EP1714073B1 - Premixing burner comprising a vortex generator defining a tapered vortex space, and sensor monitoring - Google Patents

Premixing burner comprising a vortex generator defining a tapered vortex space, and sensor monitoring Download PDF

Info

Publication number
EP1714073B1
EP1714073B1 EP05716640.7A EP05716640A EP1714073B1 EP 1714073 B1 EP1714073 B1 EP 1714073B1 EP 05716640 A EP05716640 A EP 05716640A EP 1714073 B1 EP1714073 B1 EP 1714073B1
Authority
EP
European Patent Office
Prior art keywords
channel
premix burner
burner according
burner
swirl chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05716640.7A
Other languages
German (de)
French (fr)
Other versions
EP1714073A1 (en
Inventor
Philipp Brunner
Jaan Hellat
Christian Oliver Paschereit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia Switzerland AG
Original Assignee
General Electric Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Technology GmbH filed Critical General Electric Technology GmbH
Publication of EP1714073A1 publication Critical patent/EP1714073A1/en
Application granted granted Critical
Publication of EP1714073B1 publication Critical patent/EP1714073B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/022Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/20Gas turbines

Definitions

  • the invention relates to a premix burner with a, a conical swirl space limiting swirl generator, which provides at least two Operakegelschalen offset along a burner axis to each other, each include longitudinally to the burner axis extending air inlet slots and in combination have a flared Vormischbrennunterssenkontur, the has a largest outer diameter, which tapers axially in a region with a smallest outer diameter.
  • Premix burners of the aforementioned type are known from a variety of prepublished publications, such as. From the EP A1 0 210 462 as well as the EP B1 0 321 809 , to name just a few. Premix burners of this type is based on the general operating principle, within a mostly designed as a conical swirl generator, which provides at least two with corresponding overlap overlapping Operakegelschalen to produce a consisting of a fuel-air mixture swirl flow, which within a downstream of the premix burner combustion chamber under training a spatially stable as possible premix flame is made to ignite.
  • premix burners are preferably used for firing combustion chambers for the operation of a heat engine, especially in gas or steam turbine plants, especially since these premix burners allow the use of different fuels to form a substantially homogeneous fuel-air mixture, which ultimately under training an aerodynamically stabilized premix flame can be made to ignite.
  • thermal power plants in particular of gas turbine plants, with regard to their environmental compatibility, since the exhaust gases released into the atmosphere by the combustion process are subject to strict emission limit values.
  • thermal power plants it is important to optimize thermal power plants from the point of view of their efficiency, with which they are capable of converting energy into electrical energy, and if possible in the entire spectrum of their power range.
  • the aim should therefore be to actively monitor the entire combustion process and to adapt the control variables influencing the combustion process, such as fuel and air supply, to the changes which may be presently occurring.
  • this requires a variety of the operating behavior of the burner sensors, which makes the burner assembly arbitrarily complicated and ultimately costly to manufacture, it still burner operating variables such as fuel and air supply, flame temperature, the occurrence of thermoacoustic vibrations and surface temperatures to detect a To get as complete a picture as possible about the current burner situation.
  • the invention has for its object to provide a Vormischbrenner with a, a conical swirl space limiting swirl generator, which provides at least two Operakegelschalen offset along a burner axis to each other, each include longitudinally extending to the burner axis air inlet slots and in combination have a conically expanding Vormischbrennerau Conskontur having a largest outer diameter, which tapers axially in a region with a smallest outer diameter, further develop such that the integration of differently designed sensor units in the housing of the premix burner is possible with the least possible design effort.
  • it is necessary to take precautions on the premix burner by which an adaptation of a wide variety of sensor units can be implemented easily and without great service outlay.
  • the measures to be taken should also be available on premix burners already in use so that the possibility of retrofitting suitably designed sensor units on premix burners in operation is possible.
  • a premix burner according to the preamble of claim 1 is designed in such a way that at least one partial cone shell in the region between the largest and smallest outer diameter deviates from the conically expanding premix burner outer contour deviating locally from the premix burner outer contour radially outwardly receiving unit, with a maximum radial extent, which is smaller than the largest half outside diameter of the premix burner outer contour.
  • This requirement arises from the desire for a compact design without the radial Premix burner in the axial direction has a corresponding connection flange with a combustion chamber, wherein at least the premix burner is surrounded by a housing which includes a flow space in which the premix burner is supplied with supply air.
  • the housing usually has a correspondingly lockable mounting hole through which the premix burner can be axially mounted to the combustion chamber housing.
  • the receiving unit designed according to the invention in no way impairs the axial mountability of the premix burner and, moreover, offers the implementation of a sensor unit.
  • the receiving unit has at least one hollow channel, with at least one channel opening facing away from the swirl space, via which the sensor unit can be implemented in the receiving unit, wherein the hollow channel has a channel longitudinal extension, which extends substantially parallel to the burner axis.
  • the channel longitudinal extension directed parallel to the burner axis makes it possible to implement corresponding sensor units coaxially with the burner axis, whereby even a premix burner equipped with corresponding sensor units has no components whose maximum radial extent exceeds the maximum outside diameter of the premix burner housing, so that in this case as well an axial mountability of the entire premix burner preserved.
  • Fig. 1 is a longitudinal sectional view through an inventively designed premix burner shown, which has a conically shaped swirl chamber 1, which is bounded by two partial cone shells 2, 3.
  • the partial cone shells 2, 3 are in relation to a burner axis A (see here the cross-sectional view according to FIG Fig. 2 ) are arranged offset and each include each air inlet slots 4 a.
  • the two partial cone shells 2, 3 a Vormischbrennunter C having at the location of the burner outlet 5 has a largest outer diameter A max , which tapers axiallyward and an area 6 with a smallest outer diameter A min provides in which usually a central burner nozzle assembly (not shown) is positionable.
  • a max which tapers axiallyward
  • a min provides in which usually a central burner nozzle assembly (not shown) is positionable.
  • a receiving unit 7 is provided per partial cone shell 2, 3, which is firmly joined to the outer wall of the respective cone shells 2, 3.
  • the receiving unit 7 has a maximum radial extent R max , which is smaller or significantly smaller than the half maximum outer diameter A max . This ensures that the premix burner unit axially through mounting holes, which have only a slightly larger mounting diameter than the maximum outer diameter A max , unhindered can be passed.
  • the receiving unit 7 according to embodiment in Fig. 1 and 2 is formed as a separate component, which can be added in the form of a retrofit kit to the outer wall of the respective sub-cone shell 2, 3. Of course, it is possible to connect the receiving unit 7 in one piece in the manufacture of the partial cone shell with this.
  • supporting flanks 11 are attached to the outer housing of the premix burner, which likewise do not project beyond the maximum outside diameter A max .
  • the receiving unit 7 has at least one hollow channel 8, whose channel longitudinal extent is oriented parallel to the burner axis A.
  • the hollow channel 8 also has in the illustrated embodiment according to Fig. 1 via a first channel opening 9, which is open axially outwards and allows an axially directed insertion possibility for a correspondingly formed, rod-shaped adapted to the inner contour of the hollow channel 8 sensor unit.
  • the inner contour of the hollow channel 8 may be formed as desired.
  • the hollow channel 8 opens via a second channel opening 10 directly into the swirl chamber 1.
  • the hollow channel 8 can have different inner contours of the type of sensor used. All hollow channel designs, however, have in common that they have a koparallele alignment to the burner axis A, which allows an axially facing assembly with corresponding sensor units.
  • Fig. 2 is, as already mentioned, a cross-sectional view through the in Fig. 1 illustrated Vormischbrenner shown. From the cross-sectional representation shows that in addition to the main channel designed as a hollow channel 8, the receiving unit 7 is penetrated in each case by two further hollow channels 8 ', in which also corresponding sensor units can be inserted. In addition, it is particularly advantageous to arrange the receiving unit 7 as centrally as possible at the upper side of the partial cone shell 2, 3 facing away from the swirl space 1 in the circumferential direction between the fuel supply pipe 19 and the shell end edge 20 in order not to influence the air flow directed into the air intake slots 4 as far as possible.
  • the longitudinal section according to the Fig. 3a to d show alternative forms of training differently shaped hollow channels, which are adapted for different sensor types.
  • Fig. 3a has a hollow channel 8, which provides two substantially differently sized diameter channel sections 12 and 12 ', wherein the larger in cross-section channel section 12 is preferably suitable for the use of a microphone sensor 13.
  • the channel section 12 opens via a smaller diameter dimensioned channel section 12 'directly into the swirl chamber 1, via which, for example, pressure fluctuations can be transmitted, as they are initiated by the formation of thermoacoustic vibrations in the interior of the combustion chamber.
  • the receiving unit 7 provides a flushing channel 14, via which cooling air can be fed into the hollow channel 8 in order to avoid overheating of the microphone sensor unit 13.
  • cooling air is introduced from outside through the flushing channel 14 into the hollow channel 8 in the region of the channel section 12 ', the cooling air prevents the entry of hot gases into the hollow channel 8 through the channel opening 10 and in this way serves to prevent the sensor unit from overheating.
  • the hollow channel 8 is formed with a constant inner diameter for the introduction of an optical flame sensor 15.
  • the optical flame sensor 15 has an observation angle range 16, which is limited on the one hand by the exit aperture of the optical flame sensor 15 and on the other hand by the viewing angle enlarging channel opening 10. Again serves to avoid overheating of the flame sensor 15, a flushing channel 14 for the supply of appropriate cooling air.
  • the flushing channel 14 is provided in this case in close proximity to the channel opening 10 to the front aperture region of the Flame sensor 15 effectively protect against thermal contact with the hot gases. With the aid of the optical flame sensor 15, it is possible to monitor the flame front forming inside the combustion chamber, the spatial position of which is an important indication of stable combustion.
  • Fig. 3c has a double-channel guide 8, 8 ', wherein the hollow channels 8, 8' designed as blind holes run parallel to the burner axis A. Both hollow channels 8, 8 'moreover have channel sections 17, 17' extending perpendicularly to the burner axis, the channel section 17 opening into the swirl chamber 1 and the channel section 17 'opening into the atmosphere surrounding the premix burner.
  • the differential pressure measurement essentially serves to determine the air flow through the burner. This makes it possible to determine non-uniformities of the air distribution within the gas turbine housing and / or nonuniformities of the flow characteristic from burner to burner, if it is a multi-burner arrangement to determine. If differential pressure measurements are made on several cone shells of a burner, then one can also determine the nonuniformity of the air flow within a single burner.
  • thermosensor unit 18 is inserted.
  • the sensor units described in the preceding embodiments can be combined as desired within a single recording unit 7, so that as large a variety of different measurement data can be obtained from the side of the premix burner.
  • the sum of the sensor units described above allows the detection of a variety of operating variables, such as Flame temperature or the Vormischbrennertemperatur within the Operakegelschalen to determine the current thermal load of the premix burner, in order to initiate appropriate cooling measures if determined overheating.
  • the measuring sensor units In the case of a multiple burner arrangement, it is particularly advantageous to arrange the measuring sensor units in a plurality of burners. This makes it possible to determine local distributions of pulsations, flame temperatures, pressure distributions, etc., and thus to be able to conclude on the local distribution of the combustion quality, in order ultimately to be able to readjust the local burner conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Description

Technisches GebietTechnical area

Die Erfindung bezieht sich auf einen Vormischbrenner mit einem, einen kegelförmigen Drallraum begrenzenden Drallerzeuger, der wenigstens zwei Teilkegelschalen vorsieht, die längs einer Brennerachse versetzt zueinander angeordnet sind, gegenseitig jeweils längs zur Brennerachse verlaufende Lufteintrittsschlitze einschließen und in Kombination eine sich konisch erweiternde Vormischbrenneraussenkontur aufweisen, die einen größten Aussendurchmesser aufweist, der sich axialwärts verjüngt in einen Bereich mit einem kleinsten Aussendurchmesser.The invention relates to a premix burner with a, a conical swirl space limiting swirl generator, which provides at least two Teilkegelschalen offset along a burner axis to each other, each include longitudinally to the burner axis extending air inlet slots and in combination have a flared Vormischbrenneraussenkontur, the has a largest outer diameter, which tapers axially in a region with a smallest outer diameter.

Stand der TechnikState of the art

Vormischbrenner der vorstehend genannten Gattung sind aus einer Vielzahl vorveröffentlichter Druckschriften bekannt, so bspw. aus der EP A1 0 210 462 sowie der EP B1 0 321 809 , um nur einige zu nennen. Vormischbrennern dieser Art liegt das allgemeine Wirkprinzip zugrunde, innerhalb eines zumeist als kegelförmig ausgebildeten Drallerzeugers, der wenigstens zwei mit entsprechend gegenseitiger Überlappung zusammengesetzte Teilkegelschalen vorsieht, eine aus einem Brennstoff-Luftgemisch bestehende Drallströmung zu erzeugen, die innerhalb einer in Strömungsrichtung dem Vormischbrenner nachfolgenden Brennkammer unter Ausbildung einer räumlich möglichst stabilen Vormischflamme zur Zündung gebracht wird.Premix burners of the aforementioned type are known from a variety of prepublished publications, such as. From the EP A1 0 210 462 as well as the EP B1 0 321 809 , to name just a few. Premix burners of this type is based on the general operating principle, within a mostly designed as a conical swirl generator, which provides at least two with corresponding overlap overlapping Teilkegelschalen to produce a consisting of a fuel-air mixture swirl flow, which within a downstream of the premix burner combustion chamber under training a spatially stable as possible premix flame is made to ignite.

Ob in Einzel- oder Mehrfachanordnung, derartige Vormischbrenner werden zur Befeuerung von Brennkammern für den Betrieb einer Wärmekraftmaschine bevorzugt eingesetzt, insbesondere in Gas- oder Dampfturbinenanlagen, zumal diese Vormischbrenner den Einsatz unterschiedlicher Brennstoffe zur Ausbildung eines weitgehend homogenen Brennstoff-Luftgemisches ermöglichen, das letztlich unter Ausbildung einer aerodynamisch stabilisierten Vormischflamme zur Zündung gebracht werden kann.Whether in single or multiple arrangement, such premix burners are preferably used for firing combustion chambers for the operation of a heat engine, especially in gas or steam turbine plants, especially since these premix burners allow the use of different fuels to form a substantially homogeneous fuel-air mixture, which ultimately under training an aerodynamically stabilized premix flame can be made to ignite.

An den Betrieb von Wärmekraftanlagen, insbesondere von Gasturbinenanlagen, werden hohe Anforderungen hinsichtlich ihrer Umweltverträglichkeit gestellt, unterliegen doch die durch den Verbrennungsprozess in die Atmosphäre freigesetzten Abgase strengen Emissionsgrenzwerten. Zudem gilt es, Wärmekraftanlagen unter dem Gesichtspunkt ihres Wirkungsgrades, mit dem sie in der Lage zur Energieumwandlung in elektrische Energie sind, zu optimieren und dies möglichst im gesamten Spektrum ihres Leistungsbereiches.High demands are placed on the operation of thermal power plants, in particular of gas turbine plants, with regard to their environmental compatibility, since the exhaust gases released into the atmosphere by the combustion process are subject to strict emission limit values. In addition, it is important to optimize thermal power plants from the point of view of their efficiency, with which they are capable of converting energy into electrical energy, and if possible in the entire spectrum of their power range.

Gegenwärtige Gasturbinenanlagen werden in an sich bekannter Weise nach einem fest vorgegebenen Betriebsmuster betrieben, das von einer begrenzten Anzahl von individuell vorgegebenen Umgebungsbedingungen abhängt. So stellen derartige Umgebungsbedingungen beispielsweise die Umgebungstemperatur, die Luftfeuchtigkeit sowie auch Brennstoffqualitäten dar, um nur einige zu nennen. Durch diese äußeren Einflüsse wird das Betriebsverhalten einer Gasturbinenanlage wesentlich beeinflusst. So wird unter Berücksichtigung dieser und anderer Umgebungsbedingungen vor Inbetriebnahme der Gasturbinenanlage, beispielsweise einer vorgegebenen Bauserie, ein so genanntes Betriebshandbuch bzw. "Betriebsfahrplan" erstellt, gemäß dem eine Festlegung wichtiger Regelgrößen erfolgt, durch die ein möglichst optimierter Betrieb der Gasturbinenanlage im gesamten Lastbereich gewährleisten soll. Die Regelgrößen betreffen insbesondere quantitative sowie auch qualitative Größen, die die Brennstoff- sowie auch Verbrennungsluftzufuhr der Brennereinheit regeln.Current gas turbine plants are operated in a conventional manner according to a fixed predetermined operating pattern, which depends on a limited number of individually predetermined environmental conditions. For example, such environmental conditions are ambient temperature, humidity, and fuel qualities, to name a few. These external influences significantly affect the performance of a gas turbine plant. Thus, taking into account these and other environmental conditions prior to commissioning of the gas turbine plant, for example, a predetermined series, a so-called operating manual or "operating schedule" created according to which a determination of important control variables is to ensure the most optimized operation of the gas turbine plant in the entire load range , The control variables relate in particular to quantitative as well as qualitative variables that regulate the fuel and combustion air supply of the burner unit.

Probleme können jedoch auftreten, sofern bereits geringste fertigungstechnische Abweichungen innerhalb einer Gasturbinenserie zu beobachten sind, die insbesondere die Brennerkomponente betreffen. Da die im Brenner eingesetzten Vormischbrenner der eingangs genannten Art eine optimierte Bauform im Hinblick auf Flammenstabilität und Emissionsverhalten aufweist, können bereits geringste, den aerodynamischen Strömungsfluss beeinträchtigende Abweichungen in der konstruktiven Auslegung der Vormischbrenner beträchtliche Nachteilhafte Auswirkungen auf das Verbrennungsergebnis haben. Wird in an sich bekannter Weise der Verbrennungsprozess mit fest vorgegebenen Regelgrößen durchgeführt, die die möglicherweise fertigungsbedingt auftretenden konstruktiven Abweichungen nicht zu berücksichtigen vermögen, so führt dies unweigerlich zu einem unbefriedigenden Verbrennungsergebnis, was sich letztlich im Auftreten von Überhitzungen im Brenner oder im stromab vom Brenner gelegenen Heissgaspfad, in so genannten thermoakustischen Schwingungen und verschlechterten Emissionswerten niederschlägt. Auch tragen systembedingte Alterungserscheinungen an den einzelnen Komponenten der Gasturbinen dazu bei, dass sich das Betriebsverhalten der gesamten Gasturbinenanlage mit zunehmendem Anlagenalter verschlechtert.However, problems can occur if even the slightest production-related deviations can be observed within a gas turbine series, which relate in particular to the burner component. Since the premix burner used in the burner of the type mentioned has an optimized design with regard to flame stability and emission behavior, even the smallest, affecting the aerodynamic flow flow deviations in the design of the premix burner can have considerable adverse effects on the combustion result. If, in a manner known per se, the combustion process is carried out with fixed predetermined control variables which are not able to take account of design-related deviations that occur due to production, this inevitably leads to an unsatisfactory combustion result, which ultimately results in the occurrence of overheating in the burner or in the burner downstream Hot gas path, reflected in so-called thermoacoustic vibrations and deteriorated emission levels. Also, system-related aging phenomena on the individual components of the gas turbine contribute to the fact that the performance of the entire gas turbine plant deteriorates with increasing system age.

Ziel sollte es daher sein, den gesamten Verbrennungsvorgang aktiv zu überwachen und die den Verbrennungsvorgang beeinflussenden Regelgrößen, wie Brennstoffsowie Luftzufuhr, an die sich möglicherweise aktuell ergebenden Änderungen anzupassen. Dies jedoch setzt eine Vielzahl von das Betriebsverhalten des Brenners erfassenden Sensoren voraus, wodurch die Brenneranordnung beliebig kompliziert und letztlich kostenintensiv in der Herstellung wird, gilt es doch Brennerbetriebsgrößen wie Brennstoff- und Luftzufuhr, Flammentemperatur, das Auftreten thermoakustischer Schwingungen sowie Oberflächentemperaturen zu erfassen, um ein möglichst vollständiges Bild über die aktuelle Brennersituation zu erhalten.The aim should therefore be to actively monitor the entire combustion process and to adapt the control variables influencing the combustion process, such as fuel and air supply, to the changes which may be presently occurring. However, this requires a variety of the operating behavior of the burner sensors, which makes the burner assembly arbitrarily complicated and ultimately costly to manufacture, it still burner operating variables such as fuel and air supply, flame temperature, the occurrence of thermoacoustic vibrations and surface temperatures to detect a To get as complete a picture as possible about the current burner situation.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, einen Vormischbrenner mit einem, einen kegelförmigen Drallraum begrenzenden Drallerzeuger, der wenigstens zwei Teilkegelschalen vorsieht, die längs einer Brennerachse versetzt zueinander angeordnet sind, gegenseitig jeweils längs zur Brennerachse verlaufende Lufteintrittsschlitze einschließen und in Kombination eine sich konisch erweiternde Vormischbrenneraußenkontur aufweisen, die einen größten Außendurchmesser aufweist, der sich axialwärts verjüngt in einen Bereich mit einem kleinsten Außendurchmesser, derart weiterzubilden, dass mit einem möglichst geringen konstruktiven Aufwand die Integration unterschiedlich ausgebildeter Sensoreinheiten in das Gehäuse des Vormischbrenners möglich ist. Insbesondere gilt es, Vorkehrungen am Vormischbrenner zu treffen, durch die eine Adaption unterschiedlichster Sensoreinheiten leicht und ohne großen servicetechnischen Aufwand implementierbar ist. Die zu treffenden Maßnahmen sollten ebenfalls an bereits im Einsatz befindlichen Vormischbrennem vornehmbar sein, so dass die Möglichkeit der Retrofitierbarkeit von geeignet ausgebildeten Sensoreinheiten an in Betrieb befindlichen Vormischbrennern möglich ist.The invention has for its object to provide a Vormischbrenner with a, a conical swirl space limiting swirl generator, which provides at least two Teilkegelschalen offset along a burner axis to each other, each include longitudinally extending to the burner axis air inlet slots and in combination have a conically expanding Vormischbrenneraußenkontur having a largest outer diameter, which tapers axially in a region with a smallest outer diameter, further develop such that the integration of differently designed sensor units in the housing of the premix burner is possible with the least possible design effort. In particular, it is necessary to take precautions on the premix burner, by which an adaptation of a wide variety of sensor units can be implemented easily and without great service outlay. The measures to be taken should also be available on premix burners already in use so that the possibility of retrofitting suitably designed sensor units on premix burners in operation is possible.

Die Lösung der der Erfindung zugrunde liegenden Aufgabe ist im Anspruch 1 angegeben. Den Erfindungsgedanken vorteilhaft weiterbildende Merkmale sind Gegenstand der Unteransprüche sowie der weiteren Beschreibung insbesondere unter Bezugnahme auf die Ausführungsbeispiele zu entnehmen.The solution of the problem underlying the invention is specified in claim 1. The concept of the invention advantageously further features are the subject of the dependent claims and the further description in particular with reference to the exemplary embodiments.

Erfindungsgemäß ist ein Vormischbrenner gemäß dem Oberbegriff des Anspruches 1 derart ausgebildet, dass wenigstens eine Teilkegelschale im Bereich zwischen dem größten und kleinsten Außendurchmesser eine von der sich konisch erweiternde Vormischbrenneraußenkontur abweichende, die Vormischbrenneraußenkontur radial nach außen lokal überhöhende Aufnahmeeinheit vorsieht, mit einer maximalen radialen Erstreckung, die kleiner bemessen ist, als der größte hälftige Außendurchmesser der Vormischbrenneraußenkontur. Diese Forderung entspringt dem Wunsch nach einer möglichst kompakten Bauform ohne dabei die radiale Vormischbrenner in Axialrichtung über einen entsprechenden Anschlussflansch mit einer Brennkammer verfügt, wobei zumindest der Vormischbrenner von einem Gehäuse umgeben ist, das einen Strömungsraum einschließt, in dem der Vormischbrenner mit Zuluft versorgt wird. Aus wartungstechnischen Gründen verfügt das Gehäuse zumeist über eine entsprechend abschließbare Montageöffnung, durch die der Vormischbrenner axialwärts an das Brennkammergehäuse montiert werden kann. Die erfindungsgemäß ausgebildete Aufnahmeeinheit beeinträchtigt durch ihre äußere kompakte Formgebung in keinster Weise die axiale Montierbarkeit des Vormischbrenners und bietet überdies die Implementierung einer Sensoreinheit. Hierfür verfügt die Aufnahmeeinheit wenigstens über einen Hohlkanal, mit wenigstens einer dem Drallraum abgewandten Kanalöffnung, über die die Sensoreinheit in die Aufnahmeeinheit implementierbar ist, wobei der Hohlkanal eine Kanallängserstreckung aufweist, die im wesentlichen parallel zur Brennerachse verläuft. Die parallel zur Brennerachse gerichtete Kanallängserstreckung ermöglicht die Implementierung entsprechender Sensoreinheiten koaxial zur Brennerachse, wodurch auch ein mit entsprechenden Sensoreinheiten bestückter Vormischbrenner keinerlei Komponenten aufweist, deren maximale radiale Erstreckung den maximalen Außendurchmesser des Vormischbrennergehäuses überragt, so dass auch in diesem Fall eine axiale Montierbarkeit des gesamten Vormischbrenners erhalten bleibt.According to the invention, a premix burner according to the preamble of claim 1 is designed in such a way that at least one partial cone shell in the region between the largest and smallest outer diameter deviates from the conically expanding premix burner outer contour deviating locally from the premix burner outer contour radially outwardly receiving unit, with a maximum radial extent, which is smaller than the largest half outside diameter of the premix burner outer contour. This requirement arises from the desire for a compact design without the radial Premix burner in the axial direction has a corresponding connection flange with a combustion chamber, wherein at least the premix burner is surrounded by a housing which includes a flow space in which the premix burner is supplied with supply air. For maintenance reasons, the housing usually has a correspondingly lockable mounting hole through which the premix burner can be axially mounted to the combustion chamber housing. Due to its external compact shape, the receiving unit designed according to the invention in no way impairs the axial mountability of the premix burner and, moreover, offers the implementation of a sensor unit. For this purpose, the receiving unit has at least one hollow channel, with at least one channel opening facing away from the swirl space, via which the sensor unit can be implemented in the receiving unit, wherein the hollow channel has a channel longitudinal extension, which extends substantially parallel to the burner axis. The channel longitudinal extension directed parallel to the burner axis makes it possible to implement corresponding sensor units coaxially with the burner axis, whereby even a premix burner equipped with corresponding sensor units has no components whose maximum radial extent exceeds the maximum outside diameter of the premix burner housing, so that in this case as well an axial mountability of the entire premix burner preserved.

Auf die besonderen Detailmerkmale der erfindungsgemäßen Vormischbrenneranordnung wird im Weiteren unter Bezugnahme auf die Ausführungsbeispiele detailliert eingegangen.The particular details of the premix burner arrangement according to the invention will be discussed in detail below with reference to the exemplary embodiments.

Kurze Beschreibung der ErfindungBrief description of the invention

Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben. Es zeigen:

Fig. 1
schematisierte Darstellung eines Längsschnittes durch einen Vormischbrenner,
Fig. 2
Querschnittsdarstellung durch einen Vormischbrenner, sowie
Fig. 3a bis d
Längsschnitte durch jeweils eine erfindungsgemäß ausgebildete Aufnahmeeinheit mit unterschiedlichen Hohlkanälen zur Aufnahme unterschiedlicher Sensoreinheiten.
The invention will now be described by way of example without limitation of the general inventive idea by means of embodiments with reference to the drawings. Show it:
Fig. 1
schematic representation of a longitudinal section through a premix burner,
Fig. 2
Cross-sectional view through a premix burner, as well
Fig. 3a to d
Longitudinal sections through each one inventively designed recording unit with different hollow channels for receiving different sensor units.

Wege zur Ausführung der Erfindung, gewerbliche VerwendbarkeitWays to carry out the invention, industrial usability

In Fig. 1 ist eine Längsschnittdarstellung durch einen erfindungsgemäß ausgebildeten Vormischbrenner dargestellt, der über einen kegelförmig ausgebildeten Drallraum 1 verfügt, der von zwei Teilkegelschalen 2, 3 begrenzt ist. Die Teilkegelschalen 2, 3 sind in Bezug auf eine Brennerachse A (siehe hierbei die Querschnittsdarstellung gemäß Fig. 2) versetzt angeordnet und schließen gegenseitig jeweils Lufteintrittsschlitze 4 ein. Ferner weisen die beiden Teilkegelschalen 2, 3 eine Vormischbrenneraußenkontur auf, die am Ort des Brenneraustritts 5 einen größten Außendurchmesser Amax aufweist, der sich axialwärts verjüngt und einen Bereich 6 mit einem kleinsten Außendurchmesser Amin vorsieht, in dem für gewöhnlich eine zentrale Brennerdüsenanordnung (nicht dargestellt) positionierbar ist. In dem in Fig. 1 und 2 dargestellten Ausführungsbeispiel ist pro Teilkegelschale 2, 3 jeweils eine Aufnahmeeinheit 7 vorgesehen, die an die Außenwand der jeweiligen Teilkegelschalen 2, 3 fest gefügt ist. Die Aufnahmeeinheit 7 weist eine maximale radiale Erstreckung Rmax auf, die kleiner bzw. deutlich kleiner als der hälftige maximale Außendurchmesser Amax ist. Hierdurch ist gewährleistet, dass die Vormischbrennereinheit axialwärts durch Montageöffnungen, die lediglich einen unwesentlich größeren Montagedurchmesser aufweisen als der maximale Außendurchmesser Amax, ungehindert hindurchgeführt werden kann. Die Aufnahmeeinheit 7 gemäß Ausführungsbeispiel in Fig. 1 und 2 ist als getrennte Komponente ausgebildet, die in Form eines Nachrüstsatzes an die Außenwand der jeweiligen Teilkegelschale 2, 3 gefügt werden kann. Selbstverständlich ist es möglich, die Aufnahmeeinheit 7 einstückig bei der Herstellung der Teilkegelschale mit dieser zu verbinden.In Fig. 1 is a longitudinal sectional view through an inventively designed premix burner shown, which has a conically shaped swirl chamber 1, which is bounded by two partial cone shells 2, 3. The partial cone shells 2, 3 are in relation to a burner axis A (see here the cross-sectional view according to FIG Fig. 2 ) are arranged offset and each include each air inlet slots 4 a. Furthermore, the two partial cone shells 2, 3 a Vormischbrenneraußenkontur having at the location of the burner outlet 5 has a largest outer diameter A max , which tapers axiallyward and an area 6 with a smallest outer diameter A min provides in which usually a central burner nozzle assembly (not shown) is positionable. In the in Fig. 1 and 2 illustrated embodiment, a receiving unit 7 is provided per partial cone shell 2, 3, which is firmly joined to the outer wall of the respective cone shells 2, 3. The receiving unit 7 has a maximum radial extent R max , which is smaller or significantly smaller than the half maximum outer diameter A max . This ensures that the premix burner unit axially through mounting holes, which have only a slightly larger mounting diameter than the maximum outer diameter A max , unhindered can be passed. The receiving unit 7 according to embodiment in Fig. 1 and 2 is formed as a separate component, which can be added in the form of a retrofit kit to the outer wall of the respective sub-cone shell 2, 3. Of course, it is possible to connect the receiving unit 7 in one piece in the manufacture of the partial cone shell with this.

Zu Zwecken einer mechanischen Stabilisierung sowie auch zum Schutz vor Beschädigungen durch Montagearbeiten sind Stützflanken 11 am Aussengehäuse des Vormischbrenners angebracht, die ebenfalls den maximalen Aussendurchmesser Amax nicht überragen.For purposes of mechanical stabilization and also to protect against damage caused by assembly work, supporting flanks 11 are attached to the outer housing of the premix burner, which likewise do not project beyond the maximum outside diameter A max .

Zur Implementierung einer geeignet ausgebildeten Sensoreinheit weist die Aufnahmeeinheit 7 wenigstens einen Hohlkanal 8 auf, dessen Kanallängserstreckung parallel zur Brennerachse A orientiert ist. Der Hohlkanal 8 verfügt überdies im dargestellten Ausführungsbeispiel gemäß Fig. 1 über eine erste Kanalöffnung 9, die axialwärts nach außen geöffnet ist und eine axialwärts gerichtete Einschubmöglichkeit für eine entsprechend ausgebildete, stabförmig an die Innenkontur des Hohlkanals 8 angepasste Sensoreinheit gestattet. Je nach Art der Sensoreinheit kann die Innenkontur des Hohlkanals 8 beliebig ausgebildet sein. Im dargestellten Ausführungsbeispiel mündet der Hohlkanal 8 über eine zweite Kanalöffnung 10 unmittelbar in den Drallraum 1. Unter weitere Bezugnahme auf die Ausführungsbeispiele gemäß Fig. 3 wird deutlich, dass der Hohlkanal 8 vom eingesetzten Sensortyp unterschiedliche Innenkonturen aufweisen kann. Allen Hohlkanalausbildungen ist jedoch gemeinsam, dass sie über eine zur Brennerachse A koparallele Ausrichtung verfügen, die eine axialwärts gerichtete Bestückung mit entsprechenden Sensoreinheiten ermöglicht.To implement a suitably designed sensor unit, the receiving unit 7 has at least one hollow channel 8, whose channel longitudinal extent is oriented parallel to the burner axis A. The hollow channel 8 also has in the illustrated embodiment according to Fig. 1 via a first channel opening 9, which is open axially outwards and allows an axially directed insertion possibility for a correspondingly formed, rod-shaped adapted to the inner contour of the hollow channel 8 sensor unit. Depending on the type of sensor unit, the inner contour of the hollow channel 8 may be formed as desired. In the illustrated embodiment, the hollow channel 8 opens via a second channel opening 10 directly into the swirl chamber 1. With further reference to the embodiments according to Fig. 3 It is clear that the hollow channel 8 can have different inner contours of the type of sensor used. All hollow channel designs, however, have in common that they have a koparallele alignment to the burner axis A, which allows an axially facing assembly with corresponding sensor units.

In Fig. 2 ist, wie bereits erwähnt, eine Querschnittsdarstellung durch den in Fig. 1 dargestellten Vormischbrenner dargestellt. Aus der Querschnittsdarstellung geht hervor, dass neben dem als Hauptkanal ausgebildeten Hohlkanal 8 die Aufnahmeeinheit 7 jeweils von zwei weiteren Hohlkanälen 8' durchsetzt ist, in die ebenfalls entsprechende Sensoreinheiten einführbar sind.
Zudem ist es besonders vorteilhaft die Aufnahmeeinheit 7 möglichst mittig an der dem Drallraum 1 abgewandten Oberseite der Teilkegelschale 2, 3 in Umfangsrichtung zwischen dem Brennstoffzufuhrrohr 19 und der Schalenendkante 20 anzuordnen, um den in die Lufteintritzschlitze 4 gerichtete Luftstrom möglichst nicht zu beeinflussen. Als besonders vorteilhaft hat es sich erwiesen den Abstand zwischen der Aufnahmeeinheit 7 und der Schalenendkante 20 gerade doppelt so groß zu wählen, wie die maximale radiale Überhöhung der Aufnahmeeinheit 7 über die Oberseite der Teilkegelschale. Selbstverständlich sollte darüber hinaus die Oberflächenkontur der Aufnahmeeinheit 7 möglichst strömungsgünstig gestaltet sein.
In Fig. 2 is, as already mentioned, a cross-sectional view through the in Fig. 1 illustrated Vormischbrenner shown. From the cross-sectional representation shows that in addition to the main channel designed as a hollow channel 8, the receiving unit 7 is penetrated in each case by two further hollow channels 8 ', in which also corresponding sensor units can be inserted.
In addition, it is particularly advantageous to arrange the receiving unit 7 as centrally as possible at the upper side of the partial cone shell 2, 3 facing away from the swirl space 1 in the circumferential direction between the fuel supply pipe 19 and the shell end edge 20 in order not to influence the air flow directed into the air intake slots 4 as far as possible. To be particularly advantageous, it has proven the distance between the receiving unit 7 and the shell end edge 20 just twice to choose large, such as the maximum radial elevation of the receiving unit 7 over the top of the sub-cone shell. Of course, beyond the surface contour of the receiving unit 7 should be designed as streamlined as possible.

Die Längsschnittdarstellung gemäß der Fig. 3a bis d zeigen alternative Ausbildungsformen unterschiedlich ausgebildeter Hohlkanäle, die für jeweils unterschiedliche Sensortypen angepasst sind.The longitudinal section according to the Fig. 3a to d show alternative forms of training differently shaped hollow channels, which are adapted for different sensor types.

Fig. 3a weist einen Hohlkanal 8 auf, der im Wesentlichen zwei im Durchmesser unterschiedlich groß dimensionierte Kanalabschnitte 12 und 12' vorsieht, wobei der im Querschnitt größer bemessene Kanalabschnitt 12 bevorzugt für den Einsatz eines Mikrofonsensors 13 geeignet ist. Der Kanalabschnitt 12 mündet über einen im Durchmesser kleiner dimensionierten Kanalabschnitt 12' direkt in den Drallraum 1, über den beispielsweise Druckschwankungen übertragen werden können, wie sie durch die Ausbildung thermoakustischer Schwingungen im Innenraum der Brennkammer initiiert werden. Zusätzlich sieht die Aufnahmeeinheit 7 einen Spülkanal 14 vor, über den Kühlluft in den Hohlkanal 8 einspeisbar ist, um eine Überhitzung der Mikrofonsensoreinheit 13 zu vermeiden. Wird Kühlluft von Aussen durch den Spülkanal 14 in den Hohlkanal 8 im Bereich des Kanalabschnittes 12' druckbeaufschlagt eingebracht, so verhindert die Kühlluft den Eintritt von Heissgasen in den Hohlkanal 8 durch die Kanalöffnung 10 und dient auf diese Weise der Sensoreinheit vor Überhitzung. Fig. 3a has a hollow channel 8, which provides two substantially differently sized diameter channel sections 12 and 12 ', wherein the larger in cross-section channel section 12 is preferably suitable for the use of a microphone sensor 13. The channel section 12 opens via a smaller diameter dimensioned channel section 12 'directly into the swirl chamber 1, via which, for example, pressure fluctuations can be transmitted, as they are initiated by the formation of thermoacoustic vibrations in the interior of the combustion chamber. In addition, the receiving unit 7 provides a flushing channel 14, via which cooling air can be fed into the hollow channel 8 in order to avoid overheating of the microphone sensor unit 13. If cooling air is introduced from outside through the flushing channel 14 into the hollow channel 8 in the region of the channel section 12 ', the cooling air prevents the entry of hot gases into the hollow channel 8 through the channel opening 10 and in this way serves to prevent the sensor unit from overheating.

Im Ausführungsbeispiel gemäß Fig. 3b ist der Hohlkanal 8 mit einem konstanten Innendurchmesser für die Einführung eines optischen Flammensensors 15 ausgebildet. Der optische Flammensensor 15 weist einen Beobachtungswinkelbereich 16 auf, der einerseits von der Austrittsapertur des optischen Flammensensors 15 und andererseits von der den Blickwinkel vergrößernden Kanalöffnung 10 begrenzt ist. Wieder dient zur Vermeidung einer Überhitzung des Flammensensors 15 ein Spülkanal 14 für die Zuführung entsprechender Kühlluft. Der Spülkanal 14 ist in diesem Fall in unmittelbarer Nähe zur Kanalöffnung 10 vorgesehen, um den vorderen Aperturbereich des Flammensensors 15 effektiv vor dem thermischen Kontakt mit den Heissgasen zu schützen. Mit Hilfe des optischen Flammensensors 15 kann die sich innerhalb der Brennkammer ausbildende Flammenfront überwacht werden, deren räumliche Lage ein wichtiges Indiz für eine stabile Verbrennung ist.In the embodiment according to Fig. 3b the hollow channel 8 is formed with a constant inner diameter for the introduction of an optical flame sensor 15. The optical flame sensor 15 has an observation angle range 16, which is limited on the one hand by the exit aperture of the optical flame sensor 15 and on the other hand by the viewing angle enlarging channel opening 10. Again serves to avoid overheating of the flame sensor 15, a flushing channel 14 for the supply of appropriate cooling air. The flushing channel 14 is provided in this case in close proximity to the channel opening 10 to the front aperture region of the Flame sensor 15 effectively protect against thermal contact with the hot gases. With the aid of the optical flame sensor 15, it is possible to monitor the flame front forming inside the combustion chamber, the spatial position of which is an important indication of stable combustion.

Fig. 3c weist eine Doppelkanalführung 8, 8' auf, wobei die als Sacklöcher ausgebildeten Hohlkanäle 8, 8' parallel zur Brennerachse A verlaufen. Beide Hohlkanäle 8, 8' weisen überdies senkrecht zur Brennerachse verlaufende Kanalabschnitte 17,17' auf, wobei der Kanalabschnitt 17 in den Drallraum 1 und der Kanalabschnitt 17' in die den Vormischbrenner umgebende Atmosphäre mündet. Mit Hilfe der in Fig. 3c dargestellten Hohlkanalausbildung ist es möglich, eine Differenzdruckmessung durchzuführen.
Die Differenzdruckmessung dient im Wesentlichen dazu den Luftdurchfluss durch den Brenner zu bestimmen. Damit ist es möglich Ungleichförmigkeiten der Luftverteilung innerhalb des Gasturbinengehäuses und/oder Ungleichförmigkeiten der Durchflusscharakteristik von Brenner zu Brenner, sofern es sich um eine Mehrfachbrenneranordnung handelt, zu bestimmen. Wenn an mehreren Kegelschalen eines Brenners Differenzdruckmessungen durchgeführt werden, so kann man auch die Ungleichförmigkeit der Luftströmung innerhalb eines einzigen Brenners bestimmen.
Fig. 3c has a double-channel guide 8, 8 ', wherein the hollow channels 8, 8' designed as blind holes run parallel to the burner axis A. Both hollow channels 8, 8 'moreover have channel sections 17, 17' extending perpendicularly to the burner axis, the channel section 17 opening into the swirl chamber 1 and the channel section 17 'opening into the atmosphere surrounding the premix burner. With the help of in Fig. 3c shown hollow channel formation, it is possible to perform a differential pressure measurement.
The differential pressure measurement essentially serves to determine the air flow through the burner. This makes it possible to determine non-uniformities of the air distribution within the gas turbine housing and / or nonuniformities of the flow characteristic from burner to burner, if it is a multi-burner arrangement to determine. If differential pressure measurements are made on several cone shells of a burner, then one can also determine the nonuniformity of the air flow within a single burner.

Schließlich zeigt das Ausführungsbeispiel gemäß Fig. 3d ein als vollständiges Sackloch ausgebildeten Hohlkanal 8, in den eine Thermosensoreinheit 18 einführbar ist.Finally, the embodiment according to Fig. 3d a trained as a complete blind hole hollow channel 8, in which a thermosensor unit 18 is inserted.

Selbstverständlich lassen sich die in den vorstehenden Ausführungsbeispielen beschriebenen Sensoreinheiten beliebig innerhalb einer einzigen Aufnahmeeinheit 7 kombinieren, so dass eine möglichst große Vielzahl unterschiedlicher Messdaten von Seiten des Vormischbrenners gewonnen werden kann.Of course, the sensor units described in the preceding embodiments can be combined as desired within a single recording unit 7, so that as large a variety of different measurement data can be obtained from the side of the premix burner.

So gestattet die Summe der vorstehend beschriebenen Sensoreinheiten die Erfassung einer Vielzahl von Betriebsgrößen, wie beispielsweise die Flammentemperatur oder die Vormischbrennertemperatur innerhalb der Teilkegelschalen zur Bestimmung der aktuellen thermischen Belastung des Vormischbrenners, um gegebenenfalls bei festgestellten Überhitzungen entsprechende Kühlmaßnahmen einleiten zu können.Thus, the sum of the sensor units described above allows the detection of a variety of operating variables, such as Flame temperature or the Vormischbrennertemperatur within the Teilkegelschalen to determine the current thermal load of the premix burner, in order to initiate appropriate cooling measures if determined overheating.

Auch ist es möglich, Differenzdruckmessungen längs der Brennstoffzuleitungen vorzunehmen, wodurch eine kontrollierte Überwachung und Einstellung der Brennstoffzufuhr, insbesondere bei einer gestuften Brennstoffzufuhr, möglich wird. Auf diese Weise lassen sich unmittelbar die Flammentemperatur sowie die Stickoxydemission beeinflussen. Mit Hilfe geeignet ausgebildeter optischer Sensoren lässt sich die Flammentemperatur, insbesondere in der sich innerhalb der Rückstromzone ausbildenden Vormischflamme bestimmen. Ebenfalls kann auf optischem Wege die Verbrennungsqualität überwacht und entsprechend bestimmt werden. Mit Hilfe geeigneter drucksensibler Sensoren, wie beispielsweise Mikrofonsensoren, wird es überdies möglich, auftretende thermoakustische Schwingungen bzw. Pulsationen zu erfassen. Mit Hilfe der auf vorstehende Weise gewonnenen Messdaten kann eine aktive Nachregelung des Verbrennungsprozesses unter Maßgabe einer möglichst optimierten Verbrennung vorgenommen werden. Mit Hilfe der erfindungsgemäßen konstruktiven Lösung, die wie gesagt auch im Rahmen einer Nachrüstung an bereits bestehenden Vormischbrennern vorgenommen werden kann, ist es möglich, das Brennerverhalten auf aktuell sich einstellende, den Brennerprozess beeinflussende Brennerbedingungen nachzuregeln.It is also possible to make differential pressure measurements along the fuel supply lines, whereby a controlled monitoring and adjustment of the fuel supply, especially in a stepped fuel supply, is possible. In this way, the flame temperature and the nitrogen oxide emission can be directly influenced. By means of suitably designed optical sensors, the flame temperature, in particular in the premix flame forming within the return flow zone, can be determined. Likewise, the combustion quality can be monitored optically and determined accordingly. With the help of suitable pressure-sensitive sensors, such as microphone sensors, it is also possible to detect occurring thermoacoustic oscillations or pulsations. With the help of the measurement data obtained in the above manner, an active readjustment of the combustion process can be carried out under the condition of optimized combustion as possible. With the aid of the constructive solution according to the invention, which, as stated, can also be carried out as part of a retrofit to already existing premix burners, it is possible to readjust the burner behavior to the burner conditions which are currently occurring and which influence the burner process.

Besonders vorteilhaft ist es im Falle einer Mehrfachbrenneranordnung die Messsensoreinheiten in mehreren Brennern anzuordnen. Hierdurch ist es möglich lokale Verteilungen von Pulsationen, Flammentemperaturen, Druckverteilungen etc. zu bestimmen und damit auf die lokale Verteilung der Verbrennungsqualität schliessen zu können, um letztlich auch die lokalen Brennerbedingungen nachregeln zu können.In the case of a multiple burner arrangement, it is particularly advantageous to arrange the measuring sensor units in a plurality of burners. This makes it possible to determine local distributions of pulsations, flame temperatures, pressure distributions, etc., and thus to be able to conclude on the local distribution of the combustion quality, in order ultimately to be able to readjust the local burner conditions.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Drallraumswirl space
2,32.3
TeilkegelschalenCone shell
44
LufteintrittsschlitzeAir inlet slots
55
Brenneraustrittburner outlet
66
Bereich mit kleinstem AußendurchmesserArea with smallest outer diameter
77
Aufnahmeeinheitrecording unit
88th
Hohlkanalhollow channel
9, 109, 10
Kanalöffnungchannel opening
1111
Stützflankesupport flank
12, 12'12, 12 '
HohlkanalabschnitteHollow channel sections
1313
Mikrofonsensormicrophone sensor
1414
Spülkanalirrigation channel
1515
Optischer FlammensensorOptical flame sensor
1616
SichtwinkelbereichViewing angle range
17, 17'17, 17 '
Zweiter KanalabschnittSecond channel section
1818
Thermosensorthermal sensor
1919
BrennstoffzufuhrrohrFuel supply pipe
2020
SchalenendkanteSchalenendkante

Claims (18)

  1. Premix burner with a swirl generator delimiting a conical swirl chamber (1) and comprising at least two part-conical shells (2, 3) which are arranged offset to each other along the burner axis (A), mutually enclose respective air intake slots (4) running along the burner axis (A) and in combination have a conically flaring outer contour of the premix burner which has a maximum outer diameter (Amax) which tapers axially into a region with a minimum outer diameter (Amin), characterized in that at least one part-conical shell (2, 3), in the region between the maximum outer diameter and the minimum outer diameter, provides a receiving unit (7) which deviates from the conically flaring outer contour of the premix burner and locally protrudes radially outward from the premix burner outer contour with a maximum radial extension (Rmax) which is less than the largest half outer diameter (Amax) of the premix burner outer contour, and that at least one hollow channel (8) is provided in the receiving unit (7) with at least one channel opening (9) facing away from the swirl chamber (1) and a channel longitudinal extension which runs substantially parallel to the burner axis (A).
  2. Premix burner according to claim 1, characterised in that the hollow channel (8) is configured as a blind hole.
  3. Premix burner according to claim 1, characterised in that the hollow channel (8) is formed as a through channel which fully penetrates the receiving unit (7) and the part-conical shells (2, 3) and provides a channel opening (10) facing the swirl chamber (1).
  4. Premix burner according to any of claims 1 to 3, characterised in that the receiving unit (7) is fixedly joined to a top side of the part-conical shells (2, 3) facing away from the swirl chamber (1) or is integrally connected therewith.
  5. Premix burner according to any of claims 1 to 4, characterised in that the hollow channel (8) is formed rectilinear with at least one channel portion having a constant channel cross-section.
  6. Premix burner according to any of claims 3 to 5, characterised in that the hollow channel (8) comprises at least two channel portions (12, 12') each with different channel cross-section, and that the channel portion with the smaller channel cross-section (12) borders the swirl chamber (1) via the channel opening (10).
  7. Premix burner according to any of claims 3 to 6, characterised in that the channel opening (10) facing the swirl chamber (1) has an opening contour which results from a rectilinear penetration of the part-conical shells (2, 3) with the hollow channel (8) running parallel to the burner axis (A).
  8. Premix burner according to claim 7, characterised in that the channel opening (10) facing the swirl chamber (1) has an opening contour which is larger than the opening contour resulting from the penetration alone.
  9. Premix burner according to any of claims 3 to 6, characterised in that the hollow channel (8) formed as a through channel has a first channel portion which runs substantially parallel to the burner axis (A) and is formed as a blind hole channel, and that a second channel portion (17) lies adjacent to and along the first channel portion and is oriented perpendicular to the burner axis (A) and comprises the channel opening (10) facing the swirl chamber (1).
  10. Premix burner according to claim 9, characterised in that at least one second hollow channel (8') configured as a through channel has a first channel portion which runs substantially parallel to the burner axis (A) and is formed as a blind hole channel, and that a second channel portion (17) lies adjacent to and along the first channel portion of the hollow channel (8') configured as a through channel and is oriented perpendicular to the burner axis (A) and comprises a channel opening (10) facing the swirl chamber (1).
  11. Premix burner according to any of claims 3 to 10, characterised in that the channel opening (10) facing the swirl chamber (1) is arranged in the region of around one-third of the burner length measured from the burner outlet (5), i.e. the burner region with the largest outer diameter (Amax).
  12. Premix burner according to any of claims 1 to 11, characterised in that the size, form and arrangement of the at least one hollow channel (8) are selected such that a rod-like sensor unit adapted to the inner contour of the hollow body can be fitted axially into the hollow channel (8).
  13. Premix burner according to claim 12, characterised in that the sensor unit is formed as an acoustic, optical, chemical, thermal or pressure sensor.
  14. Premix burner according to claim 12 or 13, characterised in that the hollow channel (8) has a fixing device for a detachably fixed attachment of the sensor unit on or in the hollow channel (8), preferably in the form of a screw connection, a connecting flange or a press seat.
  15. Premix burner according to any of claims 4 to 14, characterized in that the top of the part-conical shells (2, 3) facing away from the swirl chamber (1) is limited in the peripheral direction firstly by a fuel supply pipe and secondly by a shell end edge, and that the receiving unit (7) is arranged as centrally as possible between the fuel supply pipe and the shell end edge.
  16. Premix burner according to claim 15, characterised in that a gap is provided between the fuel supply pipe and the shell end edge which corresponds to at least twice the radial protrusion of the receiving unit (7) over the top of the part-conical shells (2, 3) facing away from the swirl chamber (1).
  17. Premix burner according to claim 15 or 16, characterised in that the receiving unit (7) has a streamlined surface contour facing away from the part-conical shells which has almost no effect on an air flow opening into the respective air intake slot.
  18. Premix burner according to any of claims 1 to 17, characterised in that the hollow channel (8) is connected to at least one flushing channel (14) which protrudes radially outward through the part-conical shells (2, 3) and through which a flushing gas, preferably cooling air, can be fed into the hollow channel (8).
EP05716640.7A 2004-02-12 2005-02-08 Premixing burner comprising a vortex generator defining a tapered vortex space, and sensor monitoring Not-in-force EP1714073B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2112004 2004-02-12
PCT/EP2005/050529 WO2005078341A1 (en) 2004-02-12 2005-02-08 Premixing burner comprising a vortex generator defining a tapered vortex space, and sensor monitoring

Publications (2)

Publication Number Publication Date
EP1714073A1 EP1714073A1 (en) 2006-10-25
EP1714073B1 true EP1714073B1 (en) 2016-08-31

Family

ID=34842439

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05716640.7A Not-in-force EP1714073B1 (en) 2004-02-12 2005-02-08 Premixing burner comprising a vortex generator defining a tapered vortex space, and sensor monitoring

Country Status (5)

Country Link
US (1) US7428817B2 (en)
EP (1) EP1714073B1 (en)
CN (1) CN100590355C (en)
CA (1) CA2555153C (en)
WO (1) WO2005078341A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100139286A1 (en) * 2007-01-02 2010-06-10 Christer Gerward Burner and fuel supply for a gas turbine
EP2028421A1 (en) * 2007-08-21 2009-02-25 Siemens Aktiengesellschaft Monitoring of a flame existence and a flame temperature
US8752362B2 (en) * 2009-01-15 2014-06-17 General Electric Company Optical flame holding and flashback detection
US20130040254A1 (en) * 2011-08-08 2013-02-14 General Electric Company System and method for monitoring a combustor
US10691281B2 (en) * 2013-03-15 2020-06-23 Fisher-Rosemount Systems, Inc. Method and apparatus for controlling a process plant with location aware mobile control devices
ITUB20150813A1 (en) * 2015-05-25 2016-11-25 Nuovo Pignone Srl GAS TURBINE FUEL NOZZLE WITH INTEGRATED FLAME IONIZATION SENSOR AND GAS TURBINE MOTOR
US11774093B2 (en) 2020-04-08 2023-10-03 General Electric Company Burner cooling structures

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1503042A (en) * 1974-05-21 1978-03-08 Smiths Industries Ltd Radiation-detecting devices
EP0210462B1 (en) 1985-07-30 1989-03-15 BBC Brown Boveri AG Dual combustor
CH674561A5 (en) 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
DE4304213A1 (en) * 1993-02-12 1994-08-18 Abb Research Ltd Burner for operating an internal combustion engine, a combustion chamber of a gas turbine group or a combustion system
DE4440558A1 (en) * 1994-11-12 1996-05-15 Abb Research Ltd Premix burner
JPH1082526A (en) * 1996-06-24 1998-03-31 General Electric Co <Ge> Device to detect occurrence of flashback to premixture combustor system
DE19628960B4 (en) * 1996-07-18 2005-06-02 Alstom Technology Ltd temperature measuring
DE19654009B4 (en) * 1996-12-21 2006-05-18 Alstom Premix burner for operating a combustion chamber with a liquid and / or gaseous fuel
US6094904A (en) * 1998-07-16 2000-08-01 United Technologies Corporation Fuel injector with a replaceable sensor
DE10050248A1 (en) * 2000-10-11 2002-04-18 Alstom Switzerland Ltd Pre-mixing burner comprises swirl burner with inner chamber, with widening passage, injector with adjustable elements.

Also Published As

Publication number Publication date
CA2555153A1 (en) 2005-08-25
CN100590355C (en) 2010-02-17
US20070059655A1 (en) 2007-03-15
CA2555153C (en) 2012-11-13
CN1918430A (en) 2007-02-21
WO2005078341A1 (en) 2005-08-25
US7428817B2 (en) 2008-09-30
EP1714073A1 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
EP1714073B1 (en) Premixing burner comprising a vortex generator defining a tapered vortex space, and sensor monitoring
EP1336800B1 (en) Method for reducing the oscillations induced by the combustion in combustion systems and premix burner for carrying out the method
EP1730448B1 (en) Multiple burner arrangement for operating a combustion chamber, and method for operating the multiple burner arrangement
EP1534997B1 (en) Gas turbine burner
EP1714081B1 (en) Premixing burner arrangement for operating a burner chamber and method for operating a burner chamber
EP1754002B1 (en) Staged premix burner with an injector for liquid fuel
EP2558709A1 (en) Laser ignition plug with an antechamber
CH701456A2 (en) Active control of flame holding and flashback in a Turbinenbrennkammerbrennstoffdüse.
EP0597138A1 (en) Combustion chamber for gas turbine
EP2359065A2 (en) Fuel lance for a burner
EP1004823A2 (en) Damping device for the reduction of the oscillation amplitude of acoustic waves for a burner
EP0987493B1 (en) Burner for a heat generator
EP2340397A1 (en) Burner inserts for a gas turbine combustion chamber and gas turbine
DE102010016440A1 (en) Flashback detection for a fuel nozzle
EP1605209B1 (en) Combustor with thermo-acoustic vibrations dampening device
WO2012016748A2 (en) Gas turbine combustion chamber
DE60225411T2 (en) Flame pipe or clothing for the combustion chamber of a gas turbine with low pollutant emissions
DE19939235B4 (en) Method for producing hot gases in a combustion device and combustion device for carrying out the method
WO2006053825A1 (en) Gas turbine system and associated combustion chamber
EP2462379B1 (en) Stabilising of the flame of a burner
EP3306196A1 (en) Combustion chamber assembly of a gas turbine and aviation gas turbine
DE102005011287B4 (en) Method and an apparatus for operating at least one burner for firing the combustion chamber of a heat engine or gas turbine
EP1649218B1 (en) Method for reducing nox emissions from a burner assembly, comprising several burners, and burner assembly for carrying out said method
DE4424597B4 (en) incinerator
EP3584501B1 (en) Burner system and method for generating hot gas in a gas turbine plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060802

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160317

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005015348

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 825325

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161201

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170216

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170102

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ANSALDO ENERGIA SWITZERLAND AG

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005015348

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170208

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 825325

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180219

Year of fee payment: 14

Ref country code: GB

Payment date: 20180216

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180227

Year of fee payment: 14

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005015348

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161231