EP1938162A1 - Method and device for compensating for positional and shape deviations - Google Patents

Method and device for compensating for positional and shape deviations

Info

Publication number
EP1938162A1
EP1938162A1 EP06805438A EP06805438A EP1938162A1 EP 1938162 A1 EP1938162 A1 EP 1938162A1 EP 06805438 A EP06805438 A EP 06805438A EP 06805438 A EP06805438 A EP 06805438A EP 1938162 A1 EP1938162 A1 EP 1938162A1
Authority
EP
European Patent Office
Prior art keywords
target
workpiece
program
shape
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06805438A
Other languages
German (de)
French (fr)
Inventor
Arndt GLÄBER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP1938162A1 publication Critical patent/EP1938162A1/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50057Compensation error by probing test, machined piece, post or pre process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50063Probe, measure, verify workpiece, feedback measured values

Definitions

  • the present invention relates to a method for compensating for deviations in position and / or shape in NC-controlled metal-cutting machine tools and to an NC-controlled metal-cutting production machine with a device for compensating for deviations in the position and / or shape of workpieces.
  • the existing material residual stresses of a workpiece are removed by the milling, then it often leads to warping or warping, which can take on significant proportions depending on the component geometry and lead to the fact that the workpiece geometry is outside the manufacturing tolerance. Furthermore, the tool and / or the workpiece is forced by the machining forces from its desired position.
  • the size of the Abdrangung depends essentially on the processing power and the rigidity of the overall system consisting of workpiece, tool and machine.
  • NC-controlled metal-cutting production machines are known from the prior art.
  • the NC programs are nominally preprogrammed in the creation with the appropriate parameters such as the position and geometry data of the workpiece to be machined and other data, such as for feed and cutting speed.
  • US 4,660,148 discloses input modules which are intended to permit certain data input to the on-site NC machine by an operator, including input of non-variable data and geometric data of the workpiece. A consideration of the position and / or shape deviations due to material and / or tool properties does not take place.
  • the disadvantages of the prior art are avoided and provided a cost-effective solution with reduced manufacturing costs.
  • the position and / or shape deviations described above are as a rule systematic errors which are compensated according to the invention by returning the desired-actual difference to an NC program controlling the production device.
  • deformations caused by the release of material tensions arise compensated.
  • transitions between tools with different Abdrangung can be compensated.
  • Form deviations that result from uneven finishing allowance can also be compensated, ie pre-finishing for a constant oversize situation during sizing is no longer necessary. As a result, work sequences can be significantly reduced.
  • a method for compensating for deviations in position and / or shape in NC-controlled metal-cutting machines comprising the following steps: a) clamping a new workpiece b) machining the workpiece with the nominal data of the NC program; c) detecting the target-actual deviation; d) optimization of the NC program with the acquisition data from c); e) repeating the iteration steps a) to d) until required position and / or shape tolerances are achieved.
  • the control loop is arranged virtually outside the NC machine.
  • the passages to be corrected on the component are first milled nominal. Subsequently, the target-actual deviations are detected and fed back into the NC program. With the optimized NC program, the next component is then manufactured. This process repeats itself iteratively until the required position and shape tolerances are reached.
  • An alternative method according to the invention for compensating for deviations in position and shape in NC-controlled metal-cutting production machines comprises the following steps: a) preparing a workpiece wherein the allowance is greater than the maximum expected position and / or shape deviation; b) detecting the target-actual deviation; c) optimization of the NC program with the acquisition data; d) Finishing the component with modified NC program.
  • the closed loop is passed through in this process within the NC machine when processing an individual component.
  • the component is processed in a first step in such a way that the component sections to be corrected are initially only pretreated.
  • the finishing allowance must be greater than the maximum expected position and shape deviations.
  • the target-actual deviation is detected for the pre-illuminated areas of corresponding measuring devices within the machine.
  • the deviations determined are then returned to the NC program in a further step and automatically implemented in this.
  • the optimized finishing program then finishes the component.
  • this process is carried out in the same way, so that non-systematic, individual errors of a single workpiece can be compensated for here as well.
  • the NC program is optimized on one or iteratively on several components. If the target / actual deviation is within the permissible tolerance, then all following components can be processed with the same NC program without further optimization. With the internal control loop, the program optimization is carried out specifically for each component.
  • An advantageous development of the method according to the invention provides that the detection of the desired-actual deviation takes place with a tactile or an optical measuring method.
  • all measuring or test methods can be used, with which the deviation in the required quality and quantity can be determined.
  • the detection with tactile systems such as: measuring machine or probe within the machine, the optical detection (laser triangulation, planar optical measuring systems) outside or inside the machine come as a possible measurement method into consideration.
  • a further advantageous development of the method according to the invention provides that the feedback of the desired-actual deviation is effected in such a way that a correction vector is assigned to each support point of the tool path.
  • the feedback of the setpoint-actual deviation into the NC program is carried out in such a way that a correction vector is assigned to each support point of the toolpath.
  • the correction vector consists of the amount and the direction of the target-actual deviation.
  • Each support point of the tool path is then shifted by the associated correction vector.
  • the correction vectors are determined by taking the detected actual geometry, i. the determined measurement data, with the target geometry, for example, determined from a CAD model, related. It is of crucial importance that the respectively associated areas or interpolation points are offset against each other.
  • an advantageous development of the method according to the invention provides that the unambiguous relationship between associated regions is defined by synchronizing marks which are set between regions with a large change in curvature. Synchronization marks must always be placed between areas between which the curvature changes greatly. If all measurement points, ie the actual geometry, are related to the corresponding points on the CAD model, ie the target geometry, a vector field is obtained with the corresponding interpolation points of the NC program can be moved. The unambiguous relation between the correction vectors of the vector field and the NC program is produced by the same synchronous marks which were already used in the actual geometry and the target geometry.
  • An NC-controlled cutting production machine with a device for compensating for deviations in position and / or shape of workpieces has the following: a control unit which has a memory unit for storing a desired geometry of a workpiece, a measuring device for detecting the actual geometry a workpiece and a computing unit for calculating the target-actual deviation, which controls the further processing of the workpiece according to the target-actual deviation or independently optimizes the NC program.
  • An advantageous embodiment of the NC-controlled metal-cutting production machine is an NC-controlled milling machine.
  • An advantageous embodiment of the NC-controlled metal-cutting production machine has tactile or optical measuring devices for detecting the actual geometry.
  • the tactile or optical measuring devices are advantageously integrated in the actual cutting machine, but also here the measuring devices can be mounted outside.
  • FIGS. shows: 1 shows a flow chart of a first embodiment of a method according to the invention
  • FIG. 2 shows a flow chart of a second embodiment of a method according to the invention
  • Fig. 5 shows a third example of position and shape deviations when milling a flow profile.
  • FIG. 1 shows a flow chart of a first embodiment of a method according to the invention for compensating for deviations in position and shape in an NC-controlled metal-cutting machine.
  • the control loop takes place outside the NC machine.
  • the passages to be corrected on the component are first milled nominal. Subsequently, the target-actual deviations are detected and fed back into the NC program. With the optimized NC program, the next component is then manufactured. This process repeats itself iteratively until the required position and shape tolerances are reached.
  • the NC program is optimized on one or iteratively on several components. If the target / actual deviation is within the permissible tolerance, then all following components can be processed with the same NC program without further optimization.
  • FIG. 2 shows a flow chart of a second embodiment of a erfindunmotheren method for compensating for position and shape deviations in an NC-controlled milling machine.
  • the closed loop is passed through in this process within the NC machine during the processing of each component.
  • the component clamped in the processing machine is pre-exposed after the start of the process in a first step.
  • the finishing allowance must be greater than the maximum expected deviations in position and form, as otherwise the workpiece will be rejected.
  • the pre-illuminated areas of corresponding measuring devices within the machine in the case of the present exemplary embodiment of automatic push buttons, the target-actual deviation is detected.
  • the determined measurement results are then fed back to the NC program in a further step.
  • the component In the event that the target-actual deviation is within the allowable tolerance, ie in the case of a Yes branch, the component is finished. In the event that the target / actual deviation is not within the permissible tolerance, ie with a no-branch, the deviation is automatically implemented in the NC program and pass through another finishing pass. With the optimized finishing program, the component is then finished. For the next component, this procedure is followed in the same way.
  • FIGS. 3 to 5 show a few examples of deviations in position and shape during the milling of a flow profile, as occur, for example, in blade production for turbomachines.
  • the desired geometry of a flow profile 1 is shown with a dashed line.
  • the dotted line represents the actual geometry.
  • the deviations between the actual geometry and the target geometry are represented by correction vectors.
  • synchronization points are shown in the region of the profile nose and the profile trailing edge.
  • Figure 3 shows a circumferentially constant shape deviation, ie the deviations of the actual geometry of the target geometry are at all Make the profile contour the same size. At all points of the geometry there is an excess.
  • FIG. 4 shows an example of a flow profile with shape deviations that are not constant over the entire contour. There is an undersize in the suction area of the profile, i. the actual geometry is in places within the target geometry.
  • FIG. 5 shows an example of a flow profile with position and shape deviations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

A method for compensation for positional and shape deviations in NC-controlled cutting production machines, comprises the following steps: a) cutting a new workpiece, b) machining the workpiece with the nominal data from the NC-programme, c) recording the set deviation, d) optimising the NC-programme with the recorded data, e) repetition of the iterative steps a) to d) until the required positional and/or shape tolerances are achieved. The invention further relates to an NC-controlled cutting production machine with a device for compensation of positional and/or shape deviations in workpieces. The above avoids the conventional problems and provides an economical solution with reduced production costs.

Description

VERFAHREN UND VORRICHTUNG ZUM KOMPENSIEREN VON LAGE- UND FORMABWEICHUNGENMETHOD AND DEVICE FOR COMPENSATING POSITION AND FORM DEVIATIONS
Die vorliegende Erfindung betrifft ein Verfahren zum Kompensieren von Lage- und/oder Formabweichungen bei NC-gesteuerten spanabhebenden Fertigungsmaschinen und eine NC-gesteuerte spanabhebende Fertigungsmaschinen mit einer Einrichtung zum Kompensieren von Lage- und/oder Formabweichungen bei Werkstucken.The present invention relates to a method for compensating for deviations in position and / or shape in NC-controlled metal-cutting machine tools and to an NC-controlled metal-cutting production machine with a device for compensating for deviations in the position and / or shape of workpieces.
Bei der spanabhebenden Bearbeitung, insbesondere von schwer zerspanbaren Werkstoffen und labilen Bauteilen wie sie häufig im modernen Triebwerksbau verwendet werden, kommt es in der Regel zu systematischen Lage- und Formabweichungen, die vor allem in der Materialeigenspannung und in der Abdrangung des Werkzeugs bzw. des Werkstucks durch deren elastische Verformung ihre Ursache haben. Bei der Bearbeitung mit NC- gesteuerten Maschinen fuhren diese Fehler dazu, dass die gefräste Geometrie von der programmierten Geometrie abweicht und damit außerhalb der Zeichnungstoleranzen liegt.In the machining, in particular difficult to machine materials and labile components as they are commonly used in modern engine manufacturing, it usually comes to systematic deviations in position and shape, especially in the material stress and in the Abdrangung the tool or the workpiece caused by their elastic deformation. When machining with NC-controlled machines, these errors cause the milled geometry to deviate from the programmed geometry and thus lie outside of the drawing tolerances.
Wenn die vorhandenen Materialeigenspannungen eines Werkstucks durch die Frasbearbeitung abgebaut werden, dann kommt es häufig zu Verwindungen bzw. Verwerfungen, die je nach Bauteilgeometrie erhebliche Ausmaße annehmen können und dazu fuhren, dass die Werkstuckgeometrie außerhalb der Fertigungstoleranz liegt. Ferner wird das Werkzeug und/ oder das Werkstuck durch die Bearbeitungskrafte aus seiner Solllage gedrangt. Die Große der Abdrangung hangt im wesentlichen von der Bearbeitungskraft und der Steifigkeit des Gesamtsystems bestehend aus Werkstuck, Werkzeug und Maschine ab.If the existing material residual stresses of a workpiece are removed by the milling, then it often leads to warping or warping, which can take on significant proportions depending on the component geometry and lead to the fact that the workpiece geometry is outside the manufacturing tolerance. Furthermore, the tool and / or the workpiece is forced by the machining forces from its desired position. The size of the Abdrangung depends essentially on the processing power and the rigidity of the overall system consisting of workpiece, tool and machine.
Dies sind unerwünschte Effekte, die zu einer hohen Ausschussrate, hohem Nachbearbeitungsaufwand und damit erhöhtem Fertigungsaufwand und hohen Stuckkosten fuhren. Aus dem Stand der Technik sind ferner NC-gesteuerte spanabhebende Fertigungsmaschinen bekannt. In der Regel werden dabei die NC-Programme bei der Erstellung mit den entsprechenden Parametern wie den Lage- und Geometriedaten des zu bearbeitenden Werkstücks und weiteren Daten, wie beispielsweise für Vorschub- und Schnittgeschwindigkeit nominal vorprogrammiert .These are undesirable effects that lead to a high reject rate, high reworking effort and thus increased production costs and high stucco costs. Furthermore, NC-controlled metal-cutting production machines are known from the prior art. As a rule, the NC programs are nominally preprogrammed in the creation with the appropriate parameters such as the position and geometry data of the workpiece to be machined and other data, such as for feed and cutting speed.
Ferner sind beispielsweise aus der US 4,660,148 Eingabemodule bekannt, die gewisse Dateneingaben in die NC-Maschine vor Ort durch einen Bediener erlauben sollen, darunter die Eingabe nicht variable Daten und Geometriedaten des Werkstücks. Eine Berücksichtigung der Lage- und/oder Formabweichungen aufgrund von Material- und/oder Werkzeugeigenschaften findet dabei nicht statt.Further, for example, US 4,660,148 discloses input modules which are intended to permit certain data input to the on-site NC machine by an operator, including input of non-variable data and geometric data of the workpiece. A consideration of the position and / or shape deviations due to material and / or tool properties does not take place.
Es ist daher die Aufgabe der vorliegenden Erfindung, ein verbessertes Verfahren und eine verbesserte Vorrichtung zur Kompensation von Lage- und Formabweichungen zur Verfügung zu stellen, welche (s) die Nachteile des Standes der Technik vermeiden und damit eine kostengünstige Lösung mit verringertem Fertigungsaufwand zur Verfügung zu stellen.It is therefore the object of the present invention to provide an improved method and an improved device for compensating for deviations in position and shape which avoid the disadvantages of the prior art and thus provide a cost-effective solution with reduced production outlay put.
Diese Aufgabe wird durch die erfindungsgemäßen Verfahren mit den Merkmalen der Patentansprüche 1 und 2 sowie durch eine erfindungsgemäße Vorrichtung mit den Merkmalen des Patentanspruchs 7 gelöst. Vorteilhafte Ausführungsformen und Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.This object is achieved by the method according to the invention with the features of claims 1 and 2 and by a device according to the invention with the features of patent claim 7. Advantageous embodiments and further developments of the invention are specified in the dependent claims.
Durch die Erfindung werden die Nachteile des Standes der Technik vermieden und eine kostengünstige Lösung mit verringertem Fertigungsaufwand zur Verfügung gestellt. Bei den oben beschriebenen Lage- und/oder Formabweichungen handelt es sich in der Regel um systematische Fehler, die erfindungsgemäß durch Rückführung der Soll-Ist- Differenz in ein die Fertigungsvorrichtung steuerndes NC-Programm kompensiert werden. Ferner werden Verformungen, die durch das Freisetzen von Materialeigenspannungen entstehen kompensiert. Außerdem können Übergänge zwischen Werkzeugen mit unterschiedlicher Abdrangung kompensiert werden. Auch können Formabweichungen, die durch ungleichmäßiges Schlichtaufmaß entstehen kompensiert werden, d.h. Vorschlichten für konstante Aufmaß Situation beim Schlichten ist nicht mehr erforderlich. Hierdurch können Arbeitsfolgen deutlich reduziert werden.By the invention, the disadvantages of the prior art are avoided and provided a cost-effective solution with reduced manufacturing costs. The position and / or shape deviations described above are as a rule systematic errors which are compensated according to the invention by returning the desired-actual difference to an NC program controlling the production device. Furthermore, deformations caused by the release of material tensions arise compensated. In addition, transitions between tools with different Abdrangung can be compensated. Form deviations that result from uneven finishing allowance can also be compensated, ie pre-finishing for a constant oversize situation during sizing is no longer necessary. As a result, work sequences can be significantly reduced.
Erfmdungsgemaß wird ein Verfahren zum Kompensieren von Lage- und/oder Formabweichungen bei NC-gesteuerten spanabhebenden Fertigungsmaschinen vorgeschlagen, wobei das Verfahren folgende Schritte aufweist: a) Einspannen eines neuen Werkstucks b) Bearbeiten des Werkstucks mit den nominalen Daten des NC-Programms; c) Erfassen der Soll-Ist-Abweichung; d) Optimierung des NC-Programms mit den Erfassungsdaten aus c) ; e) Wiederholen der Iterationsschritte a) bis d) bis erforderliche Lage- und/oder Formtoleranzen erreicht sind.According to the invention, a method for compensating for deviations in position and / or shape in NC-controlled metal-cutting machines is proposed, the method comprising the following steps: a) clamping a new workpiece b) machining the workpiece with the nominal data of the NC program; c) detecting the target-actual deviation; d) optimization of the NC program with the acquisition data from c); e) repeating the iteration steps a) to d) until required position and / or shape tolerances are achieved.
Dabei sind mit „nominale" Daten des NC-Programms die in einem ersten Durchlauf des NC-Programms vom Programmierer eingegebenen theoretischen bzw. Auslegungs-Werte und in dem oder den nachfolgenden Iterationsschritten die von dem NC-Programm automatisch anhand der Messwerte optimierten Daten.In this case, with "nominal" data of the NC program, the theoretical or design values entered by the programmer in a first pass of the NC program and in the subsequent iteration steps or the data automatically optimized by the NC program based on the measured values.
Der Regelkreis ist quasi außerhalb der NC-Maschine angeordnet. Die zu korrigierenden Passagen am Bauteil werden zunächst nominal gefräst. Anschließend werden die Soll-Ist-Abweichungen erfasst und in das NC- Programm zurückgeführt. Mit dem optimierten NC-Programm wird dann das nächste Bauteil gefertigt. Dieser Prozess wiederholt sich iterativ so oft, bis die erforderlichen Lage- und Formtoleranzen erreicht sind.The control loop is arranged virtually outside the NC machine. The passages to be corrected on the component are first milled nominal. Subsequently, the target-actual deviations are detected and fed back into the NC program. With the optimized NC program, the next component is then manufactured. This process repeats itself iteratively until the required position and shape tolerances are reached.
Ein alternatives erfmdungsgemaßes Verfahren zum Kompensieren von Lage- und Formabweichungen bei NC-gesteuerten spanabhebenden Fertigungsmaschinen weist folgende Schritte auf: a) Vorbereiten eines Werkstücks wobei das Aufmaß großer ist als die maximal zu erwartende Lage- und/oder Formabweichung; b) Erfassen der Soll-Ist-Abweichung; c) Optimierung des NC-Programms mit den Erfassungsdaten; d) Fertigbearbeiten des Bauteils mit modifiziertem NC-Programm.An alternative method according to the invention for compensating for deviations in position and shape in NC-controlled metal-cutting production machines comprises the following steps: a) preparing a workpiece wherein the allowance is greater than the maximum expected position and / or shape deviation; b) detecting the target-actual deviation; c) optimization of the NC program with the acquisition data; d) Finishing the component with modified NC program.
Dies stellt eine zweite Methoden für die Rückführung der Soll-Ist- Abweichung in das NC-Programm dar. Der geschlossene Regelkreis wird bei diesem Verfahren innerhalb der NC-Bearbeitungsmaschine bei der Bearbeitung eines individuellen Bauteiles durchlaufen. Das Bauteil wird dabei in einem ersten Schritt so bearbeitet, dass die zu korrigierenden Bauteilabschnitte zunächst nur vorgeschlichtet werden. Das Schlichtaufmaß muss dabei großer sein als die maximal zu erwartenden Lage- und Formabweichungen. In einem zweiten Schritt wird für die vorgeschlichteten Bereiche von entsprechenden Messeinrichtungen innerhalb der Maschine die Soll-Ist-Abweichung erfasst. Die ermittelten Abweichungen werden dann in einem weiteren Schritt an das NC-Programm zurückgeführt und in dieses automatisch implementiert. Mit dem optimierten Schlichtprogramm wird das Bauteil dann fertiggefrast . Beim nächsten Bauteil wird dieses Verfahren in der gleichen Weise durchlaufen, so dass hier auch nicht systematische, individuelle Fehler eines einzelnen Werkstucks mit ausgeglichen werden können .This represents a second method for the return of the target-actual deviation in the NC program. The closed loop is passed through in this process within the NC machine when processing an individual component. In this case, the component is processed in a first step in such a way that the component sections to be corrected are initially only pretreated. The finishing allowance must be greater than the maximum expected position and shape deviations. In a second step, the target-actual deviation is detected for the pre-illuminated areas of corresponding measuring devices within the machine. The deviations determined are then returned to the NC program in a further step and automatically implemented in this. The optimized finishing program then finishes the component. For the next component, this process is carried out in the same way, so that non-systematic, individual errors of a single workpiece can be compensated for here as well.
Beim externen Regelkreis wird das NC-Programm an einem oder iterativ an mehreren Bauteilen optimiert. Liegt die Soll-Ist-Abweichung innerhalb der zulassigen Toleranz, dann können alle folgenden Bauteile mit dem gleichen NC-Programm ohne weitere Optimierung bearbeitet werden. Beim internen Regelkreis erfolgt die Programmoptimierung speziell für jedes Bauteil.In the external control loop, the NC program is optimized on one or iteratively on several components. If the target / actual deviation is within the permissible tolerance, then all following components can be processed with the same NC program without further optimization. With the internal control loop, the program optimization is carried out specifically for each component.
Eine vorteilhafte Weiterbildung der erfindungsgemaßen Verfahren sieht vor, dass das Erfassen der Soll-Ist-Abweichung mit einem taktilen oder einem optischen Messverfahren erfolgt. Zur Erfassung der Soll-Ist- Abweichung können alle Mess- oder Prufmethoden eingesetzt werden, mit denen die Abweichung in der erforderlichen Qualität und Quantität ermittelt werden können. Unter anderem kommen die Erfassung mit taktilen Systemen (Messtaster) z.B.: Messmaschine oder Messtaster innerhalb der Bearbeitungsmaschine, die optische Erfassung (Lasertriangolation, flächenhafte optische Messsysteme) außerhalb oder innerhalb der Bearbeitungsmaschine als mögliche Messverfahren in Betracht. Es kann aber auch eine Erfassung mit manuellen Messmitteln oder Sondermessmitteln erfolgen.An advantageous development of the method according to the invention provides that the detection of the desired-actual deviation takes place with a tactile or an optical measuring method. To record the target-actual deviation, all measuring or test methods can be used, with which the deviation in the required quality and quantity can be determined. Among other things, the detection with tactile systems (probe) such as: measuring machine or probe within the machine, the optical detection (laser triangulation, planar optical measuring systems) outside or inside the machine come as a possible measurement method into consideration. However, it is also possible to record with manual measuring means or special measuring means.
Eine weitere vorteilhafte Weiterbildung der erfindungsgemäßen Verfahren sieht vor, dass die Rückführung der Soll-Ist-Abweichung so erfolgt, dass jedem Stützpunkt des Werkzeugweges ein Korrekturvektor zugeordnet wird. Die Rückführung der Soll-Ist-Abweichung in das NC-Programm erfolgt so, dass jedem Stützpunkt des Werkzeugweges ein Korrekturvektor zugeordnet wird. Der Korrekturvektor besteht aus dem Betrag und der Richtung der Soll-Ist-Abweichung. Jeder Stützpunkt des Werkzeugweges wird dann um den zugehörigen Korrekturvektor verschoben.A further advantageous development of the method according to the invention provides that the feedback of the desired-actual deviation is effected in such a way that a correction vector is assigned to each support point of the tool path. The feedback of the setpoint-actual deviation into the NC program is carried out in such a way that a correction vector is assigned to each support point of the toolpath. The correction vector consists of the amount and the direction of the target-actual deviation. Each support point of the tool path is then shifted by the associated correction vector.
Eine vorteilhafte Weiterbildung der erfindungsgemäßen Verfahren sieht vor, dass die Ermittlung der Korrekturvektoren dadurch erfolgt, dass die Ist-Geometrie mit der Soll-Geometrie eindeutig in Bezug gesetzt wird. Die Korrekturvektoren werden ermittelt, indem die erfasste Ist-Geometrie, d.h. die ermittelten Messdaten, mit der Soll-Geometrie, beispielsweise ermittelt aus einem CAD-Modell, in Bezug gesetzt wird. Dabei ist es von entscheidender Bedeutung, dass die jeweils zugehörigen Bereiche bzw. Stützpunkte miteinander verrechnet werden.An advantageous development of the method according to the invention provides that the determination of the correction vectors takes place in that the actual geometry is clearly related to the desired geometry. The correction vectors are determined by taking the detected actual geometry, i. the determined measurement data, with the target geometry, for example, determined from a CAD model, related. It is of crucial importance that the respectively associated areas or interpolation points are offset against each other.
Eine vorteilhafte Weiterbildung der erfindungsgemäßen Verfahren sieht vor, dass der eindeutige Bezug zwischen zughörigen Bereichen durch Synchronmarken definiert wird, die zwischen Bereichen mit starker Krümmungsänderung gesetzt sind. Synchronmarken sind immer zwischen Bereichen zu setzen, zwischen denen sich die Krümmung stark ändert. Werden alle Messpunkte, d.h. die Ist-Geometrie, mit den zugehörigen Punkten auf dem CAD-Modell, d.h. der Soll-Geometrie, in Beziehung gesetzt, erhält man ein Vektorfeld mit dem die entsprechenden Stützpunkte des NC-Programms verschoben werden können. Der eindeutige Bezug zwischen den Korrekturvektoren des Vektorfeldes und dem NC-Prograirun wird durch die gleichen Synchronmarken hergestellt die bereits bei der Ist-Geometrie und der Sollgeometrie verwendet wurden.An advantageous development of the method according to the invention provides that the unambiguous relationship between associated regions is defined by synchronizing marks which are set between regions with a large change in curvature. Synchronization marks must always be placed between areas between which the curvature changes greatly. If all measurement points, ie the actual geometry, are related to the corresponding points on the CAD model, ie the target geometry, a vector field is obtained with the corresponding interpolation points of the NC program can be moved. The unambiguous relation between the correction vectors of the vector field and the NC program is produced by the same synchronous marks which were already used in the actual geometry and the target geometry.
Eine erfindungsgemäße NC-gesteuerte spanabhebende Fertigungsmaschinen mit einer Einrichtung zum Kompensieren von Lage- und/oder Formabweichungen bei Werkstücken, weist folgendes auf: eine Regelungseinheit, die eine Speichereinheit zum Speichern einer Soll-Geometrie eines Werkstücks aufweist, eine Messeinrichtung zum Erfassen der Ist- Geometrie eines Werkstücks und eine Recheneinheit zum Berechnen der Soll-Ist-Abweichung, die entsprechend der Soll-Ist-Abweichung die Weiterbearbeitung des Werkstücks steuert oder das NC-Programm selbstständig optimiert.An NC-controlled cutting production machine according to the invention with a device for compensating for deviations in position and / or shape of workpieces has the following: a control unit which has a memory unit for storing a desired geometry of a workpiece, a measuring device for detecting the actual geometry a workpiece and a computing unit for calculating the target-actual deviation, which controls the further processing of the workpiece according to the target-actual deviation or independently optimizes the NC program.
Diese Komponenten sind vorteilhafterweise in die Fertigungsmaschine integriert und können sich bei einem sog. externen Regelungskreis aber auch außerhalb der Maschine befinden.These components are advantageously integrated into the production machine and can also be located outside the machine in the case of a so-called external control loop.
Eine vorteilhafte Ausführungsform der NC-gesteuerten spanabhebenden Fertigungsmaschine ist eine NC-gesteuerte Fräsmaschine.An advantageous embodiment of the NC-controlled metal-cutting production machine is an NC-controlled milling machine.
Eine vorteilhafte Ausführungsform der NC-gesteuerten spanabhebenden Fertigungsmaschine weist taktile oder optische Messeinrichtungen zum Erfassen der Ist-Geometrie auf. Die taktilen oder optischen Messeinrichtungen sind vorteilhaft in die eigentliche spanabhebende Maschine integriert, aber auch hier können die Messeinrichtungen außerhalb angebracht sein.An advantageous embodiment of the NC-controlled metal-cutting production machine has tactile or optical measuring devices for detecting the actual geometry. The tactile or optical measuring devices are advantageously integrated in the actual cutting machine, but also here the measuring devices can be mounted outside.
Weitere die Erfindung verbessernde Maßnahmen sind in den Unteransprüchen angegeben und werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren näher dargestellt. Es zeigt: Fig. 1 ein Flussdiagramm einer ersten Ausfuhrungsform eines erfindungemaßen Verfahrens;Further measures improving the invention are set forth in the subclaims and will be explained in more detail below together with the description of a preferred embodiment of the invention with reference to FIGS. It shows: 1 shows a flow chart of a first embodiment of a method according to the invention;
Fig. 2 ein Flussdiagramm einer zweiten Ausfuhrungsform eines erfindungsgemaßen Verfahrens;2 shows a flow chart of a second embodiment of a method according to the invention;
Fig. 3 ein erstes Beispiel für Lage- und Formabweichungen beim Fräsen eines Stromungsprofils;3 shows a first example of deviations in position and shape when milling a flow profile;
Fig. 4 ein zweites Beispiel für Lage- und Formabweichungen beim Fräsen eines Stromungsprofils;4 shows a second example of position and shape deviations when milling a flow profile.
Fig. 5 ein drittes Beispiel für Lage- und Formabweichungen beim Fräsen eines Stromungsprofils.Fig. 5 shows a third example of position and shape deviations when milling a flow profile.
Figur 1 zeigt ein Flussdiagramm einer ersten Ausfuhrungsform eines erfindungemaßen Verfahrens zum Kompensieren von Lage- und Formabweichungen bei einer NC-gesteuerten spanabhebenden Fertigungsmaschine .FIG. 1 shows a flow chart of a first embodiment of a method according to the invention for compensating for deviations in position and shape in an NC-controlled metal-cutting machine.
Der Regelkreis findet außerhalb der NC-Maschine statt. Die zu korrigierenden Passagen am Bauteil werden zunächst nominal gefräst. Anschließend werden die Soll-Ist-Abweichungen erfasst und in das NC- Programm zurückgeführt. Mit dem optimierten NC-Programm wird dann das nächste Bauteil gefertigt. Dieser Prozess wiederholt sich iterativ so oft, bis die erforderlichen Lage- und Formtoleranzen erreicht sind.The control loop takes place outside the NC machine. The passages to be corrected on the component are first milled nominal. Subsequently, the target-actual deviations are detected and fed back into the NC program. With the optimized NC program, the next component is then manufactured. This process repeats itself iteratively until the required position and shape tolerances are reached.
Beim externen Regelkreis wird das NC-Programm an einem oder iterativ an mehreren Bauteilen optimiert. Liegt die Soll-Ist-Abweichung innerhalb der zulassigen Toleranz, dann können alle folgenden Bauteile mit dem gleichen NC-Programm ohne weitere Optimierung bearbeitet werden.In the external control loop, the NC program is optimized on one or iteratively on several components. If the target / actual deviation is within the permissible tolerance, then all following components can be processed with the same NC program without further optimization.
Figur 2 zeigt ein Flussdiagramm einer zweiten Ausfuhrungsform eines erfindungemäßen Verfahrens zum Kompensieren von Lage- und Formabweichungen bei einer NC-gesteuerten Fräsmaschine. Der geschlossene Regelkreis wird bei diesem Verfahren innerhalb der NC- Bearbeitungsmaschine bei der Bearbeitung jedes einzelnen Bauteiles durchlaufen. Das in die Bearbeitungsmaschine eingespannte Bauteil wird dabei nach dem Start des Verfahrens in einem ersten Schritt vorgeschlichtet. Das Schlichtaufmaß muss dabei größer sein als die maximal zu erwartenden Lage- und Formabweichungen, da das Werkstück andernfalls Ausschuss ist. In einem zweiten Schritt wird für die vorgeschlichteten Bereiche von entsprechenden Messeinrichtungen innerhalb der Maschine, im Falle des vorliegenden Λusführungsbeispiels von automatischen Tastern, die Soll-Ist-Abweichung erfasst. Die ermittelten Messergebnisse werden dann in einem weiteren Schritt an das NC-Programm zurückgeführt. Für den Fall, dass die Soll-Ist-Abweichung innerhalb der zulässigen Toleranz liegt, d.h. im Falle einer Ja-Verzweigung, wird das Bauteil fertig bearbeitet. Für den Fall, dass die Soll-Ist-Abweichung nicht innerhalb der zulässigen Toleranz liegt, d.h. bei einer Nein- Verzweigung, wird die Abweichung automatisch in das NC-Programm implementiert und ein weiterer Schlichtdurchgang durchlaufen. Mit dem optimierten Schlichtprogramm wird das Bauteil dann fertiggefräst. Beim nächsten Bauteil wird dieses Verfahren in der gleichen Weise durchlaufen.FIG. 2 shows a flow chart of a second embodiment of a erfindungemäßen method for compensating for position and shape deviations in an NC-controlled milling machine. The closed loop is passed through in this process within the NC machine during the processing of each component. The component clamped in the processing machine is pre-exposed after the start of the process in a first step. The finishing allowance must be greater than the maximum expected deviations in position and form, as otherwise the workpiece will be rejected. In a second step, the pre-illuminated areas of corresponding measuring devices within the machine, in the case of the present exemplary embodiment of automatic push buttons, the target-actual deviation is detected. The determined measurement results are then fed back to the NC program in a further step. In the event that the target-actual deviation is within the allowable tolerance, ie in the case of a Yes branch, the component is finished. In the event that the target / actual deviation is not within the permissible tolerance, ie with a no-branch, the deviation is automatically implemented in the NC program and pass through another finishing pass. With the optimized finishing program, the component is then finished. For the next component, this procedure is followed in the same way.
Die Abbildungen in Figur 3 bis Figur 5 zeigen einige Beispiele für Lage- und Formabweichungen beim Fräsen eines Strömungsprofils, wie sie beispielsweise bei der Schaufelfertigung für Turbomaschinen auftreten. Dabei ist jeweils die Soll-Geometrie eines Strömungsprofil 1 mit einer gestrichelten Linie dargestellt. Die gepunktete Linie stellt dabei die Ist-Geometrie dar. Die Abweichungen zwischen der Ist-Geometrie und der Soll-Geometrie sind dabei durch Korrekturvektoren dargestellt. Ferner sind im Bereich der Profilnase und der Profilhinterkante Synchronpunkte dargestellt.The illustrations in FIGS. 3 to 5 show a few examples of deviations in position and shape during the milling of a flow profile, as occur, for example, in blade production for turbomachines. In each case, the desired geometry of a flow profile 1 is shown with a dashed line. The dotted line represents the actual geometry. The deviations between the actual geometry and the target geometry are represented by correction vectors. Furthermore, synchronization points are shown in the region of the profile nose and the profile trailing edge.
Figur 3 zeigt eine umlaufend konstante Formabweichung, d.h. die Abweichungen der Ist-Geometrie von der Soll-Geometrie sind an allen Stellen der Profilkontur gleich groß. An allen Stellen der Geometrie existiert ein Übermaß.Figure 3 shows a circumferentially constant shape deviation, ie the deviations of the actual geometry of the target geometry are at all Make the profile contour the same size. At all points of the geometry there is an excess.
Figur 4 zeigt ein Beispiel eines Strömungsprofils mit Formabweichungen, die nicht über die gesamte Kontur konstant sind. Im Saugbereich des Profils ist ein Untermaß vorhanden, d.h. die Ist-Geometrie liegt stellenweise innerhalb der Soll-Geometrie.FIG. 4 shows an example of a flow profile with shape deviations that are not constant over the entire contour. There is an undersize in the suction area of the profile, i. the actual geometry is in places within the target geometry.
Schließlich zeigt Figur 5 ein Beispiel eines Strömungsprofils mit Lage und Formabweichungen. Finally, FIG. 5 shows an example of a flow profile with position and shape deviations.

Claims

P A T E N T A N S P R Ü C H E PATENT APPLICATIONS
1. Verfahren zum Kompensieren von Lage- und/oder Formabweichungen bei NC-gesteuerten spanabhebenden Fertigungsmaschinen, wobei das Verfahren folgende Schritte aufweist: a) Einspannen eines neuen Werkstücks b) Bearbeiten des Werkstücks mit den nominalen Daten des NC- Programms ; c) Erfassen der Soll-Ist-Abweichung; d) Optimierung des NC-Programms mit den Erfassungsdaten aus c) ; e) Wiederholen der Iterationsschritte a) bis d) bis erforderliche Lage- und/oder Formtoleranzen erreicht sind.A method for compensating for deviations in position and / or shape in NC-controlled machining machines, the method comprising the following steps: a) clamping a new workpiece b) machining the workpiece with the nominal data of the NC program; c) detecting the target-actual deviation; d) optimization of the NC program with the acquisition data from c); e) repeating the iteration steps a) to d) until required position and / or shape tolerances are achieved.
2. Verfahren zum Kompensieren von Lage- und Formabweichungen bei NC- gesteuerten spanabhebenden Fertigungsmaschinen, wobei das Verfahren folgende Schritte aufweist: a) Vorbereiten eines Werkstücks wobei das Aufmaß größer ist als die maximal zu erwartende Lage- und/oder Formabweichung; b) Erfassen der Soll-Ist-Abweichung; c) Optimierung des NC-Programms mit den Erfassungsdaten; d) Fertigbearbeiten des Bauteils mit modifiziertem NC-Programm.2. A method for compensating for deviations in position and shape in NC-controlled cutting production machines, the method comprising the following steps: a) preparing a workpiece, wherein the oversize is greater than the maximum expected position and / or shape deviation; b) detecting the target-actual deviation; c) optimization of the NC program with the acquisition data; d) Finishing the component with modified NC program.
3. Verfahren nach einem der Patentansprüche 1 oder 2, wobei das Erfassen der Soll-Ist-Abweichung mit einem taktilen oder einem optischen Messverfahren erfolgt.3. The method according to any one of claims 1 or 2, wherein the detection of the target-actual deviation is carried out with a tactile or an optical measurement method.
4. Verfahren nach einem der Patentansprüche 1 oder 2, wobei die Rückführung der Soll-Ist-Abweichung so erfolgt, dass jedem Stützpunkt des Werkzeugweges ein Korrekturvektor zugeordnet wird. 4. The method according to any one of claims 1 or 2, wherein the return of the target-actual deviation is carried out so that each support point of the tool path, a correction vector is assigned.
5. Verfahren nach Patentanspruch 4, wobei die Ermittlung der Korrekturvektoren dadurch erfolgt, dass die Ist-Geometrie mit der Soll-Geometrie eindeutig in Bezug gesetzt wird.5. The method according to claim 4, wherein the determination of the correction vectors is effected in that the actual geometry with the target geometry is clearly related.
6. Verfahren nach Patentanspruch 5, wobei der eindeutige Bezug zwischen zughörigen Bereichen durch Synchronmarken definiert wird, die zwischen Bereichen mit starker Krümmungsänderung gesetzt sind.A method according to claim 5, wherein the unique relationship between associated areas is defined by synchronizing marks set between areas of high curvature change.
7. NC-gesteuerte spanabhebende Fertigungsmaschine mit einer Einrichtung zum Kompensieren von Lage- und/oder Formabweichungen bei Werkstücken, wobei diese eine Regelungseinheit aufweist, die eine Speichereinheit zum Speichern einer Soll-Geometrie eines Werkstücks aufweist, die eine Messeinrichtung zum Erfassen der Ist- Geometrie eines Werkstücks aufweist, die ferner eine Recheneinheit zum Berechnen der Soll-Ist-Abweichung aufweist, die entsprechend der Soll-Ist-Abweichung die Weiterbearbeitung des Werkstücks steuert oder das NC-Programm selbstständig optimiert.7. NC-controlled cutting production machine with a device for compensating for deviations in position and / or shape of workpieces, wherein this has a control unit having a memory unit for storing a desired geometry of a workpiece, which comprises a measuring device for detecting the actual geometry a workpiece, which further comprises a computing unit for calculating the target-actual deviation, which controls the further processing of the workpiece according to the target-actual deviation or independently optimizes the NC program.
8. NC-gesteuerte spanabhebende Fertigungsmaschine nach Patentanspruch 7, wobei diese eine NC-gesteuerte Fräsmaschine ist.8. NC-controlled cutting machine according to claim 7, wherein this is an NC-controlled milling machine.
9. NC-gesteuerte spanabhebende Fertigungsmaschine nach einem der Patentansprüche 7 oder 8, wobei diese taktile oder' optische Messeinrichtungen zum Erfassen der Ist-Geometrie aufweist. 9. NC-controlled cutting production machine according to one of the claims 7 or 8, wherein said tactile or 'optical measuring means for detecting the actual geometry has.
EP06805438A 2005-10-20 2006-10-17 Method and device for compensating for positional and shape deviations Ceased EP1938162A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005050205A DE102005050205A1 (en) 2005-10-20 2005-10-20 Method and device for compensating position and shape deviations
PCT/DE2006/001832 WO2007045223A1 (en) 2005-10-20 2006-10-17 Method and device for compensating for positional and shape deviations

Publications (1)

Publication Number Publication Date
EP1938162A1 true EP1938162A1 (en) 2008-07-02

Family

ID=37698031

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06805438A Ceased EP1938162A1 (en) 2005-10-20 2006-10-17 Method and device for compensating for positional and shape deviations

Country Status (5)

Country Link
US (1) US8014892B2 (en)
EP (1) EP1938162A1 (en)
CA (1) CA2625402C (en)
DE (1) DE102005050205A1 (en)
WO (1) WO2007045223A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7503029B2 (en) * 2006-03-31 2009-03-10 Synopsys, Inc. Identifying layout regions susceptible to fabrication issues by using range patterns
ATE483185T1 (en) * 2007-03-21 2010-10-15 Abb Technology Ab METHOD AND DEVICE FOR COMPENSATING GEOMETRIC ERRORS BETWEEN WORKING OBJECTS AND A HOLDING DEVICE
CA2829576C (en) * 2011-03-09 2018-05-22 Rolls-Royce Corporation Intelligent airfoil component surface imaging inspection
DE102011006447A1 (en) 2011-03-30 2012-10-04 Trumpf Laser- Und Systemtechnik Gmbh Method for machining workpieces by means of a numerically controlled workpiece machining device and workpiece machining device
US9008813B2 (en) * 2011-09-22 2015-04-14 GM Global Technology Operations LLC Method to improve the dimensional accuracy and surface quality for large spring back compensation for fuel cell bipolar plate forming
FR2984197B1 (en) 2011-12-15 2014-01-03 Essilor Int PROCESS FOR TRANSFORMING AN INITIAL PROGRESSIVE SURFACE
DE102013002252A1 (en) * 2013-02-08 2014-08-14 Ulrich Gärtner Machining device and machining method for machining a workpiece
EP2984596B1 (en) * 2013-04-11 2019-10-30 Raytheon Company Inverse-contour machining to eliminate residual stress distortion
US20140365199A1 (en) * 2013-06-11 2014-12-11 The Mathworks, Inc. Pairing a physical device with a model element
CN103273292B (en) * 2013-06-14 2016-04-20 沈阳飞机工业(集团)有限公司 The control of the T-shaped part deformation of a kind of elongated complexity and compensation method
US10360052B1 (en) 2013-08-08 2019-07-23 The Mathworks, Inc. Automatic generation of models from detected hardware
KR101958389B1 (en) * 2013-09-13 2019-03-14 마키노 밀링 머신 주식회사 Toolpath Evaluation Method, Toolpath Generation Method, and Toolpath Generation Device
EP3045992B1 (en) 2015-01-14 2020-10-14 Hexagon Technology Center GmbH Compensating for errors occurring in a production process
CN104759942B (en) * 2015-04-22 2018-06-26 华中科技大学 A kind of milling deformation on-line measurement of thin-walled parts and compensation processing method
CN105242637A (en) * 2015-10-27 2016-01-13 华中科技大学 Aviation thin-wall blade compensation processing method
US10401823B2 (en) 2016-02-04 2019-09-03 Makino Inc. Real time machining process monitoring utilizing preprocess simulation
EP3229088B1 (en) * 2016-04-08 2020-08-19 Klingelnberg AG Method for monitoring the machine geometry of a tooth machining machine and device with a tooth machining machine, a measuring device and a software module
US10401803B2 (en) * 2016-09-26 2019-09-03 General Electric Company Apparatus and method for computer code adjustments in an industrial machine
US11061424B2 (en) 2017-01-12 2021-07-13 Johnson Controls Technology Company Building energy storage system with peak load contribution and stochastic cost optimization
US11847617B2 (en) 2017-02-07 2023-12-19 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with financial analysis functionality
US11900287B2 (en) 2017-05-25 2024-02-13 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with budgetary constraints
US10857692B2 (en) * 2017-02-27 2020-12-08 Usnr, Llc Log and cant optimization
US11120411B2 (en) 2017-05-25 2021-09-14 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with incentive incorporation
US11416955B2 (en) 2017-05-25 2022-08-16 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with integrated measurement and verification functionality
US11747800B2 (en) 2017-05-25 2023-09-05 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system with automatic service work order generation
US11636429B2 (en) 2017-05-25 2023-04-25 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance systems and methods with automatic parts resupply
WO2018217251A1 (en) * 2017-05-25 2018-11-29 Johnson Controls Technology Company Model predictive maintenance system for building equipment
US11409274B2 (en) 2017-05-25 2022-08-09 Johnson Controls Tyco IP Holdings LLP Model predictive maintenance system for performing maintenance as soon as economically viable
WO2019153169A1 (en) * 2018-02-08 2019-08-15 Abb Schweiz Ag Method and apparatus for adjusting robot motion path
US11480360B2 (en) 2019-08-06 2022-10-25 Johnson Controls Tyco IP Holdings LLP Building HVAC system with modular cascaded model
FR3104586B1 (en) 2019-12-17 2021-12-03 Michelin & Cie Asymmetric diorganomagnesium compound for catalytic system
FR3104584B1 (en) 2019-12-17 2021-12-03 Michelin & Cie Asymmetric diorganomagnesium compound
FR3116277A1 (en) 2020-11-19 2022-05-20 Compagnie Generale Des Etablissements Michelin Amine functional copolymers with ethylenic and diene blocks
FR3116276B1 (en) 2020-11-19 2023-11-10 Michelin & Cie Diorganomagnesium having a diene or olefin chain and amine functional
FR3116538B1 (en) 2020-11-24 2022-11-25 Michelin & Cie Co-catalyst comprising several magnesium carbon bonds
CN113547385B (en) * 2021-08-06 2022-08-23 中国航发沈阳黎明航空发动机有限责任公司 Online measurement compensation method for thin-wall annular part
DE102021121991A1 (en) * 2021-08-25 2023-03-02 Bayerische Motoren Werke Aktiengesellschaft Method for determining an operating parameter of a tool for forming components in a press
CN117655563B (en) * 2024-01-31 2024-05-28 成都沃特塞恩电子技术有限公司 Laser cutting path planning method and device, electronic equipment and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3620422C1 (en) * 1986-06-18 1988-01-14 Gildemeister Ag Method for correcting the processing programme of a tool of a numerically controlled machine tool
US6256546B1 (en) * 1998-09-28 2001-07-03 General Electric Company System and method for numerical control processing of an in-processing part
WO2004071717A1 (en) * 2003-02-13 2004-08-26 Abb Ab A method and a system for programming an industrial robot to move relative to defined positions on an object, including generation of a surface scanning program

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031368A (en) 1972-04-17 1977-06-21 Verkstadsteknik Ab Adaptive control of cutting machining operations
JPS57114331A (en) 1980-12-30 1982-07-16 Fanuc Ltd Shape correcting method in wire-cut electric discharge machining
US4382215A (en) * 1981-07-16 1983-05-03 General Electric Company System and method of precision machining
US4428055A (en) 1981-08-18 1984-01-24 General Electric Company Tool touch probe system and method of precision machining
JPS5976720A (en) 1982-10-27 1984-05-01 Inoue Japax Res Inc Electrospark machining device
JPS5981094A (en) 1982-11-02 1984-05-10 株式会社日立製作所 Safety maintenance system of automatic machine
US4605886A (en) * 1983-09-02 1986-08-12 Inoue-Japax Research Incorporated Feed-deviation preventive path-controlled machining method and apparatus
US4555610A (en) * 1983-09-13 1985-11-26 Data Card Corporation Laser machining system
JPS6074003A (en) * 1983-09-30 1985-04-26 Ryozo Setoguchi Shape creating device
JPS61288959A (en) * 1985-02-15 1986-12-19 Toyoda Mach Works Ltd Data input device in interactive numerically controlled grinder
US4816729A (en) * 1986-06-30 1989-03-28 General Electric Company Closed loop machining system calibration
US4748554A (en) * 1986-08-14 1988-05-31 Gte Valeron Corporation Machine monitoring system using motion detection for synchronization
US4790697A (en) 1987-05-21 1988-12-13 Hines Industries, Inc. Automatic grinder
JP2846881B2 (en) * 1987-09-14 1999-01-13 豊田工機株式会社 Numerically controlled grinding machine
EP0311703B1 (en) 1987-10-14 1991-12-18 TRAUB Aktiengesellschaft Method for controlling a machine tool
EP0326625A1 (en) 1988-02-01 1989-08-09 Starrfräsmaschinen AG Apparatus for determining irregularities in a tool machine for machining work pieces
JPH0652484B2 (en) * 1988-02-15 1994-07-06 豊田工機株式会社 Numerical controller for machining non-round workpieces
JPH077296B2 (en) 1988-04-05 1995-01-30 豊田工機株式会社 Numerical controller for machining non-round workpieces
JPH0683945B2 (en) * 1988-07-26 1994-10-26 豊田工機株式会社 Numerical controller for machining non-round workpieces
JP2637488B2 (en) 1988-07-28 1997-08-06 豊田工機株式会社 Numerically controlled grinding machine
JPH02220106A (en) * 1989-02-22 1990-09-03 Okuma Mach Works Ltd Digitization controller containing measuring function
US5047966A (en) * 1989-05-22 1991-09-10 Airfoil Textron Inc. Airfoil measurement method
JPH03176703A (en) * 1989-12-05 1991-07-31 Yoshiaki Kakino Numerical controller
DE4014405A1 (en) 1990-05-04 1991-11-07 Eckehart Schulze METHOD FOR CONTROLLING THE ORBITAL MOTION OF THE PRESSURE ROLL OF A PRESSING MACHINE AND PRESSING MACHINE FOR IMPLEMENTING THE METHOD
US5411430A (en) 1991-09-25 1995-05-02 Hitachi Ltd. Scanning optical device and method for making a hybrid scanning lens used therefor
DE69314688T2 (en) * 1992-04-23 1998-02-19 Heidenhain Gmbh Dr Johannes Numerical control device and method for controlling the movement of a tool
JPH068105A (en) * 1992-06-29 1994-01-18 Komatsu Ltd Cylindrically machining device
US5710709A (en) * 1993-08-19 1998-01-20 Iowa State University Research Foundation, Inc. NC milling simulation and dimensional verification via dexel representation
JPH07104819A (en) * 1993-09-30 1995-04-21 Toyoda Mach Works Ltd Nc data preparing device
JP3315556B2 (en) 1994-04-27 2002-08-19 三菱電機株式会社 Laser processing equipment
JP3702496B2 (en) 1995-07-10 2005-10-05 三菱電機株式会社 Machining method using numerical controller
JPH0929598A (en) 1995-07-25 1997-02-04 Hitachi Ltd Processing device for aspheric surface shape object
JP3287981B2 (en) 1995-08-15 2002-06-04 理化学研究所 Shape control method and NC processing apparatus by this method
US5691909A (en) * 1995-12-29 1997-11-25 Western Atlas Method of virtual machining to predict the accuracy of part to be made with machine tools
JP2929996B2 (en) * 1996-03-29 1999-08-03 トヨタ自動車株式会社 Tool point sequence generation method
DE19614128C2 (en) 1996-04-10 2001-03-01 Agie Sa Method and device for controlling a machine tool, in particular a spark erosion machine
US5903459A (en) * 1996-06-06 1999-05-11 The Boeing Company Method for product acceptance by improving the accuracy of machines
US6681145B1 (en) * 1996-06-06 2004-01-20 The Boeing Company Method for improving the accuracy of machines
US5898590A (en) 1996-08-21 1999-04-27 The Boeing Company Method and apparatus for numerically controlled pattern determination
JPH10253346A (en) 1997-01-07 1998-09-25 Nikon Corp Apparatus for measuring aspheric shape and manufacture of aspheric optical member
JP3200023B2 (en) 1997-01-16 2001-08-20 ファナック株式会社 Control equipment for production equipment
US6233533B1 (en) * 1998-06-04 2001-05-15 Performance Friction Corporation Turning center with integrated non-contact inspection system
JP2000084794A (en) 1998-09-14 2000-03-28 Makino Milling Mach Co Ltd Machining device
WO2000052419A1 (en) 1999-03-03 2000-09-08 Riken Probe type shape measurement sensor, and nc machining device and shape measuring method using the sensor
JP2000317775A (en) * 1999-04-28 2000-11-21 Mitsutoyo Corp Machining system
JP3602037B2 (en) * 1999-08-23 2004-12-15 株式会社フジエ How to create a moving image data file
JP4398044B2 (en) 2000-02-03 2010-01-13 東芝機械株式会社 Numerical control device and control method for machine tool
JP3512406B2 (en) * 2000-09-18 2004-03-29 株式会社日立製作所 3D shape description method and engineering system using the same
JP3973466B2 (en) * 2001-06-19 2007-09-12 株式会社リコー Mold, mold manufacturing method, mold manufacturing system, and molding method
JP3922256B2 (en) 2001-10-03 2007-05-30 三菱電機株式会社 Numerical controller
DE10155430B4 (en) 2001-11-12 2006-12-14 Siemens Ag Adaptation of compensation data to reduce positional errors in machine tools and robots
JP2003200332A (en) 2001-12-27 2003-07-15 Fanuc Ltd Control device for gear machining
US6912446B2 (en) * 2002-10-23 2005-06-28 General Electric Company Systems and methods for automated sensing and machining for repairing airfoils of blades
JP4556383B2 (en) 2002-11-29 2010-10-06 コニカミノルタホールディングス株式会社 Processing method of transfer optical surface
DE10322340B4 (en) * 2003-05-17 2006-09-14 Mtu Aero Engines Gmbh Method and device for milling free-form surfaces
US7479959B2 (en) * 2004-02-23 2009-01-20 Ironclad Llc Geometric modeling system with intelligent configuring of solid shapes
GB0419381D0 (en) * 2004-09-01 2004-10-06 Renishaw Plc Machine tool method
JP2010511919A (en) * 2005-03-23 2010-04-15 ハーコ カンパニーズ,インコーポレイテッド Tolerance-based path design and control methods
US7629985B2 (en) * 2006-01-26 2009-12-08 Autodesk, Inc. Method for creation of architectural space objects for area and volume calculation
GB0707921D0 (en) * 2007-04-24 2007-05-30 Renishaw Plc Apparatus and method for surface measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3620422C1 (en) * 1986-06-18 1988-01-14 Gildemeister Ag Method for correcting the processing programme of a tool of a numerically controlled machine tool
US6256546B1 (en) * 1998-09-28 2001-07-03 General Electric Company System and method for numerical control processing of an in-processing part
WO2004071717A1 (en) * 2003-02-13 2004-08-26 Abb Ab A method and a system for programming an industrial robot to move relative to defined positions on an object, including generation of a surface scanning program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2007045223A1 *

Also Published As

Publication number Publication date
CA2625402A1 (en) 2007-04-26
WO2007045223A1 (en) 2007-04-26
US8014892B2 (en) 2011-09-06
US20090132080A1 (en) 2009-05-21
CA2625402C (en) 2016-09-20
DE102005050205A1 (en) 2007-04-26

Similar Documents

Publication Publication Date Title
EP1938162A1 (en) Method and device for compensating for positional and shape deviations
DE3702594C2 (en)
EP2040881B1 (en) Method for machining that combines fine boring and honing and machining equipment for the execution of the method
DE102012205423A1 (en) Method and program for calculating a correction value for a machine tool
EP1588224B1 (en) Method and device for producing service blades
EP1981674A1 (en) Apparatus and method for machining bevel gears in a pitching method with complete pitch error compensation
DE4023587C2 (en) Process for the measurement-controlled peripheral grinding of radially non-circular workpieces
EP2923790B1 (en) Method for grinding bevel gears in a single indexing method
DE102020117709A1 (en) Gear machining assisting device and gear machining device
DE3119629A1 (en) METHOD FOR TENSIONING AND POSITIONING PRECISION PARTS
EP4244577A1 (en) Measuring body for verifying geometrical deviations of a 3-axis machine tool, 3-axis machine tool, and method for compensating geometrical deviations of a 3-axis machine tool
DE102011105897A1 (en) Method for compensating processing errors due to elastic deformation of workpiece, involves revising geometry data incrementally using additional information such as ambient temperature before start of compensating process
DE102007048588A1 (en) Method for reworking an externally prefabricated molded part
DE102019129078A1 (en) Machine tool and gear machining process
DE19743139A1 (en) Grinding machine control arrangement
EP3596563B1 (en) Method for the machining of workpieces using a machining center
DE102017011602A1 (en) Numerical control
WO2009129789A1 (en) Method and device for automated position correction
DE102020121648B4 (en) Process and device for post-processing of machined or additively manufactured components
WO2019086228A1 (en) Improved calibration of machine tools
EP0334345A2 (en) Method for grinding cames of a camshaft
DE19919147B4 (en) Method for determining a contour error and method for checking correct setpoint specification
DE202011106104U1 (en) Device for conveying and processing workpieces
DE102022112154B3 (en) Measuring body for checking geometric deviations in a 3-axis machine tool, 3-axis machine tool and method for compensating for geometric deviations in a 3-axis machine tool
DE102004003865B4 (en) Method for dimensionally accurate machining of components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20080702

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20190130