersection non vide avec cette dernière. Selon une variante de réalisation, la projection orthogonale du patch sur le plan de masse inclut entièrement la forme de la fente. Les antennes de type fente et de type patch sont ainsi co-localisées et le système multi-antenne est particulièrement compact. L'antenne de type fente peut être excitée au moyen d'un câble coaxial ou d'une ligne coplanaire de manière connue de l'homme du métier. Alternativement, la fente peut être excitée par couplage avec une ligne microruban imprimée sur le substrat du côté opposé au plan de masse.The electric field generated by the slot-type antenna has a rectilinear polarization orthogonal to the median plane. On the other hand, the electric field generated by the patch type antenna has a linear polarization parallel to the axis PP '. Conversely, the signal received by the slot-type antenna is maximum when the electric field has a rectilinear polarization orthogonal to the median plane and the signal received by the patch-type antenna is maximum when the electric field has a polarization parallel to the axis PP '. Since the patch at least partially overhangs the slot, the orthogonal projection of the patch on the metal plane has a nonempty intersection with the latter. According to an alternative embodiment, the orthogonal projection of the patch on the ground plane completely includes the shape of the slot. The slot-type and patch type antennas are thus co-located and the multi-antenna system is particularly compact. The slot-type antenna can be excited by means of a coaxial cable or a coplanar line in a manner known to those skilled in the art. Alternatively, the slot may be excited by coupling with a microstrip line printed on the substrate on the opposite side to the ground plane.
L'antenne de type patch peut être excitée au moyen d'une sonde métallique 35 comme représenté en Fig. 1 ou un câble coaxial dont l'âme est reliée en un point du patch, la masse étant reliée au plan de masse. Alternativement, le patch peut être excité par couplage avec une ligne microruban imprimée sur la face d'un substrat éventuellement dédié à l'excitation.The patch antenna can be excited by means of a metal probe 35 as shown in FIG. 1 or a coaxial cable whose core is connected to a point of the patch, the mass being connected to the ground plane. Alternatively, the patch may be excited by coupling with a microstrip line printed on the face of a substrate possibly dedicated to excitation.
De manière plus générale, les antennes de type patch et de type fente peuvent être excitées par un contact électrique direct et/ou par couplage électromagnétique .More generally, patch-type and slot-type antennas can be excited by direct electrical contact and / or electromagnetic coupling.
La longueur de la fente selon l'axe FF' est choisie sensiblement égale à un multiple entier de la demi- longueur d'onde guidée, associée à la fréquence de fonctionnement. De même, la longueur du patch selon l'axe PP' est choisie sensiblement égale à un multiple entier de la demi-longueur d'onde guidée, associée à la fréquence de fonctionnement. On rappelle que la longueur d'onde guidée diffère légèrement de la longueur d'onde en propagation libre du fait de la présence des champs de bord. Elle égale à deux fois la longueur de résonance fondamentale dans le guide. On trouvera une expression analytique de la longueur d' onde guidée pour une antenne fente par exemple dans l'article de R. Garg et al. intitulé « Expressions for wavelength and impédance of a slotline » paru dans IEEE Trans . on Microwave Theory, Août 1976, page 532. De même, on peut généralement approximer la longueur d'onde guidée /L dans un patch par /L ≈ 0.98/1 où λ est la longueur d'onde en propagation libre dans le milieu constitutif du guide (air ou diélectrique) .The length of the slot along the axis FF 'is chosen substantially equal to an integer multiple of the guided half-wavelength, associated with the operating frequency. Similarly, the length of the patch along the axis PP 'is chosen substantially equal to a multiple integer of the guided half-wavelength, associated with the operating frequency. It is recalled that the guided wavelength differs slightly from the free propagation wavelength due to the presence of the edge fields. It equals twice the fundamental resonance length in the guide. An analytical expression of the guided wavelength for a slot antenna can be found, for example, in the article by R. Garg et al. entitled "Expressions for wavelength and impedance of a slotline" published in IEEE Trans. on Microwave Theory, August 1976, page 532. Similarly, one can generally approximate the guided wavelength / L in a patch by / L ≈ 0.98 / 1 where λ is the free propagation wavelength in the constitutive medium of the guide (air or dielectric).
Les fréquences de fonctionnement des antennes fente et patch sont avantageusement choisies identiques. De manière plus générale, comme on le verra plus loin, il est possible d'utiliser l'antenne fente et l'antenne patch dans une même bande de fréquence de fonctionnement sans couplage significatif entre les deux antennes. Typiquement, pour un système destiné à être utilisé dans un terminal UMTS (Universal Mobile Télécommunication System) , la fréquence de fonctionnement sera de l'ordre de 2 GHz et les longueurs de fente et de patch de l'ordre de 6 à 7,5 cm. Ces longueurs sont compatibles avec les dimensions d'un terminal mobile.The operating frequencies of the slot and patch antennas are advantageously chosen to be identical. More generally, as will be seen below, it is possible to use the slot antenna and the patch antenna in the same operating frequency band without significant coupling between the two antennas. Typically, for a system intended to be used in a Universal Mobile Telecommunications System (UMTS) terminal, the operating frequency will be of the order of 2 GHz and the slot and patch lengths of the order of 6 to 7.5 cm. These lengths are compatible with the dimensions of a mobile terminal.
Afin de réduire davantage les dimensions du système, il est proposé, selon un second mode de réalisation, d'utiliser une demi-fente au lieu d'une fente entière. Plus précisément, la fente est ouverte d'un côté 21 sur toute sa largeur. Ce mode de réalisation est représenté en Fig. 2. Sur cette figure, on a supposé pour les besoins de l'illustration, que la fente totale était un rectangle et que le patch 30 était également rectangulaire mais d'autres formes peuvent être envisagées, comme précédemment indiqué. La demi-fente 20 se présente sous la forme d'une encoche à la périphérie du plan de masse 10. La longueur de l'encoche selon l'axe FF' est égale à un multiple entier du quart de la longueur d' onde guidée à la fréquence de fonctionnement.In order to further reduce the dimensions of the system, it is proposed, according to a second embodiment, to use a half-slot instead of a whole slot. More specifically, the slot is open on one side 21 over its entire width. This embodiment is shown in FIG. 2. In this figure, it has been assumed for purposes of illustration, that the total slot was a rectangle and that the patch 30 was also rectangular but other forms can be envisaged, as previously indicated. The half-slot 20 is in the form of a notch at the periphery of the ground plane 10. The length of the notch along the axis FF 'is equal to an integer multiple of a quarter of the guided wavelength at the operating frequency.
Il est également possible de réduire la longueur du patch dans la direction PP' comme indiqué en Fig. 3, selon un troisième mode de réalisation du système multi-antenne selon l'invention. Dans ce mode, un retour métallique 37 vers le plan de masse est prévu en bordure du patch. Ce retour métallique peut être filaire ou, comme dans le mode de réalisation représenté en Fig. 4, réalisé au moyen d'une plaque métallique 37 sensiblement orthogonale au plan de masse. Cette plaque effectue alors la jonction électrique entre le bord du patch, orthogonal à l'axe longitudinal PP' , situé du côté opposé à la fente, avec le plan de masse. La longueur du patch selon l'axe PP' est alors avantageusement choisie égale à un multiple entier du quart de la longueur d'onde guidée (dans le patch), associée à la fréquence de fonctionnement. La fente 20 reste de longueur égale à un multiple entier de la demi-longueur d'onde guidée (dans la fente) comme dans le premier mode de réalisation. La Fig. 4 illustre schématiquement un quatrième mode de réalisation particulièrement avantageux du système multi-antenne selon l'invention. Dans ce mode, la fente 20 et le patch 30 ont des longueurs respectives sensiblement égales à des multiples entiers du quart des longueurs d'onde guidées (respectivement dans la fente et dans le patch) , associées à la fréquence de fonctionnement. La fente débouche à la périphérie du plan de masse comme dans le second mode de réalisation et un retour métallique 37 est prévu sous forme de plaque en bordure du patch, comme déjà décrit. Bien entendu, le retour métallique peut être filaire, comme représenté en Fig. 3. Typiquement, pour un système destiné à être utilisé dans un terminal UMTS, les longueurs de fente et de patch seront de l'ordre de 3 cm et la hauteur de la plaque 37 faisant office de retour à la masse est de l'ordre de 1 cm.It is also possible to reduce the length of the patch in the direction PP 'as shown in FIG. 3, according to a third embodiment of the multi-antenna system according to the invention. In this mode, a metal return 37 to the ground plane is provided at the edge of the patch. This metal return may be wired or, as in the embodiment shown in FIG. 4, realized by means of a metal plate 37 substantially orthogonal to the ground plane. This plate then makes the electrical junction between the edge of the patch, orthogonal to the longitudinal axis PP ', located on the side opposite the slot, with the ground plane. The length of the patch along the axis PP 'is then advantageously chosen equal to an integer multiple of a quarter of the wavelength guided (in the patch), associated with the operating frequency. The slot 20 remains equal in length to an integer multiple of the guided half-wavelength (in the slot) as in the first embodiment. Fig. 4 schematically illustrates a fourth particularly advantageous embodiment of the multi-antenna system according to the invention. In this mode, the slot 20 and the patch 30 have respective lengths substantially equal to integer multiples of the quarter of the guided wavelengths (respectively in the slot and in the patch), associated with the operating frequency. The slot opens out at the periphery of the ground plane as in the second embodiment and a metal return 37 is provided in the form of a plate at the edge of the patch, as already described. Of course, the metal return may be wired, as shown in FIG. 3. Typically, for a system intended to be used in a UMTS terminal, the slit and patch lengths will be of the order of 3 cm and the height of the plate 37 serving as a return to ground is of the order of 1 cm.
Afin de réduire encore davantage les dimensions des antennes précitées, on peut envisager de travailler à des fractions de longueur d'onde guidée encore plus faibles ( /L/8,/L /10,... ) et/ou utiliser des matériaux de constantes diélectriques plus élevées, permettant de réduire Âg et/ou charger les antennes avec des élémentsIn order to further reduce the dimensions of the aforementioned antennas, it is possible to work at even lower guided wavelength fractions (/ L / 8, / L / 10, ...) and / or to use higher dielectric constants, reducing Ā g and / or charging antennas with
(capacités, inductances,..) discrets ou distribués comme connu de l'homme du métier.(capacitors, inductances, ..) discrete or distributed as known to those skilled in the art.
Dans les second, troisième et quatrième modes de réalisation, l'excitation de la fente et du patch peut être réalisée selon les mêmes variantes exposées pour le premier mode de réalisation. La Fig. 5 représente schématiquement la coupe d'un système multi-antenne selon un cinquième mode de réalisation de l'invention, dans lequel est prévue une pluralité d'antennes patch 31, 32 de différentes longueurs surplombant la fente. Le retour à la masse 37 est avantageusement commun mais des retours de masse distincts peuvent être également envisagés. Le retour masse peut être filaire ou de type plaque comme déjà vu plus haut. De la même façon, la sonde d'excitation 35 est avantageusement commune aux différentes antennes patch mais des sondes distinctes peuvent être aussi envisagées. Les patchs superposés correspondent à la même fréquence de résonance. Plus précisément, les longueurs de ces patchs sont sensiblement égales à des multiples impairs du quart de la longueur d' onde guidée dans ces patchs. Comme précédemment, la fréquence de fonctionnement des patch est la même que celle de l'antenne demi-fente 20. L'avantage d'un tel montage est d'obtenir un système à gain élevé particulièrement compact .In the second, third and fourth embodiments, the excitation of the slot and the patch can be carried out according to the same variants exposed for the first embodiment. Fig. 5 schematically represents the section of a multi-antenna system according to a fifth mode of embodiment of the invention, wherein there is provided a plurality of patch antennas 31, 32 of different lengths overlooking the slot. The return to ground 37 is advantageously common but separate ground returns can also be envisaged. The mass return can be wired or plate type as already seen above. In the same way, the excitation probe 35 is advantageously common to the different patch antennas, but separate probes can also be envisaged. The superimposed patches correspond to the same resonance frequency. More specifically, the lengths of these patches are substantially equal to odd multiples of a quarter of the wavelength guided in these patches. As before, the operating frequency of the patch is the same as that of the half-slot antenna 20. The advantage of such an assembly is to obtain a particularly compact high gain system.
La Fig. 6 représente schématiquement la coupe d'un système multi-antenne selon un sixième mode de réalisation de l'invention, dans lequel l'antenne patch 30 est repliée sous le plan de masse. La fréquence de résonnance est définie par la longueur totale du patch « déplié ». On obtient ainsi un arrangement plus compact que ceux exposés précédemment. Le cas échéant, plusieurs antennes patch superposées peuvent être repliées sous le plan de masse.Fig. 6 schematically represents the section of a multi-antenna system according to a sixth embodiment of the invention, in which the patch antenna 30 is folded under the ground plane. The resonance frequency is defined by the total length of the "unfolded" patch. This provides a more compact arrangement than those previously discussed. If necessary, several superimposed patch antennas can be folded under the ground plane.
La Fig. 7 représente schématiquement un système multi-antenne selon un septième mode de réalisation de l'invention. Dans ce mode de réalisation, l'antenne fente 20 ainsi que l'antenne patch 30 qui la surplombe, bien que substantiellement allongées selon une direction longitudinale, présentent un léger décrochement transversal en 40. On entend par léger décrochement transversal, un décrochement d'amplitude sensiblement plus faible que l'extension spatial du système dans le sens longitudinal. Chacune des deux antennes comprend une première et une seconde parties, orientées selon une même direction longitudinale, ainsi qu'une partie intermédiaire joignant les première et seconde parties, orientée selon une direction transversale. Le décrochement transversal des antennes patch et fente permet à chacune d'entre elles de recevoir selon deux modes de polarisation distincts.Fig. 7 schematically shows a multi-antenna system according to a seventh embodiment of the invention. In this embodiment, the slot antenna 20 as well as the patch antenna 30 which overhangs it, although substantially elongated in a longitudinal direction, have a slight transverse recess at 40. A slight transverse recess is understood to mean a recess of substantially smaller amplitude than the spatial extension of the system in the longitudinal direction. Each of the two antennas comprises a first and a second portion, oriented in the same longitudinal direction, and an intermediate portion joining the first and second portions, oriented in a transverse direction. The transverse recess of the patch and slot antennas allows each of them to receive in two distinct polarization modes.
Les systèmes multi-antenne selon l'invention peuvent être associés de manière à constituer un système composite à gain et/ou ordre de diversité plus élevés. En particulier, les Figs . 8 et 9 montrent deux exemples d'arrangement de tels systèmes multi-antenne sur le plan de masse d'un terminal mobile. Dans l'arrangement de la Fig. 9, les deux systèmes multi- antenne 51 et 52 sont disposés tête-bêche. Les axes d'établissement de résonance respectifs des deux systèmes d'antennes sont sensiblement parallèles. En Fig. 9, les directions d'établissement de résonance des deux systèmes sont choisies sensiblement orthogonales. L'utilisation des systèmes 51 et 52 permet d'obtenir à la fois une diversité spatiale, due à l'espacement entre antennes et une diversité de polarisation.The multi-antenna systems according to the invention can be associated so as to constitute a composite system with higher gain and / or order of diversity. In particular, Figs. 8 and 9 show two examples of arrangement of such multi-antenna systems on the ground plane of a mobile terminal. In the arrangement of FIG. 9, the two multi-antenna systems 51 and 52 are arranged upside down. The respective resonance establishment axes of the two antenna systems are substantially parallel. In FIG. 9, the resonance establishment directions of the two systems are chosen substantially orthogonal. The use of the systems 51 and 52 makes it possible to obtain both a spatial diversity, due to the spacing between antennas and a diversity of polarization.
La Fig. 10 donne les modules des coefficients de la matrice S en fonction de la fréquence de fonctionnement pour un système multi-antenne selon le quatrième mode de réalisation de l'invention, avec une fente et un patch quart d'onde. IS11 et |S22 représentent respectivement la proportion d'énergie réfléchie sur le port d'entrée de l'antenne 1 (antenne de type fente) et le port d'entrée de l'antenne 2 (antenne de type patch) , autrement dit les coefficients de réflexion sur ces ports d'entrée, exprimés en dB . S12 et S21 représentent respectivement le couplage d'énergie de l'antenne 1 vers l'antenne 2 et de l'antenne 2 vers l'antenne 1.Fig. 10 gives the modules of the coefficients of the matrix S as a function of the operating frequency for a multi-antenna system according to the fourth embodiment of the invention, with a slot and a quarter wave patch. IS 11 and | S 22 represent respectively the proportion of energy reflected on the input port of antenna 1 (slot antenna) and the input port of antenna 2 (patch antenna), otherwise says the reflection coefficients on these input ports, expressed in dB. S 12 and S 21 respectively represent the energy coupling of the antenna 1 to the antenna 2 and of the antenna 2 to the antenna 1.
On voit que dans une plage de fréquence autour de 2We see that in a frequency range around 2
GHz, les coefficients de réflexion S11 et S22 sont tous deux inférieurs à -10 dB, ce qui traduit la bonne adaptation d' impédance du système dans une bande de fréquence commune. En outre, dans cette même bande de fréquence les coefficients de couplage S12 et S '21 sont inférieurs à -30 dB . Le faible niveau de couplage entre les deux antennes permet d'exploiter au mieux la diversité de polarisation. La Fig. 11 montre les diagrammes de directivité de l'antenne de type fente et de l'antenne de type patch pour un champ électrique polarisé verticalement et un champ électrique polarisé horizontalement, dans un plan de coupe parallèle au plan de masse et équidistant entre celui-ci et le plan contenant le patch métallique 30. On remarque que pour une polarisation donnée du champ électrique, le maximum du diagramme de directivité d'une antenne correspond au minimum du diagramme de directivité de l'autre. At GHz, the reflection coefficients S 11 and S 22 are both less than -10 dB, reflecting the good impedance matching of the system in a common frequency band. Furthermore, in this same frequency band, the coupling coefficients S 12 and S '21 are less than -30 dB. The low level of coupling between the two antennas makes it possible to exploit the diversity of polarization as well as possible. Fig. 11 shows the directivity diagrams of the slot-like antenna and the patch-type antenna for a vertically polarized electric field and a horizontally polarized electric field, in a section plane parallel to and equidistant from the ground plane. and the plane containing the metal patch 30. It should be noted that for a given polarization of the electric field, the maximum of the directivity diagram of one antenna corresponds to the minimum of the directivity diagram of the other.

Claims

REVENDICATIONS
1. Système multi-antenne à diversité de polarisation comprenant une première antenne de type fente (20) et au moins une seconde antenne de type patch (30), lesdites première et seconde antennes partageant le même plan de masse (10), la fente de la première antenne étant aménagée dans ledit plan de masse et le patch de la seconde antenne surplombant au moins partiellement ladite fente, lesdites première et seconde antennes présentant une bande de fréquence de fonctionnement commune, caractérisé en ce que :A polarization diversity multi-antenna system comprising a first slot antenna (20) and at least a second patch antenna (30), said first and second antennas sharing the same ground plane (10), the slot of the first antenna being arranged in said ground plane and the patch of the second antenna at least partially overhanging said slot, said first and second antennas having a common operating frequency band, characterized in that:
- ladite fente est ouverte d'un côté sur sa largeur et sa longueur est sensiblement égale à un multiple impair du quart de la longueur d' onde guidée dans la fente, dans ladite bande de fréquence de fonctionnement et/ousaid slot is open on one side over its width and its length is substantially equal to an odd multiple of a quarter of the wavelength guided in the slot, in said operating frequency band and / or
- le patch est relié électriquement au plan de masse et sa longueur est sensiblement égale à un multiple impair du quart de la longueur d' onde guidée dans le patch, dans ladite bande de fréquence de fonctionnement .- The patch is electrically connected to the ground plane and its length is substantially equal to an odd multiple of a quarter of the wavelength guided in the patch, in said operating frequency band.
2. Système multi-antenne selon la revendication 1, caractérisé en ce que lesdites première et seconde antennes présentent des directions d'établissement de résonance sensiblement parallèles.A multi-antenna system according to claim 1, characterized in that said first and second antennas have substantially parallel resonant establishment directions.
3. Système multi-antenne selon la revendication 2, caractérisé en ce que le patch possède une première forme allongée selon un premier axe de symétrie, en ce que la fente possède une seconde forme allongée selon un second axe de symétrie, et en ce que lesdits premier et second axes de symétrie sont sensiblement parallèles.3. Multi-antenna system according to claim 2, characterized in that the patch has a first elongated shape according to a first axis of symmetry, in that the slot has a second elongate shape along a second axis of symmetry, and in that said first and second axes of symmetry are substantially parallel.
4. Système multi-antenne selon l'une des revendications précédentes, caractérisé en ce que lesdites antennes sont excitées par un contact électrique direct et/ou par couplage électromagnétique.4. Multi-antenna system according to one of the preceding claims, characterized in that said antennas are excited by a direct electrical contact and / or electromagnetic coupling.
5. Système multi-antenne selon la revendication 1, caractérisé en ce qu'il comprend une pluralité de secondes antennes de type patch présentant une bande de fréquence de fonctionnement commune avec la première antenne, les patchs étant reliés électriquement au plan de masse et ayant des longueurs sensiblement égales à des multiples impairs du quart de la longueur d'onde guidée dans ces patchs, dans ladite bande de fréquence de fonctionnement.5. Multi-antenna system according to claim 1, characterized in that it comprises a plurality of second patch type antennas having a common operating frequency band with the first antenna, the patches being electrically connected to the ground plane and having lengths substantially equal to odd multiples of a quarter of the wavelength guided in these patches, in said operating frequency band.
6. Système multi-antenne selon la revendication 5, caractérisé en ce que ladite première antenne et lesdites secondes antennes présentent des directions d'établissement de résonnance sensiblement parallèles .6. Multi-antenna system according to claim 5, characterized in that said first antenna and said second antennas have substantially parallel resonance establishment directions.
7. Système multi-antenne selon la revendication 1 ou 2, caractérisé en ce que ladite fente est ouverte d'un côté, que la seconde antenne surplombe entièrement et s'étend à l'une de ses extrémités au-delà dudit côté de ladite fente, ladite extrémité de la seconde antenne étant repliée sous ledit plan de masse.7. Multi-antenna system according to claim 1 or 2, characterized in that said slot is open on one side, that the second antenna completely overhangs and extends to one of its ends beyond said side of said slot, said end of the second antenna being folded under said ground plane.
8. Système multi-antenne selon la revendication 1 ou 2, caractérisé en ce que lesdites première et seconde antennes possèdent respectivement une première et une seconde formes substantiellement allongées selon un axe longitudinal, lesdites première et seconde formes présentant le long de cet axe un faible décrochement selon une direction transversale.8. Multi-antenna system according to claim 1 or 2, characterized in that said first and second antennas respectively have a first and a second substantially elongated shape along a longitudinal axis, said first and second shapes having along this axis a weak recess in a transverse direction.
9. Terminal mobile comprenant un plan de masse et au moins deux systèmes multi-antenne selon les revendications précédentes, lesdits systèmes multi- antenne s' étendant le long de deux axes parallèles et étant disposés tête-bêche sur ledit plan de masse.9. Mobile terminal comprising a ground plane and at least two multi-antenna systems according to the preceding claims, said multi-antenna systems extending along two parallel axes and being arranged head to tail on said ground plane.
10. Terminal mobile comprenant un plan de masse et au moins deux systèmes multi-antenne selon les revendications précédentes, lesdits systèmes multi- antenne s' étendant le long de deux axes orthogonaux sur ledit plan de masse. 10. Mobile terminal comprising a ground plane and at least two multi-antenna systems according to the preceding claims, said multi-antenna systems extending along two orthogonal axes on said ground plane.
EP07803182.0A 2006-09-04 2007-09-03 Polarization diversity multi-antenna system Active EP2059973B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0653562A FR2905526B1 (en) 2006-09-04 2006-09-04 MULTI-ANTENNA SYSTEM WITH POLARIZATION DIVERSITY
PCT/EP2007/059197 WO2008028892A1 (en) 2006-09-04 2007-09-03 Polarization diversity multi-antenna system

Publications (2)

Publication Number Publication Date
EP2059973A1 true EP2059973A1 (en) 2009-05-20
EP2059973B1 EP2059973B1 (en) 2020-12-09

Family

ID=37130952

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07803182.0A Active EP2059973B1 (en) 2006-09-04 2007-09-03 Polarization diversity multi-antenna system

Country Status (4)

Country Link
US (1) US8094082B2 (en)
EP (1) EP2059973B1 (en)
FR (1) FR2905526B1 (en)
WO (1) WO2008028892A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8214003B2 (en) * 2009-03-13 2012-07-03 Pong Research Corporation RF radiation redirection away from portable communication device user
US8779999B2 (en) 2011-09-30 2014-07-15 Google Inc. Antennas for computers with conductive chassis
JP6398653B2 (en) * 2014-11-26 2018-10-03 富士通株式会社 Patch antenna
JP6437942B2 (en) * 2016-02-23 2018-12-12 株式会社Soken Antenna device
TWI732931B (en) * 2016-09-29 2021-07-11 仁寶電腦工業股份有限公司 Antenna structure
KR102402411B1 (en) * 2017-06-28 2022-05-27 삼성전자주식회사 Antenna device and electronic device comprising antenna
KR102608773B1 (en) * 2019-02-14 2023-12-04 삼성전자주식회사 Antenna module and electronic device including the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2211357A (en) * 1987-09-23 1989-06-28 Philips Electronic Associated Integrated millimetre-wave transceiver
US5241321A (en) * 1992-05-15 1993-08-31 Space Systems/Loral, Inc. Dual frequency circularly polarized microwave antenna
GB2302773B (en) * 1995-06-29 1999-12-22 Pyronix Ltd Improvements in or relating to motion detection units
SE511497C2 (en) * 1997-02-25 1999-10-11 Ericsson Telefon Ab L M Device for receiving and transmitting radio signals
US6160512A (en) * 1997-10-20 2000-12-12 Nec Corporation Multi-mode antenna
US6424300B1 (en) * 2000-10-27 2002-07-23 Telefonaktiebolaget L.M. Ericsson Notch antennas and wireless communicators incorporating same
FR2819109A1 (en) * 2001-01-04 2002-07-05 Cit Alcatel MULTI-BAND ANTENNA FOR MOBILE DEVICES
GB2383471A (en) * 2001-12-19 2003-06-25 Harada Ind High-bandwidth multi-band antenna
FI114836B (en) * 2002-09-19 2004-12-31 Filtronic Lk Oy Internal antenna
WO2004102744A1 (en) * 2003-05-14 2004-11-25 Koninklijke Philips Electronics N.V. Improvements in or relating to wireless terminals
US8115686B2 (en) * 2005-07-21 2012-02-14 Fractus, S.A. Handheld device with two antennas, and method of enhancing the isolation between the antennas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008028892A1 *

Also Published As

Publication number Publication date
FR2905526B1 (en) 2010-06-25
WO2008028892A1 (en) 2008-03-13
US20090273528A1 (en) 2009-11-05
EP2059973B1 (en) 2020-12-09
FR2905526A1 (en) 2008-03-07
US8094082B2 (en) 2012-01-10

Similar Documents

Publication Publication Date Title
EP0108463B1 (en) Radiating element for cross-polarized microwave signals and planar antenna consisting of an array of such elements
EP2059973B1 (en) Polarization diversity multi-antenna system
EP0954055B1 (en) Dual-frequency radiocommunication antenna realised according to microstrip technique
FR2817661A1 (en) DEVICE FOR RECEIVING AND / OR TRANSMITTING MULTI-BEAM SIGNALS
EP1145378B1 (en) Dual-band transmission device and antenna therefor
FR2797352A1 (en) ANTENNA WITH A STACK OF RESONANT STRUCTURES AND MULTI-FREQUENCY RADIO COMMUNICATION DEVICE INCLUDING THIS ANTENNA
FR2810164A1 (en) IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS FOR SATELLITE TELECOMMUNICATIONS SYSTEMS
EP1073143A1 (en) Dual polarisation printed antenna and corresponding array
EP1589608A1 (en) Compact RF antenna
EP3843202B1 (en) Horn for ka dual-band satellite antenna with circular polarisation
EP3146593A1 (en) Antenna system for reducing the electromagnetic coupling between antennas
EP1466384B1 (en) Device for receiving and/or emitting electromagnetic waves with radiation diversity
FR3095303A1 (en) WIDE BAND RADIOFREQUENCY (S) POLARIZING CELL (S) POLARIZER SCREEN
EP1225655A1 (en) Dual-band planar antenna and apparatus including such an antenna device
WO2012069492A1 (en) Planar antenna having a widened bandwidth
FR2742003A1 (en) ANTENNA AND ANTENNA ASSEMBLY FOR MEASURING MICROWAVE ELECTROMAGNETIC FIELD DISTRIBUTION
EP1949496B1 (en) Flat antenna system with a direct waveguide access
FR2831734A1 (en) DEVICE FOR RECEIVING AND / OR TRANSMITTING RADIATION DIVERSITY ELECTROMAGNETIC SIGNALS
FR3003703A1 (en) ANTENNA RADAR SIGNATURE REDUCTION DEVICE, ANTENNA SYSTEM AND ASSOCIATED METHOD
FR2629644A1 (en) DISSYMETRICAL BROADBAND LOOPED ANTENNA, IN PARTICULAR ANTENNA FOR TRANSMISSION, AND NETWORK ANTENNA FORMED OF A PLURALITY OF SUCH ANTENNAS
EP0831550B1 (en) Versatile array antenna
FR3049775B1 (en) ANTENNA V / UHF WITH OMNIDIRECTIONAL RADIATION AND SCANNING A BROADBAND FREQUENCY
EP4167378A1 (en) Insulated radio frequency antenna device
EP3902059A1 (en) Directional broadband antenna with longitudinal transmission
FR2867904A1 (en) ELECTROMAGNETIC WAVE RECEIVING AND DECODING SYSTEM WITH COMPACT ANTENNA

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090304

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17Q First examination report despatched

Effective date: 20091015

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602007060832

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01Q0025000000

Ipc: H01Q0001480000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 21/24 20060101ALI20190830BHEP

Ipc: H01Q 9/04 20060101ALI20190830BHEP

Ipc: H01Q 1/38 20060101ALI20190830BHEP

Ipc: H01Q 13/10 20060101ALI20190830BHEP

Ipc: H01Q 1/48 20060101AFI20190830BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191204

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200630

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1344337

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007060832

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1344337

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210309

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210409

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007060832

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210409

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

26N No opposition filed

Effective date: 20210910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210409

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210903

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210903

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070903

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230922

Year of fee payment: 17

Ref country code: DE

Payment date: 20230919

Year of fee payment: 17