EP1618170A2 - Mixtures of matrix materials and organic semiconductors capable of emission, use of the same and electronic components containing said mixtures - Google Patents

Mixtures of matrix materials and organic semiconductors capable of emission, use of the same and electronic components containing said mixtures

Info

Publication number
EP1618170A2
EP1618170A2 EP04726968A EP04726968A EP1618170A2 EP 1618170 A2 EP1618170 A2 EP 1618170A2 EP 04726968 A EP04726968 A EP 04726968A EP 04726968 A EP04726968 A EP 04726968A EP 1618170 A2 EP1618170 A2 EP 1618170A2
Authority
EP
European Patent Office
Prior art keywords
formula
atoms
aromatic
same
occurrence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04726968A
Other languages
German (de)
French (fr)
Inventor
Anja Gerhard
Horst Vestweber
Philipp STÖSSEL
Susanne Heun
Hubert Spreitzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Covion Organic Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10317556.3A external-priority patent/DE10317556B4/en
Priority claimed from DE10355358A external-priority patent/DE10355358A1/en
Application filed by Merck Patent GmbH, Covion Organic Semiconductors GmbH filed Critical Merck Patent GmbH
Priority to EP10008254A priority Critical patent/EP2281861A3/en
Priority to EP06014637A priority patent/EP1717291A3/en
Publication of EP1618170A2 publication Critical patent/EP1618170A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/24Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C325/00Thioaldehydes; Thioketones; Thioquinones; Oxides thereof
    • C07C325/02Thioketones; Oxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/20Unsaturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/213Unsaturated compounds containing keto groups bound to acyclic carbon atoms containing six-membered aromatic rings
    • C07C49/217Unsaturated compounds containing keto groups bound to acyclic carbon atoms containing six-membered aromatic rings having unsaturation outside the aromatic rings
    • C07C49/223Unsaturated compounds containing keto groups bound to acyclic carbon atoms containing six-membered aromatic rings having unsaturation outside the aromatic rings polycyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/385Saturated compounds containing a keto group being part of a ring
    • C07C49/417Saturated compounds containing a keto group being part of a ring polycyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/657Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings
    • C07C49/665Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system
    • C07C49/67Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system having two rings, e.g. tetralones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/657Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings
    • C07C49/665Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system
    • C07C49/675Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system having three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/687Unsaturated compounds containing a keto groups being part of a ring containing halogen
    • C07C49/697Unsaturated compounds containing a keto groups being part of a ring containing halogen containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/782Ketones containing a keto group bound to a six-membered aromatic ring polycyclic
    • C07C49/784Ketones containing a keto group bound to a six-membered aromatic ring polycyclic with all keto groups bound to a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/782Ketones containing a keto group bound to a six-membered aromatic ring polycyclic
    • C07C49/792Ketones containing a keto group bound to a six-membered aromatic ring polycyclic containing rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/794Ketones containing a keto group bound to a six-membered aromatic ring having unsaturation outside an aromatic ring
    • C07C49/796Ketones containing a keto group bound to a six-membered aromatic ring having unsaturation outside an aromatic ring polycyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/794Ketones containing a keto group bound to a six-membered aromatic ring having unsaturation outside an aromatic ring
    • C07C49/798Ketones containing a keto group bound to a six-membered aromatic ring having unsaturation outside an aromatic ring containing rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/80Ketones containing a keto group bound to a six-membered aromatic ring containing halogen
    • C07C49/813Ketones containing a keto group bound to a six-membered aromatic ring containing halogen polycyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/84Ketones containing a keto group bound to a six-membered aromatic ring containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C50/00Quinones
    • C07C50/02Quinones with monocyclic quinoid structure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/16Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to only one ring carbon atom
    • C07D251/20Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to only one ring carbon atom with no nitrogen atoms directly attached to a ring carbon atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0033Blends of pigments; Mixtured crystals; Solid solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0033Blends of pigments; Mixtured crystals; Solid solutions
    • C09B67/0034Mixtures of two or more pigments or dyes of the same type
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/95Spiro compounds containing "not free" spiro atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention describes the use of new materials and material mixtures in organic electronic components such as electroluminescent elements and their use in displays based thereon.
  • light-sensitive organic materials e.g. phthalocyanines
  • organic charge transport materials usually triarylamine-based hole transporters
  • OLEDs organic light-emitting diodes
  • Full-color, large-area, high-resolution active matrix displays for a wide variety of applications (such as, for example, mobile telephones, PDAs, laptops, televisions and other applications).
  • the operating voltage required is quite high, especially in the case of efficient phosphorescent OLEDs, and must therefore be reduced in order to improve the power efficiency. This is particularly important for portable applications.
  • organometallic complexes that show phosphorescence instead of fluorescence [M. A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R. Forrest, Appl. Phys. Lett. 1999, 75, 4-6].
  • organometallic compounds For quantum mechanical reasons, up to four times quantum, energy and power efficiency is possible using organometallic compounds.
  • the essential conditions for practical use are, in particular, a long operational lifespan, high stability against thermal stress and a low operating and operating voltage to enable mobile applications.
  • organic electroluminescent devices The general structure of organic electroluminescent devices is described, for example, in US 4,539,507 and US 5,151, 629, and EP 01202358.
  • An organic electroluminescent device usually consists of several layers which are applied to one another by means of vacuum methods or different printing methods. The individual layers are:
  • a carrier plate substrate (usually glass or plastic films).
  • a transparent anode usually indium tin oxide, ITO.
  • a hole injection layer e.g. B. based on copper phthalocyanine (CuPc) or conductive polymers such as polyaniline (PANI) or polythiophene derivatives (such as PEDOT).
  • CuPc copper phthalocyanine
  • PANI polyaniline
  • PEDOT polythiophene derivatives
  • One or more hole transport layers usually based on triarylamine derivatives, eg. B. 4,4 ', 4 "tris (N-1-naphthyl-N-phenylamino) triphenylamine (NaphDATA) as the first layer and N, N'-di (naphth-1-yl) - N, N '-diphenyl-benzidine (NPB) as a second hole transport layer.
  • triarylamine derivatives eg. B. 4,4 ', 4 "tris (N-1-naphthyl-N-phenylamino) triphenylamine (NaphDATA) as the first layer and N, N'-di (naphth-1-yl) - N, N '-diphenyl-benzidine (NPB) as a second hole transport layer.
  • emission Layer EML
  • this layer can partially coincide with layers 4 to 8, but usually consists of fluorescent dyes, e.g. B. N, N'-diphenyl-quinacridone (QA), or phosphorescent dyes, e.g. B. Tris (2-phenylpyridyl) iridium (Ir (PPy) s) or Tris (2-benzothiophenyl-pyridyl) iridium (Ir (BTP) 3 ), doped matrix materials such as 4,4'-bis (carbazole-9 -yl) -biphenyl (CBP).
  • the emission layer can also consist of polymers, mixtures of polymers, mixtures of polymers and low-molecular compounds or mixtures of different low-molecular compounds.
  • An electron transport layer mostly based on aluminum tris-8-hydroxyquinolinate (AIQ 3 ).
  • EIL electron injection layer
  • EIL Electron injection layer
  • a cathode here metals, metal combinations or metal alloys with a low work function are generally used.
  • the anode consists, for. B. from AI / Ni / NiOx or Al / Pt / PtOx or other metal / metal oxide combinations that have a HOMO greater than 5 eV.
  • the cathode consists of the same materials that are described in items 9 and 10, with the difference that the metal, such as. B. Ca, Ba, Mg, Al, In, etc., is very thin and therefore transparent.
  • the layer thickness is less than 50 nm, better less than 30 nm, even better less than 10 nm.
  • Another can be applied to this transparent cathode transparent material are applied, e.g. B. ITO (indium tin oxide), IZO (indium zinc oxide), etc.
  • the matrix material of the emission layer plays a special role.
  • the matrix material must enable or improve the charge transport of holes and / or electrons and / or enable or improve the charge carrier recombination and, if appropriate, transfer the energy produced during the recombination to the emitter.
  • this task has hitherto been predominantly carried out by matrix materials which contain carbazole units.
  • the carbazole units such as. B. contain the frequently used 4,4'-bis (N-carbazolyl) -biD_henyl (CBP), but have some disadvantages in practice. These can be seen, among other things, in the often short to very short lifespan of the devices manufactured with them and the often high operating voltages that lead to low power efficiencies. Furthermore, it has been shown that for energetic reasons, CBP is unsuitable for blue-emitting electroluminescent devices, which results in poor efficiency. In addition, the structure of the devices is very complex if CBP is used as the matrix material, since a hole blocking layer and an electron transport layer must also be used. If these additional layers are not used, e.g. B. by Adachi et. al.
  • S, Se or N stands, and which can optionally also form glass-like layers, and at least one emission material B capable of emission, which is a compound which emits light with suitable excitation and at least one element of the
  • the mixtures according to the invention are preferably those which contain at least one matrix material A in which the glass transition temperature T g of the pure substance A is greater than 70 ° C., preferably greater than 100 ° C., particularly preferably greater than 130 ° C.
  • the mixtures described above preferably contain as matrix material A at least one compound of the formula (1), formula (2) and / or formula (3)
  • X is the same or different at each occurrence O, S or Se;
  • Y is N on every occurrence
  • An aromatic or heteroaromatic system in the sense of this invention is to be understood as a system which does not necessarily only contain aromatic or heteroaromatic groups, but also in which several aromatic or heteroaromatic groups by a short non-aromatic unit ( ⁇ 10% of the Atoms, preferably ⁇ 5% of the atoms), such as sp 3 -hybridized C, O, N, etc., can be interrupted.
  • a short non-aromatic unit ⁇ 10% of the Atoms, preferably ⁇ 5% of the atoms
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diphenyl ether, etc. should also be understood as aromatic systems.
  • radical R 1 or R 2 can also be a substituted or unsubstituted vinyl group or a corresponding derivative, ie the compound of the formula (1) is also a can be ⁇ , ⁇ -unsaturated carbonyl compound, or the compound of formula (2) or (3) can also be an ⁇ , ⁇ -unsaturated imine.
  • At least one of the sp 3 -hybridized atoms is a secondary, tertiary or quaternary atom, particularly preferably a tertiary or quaternary atom, very particularly in the case of carbon, silicon or germanium is preferably a quaternary atom.
  • a secondary, tertiary or quaternary atom is understood to mean an atom with two, three or four substituents other than hydrogen.
  • compounds that are dendritic in structure are also preferred.
  • 1,3,5-trisubstituted benzene ketones and corresponding oligoketones which are described, for example, according to N. Nakamura et a /., J. Amer. Chem. Soc. 1992, 114, 1484, or according to K. Matsuda et al., J. Amer. Chem. Soc. 1995, 117, 5550.
  • Mixtures which contain at least one compound of the formula (4) to (9) as matrix material A are likewise preferred,
  • Z is the same or different on each occurrence of CR or N.
  • Organic mixtures which contain at least one of the matrix materials A described above by formulas (1) to (9) are particularly preferred, in which case: X is O or S at each occurrence; Y is N on every occurrence; Z is CR 1 at each occurrence;
  • H atoms can be replaced by F, Cl, Br, I, or an aromatic or heteroaromatic system with 1 to 40 C atoms, where one or more H atoms can be replaced by F, Cl, Br, I and those by one or more, non-aromatic radicals R 1 can be substituted, with several substituents R and / or R 1 , R 2 , both on the same ring and on the two different rings together, in turn, a further mono- or polycyclic, aliphatic or aromatic
  • R 4 , R 5 , R 6 are as described under formulas (1) to (3).
  • Mixtures which contain at least one compound of the formula (10) to (15) as matrix material A are also preferred.
  • Ar is the same or different in each occurrence an aromatic or heteroaromatic system with 2 to 40 C atoms, preferably with 4 to 30 C atoms, where one or more H atoms can be replaced by F, Cl, Br, I and can be substituted by one or more non-aromatic radicals R 1 , it being possible for a plurality of substituents R 1 , both on the same ring and on different rings, to form a further mono- or polycylic, aliphatic or aromatic ring system; n is the same or different at each occurrence 0 or 1.
  • the present invention also relates to the new compounds of the formulas (10a) to (15),
  • E is the same or different at each occurrence C or N;
  • R 7 is the same or different each time an alkyl, alkoxy or
  • R 7 is an alkyl group without ⁇ -H atoms, the symbols Z, E, A 1 , A 2 and A 3 are to be chosen as desired;
  • R 7 is an aromatic group and at least one Z is N, the symbols E, A 1 , A 2 and A 3 are to be chosen as desired;
  • R 7 is an aromatic group and at least one Z stands for a group CR 1 with R 1 not equal to H, the symbols E, A 1 , A 2 and A 3 are to be chosen as desired;
  • R 7 is an aromatic group and all Z stand for CH and at least one symbol E stands for N, the symbols A 1 , A 2 and A 3 are to be chosen as desired;
  • R 7 is an aromatic group, all Z stand for CH and all E stand for C, at least one of the symbols A 1 , A 2 and / or A 3 for a group R 8 not equal to alkyl stand, while the other two groups can be chosen according to the definition;
  • R 7 is an aromatic group, all Z stand for CH, all E stand for C and the two symbols A 1 and A 2 are chosen according to the definition, whereby at least one of the two symbols stands for a group not equal to H, then the symbol A 3 stands for a group CO-R 7 , where R 7 can be chosen here according to the definition;
  • R 7 is a larger aromatic system, such as, for example, fluorene, spirobifluorene, triarylamine, etc.
  • the symbols Z, E, A ⁇ A 2 and A 3 can be selected as desired.
  • Table 1 Possible combinations of the symbols R 7 , Z, E, A 1 , A 2 and A 3 for compounds according to formula (10a).
  • the matrix materials A - z described above. B. according to Examples 26, 27 and 28 - can, for example, as co-monomers to produce corresponding conjugated, partially conjugated or non-conjugated polymers or as the core of dendrimers - z. B. according to Examples 29, 30 and 31 - find use.
  • the corresponding polymerization is preferably carried out via the halogen functionality. So you can a. in soluble polyfluorenes (e.g. according to EP 842208 or WO 00/22026), poly-spirobifluorenes (e.g. according to EP 707020 or EP 894107), poly-para-phenylenes (e.g. according to WO 92/18552) , Poly-carbazoles or polythiophenes (z. B. according to EP 1028136) are polymerized.
  • conjugated, partially conjugated or non-conjugated polymers or dendrimers described above which contain one or more structural units of the formulas (1) to (15), can be used as matrix material in organic electroluminescent devices.
  • the matrix materials A according to the invention can also be obtained, for example, from the above-mentioned.
  • Reaction types are further functionalized, and so are converted to expanded matrix materials A. Examples include the functionalization with arylboronic acids according to SUZUKI or with amines according to HARTWIG-BUCHWALD.
  • the matrix materials A according to the invention or their mixtures or the polymers or dendrimers containing the matrix materials A, optionally together with the emitters B according to generally known methods known to the person skilled in the art, such as vacuum evaporation, evaporation in a carrier gas stream or from solution applied to a substrate in the form of a film by spin coating or using various printing processes (for example ink-jet printing, off-set printing, LITI printing, etc.).
  • various printing processes for example ink-jet printing, off-set printing, LITI printing, etc.
  • the use of printing processes can have advantages with regard to the scalability of the production and also with regard to the setting of mixing ratios in the blend layers used.
  • the matrix materials described above are used in combination with phosphorescence emitters. These mixtures are characterized in that they contain at least one compound as emitter B, which is characterized in that it emits light with suitable excitation and also at least one atom of atomic number greater than 20, preferably greater than 38 and less than 84, particularly preferably greater than 56 and contains less than 80.
  • Particularly preferred mixtures contain at least one compound of the formula (16) to (19) as emitter B,
  • DCy is the same or different at each occurrence a cyclic group which contains at least one donor atom, preferably nitrogen or phosphorus, via which the cyclic group is bonded to the metal and which in turn can carry one or more substituents R 9 ; the groups DCy and CCy are connected to one another via a covalent bond;
  • CCy is, identically or differently, a cyclic group which contains a carbon atom via which the cyclic group is bonded to the metal and which in turn can carry one or more substituents R 9 ;
  • L is the same or different at each occurrence, a bidentate, chelating ligand, preferably a diketonate ligand,
  • R 4 , R 5 , R 6 are the same or different with each occurrence H or an aliphatic or aromatic hydrocarbon radical with 1 to 20 C atoms.
  • Examples of the emitters described above can be found, for example, in applications WO 00/70655, WO 01/41512, WO 02/02714, WO 02/15645, EP 1191613, EP 1191612, EP 1191614, WO 03/099959, WO 03/084972, WO 03/040160, WO 02/081488, WO 02/068435 and DE 10238903.9; these are hereby considered as part of the registration via quotation.
  • the mixture according to the invention contains between 1 to 99% by weight, preferably between 3 and 95% by weight, particularly preferably between 5 and 50% by weight, in particular between 7 and 20% by weight, based on the total mixture of emitter B and matrix material A.
  • the present invention further relates to electronic components, in particular organic electroluminescent devices (OLEDs), organic solar cells (O-SCs), organic field-effect transistors (O-FETs) or organic laser diodes (O-lasers), containing the mixture according to the invention of matrix material A and emission material B.
  • organic electroluminescent devices which have an emitting layer (EML) containing a mixture according to the invention of at least one matrix material A and at least one emission material B capable of emission are particularly preferred.
  • EML emitting layer
  • Organic electroluminescent devices which contain at least one mixture according to the invention in the emitting layer (EML) are particularly preferred, the glass transition temperature T g of the pure substance of the matrix material A being greater than 70 ° C.
  • the organic electroluminescent device can contain further layers, such as, for. B. hole injection layer, hole transport layer, hole blocking layer, electron transport layer and / or electron injection layer.
  • hole injection layer hole transport layer
  • hole blocking layer hole blocking layer
  • electron transport layer electron transport layer
  • / or electron injection layer it should be pointed out that each of these layers does not necessarily have to be present.
  • an OLED that contains neither a separate hole blocking layer nor a separate electron transport layer shows very good results in electroluminescence, in particular a significantly lower voltage and higher power efficiency. This is particularly surprising since a corresponding OLED with a carbazole-containing matrix material without a hole blocking and electron transport layer shows only very low performance efficiencies, in particular with high brightness (cf.
  • Another object of the invention is therefore an organic electroluminescent device containing a mixture according to the invention which directly adjoins the electron transport layer without using a hole blocking layer or which directly adjoins the electron injection layer or the cathode without using a hole blocking layer and an electron transport layer.
  • the organic electroluminescent devices according to the invention show higher efficiency, significantly longer lifespan and, in particular without the use of a hole blocking and electron transport layer, significantly lower operating voltages and higher power efficiencies than OLEDs according to the prior art, which contain CBP as matrix material.
  • Electron transport layers further simplify the structure of the OLED, which represents a considerable technological advantage.
  • the preferred embodiments of the mixtures of matrix material A and emission material B according to the invention are also for the electronic components according to the invention, in particular for the organic electroluminescent devices (OLEDs), organic solar cells (O-SCs), organic field effect transistors (O-FETs) or also organic laser diodes (O Laser). To avoid unnecessary repetitions, we do not list them again here.
  • OLEDs organic electroluminescent devices
  • O-SCs organic solar cells
  • O-FETs organic field effect transistors
  • O-FETs organic field effect transistors
  • O Laser organic laser diodes
  • T g 209 ° C
  • T m 401 ° C.
  • OLEDs were produced using the general process outlined below. In individual cases, of course, this had to be adapted to the respective circumstances (e.g. layer thickness variation in order to achieve optimum efficiency or color).
  • Electroluminescent devices according to the invention can be represented, for example, as follows:
  • ITO-coated substrate The substrate used is preferably ITO-coated glass which contains the lowest possible content or no ionic impurities, such as, for example, B. flat glass from Merck-Balzers or Akaii. However, other transparent substrates coated with ITO, such as, for. B. flexible plastic films or laminates can be used.
  • the ITO must combine the highest possible conductivity with high transparency. ITO layer thicknesses between 50 and 200 nm have proven to be particularly suitable.
  • the ITO coating must be as flat as possible, preferably with a roughness below 2 nm.
  • the substrates are first pre-cleaned with a 4% deconex solution in deionized water. The ITO-coated substrate is then either treated with ozone for at least 10 minutes or with oxygen plasma for a few minutes, or irradiated with an excimer lamp for a short time.
  • HIL Hole injection layer
  • PANI polyaniline
  • PEDOT polythiophene
  • HIL Hole injection layer
  • the polymers polyaniline (PANI) or polythiophene (PEDOT) and their derivatives are particularly suitable. These are usually 1 to 5% aqueous dispersions which are applied in thin layers between 20 and 200 nm, preferably between 40 and 150 nm, to the ITO substrate by spin coating, inkjet printing or other coating processes.
  • the ITO substrates coated with PEDOT or PANI are then dried.
  • Several methods are available for drying. Conventionally, the films are dried in the drying oven for 1 to 10 minutes between 110 and 200 ° C, preferably between 150 and 180 ° C. But also newer drying processes, such as.
  • Irradiation with IR (infrared) light lead to very good results, the irradiation time generally taking less than a few seconds.
  • Thin layers, between 5 and 30 nm, of copper phthalocyanine (CuPc) are preferably used as the low molecular weight material.
  • CuPc copper phthalocyanine
  • All HIL not only have to inject holes very well, they also have to adhere very well to ITO and glass; this is the case for CuPc as well as for PEDOT and PANI.
  • PEDOT and PANI show a particularly low absorption in the visible range and thus a high level of transparency, which is another necessary property for the HIL.
  • HTL hole transport layers
  • MTDATA 4,4 ', 4 "-Tris (N-3-methylphenyl-N-phenylamino) -triphenylamine) or NaphDATA (4,4', 4 "-Tris (N-1-naphthyl-N-phenyl-amino) triphenylamine) as the first HTL and NPB (N, N'-di (naphth-1-yl) - N, N'-diphenyl-benzidine) or spiro -TAD (tetrakis-2,2 ', 7,7'-diphenylamino-spiro-9,9'-bifluorene) as second HTL very good results.
  • MTDATA 4,4 ', 4 "-Tris (N-3-methylphenyl-N-phenylamino) -triphenylamine)
  • NaphDATA 4,4', 4 "-Tris (N-1-naphthyl-N-
  • MTDATA or NaphDATA have a layer thickness between 5 and 100 nm, preferably between 10 and 60 nm, particularly preferably between 15 and 40 nm. For thicker layers, somewhat higher voltages are required in order to achieve the same brightness; at the same time, the number of defects is reduced.
  • Spiro-TAD or NPB have a layer thickness between 5 and 150 nm, preferably between 10 and 100 nm, particularly preferably between 20 and 60 nm.
  • layer thickness of Spiro-TAD has only a minor influence on the current-voltage electroluminescence characteristics, ie the voltage required to achieve a certain brightness depends only slightly on the Spiro-TAD layer thickness.
  • high molecular weight triarylamines can also be used.
  • Emission layer This layer can partially coincide with layers 3 and / or 5. It consists e.g. B. from a low molecular weight matrix material and a low molecular weight guest material, the phosphorescent dopant, such as CBP or one of the matrix materials A described above as the matrix material and lr (PPy) 3 as the dopant. Good results are achieved at a concentration of 5-30% lr (PPy) 3 in CBP or in one of the matrix materials A described above with an EML layer thickness between 10 and 100 nm, preferably between 10 and 50 nm.
  • High-molecular light-emitting compounds (polymers) can also be used, it being possible for one or both components of the host-guest system to be high-molecular.
  • HBL electron transport and hole blocking layer
  • BAIq have proven to be particularly effective as HBL material.
  • low molecular weight HBLs can also use high molecular weight HBLs.
  • OLEDs which contain mixtures according to the invention continue to show very good results even without such a hole blocking layer. Therefore, a hole blocking layer was not used in all of the examples described below.
  • Electron Transport Layer Metal hydroxyquinolates are well suited as ETL materials; aluminum tris-8-hydroxy-quinolate (Alq 3 ) in particular has proven to be one of the most stable electron conductors. Instead of low-molecular ETLs, high-molecular ETLs can also be used. However, it has been shown that OLEDs which contain mixtures according to the invention continue to show very good results, in particular very low voltages and high power efficiencies, even without such an electron transport layer. Therefore, an electron transport layer was not used in all of the examples described below.
  • Electron Injection Layer A thin layer with a layer thickness between 0.2 and 8 nm, preferably between 0.5 and 5 nm, consisting of a material with a high dielectric constant, in particular inorganic fluorides and oxides, such as, for. B. LiF, Li 2 0, BaF 2 , MgO, NaF, and other materials, has proven to be particularly good as EIL. Especially in combination with AI, this additional layer leads to a significant improvement in electron injection and thus to improved results in terms of service life, quantum and power efficiency.
  • EIL Electron Injection Layer
  • Cathode Usually metals, metal combinations or metal alloys with a low work function are used here.
  • All low molecular weight materials of HIL, HTL, EML, HBL, ETL, EIL and cathode are, preferably smaller, in vacuum sublimation systems at a pressure of less than 10 ⁇ 5 mbar
  • the evaporation rates can be between 0.01 and 10 nm / s, preferably 0.1 and 1 nm / s.
  • Newer processes such as OPVD (Organic Physical Vapor Deposition) or LITI (Light Induced Thermal Imaging) are also suitable for the coating of low molecular weight materials, as are other printing techniques.
  • the OPVD has great potential for doped layers, because the setting of any mixing ratio is particularly successful.
  • the concentrations of the dopants can also be changed continuously. Thus, the prerequisites for the improvement of the electroluminescent device are optimal with the OPVD.
  • the devices according to the invention can also be produced by special printing processes (such as the LITI mentioned).
  • This has advantages with regard to the scalability of the production as well as with regard to the setting of mixing ratios in the blend layers used. For this, however, it is generally necessary to prepare appropriate layers (for LITI: transfer layers), which are then only transferred to the actual substrate.
  • Encapsulation An effective encapsulation of the organic layers including the EIL and the cathode is indispensable for organic electroluminescence devices. If the organic display is built on a glass substrate, there are several options. One option is to glue the entire structure to a second glass or metal plate. Two-component or UV-curing epoxy adhesives have proven to be particularly suitable. The electroluminescent device can be glued completely or only at the edge. If the organic display is only glued on the edge, the durability can be further improved by adding a so-called getter. This getter consists of a very hygroscopic material, especially metal oxides, such as. B. BaO, CaO, etc., which binds penetrating water and water vapors.
  • the first example describes a comparison standard according to the prior art, in which the emitter layer consists of the host material CBP and the guest material lr (PPy) 3 (synthesized according to WO 02/060910). Furthermore, an OLED with an emitter layer consisting of the host material bis (9,9 ' -spiro-bifluoren-2-yl) ketone and the guest material lr (PPy) 3 is described.
  • the second example describes a further comparison between CBP and bis (9,9 '-spiro-bifluorene-2-yl) ketone (s. Example 1) with the red emitter Ir (BTP) 3 (synthesized according to WO 02/060910).
  • the third example describes two OLEDs, one with a deep red emitter lr (piq) 3 with bis (9,9 ' -spiro-bifluoren-2-yl) ketone and the other one with a red emitter lr (FMepiq) 3 with bis ( 9,9'-spiro-bifluorene-2-yl ketone).
  • piq deep red emitter lr
  • FMepiq red emitter lr
  • Emitter layer CBP 20 nm (evaporated; CBP obtained from ALDRICH and further purified, finally sublimed twice; 4,4'-bis (N-carbazolyl) biphenyl) (comparison standard)
  • Bathocuproin (BCP) 10 nm (evaporated; BCP purchased from ABCR, used as received;
  • OLEDs which have not yet been optimized, were characterized as standard; For this purpose, the electroluminescence spectra, the efficiency (measured in Cd / A) as a function of the brightness, calculated from current-voltage-brightness characteristics (IUL characteristics), and the service life were determined.
  • Matrix material M3 Matrix material 4
  • the OLEDs both the comparison standard OLED with CBP, and the OLED with bis (9,9 ' spiro-bifluoren-2-yI) ketone as host material show a green emission, resulting from the dopant lr (PPy) 3 .
  • OLEDs produced with the host material CBP a maximum efficiency of about 25 cd / A is typically obtained and 4.8 V are required for the reference luminance of 100 cd / m 2 .
  • OLEDs produced with the host material bis (9,9 '-spiro- bifluoren-2-yl) ketone a maximum efficiency of about 30 cd / A, where the required voltage for the reference luminance of 100 cd / m 2 even on 4.6 V drops. Efficiency is particularly high if neither a hole blocking layer (HBL) nor one Electron transport layer (ETL) is used and the doped emission layer (EML) extends to the cathode.
  • HBL hole blocking layer
  • ETL Electron transport layer
  • a maximum efficiency of over 35 cd / A is achieved, and the voltage required for the reference luminance of 100 cd / m 2 even drops below 3 V.
  • the power efficiency increases with use of bis (9,9 '-spiro-bifluorene-2-yl) ketone as the host material (A) against CBP ( ⁇ ) as the host material by 20% to 100% (Fig. 1).
  • Very high power efficiencies up to 50 Im / W (o) are obtained if neither a hole blocking layer (HBL) nor an electron transport layer (ETL) is used and the doping of the emission layer (EML) extends to the cathode.
  • HBL hole blocking layer
  • ETL electron transport layer
  • the two life curves (Fig. 2) with CBP and with bis (9,9 ' -spiro-bifluoren-2-yl) ketone as host materials (both used here with hole blocking and electron transport layers) were shown in the same figure for better comparability.
  • the figure shows the course of the luminance, measured in cd / m 2 , over time.
  • the lifespan is usually the time after which only 50% of the initial luminance is reached.
  • a lifespan of approximately 150 hours is obtained with an initial brightness of 1400 cd / m 2 , which corresponds to an accelerated measurement, since the initial brightness is significantly higher than the brightness required for typical active matrix-controlled display applications required (250 cd / m 2 ).
  • a lifespan of approximately 2000 hours is obtained with the same initial brightness, which corresponds to a lifespan increase of approximately 1300%; this also applies if neither a hole blocking layer (HBL) nor an electron transport layer (ETL) is used.
  • HBL hole blocking layer
  • ETL electron transport layer
  • lifetimes can now be calculated for an initial brightness of 250 cd / m 2 .
  • the service life is only 4700 hours, which is significantly less than the 10,000 hours required for display applications.
  • bis (9,9 ' - spiro-bifluoren-2-yl) ketone gives a lifespan of over 60,000 hours, which clearly exceeds the minimum requirements.
  • the OLEDs both the reference standard OLED with CBP and the OLED with bis (9,9 ' - spiro-bifluoren-2-yl) ketone as the host material, show a red emission resulting from the dopant lr (BTP) 3 .
  • the two spectra are shown in Fig. 3.
  • a maximum efficiency of about 8 cd / A is typically obtained for OLEDs produced with the host material CBP and 6.2 V are required for the reference luminance of 100 cd / m 2 .
  • OLEDs made with the host material bis (9,9 ' -spiro- bifluoren-2-yl) ketone a maximum efficiency of over 1 1 cd / A, whereby the voltage required for the reference luminance of 100 cd / m 2 even drops to 5.2 V (Fig. 4).
  • the two life curves (Fig. 5) were shown in the same figure for better comparability.
  • the figure shows the course of the luminance, measured in cd / m 2 , over time.
  • lifetimes can now be calculated for an initial brightness of 250 cd / m 2 .
  • the lifespan is only 1600 hours, which is significantly less than the 10,000 hours required for display applications.
  • bis (9,9'-spiro-bifluoren-2-yl) ketone gives a lifespan of over 8,200 hours, which is close to the minimum requirement.
  • the OLEDs show a deep red emission and a red emission, resulting from the dopants lr (piq) 3 (A) and lr (FMepiq) 3 ( ⁇ ).
  • the two spectra are shown in FIG. 6.
  • Ir (piq) 3 in bis (9,9 '-spiro-bifluorene-2-yl) ketone (A)
  • FIG. 8 shows the lifespan of Jr (piq) 3 with bis (9,9 ' -spiro-bifluoren-2-yl) ketone at a constant current of 10 mA / cm 2 with an initial brightness of approx. 800 cd / m 2 and 5 mA cm 2 with an initial brightness of approx. 400 cd / m 2 .
  • An extrapolation gives a lifespan of approx.

Abstract

The invention relates to novel mixtures consisting of at least two substances, one substance being used as a matrix material and the other as a material which is capable of emission and contains at least one element having an atomic number larger than 20. The invention also relates to the use of said mixtures in organic electronic components such as electroluminescence elements and displays.

Description

Beschreibungdescription
Mischungen von organischen zur Emission befähigten Halbleitern und Matrixmaterialien, deren Verwendung und Elektronikbauteile enthaltend diese MischungenMixtures of organic semiconductors and matrix materials capable of emission, their use and electronic components containing these mixtures
Die vorliegende Erfindung beschreibt die Verwendung neuer Materialien und Materialmischungen in organischen elektronischen Bauteilen wie Elβktrolumineszenzelementen und deren Verwendung in darauf basierenden Displays.The present invention describes the use of new materials and material mixtures in organic electronic components such as electroluminescent elements and their use in displays based thereon.
In einer Reihe verschiedenartiger Anwendungen, die im weitesten Sinne der Elektronikindustrie zugerechnet werden können, ist der Einsatz organischer Halbleiter als Wirkkomponenten (= Funktionsmaterialien) seit geraumer Zeit Realität bzw. wird in naher Zukunft erwartet. So finden schon seit etlichen Jahren lichtsensitive organische Materialien (z. B. Phthalocyanine) sowie organische Ladungstransportmaterialien (i. d. R. Lochtransporter auf Triarylaminbasis) Verwendung in Kopiergeräten. Der Einsatz spezieller halbleitender organischer Verbindungen, die zur Emission von Licht im sichtbaren Spektralbereich befähigt sind, steht gerade am Anfang der Markteinführung, zum Beispiel in organischen Elektroiumineszenzvorrichtungen. Deren Einzelbauteile, die Organischen- Lichtemittierenden-Dioden (OLEDs), besitzen ein sehr breites Anwendungsspektrum als:In a number of different types of application, which can be broadly attributed to the electronics industry, the use of organic semiconductors as active components (= functional materials) has been a reality for some time or is expected in the near future. For several years now, light-sensitive organic materials (e.g. phthalocyanines) and organic charge transport materials (usually triarylamine-based hole transporters) have been used in copiers. The use of special semiconducting organic compounds that are capable of emitting light in the visible spectral range is just at the beginning of the market launch, for example in organic electroiuminescent devices. Their individual components, the organic light-emitting diodes (OLEDs), have a very wide range of applications as:
1. weiße oder farbige Hinterleuchtungen für monochrome oder mehrfarbige Anzeigeelemente (wie z. B. im Taschenrechner, für Mobiltelefone und andere tragbare Anwendungen),1. white or colored backlighting for monochrome or multicolored display elements (such as in a calculator, for mobile telephones and other portable applications),
2. großflächige Anzeigen (wie z. B. Verkehrsschilder, Plakate und andere Anwendungen),2. large-scale advertisements (such as traffic signs, posters and other applications),
3. Beleuchtungselemente in allen Farben und Formen,3. lighting elements in all colors and shapes,
4. monochrome oder vollfarbige Passiv-Matrix-Displays für tragbare Anwendungen (wie z. B. Mobiltelefone, PDAs, Camcorder und andere Anwendungen),4. monochrome or full-color passive matrix displays for portable applications (such as, for example, mobile telephones, PDAs, camcorders and other applications),
5. vollfarbige, großflächige, hochauflösende Aktiv-Matrix-Displays für verschiedenste Anwendungen (wie z. B. Mobiltelefone, PDAs, Laptops, Fernseher und andere Anwendungen).5. Full-color, large-area, high-resolution active matrix displays for a wide variety of applications (such as, for example, mobile telephones, PDAs, laptops, televisions and other applications).
Bei diesen Anwendungen ist die Entwicklung teilweise bereits sehr weit fortgeschritten; dennoch besteht immer noch großer technischer Verbesserungsbedarf.The development of these applications is in some cases very advanced; however, there is still a great need for technical improvement.
Für einfachere OLEDs enthaltende Vorrichtungen ist die Markteinführung bereits erfolgt, wie die Autoradios der Firma Pioneer oder eine Digitalkamera der Firma Kodak mit "Organischem Display" belegen. Allerdings gibt es immer noch erhebliche Probleme, die einer dringenden Verbesserung bedürfen:The market launch for devices containing simple OLEDs has already taken place, as evidenced by the car radios from Pioneer or a digital camera from Kodak with an "organic display". However, there are still significant problems that need urgent improvement:
1. So ist v. a. die operative Lebensdauer von OLEDs immer noch gering, so daß bis dato nur einfache Anwendungen kommerziell realisiert werden können.1. So v. a. the operational life of OLEDs is still short, so that only simple applications can be realized commercially up to now.
2. Die Effizienzen von OLEDs sind zwar akzeptabel, aber auch hier sind - gerade für tragbare Anwendungen ("portable applications") - immer noch Verbesserungen erwünscht. 3. Die Farbkoordinaten von OLEDs, speziell im Roten, sind nicht gut genug. Besonders die Kombination von guten Farbkoordinaten mit hoher Effizienz muß noch verbessert werden.2. The efficiencies of OLEDs are acceptable, but improvements are still desired here, particularly for portable applications. 3. The color coordinates of OLEDs, especially in red, are not good enough. In particular, the combination of good color coordinates with high efficiency still needs to be improved.
4. Die Alterungsprozesse gehen i. d. R. mit einem Anstieg der Spannung einher. Dieser Effekt macht spannungsgetriebene organische Elektrolumineszenzvorrichtungen, z. B. Displays oder Anzeige-Elemente, schwierig bzw. unmöglich. Eine stromgetriebene Ansteuerung ist aber gerade in diesem Fall aufwendiger und teurer.4. The aging processes go i. d. Usually accompanied by an increase in voltage. This effect makes voltage driven organic electroluminescent devices, e.g. B. displays or display elements, difficult or impossible. In this case, however, a current-driven control is more complex and expensive.
5. Die benötigte Betriebsspannung ist gerade bei effizienten phosphoreszierenden OLEDs recht hoch und muß daher verringert werden, um die Leistungseffizienz zu verbessern. Das ist gerade für tragbare Anwendungen von großer Bedeutung.5. The operating voltage required is quite high, especially in the case of efficient phosphorescent OLEDs, and must therefore be reduced in order to improve the power efficiency. This is particularly important for portable applications.
6. Der benötigte Betriebsstrom ist ebenfalls in den letzten Jahren verringert worden, muß aber noch weiter verringert werden, um die Leistungseffizienz zu verbessern. Das ist gerade für tragbare Anwendungen besonders wichtig.6. The operating current required has also been reduced in recent years, but must be further reduced to improve performance efficiency. This is especially important for portable applications.
7. Durch die Vielfalt an Schichten ist der Aufbau der OLEDs komplex und technologisch sehr aufwendig. Daher wäre es wünschenswert, OLEDs mit einem einfacheren Schichtaufbau, der weniger Schichten benötigt, mit weiterhin guten oder sogar verbesserten Eigenschaften realisieren zu können.7. Due to the variety of layers, the structure of the OLEDs is complex and technologically very complex. It would therefore be desirable to be able to implement OLEDs with a simpler layer structure, which requires fewer layers, with good or even improved properties.
Die oben unter 1. bis 7. genannten Gründe machen Verbesserungen bei der Herstellung von OLEDs notwendig.The reasons given under 1 to 7 above make improvements in the production of OLEDs necessary.
Eine Entwicklung hierzu, die sich in den letzten Jahren abzeichnet, ist der Einsatz metallorganischer Komplexen, die Phosphoreszenz statt Fluoreszenz zeigen [M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 1999, 75, 4- 6]. Aus quantenmechanischen Gründen ist unter Verwendung metallorganischer Verbindungen eine bis zu vierfache Quanten-, Energie- und Leistungseffizienz möglich. Ob sich diese neue Entwicklung durchsetzen wird, hängt zum einen stark davon ab, ob entsprechende Device-Kompositionen gefunden werden können, die diese Vorteile (Triplett- Emission = Phosphoreszenz gegenüber Singulett-Emission = Fluoreszenz) auch in OLEDs umsetzen können. Als wesentliche Bedingungen für die praktische Anwendung sind hier insbesondere eine hohe operative Lebensdauer, eine hohe Stabilität gegenüber Temperaturbelastung und eine niedrige Einsatz- und Betriebsspannung, um mobile Applikationen zu ermöglichen, zu nennen.One development that has emerged in recent years is the use of organometallic complexes that show phosphorescence instead of fluorescence [M. A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R. Forrest, Appl. Phys. Lett. 1999, 75, 4-6]. For quantum mechanical reasons, up to four times quantum, energy and power efficiency is possible using organometallic compounds. On the one hand, whether this new development will prevail depends heavily on whether suitable device compositions can be found that can also implement these advantages (triplet emission = phosphorescence over singlet emission = fluorescence) in OLEDs. The essential conditions for practical use are, in particular, a long operational lifespan, high stability against thermal stress and a low operating and operating voltage to enable mobile applications.
Der allgemeine Aufbau von organischen Elektrolumineszenzvorrichtungen ist beispielsweise in US 4,539,507 und US 5,151 ,629, sowie EP 01202358 beschrieben. Üblicherweise besteht eine organische Elektrolumineszenzvorrichtung aus mehreren Schichten, die mittels Vakuummethoden oder unterschiedlicher Druckmethoden aufeinander aufgebracht werden. Diese Schichten sind im einzelnen:The general structure of organic electroluminescent devices is described, for example, in US 4,539,507 and US 5,151, 629, and EP 01202358. An organic electroluminescent device usually consists of several layers which are applied to one another by means of vacuum methods or different printing methods. The individual layers are:
1. Eine Trägerplatte = Substrat (üblicherweise Glas oder Kunststoffolien).1. A carrier plate = substrate (usually glass or plastic films).
2. Eine transparente Anode (üblicherweise Indium-Zinn-Oxid, ITO). 3. Eine Lochinjektions-Schicht (Hole Injection Layer = H1L): z. B. auf Basis von Kupfer- phthalocyanin (CuPc) oder leitfähigen Polymeren, wie Polyanilin (PANI) oder Polythiophen-Derivaten (wie PEDOT).2. A transparent anode (usually indium tin oxide, ITO). 3. A hole injection layer (H1L): e.g. B. based on copper phthalocyanine (CuPc) or conductive polymers such as polyaniline (PANI) or polythiophene derivatives (such as PEDOT).
4. Eine oder mehrere Lochtransport-Schichten (Hole Transport Layer = HTL): üblicherweise auf Basis von Triarylamin-Derivaten, z. B. 4,4',4"-Tris(N-1-naphthyl-N- phenyl-amino)-triphenylamin (NaphDATA) als erste Schicht und N,N'-Di(naphth-1-yl)- N,N'-diphenyl-benzidin (NPB) als zweite Lochtransportschicht.4. One or more hole transport layers (HTL): usually based on triarylamine derivatives, eg. B. 4,4 ', 4 "tris (N-1-naphthyl-N-phenylamino) triphenylamine (NaphDATA) as the first layer and N, N'-di (naphth-1-yl) - N, N '-diphenyl-benzidine (NPB) as a second hole transport layer.
5. Eine oder mehrere Emissions-Schichten (Emission Layer = EML): diese Schicht (bzw. Schichten) kann teilweise mit den Schichten 4 bis 8 zusammenfallen, besteht aber üblicherweise aus mit Fluoreszenzfarbstoffen, z. B. N,N'-Diphenyl-chinacridon (QA), oder Phosphoreszenzfarbstoffen, z. B. Tris(2-phenylpyridyl)-iridium (Ir(PPy)s) oder Tris(2-benzothiophenyl-pyridyl)-iridium (lr(BTP)3), dotierten Matrixmaterialien, wie 4,4'- Bis(carbazol-9-yl)-biphenyl (CBP). Die Emissions-Schicht kann aber auch aus Polymeren, Mischungen von Polymeren, Mischungen von Polymeren und niedermolekularen Verbindungen oder Mischungen verschiedener niedermolekularer Verbindungen bestehen.5. One or more emission layers (Emission Layer = EML): this layer (or layers) can partially coincide with layers 4 to 8, but usually consists of fluorescent dyes, e.g. B. N, N'-diphenyl-quinacridone (QA), or phosphorescent dyes, e.g. B. Tris (2-phenylpyridyl) iridium (Ir (PPy) s) or Tris (2-benzothiophenyl-pyridyl) iridium (Ir (BTP) 3 ), doped matrix materials such as 4,4'-bis (carbazole-9 -yl) -biphenyl (CBP). However, the emission layer can also consist of polymers, mixtures of polymers, mixtures of polymers and low-molecular compounds or mixtures of different low-molecular compounds.
6. Eine Lochblockier-Schicht (Hole-Blocking-Layer = HBL): diese Schicht kann teilweise mit den Schichten 7 und 8 zusammenfallen. Sie besteht üblicherweise aus BCP (2,9- Dimethyl-4,7-diphenyl-1 ,10-phenanthrolin = Bathocuproin) oder Bis-(2-methyl-8- chinolinolato)-(4-phenyl-phenolato)-aluminium(lll) (BAIq).6. A hole blocking layer (HBL): this layer can partially coincide with layers 7 and 8. It usually consists of BCP (2,9-dimethyl-4,7-diphenyl-1, 10-phenanthroline = bathocuproin) or bis (2-methyl-8-quinolinolato) - (4-phenyl-phenolato) aluminum (III ) (BAIq).
7. Eine Elektronentransport-Schicht (Electron Transport Layer = ETL): meist auf Basis von Aluminium-tris-8-hydroxychinolinat (AIQ3).7. An electron transport layer (ETL): mostly based on aluminum tris-8-hydroxyquinolinate (AIQ 3 ).
8. Eine Elektroneninjektions-Schicht (Electron Injection Layer = EIL): diese Schicht kann teilweise mit Schicht 4, 5, 6 und 7 zusammenfallen, bzw. es wird ein kleiner Teil der Kathode speziell behandelt bzw. speziell abgeschieden.8. An electron injection layer (EIL): this layer can partially coincide with layers 4, 5, 6 and 7, or a small part of the cathode is specially treated or specially deposited.
9. Eine weitere Elektroneninjektions-Schicht (Electron Injection JLayer = EIL): ein dünne Schicht bestehend aus einem Material mit einer hohen Dielektrizitätskonstanten, wie z. B. LiF, Li20, BaF2, MgO, NaF.9. Another electron injection layer (Electron Injection JLayer = EIL): a thin layer consisting of a material with a high dielectric constant, such as. B. LiF, Li 2 0, BaF 2 , MgO, NaF.
10. Eine Kathode: hier werden in der Regel Metalle, Metallkombinationen oder Metallegierungen mit niedriger Austrittsarbeit verwendet, so z. B. Ca, Ba, Cs, Mg, AI, In, Mg/Ag.10. A cathode: here metals, metal combinations or metal alloys with a low work function are generally used. B. Ca, Ba, Cs, Mg, Al, In, Mg / Ag.
Diese ganze Vorrichtung wird entsprechend (je nach Anwendung) strukturiert, kontaktiert und schließlich auch hermetisch versiegelt, da sich die Lebensdauer derartiger Vorrichtungen bei Anwesenheit von Wasser und/oder Luft drastisch verkürzt. Das Gleiche gilt auch für sogenannte invertierte Strukturen, bei denen das Licht aus der Kathode ausgekoppelt wird. Bei diesen invertierten OLEDs besteht die Anode z. B. aus AI/Ni/NiOx oder Al/Pt/PtOx oder anderen Metall/Metalloxid-Kombinationen, die ein HOMO größer 5 eV besitzen. Die Kathode besteht dabei aus den gleichen Materialien, die in Punkt 9 und 10 beschrieben sind, mit dem Unterschied, daß das Metall, wie z. B. Ca, Ba, Mg, AI, In usw., sehr dünn und damit transparent ist. Die Schichtdicke liegt unter 50 nm, besser unter 30 nm, noch besser unter 10 nm. Auf diese transparente Kathode kann noch ein weiteres transparentes Material aufgebracht werden, z. B. ITO (Indium-Zinn-Oxid), IZO (Indium-Zink- Oxid), usw..This entire device is structured (depending on the application), contacted and finally also hermetically sealed, since the life of such devices is drastically shortened in the presence of water and / or air. The same also applies to so-called inverted structures, in which the light is coupled out of the cathode. In these inverted OLEDs, the anode consists, for. B. from AI / Ni / NiOx or Al / Pt / PtOx or other metal / metal oxide combinations that have a HOMO greater than 5 eV. The cathode consists of the same materials that are described in items 9 and 10, with the difference that the metal, such as. B. Ca, Ba, Mg, Al, In, etc., is very thin and therefore transparent. The layer thickness is less than 50 nm, better less than 30 nm, even better less than 10 nm. Another can be applied to this transparent cathode transparent material are applied, e.g. B. ITO (indium tin oxide), IZO (indium zinc oxide), etc.
Im oben genannten Aufbau kommt dem Matrixmaterial der Emissions-Schicht (EML) eine besondere Rolle zu. Das Matrixmaterial muß den Ladungstransport von Löchern und/oder Elektronen ermöglichen oder verbessern und/oder die Ladungsträgerrekombination ermöglichen oder verbessern und gegebenenfalls die bei der Rekombination entstehende Energie auf den Emitter übertragen. Diese Aufgabe wird bei den Elektrolumineszenzvorrichtungen auf Basis phosphoreszierender Emitter bislang überwiegend von Matrixmaterialien, die Carbazol-Einheiten enthalten, übernommen.In the structure mentioned above, the matrix material of the emission layer (EML) plays a special role. The matrix material must enable or improve the charge transport of holes and / or electrons and / or enable or improve the charge carrier recombination and, if appropriate, transfer the energy produced during the recombination to the emitter. In the case of electroluminescent devices based on phosphorescent emitters, this task has hitherto been predominantly carried out by matrix materials which contain carbazole units.
Matrixmaterialien, die Carbazol-Einheiten, wie z. B. das häufig verwendete 4,4'-Bis-(N- carbazolyl)-biD_henyl (CBP), enthalten, haben in der Praxis jedoch einige Nachteile. Diese sind unter anderem in der oftmals kurzen bis sehr kurzen Lebensdauer der mit ihnen hergestellten Devices und den häufig hohen Betriebsspannungen, die zu geringen Leistungseffizienzen führen, zu sehen. Des weiteren hat sich gezeigt, daß aus energetischen Gründen CBP für blau emittierende Elektrolumineszenzvorrichtungen ungeeignet ist, was in einer schlechten Effizienz resultiert. Außerdem ist der Aufbau der Devices sehr komplex, wenn CBP als Matrixmaterial verwendet wird, da zusätzlich eine Lochblockierschicht und eine Elektronentransportschicht verwendet werden müssen. Werden diese zusätzlichen Schichten nicht verwendet, wie z. B. von Adachi et. al. (Organic Electronics 2001, 2, 37) beschrieben, so beobachtet man zwar gute Effizienzen, aber nur bei extrem geringen Helligkeiten, während die Effizienz bei höherer Helligkeit, wie sie für die Anwendung nötig ist, um mehr als eine Größenordnung geringer ist. So werden für hohe Helligkeiten hohe Spannungen benötigt, so daß hier die Leistungseffizienz sehr niedrig ist, was insbesondere für Passiv-Matrix-Anwendungen ungeeignet ist.Matrix materials, the carbazole units, such as. B. contain the frequently used 4,4'-bis (N-carbazolyl) -biD_henyl (CBP), but have some disadvantages in practice. These can be seen, among other things, in the often short to very short lifespan of the devices manufactured with them and the often high operating voltages that lead to low power efficiencies. Furthermore, it has been shown that for energetic reasons, CBP is unsuitable for blue-emitting electroluminescent devices, which results in poor efficiency. In addition, the structure of the devices is very complex if CBP is used as the matrix material, since a hole blocking layer and an electron transport layer must also be used. If these additional layers are not used, e.g. B. by Adachi et. al. (Organic Electronics 2001, 2, 37), one can observe good efficiencies, but only at extremely low brightness levels, while the efficiency at higher brightness levels, as required for the application, is more than an order of magnitude lower. Thus, high voltages are required for high brightnesses, so that the power efficiency is very low here, which is unsuitable in particular for passive matrix applications.
Es wurde nun überraschend gefunden, daß die Verwendung bestimmter Matrixmaterialien in Kombination mit bestimmten Emittern zu deutlichen Verbesserungen gegenüber dem Stand der Technik, insbesondere in Bezug auf die Effizienz und in Kombination mit einer stark erhöhten Lebensdauer, führen. Zudem ist mit diesen Matrixmaterialien ein deutlich vereinfachter Schichtaufbau der OLED möglich, da weder eine separate Lochblockierschicht, noch eine separate Elektronentransport- und/oder Elektroneninjektionsschicht verwendet werden muß. Dies ist ein enormer technologischer Vorteil.It has now surprisingly been found that the use of certain matrix materials in combination with certain emitters leads to significant improvements over the prior art, in particular in terms of efficiency and in combination with a greatly increased service life. In addition, a significantly simplified layer structure of the OLED is possible with these matrix materials, since neither a separate hole blocking layer nor a separate electron transport and / or electron injection layer has to be used. This is a huge technological advantage.
Die Verwendung der nachfolgend beschriebenen Matrixmaterialien in OLEDs, die phosphoreszierende Emitter enthalten, ist ebenso neu wie die zugrundeliegende Mischung. Die Verwendung analoger Materialien in einfachen Devices, als Emissionsmaterialien selbst oder als Materialien in der Emissionsschicht in Kombination mit fluoreszierenden Emittern ist vereinzelt schon in der Literatur beschrieben worden (z. B.: JP 06192654). Ebenso gibt es eine Beschreibung (WO 04/013080) von Aroyl-Derivaten des Spirobifiuorens, die auch in OLEDs verwendet werden können, allerdings ohne Bezug auf Triplett-Emission, Elektrophosphoreszenz oder Matrixmaterialien dafür; diese ist somit als zufällige Offenbarung zu bewerten. Die nachfolgend beschriebene Erfindung wird von den oben genannten Beschreibungen nicht neuheitsschädlich berührt, da die Verwendung der nachfolgend beschriebenen Matrixmaterialien in OLEDs in Kombination mit phosphoreszierenden Emittern neu ist.The use of the matrix materials described below in OLEDs which contain phosphorescent emitters is as new as the underlying mixture. The use of analog materials in simple devices, as emission materials themselves or as materials in the emission layer in combination with fluorescent emitters has already been described in isolated cases in the literature (for example: JP 06192654). There is also a description (WO 04/013080) of aroyl derivatives of spirobifiuoren, which is also described in OLEDs can be used, but without reference to triplet emission, electrophosphorescence or matrix materials therefor; this is therefore to be regarded as a random revelation. The invention described below is not affected by the above-mentioned descriptions because the use of the matrix materials described below in OLEDs in combination with phosphorescent emitters is new.
Gegenstand der Erfindung sind deshalb Mischungen enthaltend mindestens ein Matrixmaterial A, welches eine Struktureinheit der Form C=0 enthält, bei dem Q mindestens ein nicht-bindendes Elektronenpaar aufweist und für das Element O,The invention therefore relates to mixtures comprising at least one matrix material A which contains a structural unit of the form C = 0, in which Q has at least one non-binding electron pair and for the element O,
S, Se oder N steht, und welches gegebenenfalls auch glasartige Schichten bilden kann, und mindestens ein zur Emission befähigten Emissionsmaterial B, welches eine Verbindung ist, die bei geeigneter Anregung Licht emittiert und mindestens ein Element derS, Se or N stands, and which can optionally also form glass-like layers, and at least one emission material B capable of emission, which is a compound which emits light with suitable excitation and at least one element of the
Ordungszahl größer 20 enthält.Contains atomic number greater than 20.
Bevorzugt handelt es sich bei den erfindungsgemäßen Mischungen um solche, die mindestens ein Matrixmaterial A enthalten, bei dem die Glastemperatur Tg der Reinsubstanz A größer 70 °C ist, bevorzugt größer 100 °C, besonders bevorzugt größer 130 °C.The mixtures according to the invention are preferably those which contain at least one matrix material A in which the glass transition temperature T g of the pure substance A is greater than 70 ° C., preferably greater than 100 ° C., particularly preferably greater than 130 ° C.
Die oben beschriebenen Mischungen enthalten bevorzugt als Matrixmaterial A mindestens eine Verbindung gemäß Formel (1), Formel (2) und/oder Formel (3)The mixtures described above preferably contain as matrix material A at least one compound of the formula (1), formula (2) and / or formula (3)
Formel (1) Formel (2) Formel (3) wobei die Symbole und Indizes folgende Bedeutung haben:Formula (1) Formula (2) Formula (3) where the symbols and indices have the following meaning:
X ist bei jedem Auftreten gleich oder verschieden O, S oder Se;X is the same or different at each occurrence O, S or Se;
Y ist bei jedem Auftreten N;Y is N on every occurrence;
R1, R2, R3 ist gleich oder verschieden bei jedem Auftreten H, CN, eine geradkettige, verzweigte oder cyclische Alkyl-, Alkoxy- oder Alkylaminogruppe mit 1 bis 40 C-Atomen, wobei ein oder mehrere nicht benachbarte CH2-Gruppen durch -R4C=CR4-, -C≡C-, C=0, C=S, C=Se, C=NR4, -O-, -S-, -NR5- oder -CONR6- ersetzt sein können und wobei ein oder mehrere H-Atome durch F, Cl, Br, I ersetzt sein können, oder ein aromatisches oder heteroaromatisches System mit 1 bis 40 C-Atomen, wobei ein oder mehrere H-Atome durch F, Cl, Br, I ersetzt sein können und das durch einen oder mehrere, nicht aromatische Reste R1 substituiert sein kann, wobei mehrere Substituenten R1 und/oder R\ R2 sowohl am selben Ring als auch an den beiden unterschiedlichen Ringen zusammen wiederum ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können; mit der Maßgabe, daß R1=R2=R3 ungleich Wasserstoff ist; R4, R5, R6 sind gleich oder verschieden bei jedem Auftreten H oder ein aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen.R 1 , R 2 , R 3 is the same or different at each occurrence H, CN, a straight-chain, branched or cyclic alkyl, alkoxy or alkylamino group with 1 to 40 C atoms, one or more non-adjacent CH 2 groups by -R 4 C = CR 4 -, -C≡C-, C = 0, C = S, C = Se, C = NR 4 , -O-, -S-, -NR 5 - or -CONR 6 - can be replaced and where one or more H atoms can be replaced by F, Cl, Br, I, or an aromatic or heteroaromatic system with 1 to 40 C atoms, where one or more H atoms by F, Cl, Br , I can be replaced and which can be substituted by one or more, non-aromatic radicals R 1 , wherein several substituents R 1 and / or R \ R 2 both on the same ring and on the two different rings together again a further mono- or polycyclic, aliphatic or aromatic Can span ring system; with the proviso that R 1 = R 2 = R 3 is not hydrogen; R 4 , R 5 , R 6 are the same or different at each occurrence H or an aliphatic or aromatic hydrocarbon radical having 1 to 20 carbon atoms.
Unter einem aromatischen bzw. heteroaromatischen System im Sinne dieser Erfindung soll ein System verstanden werden, das nicht notwendigerweise nur aromatische bzw. heteroaromatische Gruppen enthält, sondern in dem auch mehrere aromatische bzw. heteroaromatische Gruppen durch eine kurze nicht-aromatische Einheit (< 10 % der Atome, bevorzugt < 5 % der Atome), wie beispielsweise sp3-hybridisierter C, O, N, etc., unterbrochen sein können. So sollen also beispielsweise auch Systeme wie 9,9'-Spirobifluoren, 9,9-Diarylfluoren, Triarylamin, Diphenylether, etc. als aromatische Systeme verstanden werden.An aromatic or heteroaromatic system in the sense of this invention is to be understood as a system which does not necessarily only contain aromatic or heteroaromatic groups, but also in which several aromatic or heteroaromatic groups by a short non-aromatic unit (<10% of the Atoms, preferably <5% of the atoms), such as sp 3 -hybridized C, O, N, etc., can be interrupted. For example, systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diphenyl ether, etc. should also be understood as aromatic systems.
Auch wenn dies aus der Definition oben hervorgeht, sei hier nochmals explizit darauf verwiesen, daß der Rest R1 bzw. R2 auch eine substituierte oder unsubstituierte Vinylgruppe bzw. ein entsprechendes Derivat sein kann, d. h. daß die Verbindung gemäß Formel (1) auch eine α,ß-ungesättigte Carbonyl-Verbindung sein kann, bzw. die Verbindung gemäß Formel (2) oder (3) auch ein α,ß-ungesättigtes Imin sein können.Even if this emerges from the definition above, it should be explicitly pointed out here that the radical R 1 or R 2 can also be a substituted or unsubstituted vinyl group or a corresponding derivative, ie the compound of the formula (1) is also a can be α, β-unsaturated carbonyl compound, or the compound of formula (2) or (3) can also be an α, β-unsaturated imine.
Als besonders geeignete Verbindungen gemäß Formel (1) bis (3) haben sich Verbindungen erwiesen, die nicht planar aufgebaut sind. An der Struktureinheit der Form C=Q können entsprechende Substituenten für eine Abweichung der Gesamtstruktur von der Planarität sorgen. Dies ist insbesondere dann der Fall, wenn mindestens einer der Substituenten R1, R2 und/oder R3 wenigstens ein sp3-hybridisiertes Kohlenstoff-, Silicium-, Germanium- und/oder Stickstoffatom enthält, welches dadurch näherungsweise tetraedrische oder im Fall von Stickstoff pyramidale Bindungsgeometrie aufweist.Compounds which are not planar have proven to be particularly suitable compounds of the formulas (1) to (3). Corresponding substituents on the structural unit of the form C = Q can cause the overall structure to deviate from planarity. This is particularly the case if at least one of the substituents R 1 , R 2 and / or R 3 contains at least one sp 3 hybridized carbon, silicon, germanium and / or nitrogen atom, which is thereby approximately tetrahedral or in the case of Nitrogen has pyramidal bond geometry.
Um eine deutliche Abweichung von der Planarität zu erreichen, ist es bevorzugt, wenn wenigstens eines der sp3-hybridisierten Atome ein sekundäres, tertiäres oder quartäres Atom ist, besonders bevorzugt ein tertiäres oder quartäres Atom, im Fall von Kohlenstoff, Silicium oder Germanium ganz besonders bevorzugt ein quartäres Atom ist. Unter einem sekundären, tertiären oder quartären Atom wird ein Atom mit zwei, drei bzw. vier Substituenten ungleich Wasserstoff verstanden.In order to achieve a clear deviation from the planarity, it is preferred if at least one of the sp 3 -hybridized atoms is a secondary, tertiary or quaternary atom, particularly preferably a tertiary or quaternary atom, very particularly in the case of carbon, silicon or germanium is preferably a quaternary atom. A secondary, tertiary or quaternary atom is understood to mean an atom with two, three or four substituents other than hydrogen.
Bevorzugt sind weiterhin Verbindungen, die in mindestens einem der Reste R1 bis R3 ein 9,9'-Spirobifluorenderivat, bevorzugt verknüpft über die 2- und/oder 2,7- und/oder 2,2'- und/oder 2,2',7- und/oder 2,2',7,7'-Position, ein 9,9-disubstituiertes Fluorenderivat, bevorzugt verknüpft über die 2- und/oder 2,7-Position, ein 6,6- und/oder 12,12-di- oder tetrasubstituiertes Indenofluorenderivat, ein Triptycenderivat, bevorzugt verknüpft über die 9- und/oder 10-Position, ein Dihydrophenanthren-Derivat, bevorzugt verknüpft über die 2- und/oder 2,7- und/oder 3- und/oder 3,6-Position, oder ein Hexaarylbenzolderivat, bevorzugt verknüpft über die p-Position am bzw. an den Aromaten, enthalten. Besonders bevorzugt sind Verbindungen, die in mindestens einem der Reste R1 bis R3 ein 9,9'-Spirobifluorenderivat enthalten.Preference is furthermore given to compounds which contain at least one of the radicals R 1 to R 3 a 9,9'-spirobifluorene derivative, preferably linked via the 2- and / or 2,7- and / or 2,2 ' - and / or 2, 2 ' , 7 and / or 2,2 ' , 7,7 ' position, a 9,9-disubstituted fluorene derivative, preferably linked via the 2 and / or 2,7 position, a 6,6 and / or 12,12-di- or tetrasubstituted indenofluorene derivative, a triptycene derivative, preferably linked via the 9- and / or 10-position, a dihydrophenanthrene derivative, preferably linked via the 2- and / or 2,7- and / or 3- and / or 3,6-position, or a hexaarylbenzene derivative, preferably linked via the p-position on or on the aromatics. Compounds which contain a 9,9'-spirobifluorene derivative in at least one of the radicals R 1 to R 3 are particularly preferred.
Nochmals weiterhin bevorzugt sind Verbindungen, die in mindestens einem der Reste R1 bis R3 ein substituiertes oder unsubstituiertes 2-Biphenyl bzw. einen substituierten oder unsubstituierten 2-Biphenylether enthalten.Even more preferred are compounds which contain a substituted or unsubstituted 2-biphenyl or a substituted or unsubstituted 2-biphenyl ether in at least one of the radicals R 1 to R 3 .
Weiterhin bevorzugt sind Verbindungen, die dendritisch aufgebaut sind. Außerdem bevorzugt sind 1 ,3,5-trisubstituierte Benzolketone und entsprechende Oligoketone, die beispielsweise gemäß N. Nakamura et a/., J. Amer. Chem. Soc. 1992, 114, 1484, oder gemäß K. Matsuda et al., J. Amer. Chem. Soc. 1995, 117, 5550, erhältlich sind.Also preferred are compounds that are dendritic in structure. Also preferred are 1,3,5-trisubstituted benzene ketones and corresponding oligoketones, which are described, for example, according to N. Nakamura et a /., J. Amer. Chem. Soc. 1992, 114, 1484, or according to K. Matsuda et al., J. Amer. Chem. Soc. 1995, 117, 5550.
Um Mißverständnissen vorzugbeugen, sei an dieser Stelle betont, daß mit Matrixmaterialien A mit der Struktureinheit C=Q natürlich keine aromatischen Systeme, die partielle C=N-Doppelbindungen im Ring enthalten, wie z. B. Pyrimidine, Pyrazine, etc., gemeint sind.To avoid misunderstandings, it should be emphasized at this point that with matrix materials A with the structural unit C = Q, of course, no aromatic systems that contain partial C = N double bonds in the ring, such as. As pyrimidines, pyrazines, etc., are meant.
Ebenso bevorzugt sind Mischungen, die als Matrixmaterial A mindestens eine Verbindung gemäß Formel (4) bis (9) enthalten,Mixtures which contain at least one compound of the formula (4) to (9) as matrix material A are likewise preferred,
Formel (4) Formel (6) Formel (8)Formula (4) Formula (6) Formula (8)
Formel (5) Formel (7) Formel (9)Formula (5) Formula (7) Formula (9)
wobei die Symbole X, Y, R1, R2, R3, R4, R5 und R6 die unter den Formeln (1) bis (3) genannten Bedeutungen haben, undwhere the symbols X, Y, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 have the meanings given under the formulas (1) to (3), and
Z gleich oder verschieden bei jedem Auftreten CR oder N ist.Z is the same or different on each occurrence of CR or N.
Besonders bevorzugt sind organische Mischungen, die mindestens eines der oben durch Formel (1) bis (9) beschriebenen Matrixmaterialien A enthalten, bei welchem gilt: X ist bei jedem Auftreten O oder S; Y ist bei jedem Auftreten N; Z ist bei jedem Auftreten CR1;Organic mixtures which contain at least one of the matrix materials A described above by formulas (1) to (9) are particularly preferred, in which case: X is O or S at each occurrence; Y is N on every occurrence; Z is CR 1 at each occurrence;
R\ R2, R3 gleich oder verschieden bei jedem Auftreten H, eine geradkettige, verzweigte oder cyclische Alkylgruppe mit 1 bis 40 C-Atomen, bevorzugt ohne H-Atome in α-Position zur Keto- bzw. Iminfunktion, wobei ein oder mehrere nicht benachbarte CH2-Gruppen durch -R4C=CR4-, -C≡C-, C=0, C=S, C=Se, C=NR4,R \ R 2 , R 3 the same or different at each occurrence H, a straight-chain, branched or cyclic alkyl group with 1 to 40 C atoms, preferably without H atoms in the α-position to the keto or imine function, one or more non-adjacent CH 2 groups by -R 4 C = CR 4 -, -C≡C-, C = 0, C = S, C = Se, C = NR 4 ,
-O-, -S-, -NR5- oder -CONR6- ersetzt sein können und wobei ein oder mehrere-O-, -S-, -NR 5 - or -CONR 6 - can be replaced and one or more
H-Atome durch F, Cl, Br, I ersetzt sein können, oder ein aromatisches oder heteroaromatisches System mit 1 bis 40 C-Atomen, wobei ein oder mehrere H-Atome durch F, Cl, Br, I ersetzt sein können und die durch einen oder mehrere, nicht aromatische Reste R1 substituiert sein kann, wobei mehrere Substituenten R und/oder R1, R2, sowohl am selben Ring als auch an den beiden unterschiedlichen Ringen zusammen wiederum ein weiteres mono- oder polycyclisches, aliphatisches oder aromatischesH atoms can be replaced by F, Cl, Br, I, or an aromatic or heteroaromatic system with 1 to 40 C atoms, where one or more H atoms can be replaced by F, Cl, Br, I and those by one or more, non-aromatic radicals R 1 can be substituted, with several substituents R and / or R 1 , R 2 , both on the same ring and on the two different rings together, in turn, a further mono- or polycyclic, aliphatic or aromatic
Ringsystem aufspannen können;Can span ring system;
R4, R5, R6 sind wie unter Formel (1) bis (3) beschrieben.R 4 , R 5 , R 6 are as described under formulas (1) to (3).
Ebenfalls bevorzugt sind Mischungen, die als Matrixmaterial A mindestens eine Verbindung der Formel (10) bis (15) enthalten,Mixtures which contain at least one compound of the formula (10) to (15) as matrix material A are also preferred,
Formel (10) Formel (11 )Formula (10) Formula (11)
Formel (12) Formula (12)
Formel (13) Formel (14)Formula (13) Formula (14)
Formel (15)Formula (15)
wobei die Symbole Z, Y und R1 bis R6 dieselbe Bedeutung haben, wie unter Formel (1) biswhere the symbols Z, Y and R 1 to R 6 have the same meaning as under formula (1) to
(9) beschrieben, und für die weiteren Symbole und Indizes gilt:(9), and the following applies to the other symbols and indices:
Ar ist bei jedem Auftreten gleich oder verschieden ein aromatisches oder heteroaromatisches System mit 2 bis 40 C-Atomen, vorzugsweise mit 4 bis 30 C-Atomen, wobei ein oder mehrere H-Atome durch F, Cl, Br, I ersetzt sein können und die durch einen oder mehrere, nicht aromatische Reste R1 substituiert sein kann, wobei mehrere Substituenten R1, sowohl am selben Ring als auch an unterschiedlichen Ringen zusammen wiederum ein weiteres mono- oder polycycüsches, aliphatisches oder aromatisches Ringsystem aufspannen können; n ist bei jedem Auftreten gleich oder verschieden 0 oder 1.Ar is the same or different in each occurrence an aromatic or heteroaromatic system with 2 to 40 C atoms, preferably with 4 to 30 C atoms, where one or more H atoms can be replaced by F, Cl, Br, I and can be substituted by one or more non-aromatic radicals R 1 , it being possible for a plurality of substituents R 1 , both on the same ring and on different rings, to form a further mono- or polycylic, aliphatic or aromatic ring system; n is the same or different at each occurrence 0 or 1.
Die Bevorzugung dieser Materialien gemäß Formel (10) bis (15) ist insbesondere durch ihre hohen Glasübergangstemperaturen begründet. Diese liegen je nach Substitutionsmuster typischerweise über 70 °C und meist oberhalb von 100 °C.The preference for these materials according to formulas (10) to (15) is due in particular to their high glass transition temperatures. Depending on the substitution pattern, these are typically above 70 ° C and usually above 100 ° C.
Gegenstand der vorliegenden Erfindung sind ebenfalls die neuen Verbindungen gemäß Formel (10a) bis (15), The present invention also relates to the new compounds of the formulas (10a) to (15),
Formel (10a) Formel (11)Formula (10a) Formula (11)
Formel (12)Formula (12)
Formel (13) Formel (14)Formula (13) Formula (14)
Formel (15)Formula (15)
bei denen die Symbole Z, Y, Ar und R1 bis R6 dieselbe Bedeutung haben, wie oben beschrieben, und für die weiteren verwendeten Symbole gilt:where the symbols Z, Y, Ar and R 1 to R 6 have the same meaning as described above, and the following applies to the other symbols used:
E ist bei jedem Auftreten gleich oder verschieden C oder N;E is the same or different at each occurrence C or N;
R7 ist bei jedem Auftreten gleich oder verschieden eine Alkyl-, Alkoxy- oderR 7 is the same or different each time an alkyl, alkoxy or
Alkylaminogruppe mit 1 bis 40 C-Atomen, in der auch ein oder mehrere CH2-Gruppen durch -R4C=CR4-, -G≡C-, C=0, C=S, C=Se, C=NR4, -O-, -S-, -NR4- oder -CONR4- ersetzt sein können und in der auch ein oder mehrere H-Atome durch F, Cl, Br, I ersetzt sein können, mit der Maßgabe, daß in α-Position zur Carbonylgruppe keine H- Atome gebunden sind, oder eine aromatische Gruppe, die gegebenenfalls mit Halogen, Alkyl, Trifluormethyl, Hydroxy, -SH, -S-Alkyl, Alkoxy, Nitro, Cyano, -COOH, -COOAlkyl, -NH2, -NAIkyl, Benzyl oder Benzoyl substituiert sein kann; oder ein größeres aromatisches System mit 2 bis 40 C-Atomen, vorzugsweise 4 bis 30 C-Atomen, wie beispielsweise 9,9'-Spirobifluoren, Fluoren, Triarylamin, etc., wobei ein oder mehrere H-Atome durch F, Cl, Br, I ersetzt sein können und die durch ein oder mehrere nicht-aromatische Reste R1 substituiert sein kann, wobei mehrere Substituenten R1 wiederum ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können;Alkylamino group with 1 to 40 C atoms, in which one or more CH 2 groups are represented by -R 4 C = CR 4 -, -G≡C-, C = 0, C = S, C = Se, C = NR 4 , -O-, -S-, -NR 4 - or -CONR 4 - can be replaced and in which one or more H atoms can be replaced by F, Cl, Br, I, with the proviso that in α position to the carbonyl group no H atoms are bound, or an aromatic group which may optionally be substituted with halogen, alkyl, trifluoromethyl, hydroxy, -SH, -S-alkyl, alkoxy, nitro, cyano, -COOH, -COOalkyl, -NH 2 , -NAIkyl, benzyl or benzoyl; or a larger aromatic system with 2 to 40 C atoms, preferably 4 to 30 C atoms, such as 9,9'-spirobifluorene, fluorene, triarylamine, etc., where one or more H atoms by F, Cl, Br , I can be replaced and which can be substituted by one or more non-aromatic radicals R 1 , where a plurality of substituents R 1 in turn can span another mono- or polycyclic, aliphatic or aromatic ring system;
A1 ist bei jedem Auftreten R8 oder CO-R7, wenn X = C ist, oder ein freies Elektronenpaar, wenn X = N ist;A 1 is R 8 or CO-R 7 whenever X = C, or a lone pair of electrons when X = N;
A2 ist bei jedem Auftreten R8 oder CO-R7, wenn X = C ist, oder ein freies Elektronenpaar, wenn X = N ist;A 2 is R 8 or CO-R 7 whenever X = C, or a lone pair of electrons when X = N;
A3 ist bei jedem Auftreten R8 oder CO-R7, wenn X = C ist, oder ein freies Elektronenpaar, wenn X = N ist;A 3 on each occurrence is R 8 or CO-R 7 if X = C, or a lone pair of electrons if X = N;
R8 ist gleich oder verschieden bei jedem Auftreten H, F, Cl, Br, I, CN, N02, eine geradkettige oder verzweigte oder cyclische Alkylgruppe mit 1 bis 40 C-Atomen, wobei ein oder mehrere nicht benachbarte CH2-Gruppen durch -R4C=CR4-, -C≡C-, C=S, C=Se, C=NR4, -O-, -S-, -NR4- oder-CONR4- ersetzt sein können und wobei ein oder mehrere H-Atome durch F, Cl, Br, I ersetzt sein können, oder ein aromatisches oder heteroaromatisches System mit 1 bis 40 C-Atomen, wobei ein oder mehrere H-Atome durch F, Cl, Br, I ersetzt sein können und die durch einen oder mehrere, nicht-aromatische Reste R substituiert sein kann, wobei mehrere Substituenten R1 und/oder R1/R4, sowohl am selben Ring als auch an den unterschiedlichen Ringen zusammen wiederum ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können; mit der Maßgabe, daß für die Verbindung gemäß Formel (10a) für die beschriebenenR 8 is the same or different with each occurrence of H, F, Cl, Br, I, CN, NO 2 , a straight-chain or branched or cyclic alkyl group with 1 to 40 C atoms, one or more non-adjacent CH 2 groups passing through -R 4 C = CR 4 -, -C≡C-, C = S, C = Se, C = NR 4 , -O-, -S-, -NR 4 - or-CONR 4 - can be replaced and wherein one or more H atoms can be replaced by F, Cl, Br, I, or an aromatic or heteroaromatic system having 1 to 40 C atoms, where one or more H atoms can be replaced by F, Cl, Br, I and which can be substituted by one or more non-aromatic radicals R, where a plurality of substituents R 1 and / or R 1 / R 4 , both on the same ring and on the different rings together, in turn are a further mono- or polycyclic, aliphatic or can span aromatic ring system; with the proviso that for the compound of formula (10a) for the described
Symbole nur folgende Kombinationen zugelassen sind, wobei R8 und R4 beliebig gemäß derSymbols only the following combinations are permitted, whereby R 8 and R 4 are arbitrary according to the
Definition zu wählen sind:Definition to choose:
• wenn R7 eine Alkylgruppe ohne α-H-Atome ist, sind die Symbole Z, E, A1, A2 und A3 beliebig gemäß der Definition zu wählen;• If R 7 is an alkyl group without α-H atoms, the symbols Z, E, A 1 , A 2 and A 3 are to be chosen as desired;
• wenn R7 eine aromatische Gruppe ist und mindestens ein Z für N steht, sind die Symbole E, A1, A2 und A3 beliebig gemäß der Definition zu wählen;• if R 7 is an aromatic group and at least one Z is N, the symbols E, A 1 , A 2 and A 3 are to be chosen as desired;
• wenn R7 eine aromatische Gruppe ist und mindestens ein Z für eine Gruppe CR1 mit R1 ungleich H steht, sind die Symbole E, A1, A2 und A3 beliebig gemäß der Definition zu wählen;• If R 7 is an aromatic group and at least one Z stands for a group CR 1 with R 1 not equal to H, the symbols E, A 1 , A 2 and A 3 are to be chosen as desired;
• wenn R7 eine aromatische Gruppe ist und alle Z für CH stehen und mindestens ein Symbol E für N steht, sind die Symbole A1, A2 und A3 beliebig gemäß der Definition zu wählen;• if R 7 is an aromatic group and all Z stand for CH and at least one symbol E stands for N, the symbols A 1 , A 2 and A 3 are to be chosen as desired;
° wenn R7 eine aromatische Gruppe ist, alle Z für CH stehen und alle E für C stehen, muß mindestens eines der Symbole A1, A2 und/oder A3 für eine Gruppe R8 ungleich Alkyl stehen, während die beiden anderen Gruppen beliebig gemäß der Definition gewählt werden können;° if R 7 is an aromatic group, all Z stand for CH and all E stand for C, at least one of the symbols A 1 , A 2 and / or A 3 for a group R 8 not equal to alkyl stand, while the other two groups can be chosen according to the definition;
• wenn R7 eine aromatische Gruppe ist, alle Z für CH stehen, alle E für C stehen und die beiden Symbole A1 und A2 beliebig gemäß der Definition gewählt sind, wobei mindestens eines der beiden Symbole für eine Gruppe ungleich H steht, dann steht das Symbol A3 für eine Gruppe CO-R7, wobei R7 hier beliebig gemäß der Definition zu wählen ist;• if R 7 is an aromatic group, all Z stand for CH, all E stand for C and the two symbols A 1 and A 2 are chosen according to the definition, whereby at least one of the two symbols stands for a group not equal to H, then the symbol A 3 stands for a group CO-R 7 , where R 7 can be chosen here according to the definition;
• wenn R7 ein größeres aromatisches System, wie beispielsweise Fluoren, Spirobifluoren, Triarylamin, etc., ist, dann sind die Symbole Z, E, A\ A2 und A3 beliebig gemäß der Definition zu wählen.• If R 7 is a larger aromatic system, such as, for example, fluorene, spirobifluorene, triarylamine, etc., the symbols Z, E, A \ A 2 and A 3 can be selected as desired.
Der Übersichtlichkeit halber, sind die zugelassenen Kombinationen der Symbole R7, Z, E, A1, A2 und A3 für Verbindungen gemäß Formel (10a) in Tabelle 1 zusammengefaßt. For the sake of clarity, the permitted combinations of the symbols R 7 , Z, E, A 1 , A 2 and A 3 for compounds of the formula (10a) are summarized in Table 1.
Tabelle 1 : Mögliche Kombinationen der Symbole R7, Z, E, A1, A2 und A3 für Verbindungen gemäß Formel (10a). Table 1: Possible combinations of the symbols R 7 , Z, E, A 1 , A 2 and A 3 for compounds according to formula (10a).
Bevorzugt sind Verbindungen, in denen mindestens eine Gruppe R7 ein größeres aromatisches System, wie beispielsweise Fluoren, Spirobifluoren, Arylamin, etc. beschreibt.Compounds in which at least one group R 7 describes a larger aromatic system, such as, for example, fluorene, spirobifluorene, arylamine, etc., are preferred.
Bevorzugt sind weiterhin Verbindungen, in denen mindestens eine Gruppe R7 für eine Alkylgruppe gemäß der oben genannten Definition ohne α-H-Atome steht.Also preferred are compounds in which at least one group R 7 represents an alkyl group as defined above without α-H atoms.
Bevorzugt sind weiterhin Verbindungen, in denen mindestens eines der Symbole A, B und/oder D für ein aromatisches oder heteroaromatisches System steht.Also preferred are compounds in which at least one of the symbols A, B and / or D represents an aromatic or heteroaromatic system.
Bevorzugt sind weiterhin Verbindungen, die mehr als eine Spirobifluoren-Einheit enthalten.Compounds which contain more than one spirobifluorene unit are also preferred.
Bevorzugt sind weiterhin Verbindungen, in denen mindestens eines der Symbole Z oder E für N steht.Also preferred are compounds in which at least one of the symbols Z or E represents N.
Bevorzugt sind weiterhin Verbindungen, die mehr als eine Keto-Funktion enthalten, also Diketone oder Oligoketone.Compounds which contain more than one keto function, ie diketones or oligoketones, are also preferred.
Die vorliegende Erfindung wird durch die folgenden Beispiele für Matrixmaterialien A näher erläutert, ohne sie darauf einschränken zu wollen. Der Fachmann kann aus der Beschreibung und den aufgeführten Beispielen ohne erfinderisches Zutun weitere Matrixmaterialien herstellen und diese in erfindungsgemäßen Mischungen verwenden.The present invention is explained in more detail by the following examples of matrix materials A, without wishing to restrict it thereto. The person skilled in the art can produce further matrix materials from the description and the examples given without inventive step and use them in mixtures according to the invention.
Beispiel 1 Beispiel 2 Beispiel 3Example 1 Example 2 Example 3
Beispiel 4 Beispiel 5 Beispiel 6 Example 4 Example 5 Example 6
Die oben beschriebenen Matrixmaterialien A - z. B. gemäß den Beispielen 26, 27 und 28 - können beispielsweise auch als Co-Monomere zur Erzeugung entsprechender konjugierter, teilkonjugierter oder auch nicht-konjugierter Polymere oder auch als Kern von Dendrimeren - z. B. gemäß den Beispielen 29, 30 und 31 - Verwendung finden. Die entsprechende Polymerisation erfolgt dabei bevorzugt über die Halogenfunktionalität. So können sie u. a. in lösliche Polyfluorene (z. B. gemäß EP 842208 oder WO 00/22026), Poly-spirobifluorene (z. B. gemäß EP 707020 oder EP 894107), Poly-para-phenylene (z. B. gemäß WO 92/18552), Poly-carbazole oder auch Polythiophene (z. B. gemäß EP 1028136) einpolymerisiert werden.The matrix materials A - z described above. B. according to Examples 26, 27 and 28 - can, for example, as co-monomers to produce corresponding conjugated, partially conjugated or non-conjugated polymers or as the core of dendrimers - z. B. according to Examples 29, 30 and 31 - find use. The corresponding polymerization is preferably carried out via the halogen functionality. So you can a. in soluble polyfluorenes (e.g. according to EP 842208 or WO 00/22026), poly-spirobifluorenes (e.g. according to EP 707020 or EP 894107), poly-para-phenylenes (e.g. according to WO 92/18552) , Poly-carbazoles or polythiophenes (z. B. according to EP 1028136) are polymerized.
Die oben beschriebenen konjugierten, teilkonjugierten oder nicht-konjugierten Polymere oder Dendrimere, die eine oder mehrere Struktureinheiten der Formel (1) bis (15) enthalten, können als Matrixmaterial in organischen Elektrolumineszenzvorrichtungen verwendet werden.The conjugated, partially conjugated or non-conjugated polymers or dendrimers described above, which contain one or more structural units of the formulas (1) to (15), can be used as matrix material in organic electroluminescent devices.
Weiterhin können die erfindungsgemäßen Matrixmaterialien A auch durch die beispielsweise o. g. Reaktionstypen weiter funktionalisiert werden, und so zu erweiterten Matrixmaterialien A umgesetzt werden. Hier sind als Beispiele die Funktionalisierung mit Arylboronsäuren gemäß SUZUKI oder mit Aminen gemäß HARTWIG-BUCHWALD zu nennen.Furthermore, the matrix materials A according to the invention can also be obtained, for example, from the above-mentioned. Reaction types are further functionalized, and so are converted to expanded matrix materials A. Examples include the functionalization with arylboronic acids according to SUZUKI or with amines according to HARTWIG-BUCHWALD.
Um als Funktionsmaterial Verwendung zu finden, werden die erfindungsgemäßen Matrixmaterialien A oder deren Mischungen oder die Matrixmaterialien A enthaltende Polymere oder Dendrimere, gegebenenfalls zusammen mit den Emittern B, nach allgemein bekannten, dem Fachmann geläufigen Methoden, wie Vakuumverdampfung, Verdampfen im Trägergasstrom oder auch aus Lösung durch Spincoaten oder mit verschiedenen Druckverfahren (z. B. Tintenstrahldrucken, Off-Set-Drucken, LITI-Druck, etc.) in Form eines Films auf ein Substrat aufgebracht. Dabei kann die Verwendung von Druckverfahren Vorteile hinsichtlich der Skalierbarkeit der Fertigung, als auch bezüglich der Einstellung von Mischungsverhältnissen in verwendeten Blend-Schichten haben.In order to find use as functional material, the matrix materials A according to the invention or their mixtures or the polymers or dendrimers containing the matrix materials A, optionally together with the emitters B, according to generally known methods known to the person skilled in the art, such as vacuum evaporation, evaporation in a carrier gas stream or from solution applied to a substrate in the form of a film by spin coating or using various printing processes (for example ink-jet printing, off-set printing, LITI printing, etc.). The use of printing processes can have advantages with regard to the scalability of the production and also with regard to the setting of mixing ratios in the blend layers used.
Die oben beschriebenen Matrixmaterialien werden in Kombination mit Phosphoreszenz- Emittern verwendet. Diese Mischungen zeichnen sich dadurch aus, daß sie als Emitter B mindestens eine Verbindung enthalten, die dadurch gekennzeichnet ist, daß sie bei geeigneter Anregung Licht emittiert und außerdem mindestens ein Atom der Ordungszahl größer 20, bevorzugt größer 38 und kleiner 84, besonders bevorzugt größer 56 und kleiner 80 enthält.The matrix materials described above are used in combination with phosphorescence emitters. These mixtures are characterized in that they contain at least one compound as emitter B, which is characterized in that it emits light with suitable excitation and also at least one atom of atomic number greater than 20, preferably greater than 38 and less than 84, particularly preferably greater than 56 and contains less than 80.
Bevorzugt werden als Phosphoreszenz-Emitter in den oben beschriebenen Mischungen Verbindungen, die Molybdän, Wolfram, Rhenium, Ruthenium, Osmium, Rhodium, Iridium, Palladium, Platin, Silber, Gold oder Europium enthalten, verwendet.Compounds which contain molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or europium are preferably used as phosphorescence emitters in the mixtures described above.
Besonders bevorzugte Mischungen enthalten als Emitter B mindestens eine Verbindung der Formel (16) bis (19),Particularly preferred mixtures contain at least one compound of the formula (16) to (19) as emitter B,
Formel (16) Formel (17) Formula (16) Formula (17)
Formel (18) Formel (19) worin für die verwendeten Symbole und Indizes gilt:Formula (18) Formula (19) in which the following applies to the symbols and indices used:
DCy ist bei jedem Auftreten gleich oder verschieden eine cyclische Gruppe, die mindestens ein Donoratom, bevorzugt Stickstoff oder Phosphor, enthält, über welches die cyclische Gruppe an das Metall gebunden ist, und die wiederum ein oder mehrere Substituenten R9 tragen kann; die Gruppen DCy und CCy sind über eine kovalente Bindung miteinander verbunden;DCy is the same or different at each occurrence a cyclic group which contains at least one donor atom, preferably nitrogen or phosphorus, via which the cyclic group is bonded to the metal and which in turn can carry one or more substituents R 9 ; the groups DCy and CCy are connected to one another via a covalent bond;
CCy ist bei jedem Auftreten gleich oder verschieden eine cyclische Gruppe, die ein Kohlenstoffatom enthält, über welches die cyclischen Gruppe an das Metall gebunden ist, und die wiederum ein oder mehrere Substituenten R9 tragen kann;With each occurrence, CCy is, identically or differently, a cyclic group which contains a carbon atom via which the cyclic group is bonded to the metal and which in turn can carry one or more substituents R 9 ;
R9 ist gleich oder verschieden und bei jedem Auftreten H, F, Cl, Br, I, N02, CN, eine geradkettige oder verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 1 bis 40 C-Atomen, wobei ein oder mehrere nicht benachbarte CH2-Gruppen durch -CR4=CR4-, -C=C-, C=0, C=S, C=Se, C=NR4, -O-, -S-, -NR5- oder -CONR6- ersetzt sein können und wobei ein oder mehrere H-Atome durch F ersetzt sein können, oder ein aromatisches oder heteroaromatisches System mit 4 bis 40 C-Atomen, das durch einen oder mehrere, nicht aromatische Reste R9 substituiert sein kann, wobei mehrere Substituenten R9, sowohl am selben Ring als auch an den beiden unterschiedlichen Ringen zusammen wiederum ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können;R 9 is the same or different and with each occurrence H, F, Cl, Br, I, NO 2 , CN, a straight-chain or branched or cyclic alkyl or alkoxy group with 1 to 40 C atoms, one or more non-adjacent CH 2 groups by -CR 4 = CR 4 -, -C = C-, C = 0, C = S, C = Se, C = NR 4 , -O-, -S-, -NR 5 - or -CONR 6 - can be replaced and where one or more H atoms can be replaced by F, or an aromatic or heteroaromatic system with 4 to 40 C atoms, which by one or more, non-aromatic radicals R 9 can be substituted, wherein a plurality of substituents R 9 , both on the same ring and on the two different rings together can in turn span a further mono- or polycyclic, aliphatic or aromatic ring system;
L ist gleich oder verschieden bei jedem Auftreten ein zweizähnig, chelatisierender Ligand, bevorzugt ein Diketonat-Ligand,L is the same or different at each occurrence, a bidentate, chelating ligand, preferably a diketonate ligand,
R4, R5, R6 ist gleich oder verschieden bei jedem Auftreten H oder ein aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen.R 4 , R 5 , R 6 are the same or different with each occurrence H or an aliphatic or aromatic hydrocarbon radical with 1 to 20 C atoms.
Beispiele der oben beschriebenen Emitter können zum Beispiel den Anmeldungen WO 00/70655, WO 01/41512, WO 02/02714, WO 02/15645, EP 1191613, EP 1191612, EP 1191614, WO 03/099959, WO 03/084972, WO 03/040160, WO 02/081488, WO 02/068435 und DE 10238903.9 entnommen werden; diese werden hiermit via Zitat als Bestandteil der Anmeldung betrachtet.Examples of the emitters described above can be found, for example, in applications WO 00/70655, WO 01/41512, WO 02/02714, WO 02/15645, EP 1191613, EP 1191612, EP 1191614, WO 03/099959, WO 03/084972, WO 03/040160, WO 02/081488, WO 02/068435 and DE 10238903.9; these are hereby considered as part of the registration via quotation.
Die erfindungsgemäße Mischung enthält zwischen 1 bis 99 Gew.%, vorzugsweise zwischen 3 und 95 Gew.%, besonders bevorzugt zwischen 5 und 50 Gew.%, insbesondere zwischen 7 und 20 Gew.% Emitter B bezogen auf die Gesamtmischung aus Emitter B und Matrixmaterial A.The mixture according to the invention contains between 1 to 99% by weight, preferably between 3 and 95% by weight, particularly preferably between 5 and 50% by weight, in particular between 7 and 20% by weight, based on the total mixture of emitter B and matrix material A.
Weiterer Gegenstand der vorliegenden Erfindung sind elektronische Bauteile, insbesondere organische Elektrolumineszenzvorrichtungen (OLEDs), organische Solarzellen (O-SCs), organische Feldeffekttransistoren (O-FETs) oder auch organische Laserdioden (O-Laser), enthaltend die erfindungsgemäße Mischung aus Matrixmaterial A und Emissionsmaterial B. Besonders bevorzugt sind organische Elektrolumineszenzvorrichtungen, die eine emittierende Schicht (EML) aufweisen, enthaltend eine erfindungsgemäße Mischung aus mindestens einem Matrixmaterial A und mindestens einem zur Emission befähigten Emissionsmaterial B.The present invention further relates to electronic components, in particular organic electroluminescent devices (OLEDs), organic solar cells (O-SCs), organic field-effect transistors (O-FETs) or organic laser diodes (O-lasers), containing the mixture according to the invention of matrix material A and emission material B. Organic electroluminescent devices which have an emitting layer (EML) containing a mixture according to the invention of at least one matrix material A and at least one emission material B capable of emission are particularly preferred.
Insbesondere bevorzugt werden organische Elektrolumineszenzvorrichtungen, die in der emittierenden Schicht (EML) mindestens eine erfindungsgemäße Mischung enthalten, wobei die Glastemperatur Tg der Reinsubstanz des Matrixmaterials A größer 70 °C ist.Organic electroluminescent devices which contain at least one mixture according to the invention in the emitting layer (EML) are particularly preferred, the glass transition temperature T g of the pure substance of the matrix material A being greater than 70 ° C.
Die organische Elektrolumineszenzvorrichtung kann außer der Kathode, der Anode und der emittierenden Schicht weitere Schichten enthalten, wie z. B. Lochinjektionsschicht, Lochtransportschicht, Lochblockierschicht, Elektronentransportschicht und/oder Elektroneninjektionsschicht. Es sei aber an dieser Stelle darauf hingewiesen, daß nicht notwendigerweise jede dieser Schichten vorhanden sein muß. So hat sich beispielsweise gezeigt, daß eine OLED, die weder eine separate Lochblockierschicht, noch eine separate Elektronentransportschicht enthält, sehr gute Ergebnisse in der Elektrolumineszenz zeigt, insbesondere eine nochmals deutlich niedrigere Spannung und höhere Leistungseffizienz. Dies ist besonders überraschend, da eine entsprechende OLED mit einem Carbazol-haltigen Matrixmaterial ohne Lochblockier- und Elektronentransportschicht nur sehr geringe Leistungseffizienzen zeigt, insbesondere bei hoher Helligkeit (vgl. Adachi ei al., Organic Electronics 2001, 2, 37). Ein weiterer Gegenstand der Erfindung ist also eine organische Elektrolumineszenzvorrichtung, enthaltend eine erfindungsgemäße Mischung, die ohne Verwendung einer Lochblockierschicht direkt an die Elektronentransportschicht grenzt oder die ohne Verwendung einer Lochblockierschicht und einer Elektronentransportschicht direkt an die Elektroneninjektionsschicht oder an die Kathode grenzt.In addition to the cathode, the anode and the emitting layer, the organic electroluminescent device can contain further layers, such as, for. B. hole injection layer, hole transport layer, hole blocking layer, electron transport layer and / or electron injection layer. At this point, however, it should be pointed out that each of these layers does not necessarily have to be present. For example, it has been shown that an OLED that contains neither a separate hole blocking layer nor a separate electron transport layer shows very good results in electroluminescence, in particular a significantly lower voltage and higher power efficiency. This is particularly surprising since a corresponding OLED with a carbazole-containing matrix material without a hole blocking and electron transport layer shows only very low performance efficiencies, in particular with high brightness (cf. Adachi ei al., Organic Electronics 2001, 2, 37). Another object of the invention is therefore an organic electroluminescent device containing a mixture according to the invention which directly adjoins the electron transport layer without using a hole blocking layer or which directly adjoins the electron injection layer or the cathode without using a hole blocking layer and an electron transport layer.
Ebenso hat sich gezeigt, daß eine OLED, die keine separate Lochinjektionsschicht enthält, sondern nur ein oder mehrere Lochtransportschichten (Triarylaminschichten) direkt auf der Anode, ebenfalls sehr gute Ergebnisse in der Elektrolumineszenz zeigt. Dieser Aufbau ist also auch Gegenstand der vorliegenden Erfindung.It has also been shown that an OLED that does not contain a separate hole injection layer, but only one or more hole transport layers (triarylamine layers) directly on the anode, also shows very good results in electroluminescence. This structure is also the subject of the present invention.
Die erfindungsgemäßen organischen Elektrolumineszenzvorrichtungen zeigen höhere Effizienz, deutlich längere Lebensdauer und, insbesondere ohne Verwendung einer Lochblockier- und Elektronentransportschicht, deutlich niedrigere Betriebsspannungen und höhere Leistungseffizienzen als OLEDs gemäß Stand der Technik, die CBP als Matrixmaterial enthalten. Durch Weglassen der Lochblockier- undThe organic electroluminescent devices according to the invention show higher efficiency, significantly longer lifespan and, in particular without the use of a hole blocking and electron transport layer, significantly lower operating voltages and higher power efficiencies than OLEDs according to the prior art, which contain CBP as matrix material. By omitting the hole blocking and
Elektronentransportschichten vereinfacht sich weiterhin der Aufbau der OLED deutlich, was einen erheblichen technologischen Vorteil darstellt.Electron transport layers further simplify the structure of the OLED, which represents a considerable technological advantage.
Die bevorzugten Ausführungsformen der erfindungsgemäßen Mischungen aus Matrixmaterial A und Emissionsmaterial B sind auch für die erfindungsgemäßen elektronischen Bauteile, insbesondere für die organischen Elektrolumineszenzvorrichtungen (OLEDs), organischen Solarzellen (O-SCs), organischen Feldeffekttransistoren (O-FETs) oder auch organischen Laserdioden (O-Laser) gegeben. Zur Vermeidung von unnötigen Wiederholungen wird daher auf erneute Aufzählung an dieser Stelle verzichtet.The preferred embodiments of the mixtures of matrix material A and emission material B according to the invention are also for the electronic components according to the invention, in particular for the organic electroluminescent devices (OLEDs), organic solar cells (O-SCs), organic field effect transistors (O-FETs) or also organic laser diodes (O Laser). To avoid unnecessary repetitions, we do not list them again here.
Im vorliegenden Anmeldetext und auch in den im weiteren folgenden Beispielen wird nur auf organische Leuchtdioden und die entsprechenden Displays abgezielt. Trotz dieser Beschränkung der Beschreibung ist es für den Fachmann ohne weiteres erfinderisches Zutun möglich, entsprechende erfindungsgemäße Schichten aus den erfindungsgemäßen Mischungen herzustellen und anzuwenden, insbesondere in OLED-nahen oder verwandten Anwendungen.In the present application text and also in the following examples, only organic light-emitting diodes and the corresponding displays are targeted. Despite this limitation of the description, it is possible for the person skilled in the art without further inventive step to produce and use corresponding layers according to the invention from the mixtures according to the invention, in particular in OLED-related or related applications.
BeispieleExamples
1. Synthese von IVlatrixmaterialien A:1. Synthesis of IV matrix materials A:
Die nachfolgenden Synthesen wurden - sofern nicht anders angegeben - unter einer Schutzgasatmosphäre in getrockneten Lösungsmitteln durchgeführt. Die Edukte wurden von ALDRICH [Kupfer(l)cyanid, Acetylchlorid, N-Methylpyrrolidinon (NMP)] bezogen. 2-Brom- 9,9'-spiro-bifluoren, 2,7-Dibrom-9,9'-spiro-bifluoren (J. Pei et al., J. Org. Chem. 2002, 67(14), 4924-4936) und 9,9'-Spirobifluoren-2,2'-dicarbonsäurechlorid (V. A. Montero et al., Tetrahedron Lett. 1991, 32(39), 5309-5312) wurden nach Literaturmethoden dargestellt.Unless otherwise stated, the following syntheses were carried out under an inert gas atmosphere in dried solvents. The educts were from ALDRICH [copper (l) cyanide, acetyl chloride, N-methylpyrrolidinone (NMP)]. 2-bromo-9,9 '-spiro-bifluorene, 2,7-dibromo-9,9' -spiro-bifluorene (J. Pei et al., J. Org. Chem. 2002 67 (14), 4924- 4936), and 9,9'-spirobifluorene-2,2 '-dicarbonsäurechlorid (VA Montero et al., Tetrahedron Lett., 1991, 32 (39), 5309-5312) were prepared according to literature methods.
Beispiel 1 : Bis(9,9'-spiro-bifluoren-2-yl)ketonExample 1: Bis (9,9 '-spiro-bifluorene-2-yl) ketone
A: 2-Cyano-9,9'-spiro-bifluorenA: 2-cyano-9,9'-spirobifluorene
Eine Suspension von 158.1 g (0.4 mol) 2-Brom-9,9'-spiro-bifluoren und 89.6 g (1 mol) Kupfer(l)cyanid in 1100 ml NMP wurde 16 h auf 160 °C erhitzt. Nach Abkühlen auf 30 °C wurde mit 1000 ml gesättigter Ammoniak-Lösung versetzt und 30 min. nachgerührt. Der Niederschlag wurde abgesaugt, dreimal mit 300 ml gesättigter Ammoniak-Lösung und dreimal mit 300 ml Wasser gewaschen und trocken gesaugt. Nach Lösen des Feststoffs in 1000 ml Dichlormethan wurde die Lösung über Natriumsulfat getrocknet, über Kieselgel abfiltriert und zur Trockene eingeengt. Das so erhaltene Rohprodukt wurde einmal aus Dioxan : Ethanol (400 ml : 750 ml) umkristallisiert. Nach Trocknen der Kristalle im Vakuum bei 80 °C wurden 81.0 g (237 mmol) entsprechend 59.3 % der Th. erhalten. 1H-NMR (CDCI3): G [ppm] = 7.92 - 7.85 (m, 4 H), 7.66 - 7.65 (m, 1 H), 7.44 - 7.39 (m, 3 H), 7.22 - 7.19 (m, 1 H), 7.15 - 7.11 (m, 2 H), 6.99 - 6.98 (m, 1 H), 6.79 - 6.78 (m, 1 H), 6.69 - 6.67 (m, 2 H).A suspension of 158.1 g (0.4 mol) of 2-bromo-9,9 '-spiro-bifluorene and 89.6 g (1 mol) of copper (l) cyanide in 1100 ml of NMP was heated for 16 h at 160 ° C. After cooling to 30 ° C, 1000 ml of saturated ammonia solution was added and 30 min. stirred. The precipitate was filtered off, washed three times with 300 ml of saturated ammonia solution and three times with 300 ml of water and sucked dry. After the solid had been dissolved in 1000 ml of dichloromethane, the solution was dried over sodium sulfate, filtered through silica gel and evaporated to dryness. The crude product thus obtained was recrystallized once from dioxane: ethanol (400 ml: 750 ml). After drying the crystals in vacuo at 80 ° C., 81.0 g (237 mmol) corresponding to 59.3% of theory were obtained. 1 H-NMR (CDCI 3 ): G [ppm] = 7.92 - 7.85 (m, 4 H), 7.66 - 7.65 (m, 1 H), 7.44 - 7.39 (m, 3 H), 7.22 - 7.19 (m, 1 H), 7.15 - 7.11 (m, 2 H), 6.99 - 6.98 (m, 1 H), 6.79 - 6.78 (m, 1 H), 6.69 - 6.67 (m, 2 H).
B: Bis(9,9'-spiro-bifluoren-2-yl)ketonB: Bis (9,9 '-spiro-bifluorene-2-yl) ketone
Aus einer Lösung von 98.8 g (250 mmol) 2-Brom-9,9'-spiro-bifluoren und 6 ml 1 ,2-Dichlorethan in 1000 ml THF und 7.1 g (290 mmol) Magnesium wurde in der Siedehitze das entsprechende Grignard-Reagens hergestellt. Zu dieser Grignard-Lösung wurde bei 0-5 °C eine Lösung von 85.4 g (250 mmol) 2-Cyano-9,9'-spiro-bifluoren in einer Mischung aus 300 ml THF und 1000 ml Toluol während 15 min. zugetropft. Anschließend wurde die Mischung 6 h unter Rückfluß erhitzt. Nach Abkühlen wurde eine Mischung von 35 ml 10N HCI, 400 ml Wasser und 600 ml Ethanol langsam zugetropft. Nach 16 h Rühren bei Raumtemperatur wurde der Feststoff abgesaugt und dreimal mit 200 ml Ethanol gewaschen. Der Feststoff wurde viermal aus NMP (5 ml/g) umkristallisiert und anschließend im Hochvakuum (T = 385 °C, p = 5 x 10"5 mbar) sublimiert. Die Ausbeute bei einer Reinheit > 99.9 % nach HPLC betrug 52.1 g (79 mmol) entsprechend 31.6 % der Th.. Tg = 165 °C, Tm = 385 °C.From a solution of 98.8 g (250 mmol) 2-bromo-9,9 '-spiro-bifluorene and 6 ml of 1, 2-dichloroethane was dissolved in 1000 ml of THF and 7.1 g (290 mmol) of magnesium in the boiling point, the corresponding Grignard Reagent made. To this Grignard solution, a solution of 85.4 g (250 mmol) was added 2-cyano-9,9 '-spiro-bifluorene in a mixture of 300 ml of THF and 1000 ml of toluene during 15 min at 0-5 ° C. dropwise. The mixture was then heated under reflux for 6 h. After cooling, a mixture of 35 ml of 10N HCl, 400 ml of water and 600 ml of ethanol was slowly added dropwise. After stirring at room temperature for 16 h, the solid was filtered off with suction and washed three times with 200 ml of ethanol. The solid was recrystallized four times from NMP (5 ml / g) and then sublimed in a high vacuum (T = 385 ° C., p = 5 x 10 "5 mbar). The yield with a purity> 99.9% by HPLC was 52.1 g (79 mmol) corresponding to 31.6% of Th. T g = 165 ° C, T m = 385 ° C.
1H-NMR (CDCI3): δ [ppm] = 7.87 - 7.85 (m, 2H), 7.83 - 7.81 (m, 4H), 7.78 - 7.86 (m, 2H), 7.60 - 7.58 (m, 2H), 7.39 - 7.34 (m, 6H), 7.18 - 7.17 (m, 2H), 7.16 - 7.13 (m, 2H), 7.10 - 7.07 (m, 4H), 6.34 - 6.32 (m, 2H), 6.70-6.69 (m, 4H). 1 H-NMR (CDCI 3 ): δ [ppm] = 7.87 - 7.85 (m, 2H), 7.83 - 7.81 (m, 4H), 7.78 - 7.86 (m, 2H), 7.60 - 7.58 (m, 2H), 7.39 - 7.34 (m, 6H), 7.18 - 7.17 (m, 2H), 7.16 - 7.13 (m, 2H), 7.10 - 7.07 (m, 4H), 6.34 - 6.32 (m, 2H), 6.70-6.69 (m , 4H).
Beispiel 2: 2,2'-Bis(benzoyl)-spiro-9,9'-bifluoren Example 2: -bifluoren 2,2'-bis (benzoyl) spiro-9,9 '
Eine Suspension von 160.0 g (1.2 mol) wasserfreiem Aluminiumchlorid in 600 ml 1 ,2-Dichlorethan wurde tropfenweise unter gutem Rühren mit 132 ml (1.1 mol) Benzoylchlorid versetzt. Zu dieser Mischung wurde eine Lösung von 158.2 g (0.5 mol) Spiro- 9,9'-bifluoren in 600 ml 1 ,2-Dichlorethan so zugetropft, daß die Temperatur 25 °C nicht überschritt. Nach vollendeter Zugabe wurde noch 1 h bei Raumtemperatur gerührt. Anschließend goß man die Reaktionsmischung auf ein gut gerührtes Gemisch aus 1000 g Eis und 260 ml 2N Salzsäure. Die organische Phase wurde abgetrennt und zweimal mit 500 ml Wasser gewaschen. Nach Einengen der organischen Phase auf ein Volumen von ca. 200 ml und Zugabe von 500 ml Ethanol wurde der gebildete feinkristalline Niederschlag abgesaugt und mit Ethanol gewaschen. Der Feststoff wurde wiederholt aus Toluol umkristallisiert und anschließend im Hochvakuum (T = 290 °C, p = 5 x 10"5 mbar) sublimiert. Die Ausbeute bei einer Reinheit > 99.9 % nach HPLC betrug 191.5 g (365 mmol) entsprechend 73.0 % der Th.. Tg = 99 °C, Tm = 281 °C.A suspension of 160.0 g (1.2 mol) of anhydrous aluminum chloride in 600 ml of 1,2-dichloroethane was added dropwise with good stirring with 132 ml (1.1 mol) of benzoyl chloride. A solution of 158.2 g (0.5 mol) of spiro 9,9 '-bifluoren in 600 mL of 1 to this mixture, 2-dichloroethane was added dropwise so that the temperature of 25 ° C is not exceeded. After the addition was complete, the mixture was stirred at room temperature for 1 h. The reaction mixture was then poured onto a well-stirred mixture of 1000 g of ice and 260 ml of 2N hydrochloric acid. The organic phase was separated and washed twice with 500 ml of water. After concentrating the organic phase to a volume of approximately 200 ml and adding 500 ml of ethanol, the fine crystalline precipitate formed was suction filtered and washed with ethanol. The solid was repeatedly recrystallized from toluene and then sublimed in a high vacuum (T = 290 ° C., p = 5 x 10 "5 mbar). The yield with a purity> 99.9% by HPLC was 191.5 g (365 mmol), corresponding to 73.0% of the Th .. T g = 99 ° C, T m = 281 ° C.
1H-NMR (CDCI3): δ [ppm] = 7.90 (m, 4H), 7.78 (m, 2H), 7.67 (m, 4H), 7.51 (m, 2H), 7.43-7.37 (m, 6H), 7.31 (m, 2H), 7.20 (m, 2H), 6.78 (m, 2H). Beispiel 3: 2,2 -Bis(2-fluorbenzoyl)-spiro-9,9'-bifluoren 1 H-NMR (CDCI 3 ): δ [ppm] = 7.90 (m, 4H), 7.78 (m, 2H), 7.67 (m, 4H), 7.51 (m, 2H), 7.43-7.37 (m, 6H) , 7.31 (m, 2H), 7.20 (m, 2H), 6.78 (m, 2H). Example 3: 2,2-bis (2-fluorobenzoyl) -spiro-9,9'-bifluorene
Durchführung analog Beispiel 2. Einsatz von 174.4 g (1.1 mol) 2-FluorbenzoyIchlorid. Der Feststoff wurde wiederholt aus Butanon und Toluol umkristallisiert und anschließend im Hochvakuum (T = 250 °C, p = 5 x 10"5 mbar) sublimiert. Die Ausbeute bei einer Reinheit > 99.9 % nach HPLC betrug 192.8 g (344 mmol) entsprechend 68.8 % der Th.. Tg = 96 °C, Tm = 228 °C.Carried out analogously to Example 2. Use of 174.4 g (1.1 mol) of 2-fluorobenzoyl chloride. The solid was repeatedly recrystallized from butanone and toluene and then sublimed in a high vacuum (T = 250 ° C., p = 5 x 10 "5 mbar). The yield with a purity> 99.9% by HPLC was 192.8 g (344 mmol), corresponding to 68.8 % of th .. T g = 96 ° C, T m = 228 ° C.
1H-NMR (CDCI3): δ [ppm] = 7.90 (m, 4H), 7.77 (m, 2H), 7.48 - 7.40 (m, 6H), 7.37 (m, 2H), 7.21-7.18 (m, 4H), 7.09 (m, 2H), 6.77 (m, 2H). 19F-{1H}-NMR (CDCI3): δ [ppm] = -111.7 (s). Beispiel 4: 2,7-Bis(2-Spiro-9,9'-bifluorenyl-carbonyl)-spiro-9,9 -bifluoren 1 H-NMR (CDCI 3 ): δ [ppm] = 7.90 (m, 4H), 7.77 (m, 2H), 7.48 - 7.40 (m, 6H), 7.37 (m, 2H), 7.21-7.18 (m, 4H), 7.09 (m, 2H), 6.77 (m, 2H). 19 F- { 1 H} -NMR (CDCI 3 ): δ [ppm] = -111.7 (s). Example 4: 2,7-Bis (2-spiro-9,9 '-bifluorenyl-carbonyl) -spiro-9,9 -bifluoren
Durchführung analog Beispiel 1 B. Einsatz von 59.3 g (125 mmol) 2,7-Dibrom-spiro-9,9'- bifluoren. Sublimation bei T = 410 °C. Ausbeute 77.1 g (77 mmol), entsprechend 61.6 % d.Procedure analogous to Example 1 B. use of 59.3 g (125 mmol) of 2,7-dibromo-spiro-9,9 '- bifluorene. Sublimation at T = 410 ° C. Yield 77.1 g (77 mmol), corresponding to 61.6% of theory.
Th..Th ..
Tg = 209 °C, Tm = 401 °C.T g = 209 ° C, T m = 401 ° C.
1H-NMR (CDCI3): δ [ppm] = 7.87-7.75 (m, 12H), 7.61-7.56 (m, 4H), 7.40-7.34 (m, 8H), 7.18- 1 H-NMR (CDCI 3 ): δ [ppm] = 7.87-7.75 (m, 12H), 7.61-7.56 (m, 4H), 7.40-7.34 (m, 8H), 7.18-
7.14 (m, 6H), 7.1 1-7.07 (m, 6H), 6.74-6.67 (m, 8H).7.14 (m, 6H), 7.1 1-7.07 (m, 6H), 6.74-6.67 (m, 8H).
Beispiel 5: 2,2'-Bis(2-spiro-9,9'-bifluorenylcarbonyl)-spiro-9,9 -bifluorenExample 5: 2,2 '-bis (2-spiro-9,9' -bifluorenylcarbonyl) -spiro-9,9 -bifluoren
A: 9,9'-Spirobifluoren-2,2'-dicarbonsäureamidA: 9,9 'spirobifluorene-2,2'-dicarboxylic acid amide
220 ml einer Ammoniaklösung (2N in Ethanol) wurden unter gutem Rühren mit 44.1 g (100 mmol) 9,9'-Spirobifluoren-2,2'-dicarbonsäurechIorid, gelöst in 200 ml Dioxan, tropfenweise versetzt. Nach Abklingen der exothermen Reaktion wurde noch 2 h nachgerührt, der ausgefallene Feststoff wurde abfiltriert, einmal mit einer Mischung aus 100 ml Wasser und 100 ml EtOH und einmal mit 200 ml Ethanol gewaschen und im Vakuum getrocknet. Die Ausbeute bei einer Reinheit > 99.0 % nach 1 H-NMR betrug 37.4 g (93 mmol) entsprechend 93.0 % der Th..Were 'spirobifluorene-2,2' -dicarbonsäurechIorid dissolved in 200 ml dioxane, are added dropwise with vigorous stirring to 44.1 g (100 mmol) of 9.9 220 ml of an ammonia solution (2N in ethanol). After the exothermic reaction had subsided, the mixture was stirred for a further 2 h, the precipitated solid was filtered off, washed once with a mixture of 100 ml of water and 100 ml of EtOH and once with 200 ml of ethanol and dried in vacuo. The yield with a purity> 99.0% according to 1 H-NMR was 37.4 g (93 mmol) corresponding to 93.0% of the theory.
1H-NMR (DMSO-d6): δ [ppm] = 8.13-8.10 (m, 4H), 8.01-7.99 (m, 2H), 7.89 (br. s, 2H, NH2), 7.47-7.44 (m, 2H), 7.23 (br. s, 2H, NH2), 7.22-7.18 (m, 2H), 7.14 (s, 2H), 6.66-6.64 (m, 2H). 1 H-NMR (DMSO-d6): δ [ppm] = 8.13-8.10 (m, 4H), 8.01-7.99 (m, 2H), 7.89 (br. S, 2H, NH 2 ), 7.47-7.44 (m , 2H), 7.23 (br. S, 2H, NH 2 ), 7.22-7.18 (m, 2H), 7.14 (s, 2H), 6.66-6.64 (m, 2H).
B: 2,2'-Dicyano-spiro-9,9'-bifluorenB: 2,2'-dicyano-spiro-9,9 ' bifluorene
Eine auf -10 °C gekühlte Suspension von 36.2 g (90 mmol) 9,9'-Spirobifluoren-2,2'- dicarbonsäureamid in 800 ml DMF wurde tropfenweise so mit 52.5 ml (720 mmol) Thionylchlorid versetzt, daß die Temperatur nicht über -5 °C anstieg. Die Reaktionsmischung wurde weitere 3 h bei -10 °C gerührt und dann in ein Gemisch aus 2 kg Eis und 500 ml Wasser gegossen. Das Hydrolysat wurde zweimal mit je 500 ml Dichlormethan extrahiert. Die vereinigten organischen Phasen wurde mit 500 ml Wasser und mit 500 ml ges. Kochsalzlösung gewaschen und über Magnesiumsulfat getrocknet. Das nach Einengen der organischen Phase erhaltene Öl kristallisierte nach Zugabe von 300 ml Ethanol in Form von weißen Nadeln. Die Ausbeute bei einer Reinheit > 99.0 % nach 1H- NMR betrug 29.4 g (80 mmol) entsprechend 89.3 % der Th.. 1H-NMR (CDCI2CDCI2): δ [ppm] = 7.95 (d, 2H), 7.92 (d, 2H), 7.71 (dd, 2H), 7.47 (ddd, 2H), 7.24 (ddd, 2H), 6.96 (d, 2H), 6.75 (d, 2H).A suspension of 36.2 g (90 mmol) of 9,9 ' -spirobifluorene-2,2 ' - dicarboxamide in 800 ml of DMF, cooled to -10 ° C., was added dropwise with 52.5 ml (720 mmol) of thionyl chloride so that the temperature did not exceed -5 ° C rise. The reaction mixture was stirred for a further 3 h at -10 ° C. and then poured into a mixture of 2 kg of ice and 500 ml of water. The hydrolyzate was extracted twice with 500 ml dichloromethane each time. The combined organic phases were saturated with 500 ml of water and with 500 ml. Washed saline and dried over magnesium sulfate. The oil obtained after concentrating the organic phase crystallized in the form of white needles after the addition of 300 ml of ethanol. The yield with a purity> 99.0% according to 1 H-NMR was 29.4 g (80 mmol) corresponding to 89.3% of the theory. 1 H-NMR (CDCI 2 CDCI 2 ): δ [ppm] = 7.95 (d, 2H), 7.92 (d, 2H), 7.71 (dd, 2H), 7.47 (ddd, 2H), 7.24 (ddd, 2H) , 6.96 (d, 2H), 6.75 (d, 2H).
C: 2,2'-Bis(2-spiro-9,9'-bifluorenyl-carbonyl)-spiro-9,9'-bifluorenC: 2,2 '-bis (2-spiro-9,9'-bifluorenyl-carbonyl) -spiro-9,9' -bifluoren
Durchführung analog Beispiel 1 B. Einsatz von 59.3 g (150 mmol) 2-Brom-9,9'-spiro-bifluoren und 27.5 g (75 mmol) 2,2'-Dicyano-spiro-9,9'-bifluoren. Sublimation bei T = 440 °C.Procedure analogous to Example 1 B. use of 59.3 g (150 mmol) of 2-bromo-9,9 '-spiro-bifluorene and 27.5 g (75 mmol) of 2,2'-dicyano-spiro-9,9' -bifluoren. Sublimation at T = 440 ° C.
Ausbeute 41.2 g (41 mmol), entsprechend 54.8 % d. Th.. Yield 41.2 g (41 mmol), corresponding to 54.8% of theory. Th ..
1H-NMR (CDCI3): D [ppm] = 7.89-7.86 (m, 4H), 7.82-7.78 (m, 8H), 7.60 (br. m, 4H), 7.41- 1 H-NMR (CDCI 3 ): D [ppm] = 7.89-7.86 (m, 4H), 7.82-7.78 (m, 8H), 7.60 (br. M, 4H), 7.41-
7.34 (m, 8H), 7.18-7.14 (m, 8H), 7.12-7.08 (4H), 6.75-6.70 (m, 8H).7.34 (m, 8H), 7.18-7.14 (m, 8H), 7.12-7.08 (4H), 6.75-6.70 (m, 8H).
Beispiel 6: Bis(9,9'-spiro-bifluoren-2-yI)-N-tert-butyliminExample 6: Bis (9,9'-spirobifluoren-2-yI) -N-tert-butylimine
Zu einer auf 0 °C gekühlten Suspension von 65.8 g (100 mmol) Bis(9,9'-spiro-bifluoren-2- yl)keton (Darstellung s. Beispiel 1) in einem Gemisch aus 105.0 ml (1 mol) Tert-butylamin und 1500 ml Toluol wurden 200 ml (200 mmol) einer 2M Lösung von Titantetrachlorid in Toluol während 30 min. zugetropft. Anschließend wurde das Kältebad entfernt, die Reaktionsmischung wurde nach Erreichen der Raumtemperatur noch 3 h nachgerührt und dann 60 h unter Rückfluß erhitzt. Nach Erkalten wurden 1500 ml Diethylether zugesetzt und weitere 12 h bei Raumtemperatur gerührt. Die Suspension wurde über Kieselgel filtriert, das Filtrat wurde zur Trockene eingeengt, in 2000 ml Chloroform aufgenommen und erneut über Kieselgel filtriert. Der nach Entfernen des Chloroforms verbliebene Feststoff wurde viermal aus Dioxan / Ethanol (1:2 vv, 10 ml/g) umkristallisiert und anschließend im Hochvakuum (T = 375 °C, p = 5 x 10"5 mbar) sublimiert. Die Ausbeute bei einer Reinheit > 99.9 % nach HPLC betrug 47.8 g (67 mmol) entsprechend 67.0 % der Th.. Tg = 187 °C, Tm = 369 °C.To a cooled to 0 ° C suspension of 65.8 g (100 mmol) of bis (9,9 '-spiro-bifluorene-2-yl) ketone (s illustration. Example 1) (1 mol) in a mixture of 105.0 ml of tert- butylamine and 1500 ml of toluene were 200 ml (200 mmol) of a 2M solution of titanium tetrachloride in toluene for 30 min. dropwise. The cooling bath was then removed, the reaction mixture was stirred for a further 3 h after reaching room temperature and then heated under reflux for 60 h. After cooling, 1500 ml of diethyl ether were added and the mixture was stirred at room temperature for a further 12 h. The suspension was filtered through silica gel, the filtrate was evaporated to dryness, taken up in 2000 ml of chloroform and filtered again through silica gel. The solid remaining after removal of the chloroform was recrystallized four times from dioxane / ethanol (1: 2 vv, 10 ml / g) and then sublimed in a high vacuum (T = 375 ° C., p = 5 x 10 "5 mbar). The yield at a purity> 99.9% according to HPLC was 47.8 g (67 mmol) corresponding to 67.0% of th. T g = 187 ° C, T m = 369 ° C.
1H-NMR (CDCI3): δ [ppm] = 7.89 - 7.72 (m, 7H), 7.62 (d, 1 H), 7.37 - 7.26 (m, 7H), 7.11 - 7.01 (m, 7H), 6.98 (s, 1 H), 6.71 (d, 1 H), 6.64 - 6.59 (m, 5H), 6.44 (s, 1 H), 0.83 (s, 9H). 1 H-NMR (CDCI 3 ): δ [ppm] = 7.89 - 7.72 (m, 7H), 7.62 (d, 1 H), 7.37 - 7.26 (m, 7H), 7.11 - 7.01 (m, 7H), 6.98 (s, 1H), 6.71 (d, 1H), 6.64 - 6.59 (m, 5H), 6.44 (s, 1H), 0.83 (s, 9H).
Beispiel 7: Bis(9,9'-spiro-bifluoren-2-yl)-N-phenyIiminExample 7: Bis (9,9'-spirobifluoren-2-yl) -N-phenylimine
Durchführung analog Beispiel 6. Einsatz von 45.6 ml (500 mmol) Anilin. Sublimation bei T = 370 °C. Ausbeute 53.7 g (73 mmol), entsprechend 73.2 % d. Th.. Tg = 159 °C, Tm = 339 °C. 1 H-NMR (CDCI3): δ [ppm] = 7.82 - 7.74 (m, 6H), 7.70 (d, 1 H), 7.65 (d, 1 H), 7.44 (s, 1 H), 7.38 - 7.29 (m, 7H), 7.12 - 7.02 (m, 7H), 6.83 (t, 2H), 6.72 - 6.64 (m, 5H), 6.52 (d, 2H), 6.38 (s, 1H), 6.30 (d, 2H).Carried out analogously to Example 6. Use of 45.6 ml (500 mmol) of aniline. Sublimation at T = 370 ° C. Yield 53.7 g (73 mmol), corresponding to 73.2% of theory. Th .. T g = 159 ° C, T m = 339 ° C. 1 H-NMR (CDCI 3 ): δ [ppm] = 7.82 - 7.74 (m, 6H), 7.70 (d, 1 H), 7.65 (d, 1 H), 7.44 (s, 1 H), 7.38 - 7.29 (m, 7H), 7.12 - 7.02 (m, 7H), 6.83 (t, 2H), 6.72 - 6.64 (m, 5H), 6.52 (d, 2H), 6.38 (s, 1H), 6.30 (d, 2H ).
2. Herstellung von organischen Elektrolumines∑enz-Vorrichtungen, die er indungsgemäße Mischungen enthalten2. Production of organic electroluminescence devices which contain mixtures according to the invention
Die Herstellung von OLEDs erfolgte nach dem im folgenden skizzierten allgemeinen Verfahren. Dieses mußte natürlich im Einzelfall auf die jeweiligen Gegebenheiten (z. B. Schichtdickenvariation, um optimale Effizienz bzw. Farbe zu erreichen) angepaßt werden.OLEDs were produced using the general process outlined below. In individual cases, of course, this had to be adapted to the respective circumstances (e.g. layer thickness variation in order to achieve optimum efficiency or color).
Erfindungsgemäße Elektrolumineszenzvorrichtungen können beispielsweise wie folgt dargestellt werden:Electroluminescent devices according to the invention can be represented, for example, as follows:
1. ITO beschichtetes Substrat: Als Substrat wird bevorzugt mit ITO beschichtetes Glas verwendet, das einen möglichst niedrigen Gehalt bzw. keine ionischen Verunreinigungen enthält, wie z. B. Flachglas von den Firmen Merck-Balzers oder Akaii. Es können aber auch andere mit ITO beschichtete transparente Substrate, wie z. B. flexible Kunststoffolien oder Laminate verwendet werden. Das ITO muß eine möglichst hohe Leitfähigkeit mit einer hoher Transparenz verbinden. ITO-Schichtdicken zwischen 50 und 200 nm haben sich als besonders geeignet herausgestellt. Die ITO Beschichtung muß möglichst flach, bevorzugt mit einer Rauhigkeit unter 2 nm, sein. Die Substrate werden zunächst mit einer 4%igen Dekonex-Lösung in entionisierten Wasser vorgereinigt. Danach wird das mit ITO beschichtete Substrat entweder mindestens 10 Minuten mit Ozon oder einige Minuten mit Sauerstoffplasma behandelt oder kurze Zeit mit einer Exzimer-Lampe bestrahlt.1. ITO-coated substrate: The substrate used is preferably ITO-coated glass which contains the lowest possible content or no ionic impurities, such as, for example, B. flat glass from Merck-Balzers or Akaii. However, other transparent substrates coated with ITO, such as, for. B. flexible plastic films or laminates can be used. The ITO must combine the highest possible conductivity with high transparency. ITO layer thicknesses between 50 and 200 nm have proven to be particularly suitable. The ITO coating must be as flat as possible, preferably with a roughness below 2 nm. The substrates are first pre-cleaned with a 4% deconex solution in deionized water. The ITO-coated substrate is then either treated with ozone for at least 10 minutes or with oxygen plasma for a few minutes, or irradiated with an excimer lamp for a short time.
2. Lochinjektions-Schicht (Hole injection JLayer = HIL): Als HIL wird entweder ein Polymer oder eine niedermolekulare Substanz verwendet. Besonders geeignet sind die Polymere Polyanilin (PANI) oder Polythiophen (PEDOT) und deren Derivate. Es handelt sich meist um 1 bis 5%ige wäßrige Dispersionen, welche in dünnen Schichten zwischen 20 und 200 nm, bevorzugt zwischen 40 und 150 nm Schichtdicke auf das ITO-Substrat durch Spincoaten, InkJet-Drucken oder andere Beschichtungsverfahren aufgebracht werden. Danach werden die mit PEDOT oder PANI beschichteten ITO-Substrate getrocknet. Für die Trocknung bieten sich mehrere Verfahren an. Herkömmlich werden die Filme im Trockenofen 1 bis 10 Minuten zwischen 110 und 200 °C, bevorzugt zwischen 150 und 180 °C, getrocknet. Aber auch neuere Trocknungsverfahren, wie z. B. Bestrahlung mit IR-(lnfrarot)-Licht, führen zu sehr guten Resultaten, wobei die Bestrahlungsdauer im allgemeinen weniger als einige Sekunden dauert. Als niedermolekulares Material werden bevorzugt dünne Schichten, zwischen 5 und 30 nm, Kupfer-phthalocyanin (CuPc) verwendet. Herkömmlich wird CuPc in Vakuum-Sublimationsanlagen aufgedampft. Alle HIL müssen nicht nur sehr gut Löcher injizieren, sondern auch sehr gut auf ITO und Glas haften; dies ist sowohl für CuPc als auch für PEDOT und PANI der Fall. Eine besonders niedrige Absorption im sichtbaren Bereich und damit eine hohe Transparenz, welches eine weitere notwendige Eigenschaft für die HIL ist, zeigen PEDOT und PANI. Eine oder mehrere Lochtransport-Schichten (Hole Transport Layer = HTL): Bei den meisten OLEDs sind eine oder mehrere HTLs Voraussetzung für eine gute Effizienz und hohe Stabilität. Dabei erreicht man mit einer Kombination von zwei Schichten beispielsweise bestehend aus Triarylaminen wie MTDATA (4,4',4"-Tris(N-3- methylphenyl-N-phenyl-amino)-triphenylamin) oder NaphDATA (4,4',4"-Tris(N-1- naphthyl-N-phenyI-amino)-triphenylamin) als erste HTL und NPB (N,N'-Di(naphth-1-yl)- N,N'-diphenyl-benzidin) oder Spiro-TAD (Tetrakis-2,2',7,7'-diphenylamino-spiro-9,9'- bifluoren) als zweite HTL sehr gute Ergebnisse. MTDATA oder NaphDATA bewirken eine Erhöhung der Effizienz in den meisten OLEDs um ca. 20 - 40 %; wegen der höheren Glastemperatur Tg wird NaphData (Tg = 130 °C) gegenüber MTDATA (Tg = 100 °C) bevorzugt. Als zweite Schicht wird Spiro-TAD (Tg = 130 °C) wegen der höheren Tg gegenüber NPB (Tg = 95 °C) bevorzugt. MTDATA bzw. NaphDATA haben eine Schichtdicke zwischen 5 und 100 nm, bevorzugt zwischen 10 und 60 nm, besonders bevorzugt zwischen 15 und 40 nm. Für dickere Schichten benötigt man etwas höhere Spannungen, um die gleiche Helligkeit zu erreichen; gleichzeitig verringert sich aber auch die Anzahl der Defekte. Spiro-TAD bzw. NPB haben eine Schichtdicke zwischen 5 und 150 nm, bevorzugt zwischen 10 und 100 nm, besonders bevorzugt zwischen 20 und 60 nm. Mit zunehmender Schichtdicke von NPB und den meisten anderen Triarylaminen benötigt man höhere Spannungen für gleiche Helligkeiten. Die Schichtdicke von Spiro- TAD hat jedoch nur einen geringfügigen Einfluß auf die Strom-Spannungs- Elektrolumineszenz-Kennünien, d. h. die benötigte Spannung, um ein bestimmte Helligkeit zu erreichen, hängt nur geringfügig von der Spiro-TAD-Schichtdicke ab. Anstelle von niedermolekularen Triarylaminen können auch hochmolekulare Triarylamine verwendet werden. Es handelt sich meist um 0.1 bis 30%ige Lösungen, welche in dünnen Schichten zwischen 20 und 500 nm, bevorzugt zwischen 40 und 150 nm Schichtdicke auf das ITO-Substrat oder die HIL (z. B. PEDOT- oder PANI-Schicht) durch Spincoaten, InkJet-Drucken oder andere Beschichtungsverfahren aufgebracht werden.2. Hole injection layer (Hole Injection JLayer = HIL): Either a polymer or a low-molecular substance is used as the HIL. The polymers polyaniline (PANI) or polythiophene (PEDOT) and their derivatives are particularly suitable. These are usually 1 to 5% aqueous dispersions which are applied in thin layers between 20 and 200 nm, preferably between 40 and 150 nm, to the ITO substrate by spin coating, inkjet printing or other coating processes. The ITO substrates coated with PEDOT or PANI are then dried. Several methods are available for drying. Conventionally, the films are dried in the drying oven for 1 to 10 minutes between 110 and 200 ° C, preferably between 150 and 180 ° C. But also newer drying processes, such as. B. Irradiation with IR (infrared) light lead to very good results, the irradiation time generally taking less than a few seconds. Thin layers, between 5 and 30 nm, of copper phthalocyanine (CuPc) are preferably used as the low molecular weight material. Traditionally, CuPc is evaporated in vacuum sublimation systems. All HIL not only have to inject holes very well, they also have to adhere very well to ITO and glass; this is the case for CuPc as well as for PEDOT and PANI. PEDOT and PANI show a particularly low absorption in the visible range and thus a high level of transparency, which is another necessary property for the HIL. One or more hole transport layers (HTL): Most OLEDs require one or more HTLs for good efficiency and high stability. A combination of two layers, for example consisting of triarylamines such as MTDATA (4,4 ', 4 "-Tris (N-3-methylphenyl-N-phenylamino) -triphenylamine) or NaphDATA (4,4', 4 "-Tris (N-1-naphthyl-N-phenyl-amino) triphenylamine) as the first HTL and NPB (N, N'-di (naphth-1-yl) - N, N'-diphenyl-benzidine) or spiro -TAD (tetrakis-2,2 ', 7,7'-diphenylamino-spiro-9,9'-bifluorene) as second HTL very good results. MTDATA or NaphDATA increase the efficiency in most OLEDs by approx. 20 - 40%; Because of the higher glass temperature T g , NaphData (T g = 130 ° C) is preferred over MTDATA (T g = 100 ° C). Spiro-TAD (T g = 130 ° C) is preferred as the second layer because of the higher T g compared to NPB (T g = 95 ° C). MTDATA or NaphDATA have a layer thickness between 5 and 100 nm, preferably between 10 and 60 nm, particularly preferably between 15 and 40 nm. For thicker layers, somewhat higher voltages are required in order to achieve the same brightness; at the same time, the number of defects is reduced. Spiro-TAD or NPB have a layer thickness between 5 and 150 nm, preferably between 10 and 100 nm, particularly preferably between 20 and 60 nm. With increasing layer thickness of NPB and most other triarylamines, higher voltages are required for the same brightness. However, the layer thickness of Spiro-TAD has only a minor influence on the current-voltage electroluminescence characteristics, ie the voltage required to achieve a certain brightness depends only slightly on the Spiro-TAD layer thickness. Instead of low molecular weight triarylamines, high molecular weight triarylamines can also be used. These are mostly 0.1 to 30% solutions, which are applied in thin layers between 20 and 500 nm, preferably between 40 and 150 nm, on the ITO substrate or the HIL (e.g. PEDOT or PANI layer) Spincoating, inkjet printing or other coating processes can be applied.
Emissions-Schicht (Emission Layer = EML): Diese Schicht kann teilweise mit den Schichten 3 und/oder 5 zusammenfallen. Sie besteht z. B. aus einem niedermolekularen Matrixmaterial und einem niedermolekularen Gastmaterial, dem phosphoreszierenden Dotanden, wie beispielsweise CBP oder eines der oben beschriebenen Matrixmaterialien A als Matrixmaterial und lr(PPy)3als Dotand. Gute Resultate erreicht man bei einer Konzentration von 5 - 30 % lr(PPy)3 in CBP oder in einem der oben beschriebenen Matrixmaterialien A bei einer EML-Schichtdicke zwischen 10 und 100 nm, bevorzugt zwischen 10 und 50 nm. Anstelle von niedermolekularen lichtemittierenden Verbindungen können auch hochmolekulare lichtemittierende Verbindungen (Polymere) verwendet werden, wobei eine oder auch beide Komponenten des Wirts-Gast-Systems hochmolekular sein können.Emission layer (EML): This layer can partially coincide with layers 3 and / or 5. It consists e.g. B. from a low molecular weight matrix material and a low molecular weight guest material, the phosphorescent dopant, such as CBP or one of the matrix materials A described above as the matrix material and lr (PPy) 3 as the dopant. Good results are achieved at a concentration of 5-30% lr (PPy) 3 in CBP or in one of the matrix materials A described above with an EML layer thickness between 10 and 100 nm, preferably between 10 and 50 nm. Instead of low molecular weight light-emitting compounds High-molecular light-emitting compounds (polymers) can also be used, it being possible for one or both components of the host-guest system to be high-molecular.
Eine Elektronentransport- und Lochblockier-Schicht (Hole Blocking Layer = HBL): Als HBL-Material haben sich besonders BCP (2,9-Dimethyl-4,7-diphenyl-1 ,10-phenanthrolin = Bathocuproin) oder BAIq als wirkungsvoll gezeigt. Anstelle von niedermolekularen HBLs können auch hochmolekulare HBLs verwendet werden. Es hat sich jedoch gezeigt, daß OLEDs, die erfindungsgemäße Mischungen enthalten, auch ohne eine solche Lochblockierschicht weiterhin sehr gute Ergebnisse zeigen. Deshalb wurde nicht in allen im folgenden beschriebenen Beispielen eine Lochblockierschicht verwendet.An electron transport and hole blocking layer (HBL): BCP (2,9-dimethyl-4,7-diphenyl-1, 10-phenanthroline = bathocuproin) or BAIq have proven to be particularly effective as HBL material. Instead of low molecular weight HBLs can also use high molecular weight HBLs. However, it has been shown that OLEDs which contain mixtures according to the invention continue to show very good results even without such a hole blocking layer. Therefore, a hole blocking layer was not used in all of the examples described below.
6. Elektronentransport-Schicht (Electron Transport Layer = ETL): Als ETL-Materialien sind Metall-hydroxychinolate gut geeignet; besonders Aluminium-tris-8-hydroxy-chinolat (Alq3) hat sich als einer der stabilsten Elektronenleiter herausgestellt. Anstelle von niedermolekularen ETLs können auch hochmolekulare ETLs verwendet werden. Es hat sich jedoch gezeigt, daß OLEDs, die erfindungsgemäße Mischungen enthalten, auch ohne eine solche Elektronentransportschicht weiterhin sehr gute Ergebnisse, insbesondere sehr niedrige Spannungen und hohe Leistungseffizienzen, zeigen. Deshalb wurde nicht in allen im folgenden beschriebenen Beispielen eine Elektronentransportschicht verwendet.6. Electron Transport Layer (ETL): Metal hydroxyquinolates are well suited as ETL materials; aluminum tris-8-hydroxy-quinolate (Alq 3 ) in particular has proven to be one of the most stable electron conductors. Instead of low-molecular ETLs, high-molecular ETLs can also be used. However, it has been shown that OLEDs which contain mixtures according to the invention continue to show very good results, in particular very low voltages and high power efficiencies, even without such an electron transport layer. Therefore, an electron transport layer was not used in all of the examples described below.
7. Elektroneninjektions-Schicht (Electron Injection Layer = EIL): Eine dünne Schicht mit einer Schichtdicke zwischen 0.2 und 8 nm, bevorzugt zwischen 0.5 und 5 nm, bestehend aus einem Material mit einer hohen Dielektrizitätskonstanten, insbesondere anorganische Fluoride und Oxide, wie z. B. LiF, Li20, BaF2, MgO, NaF, und weitere Materialien, hat sich als EIL als besonders gut herausgestellt. Speziell in Kombination mit AI führt diese zusätzliche Schicht zu einer deutlichen Verbesserung der Elektroneninjektion und damit zu verbesserten Resultaten bezüglich Lebensdauer, Quanten- und Leistungseffizienz.7. Electron Injection Layer (EIL): A thin layer with a layer thickness between 0.2 and 8 nm, preferably between 0.5 and 5 nm, consisting of a material with a high dielectric constant, in particular inorganic fluorides and oxides, such as, for. B. LiF, Li 2 0, BaF 2 , MgO, NaF, and other materials, has proven to be particularly good as EIL. Especially in combination with AI, this additional layer leads to a significant improvement in electron injection and thus to improved results in terms of service life, quantum and power efficiency.
8. Kathode: Hier werden in der Regel Metalle, Metallkombinationen oder Metallegierungen mit niedriger Austrittsarbeit verwendet, so z. B. Ca, Ba, Cs, K, Na, Mg, AI, In, Mg/Ag.8. Cathode: Usually metals, metal combinations or metal alloys with a low work function are used here. B. Ca, Ba, Cs, K, Na, Mg, AI, In, Mg / Ag.
9. a) Herstellung dünner Schichten (2.-8.) niedermolekularer Verbindungen: Alle niedermolekularen Materialien der HIL, HTL, EML, HBL, ETL, EIL und Kathode werden in Vakuum-Sublimationsanlagen bei einem Druck kleiner 10~5 mbar, bevorzugt kleiner9. a) Production of thin layers (2nd-8th) low molecular weight compounds: All low molecular weight materials of HIL, HTL, EML, HBL, ETL, EIL and cathode are, preferably smaller, in vacuum sublimation systems at a pressure of less than 10 ~ 5 mbar
10"6 mbar, besonders bevorzugt kleiner 10"7 mbar aufgedampft. Die Aufdampfraten können zwischen 0.01 und 10 nm/s, bevorzugt 0.1 und 1 nm/s, betragen. Neuere Verfahren wie die OPVD (Organic Physical Vapour Deposition) oder LITI (Light Induced Thermal Imaging) sind für die Beschichtung niedermolekularer Materialien ebenso geeignet, ebenso weitere Drucktechniken. Für dotierte Schichten hat die OPVD ein großes Potential, weil das Einstellen beliebiger Mischungsverhältnisse besonders gut gelingt. Ebenfalls lassen sich die Konzentrationen der Dotanden kontinuierlich verändern. Somit sind bei der OPVD die Voraussetzung für die Verbesserung der Elektrolumineszenz-Vorrichtung optimal. Wie oben beschrieben, kann die Herstellung der erfindungsgemäßen Vorrichtungen auch durch spezielle Druckverfahren (wie das genannte LITI) durchgeführt werden. Dies hat sowohl Vorteile hinsichtlich der Skalierbarkeit der Fertigung, als auch bezüglich der Einstellung von Mischungsverhältnissen in verwendeten Blend-Schichten. Hierfür ist es aber in aller Regel nötig, entsprechende Schichten (für LITI: Transfer-Schichten) zu präparieren, welche dann erst auf das eigentliche Substrat übertragen werden. b) Herstellung dünner Schichten (2.-6.) hochmolekularer Verbindungen (Polymere): Es handelt sich meist um 0.1 bis 30%ige Lösungen oder Dispersionen, welche in dünnen Schichten zwischen 10 und 500 nm, bevorzugt zwischen 10 und 80 nm Schichtdicke auf das ITO-Substrat oder darunterliegende Schichten durch Spincoaten, InkJet-Drucken, LITI oder andere Beschichtungsverfahren und Drucktechniken aufgebracht werden.10 "6 mbar, particularly preferably less than 10 " 7 mbar evaporated. The evaporation rates can be between 0.01 and 10 nm / s, preferably 0.1 and 1 nm / s. Newer processes such as OPVD (Organic Physical Vapor Deposition) or LITI (Light Induced Thermal Imaging) are also suitable for the coating of low molecular weight materials, as are other printing techniques. The OPVD has great potential for doped layers, because the setting of any mixing ratio is particularly successful. The concentrations of the dopants can also be changed continuously. Thus, the prerequisites for the improvement of the electroluminescent device are optimal with the OPVD. As described above, the devices according to the invention can also be produced by special printing processes (such as the LITI mentioned). This has advantages with regard to the scalability of the production as well as with regard to the setting of mixing ratios in the blend layers used. For this, however, it is generally necessary to prepare appropriate layers (for LITI: transfer layers), which are then only transferred to the actual substrate. b) Production of Thin Layers (2nd-6th) of High Molecular Compounds (Polymers): These are mostly 0.1 to 30% solutions or dispersions which are in thin layers between 10 and 500 nm, preferably between 10 and 80 nm, layer thickness the ITO substrate or underlying layers are applied by spin coating, inkjet printing, LITI or other coating processes and printing techniques.
10. Verkapselung: E ne effektive Einkapselung der organischen Schichten inklusive der EIL und der Kathode st für organische Elektrolumineszenzvorrlchtungen unerläßlich. Wenn das organische D splay auf einem Glassubstrat aufgebaut ist, gibt es mehrere Möglichkeiten. Eine Möglichkeit ist das Verkleben des gesamten Aufbaus mit einer zweiten Glas- oder Metallplatte. Dabei haben sich Zwei-Komponenten- oder UV- härtende-Epoxykleber als besonders geeignet erwiesen. Dabei kann die Elektrolumineszenzvorrichtung vollständig oder aber auch nur am Rand verklebt werden. Wird das organische Display nur am Rand verklebt, kann man die Haltbarkeit zusätzlich verbessern, indem man einen sogenannten Getter hinzufügt. Dieser Getter besteht aus einem sehr hygroskopischen Material, insbesondere Metalloxide, wie z. B. BaO, CaO, usw., welches eindringendes Wasser und Wasserdämpfe bindet. Eine zusätzliche Bindung von Sauerstoff erreicht man mit Gettermaterialien, wie z. B. Ca, Ba, usw.. Bei flexiblen Substraten ist besonders auf eine hohe Diffusionsbarriere gegenüber Wasser und Sauerstoff zu achten. Hier haben sich insbesondere Laminate aus alternierenden dünnen Kunststoff- und anorganischen Schichten (z. B. SiOx oder SiNx) bewährt.10. Encapsulation: An effective encapsulation of the organic layers including the EIL and the cathode is indispensable for organic electroluminescence devices. If the organic display is built on a glass substrate, there are several options. One option is to glue the entire structure to a second glass or metal plate. Two-component or UV-curing epoxy adhesives have proven to be particularly suitable. The electroluminescent device can be glued completely or only at the edge. If the organic display is only glued on the edge, the durability can be further improved by adding a so-called getter. This getter consists of a very hygroscopic material, especially metal oxides, such as. B. BaO, CaO, etc., which binds penetrating water and water vapors. An additional binding of oxygen can be achieved with getter materials such as e.g. B. Ca, Ba, etc. In the case of flexible substrates, special attention must be paid to a high diffusion barrier against water and oxygen. Laminates made of alternating thin plastic and inorganic layers (e.g. SiO x or SiN x ) have proven particularly useful here.
3. Device-Beispiele3. Device examples
Hier werden die Ergebnisse verschiedener OLEDs gegenübergestellt. Der grundlegende Aufbau, wie die verwendeten Materialien, Dotierungsgrad und ihre Schichtdicken, war für die Beispielexperimente zur besseren Vergleichbarkeit identisch. Es wurde ausschließlich das Wirtsmaterial in der Emitterschicht getauscht, und die Beispiele wurden mit unterschiedlichen Triplett-Emittern durchgeführt.The results of different OLEDs are compared here. The basic structure, such as the materials used, degree of doping and their layer thicknesses, was identical for the example experiments for better comparability. Only the host material in the emitter layer was exchanged, and the examples were carried out with different triplet emitters.
Das erste Beispiel beschreibt einen Vergleichsstandard nach dem Stand der Technik, bei dem die Emitterschicht aus dem Wirtsmaterial CBP und dem Gastmaterial lr(PPy)3 (synthetisiert nach WO 02/060910) besteht. Des weiteren wird eine OLED mit einer Emitterschicht bestehend aus dem Wirtsmaterial Bis(9,9'-spiro-bifluoren-2-yl)keton und dem Gastmaterial lr(PPy)3 beschrieben. Das zweite Beispiel beschreibt einen weiteren Vergleich zwischen CBP und Bis(9,9'-spiro-bifluoren-2-yl)keton (s. Beispiel 1 ) mit dem roten Emitter lr(BTP)3 (synthetisiert nach WO 02/060910). Das dritte Beispiel beschreibt zwei OLEDs, das eine Mal ein tiefroter Emitter lr(piq)3 mit Bis(9,9'-spiro-bifluoren-2-yl)keton und das andere Mal ein roter Emitter lr(FMepiq)3 mit Bis(9,9'-spiro-bifluoren-2-yl)keton. Analog dem o. g. allgemeinen Verfahren wurden grün und rot emittierende OLEDs mit folgendem Aufbau erzeugt: PEDOT 60 nm (aus Wasser aufgeschleudert; PEDOT bezogen von H. C.The first example describes a comparison standard according to the prior art, in which the emitter layer consists of the host material CBP and the guest material lr (PPy) 3 (synthesized according to WO 02/060910). Furthermore, an OLED with an emitter layer consisting of the host material bis (9,9 ' -spiro-bifluoren-2-yl) ketone and the guest material lr (PPy) 3 is described. The second example describes a further comparison between CBP and bis (9,9 '-spiro-bifluorene-2-yl) ketone (s. Example 1) with the red emitter Ir (BTP) 3 (synthesized according to WO 02/060910). The third example describes two OLEDs, one with a deep red emitter lr (piq) 3 with bis (9,9 ' -spiro-bifluoren-2-yl) ketone and the other one with a red emitter lr (FMepiq) 3 with bis ( 9,9'-spiro-bifluorene-2-yl ketone). Analogous to the above general procedure, green and red emitting OLEDs with the following structure were produced: PEDOT 60 nm (spun on from water; PEDOT obtained from HC
Starck; Poly-[3,4-ethylendioxy-2,5-thiophen]) NaphDATA 20 nm (aufgedampft; NaphDATA bezogen von SynTec; 4,4',4"-Tris(N-1- naphthyl-N-phenyl-amino)-triphenylamin S-TAD 20 nm (aufgedampft; S-TAD hergestellt nach W099/12888; 2,2',7,7'- Tetrakis(diphenylamino)-spirobifluoren)Starck; Poly- [3,4-ethylenedioxy-2,5-thiophene]) NaphDATA 20 nm (evaporated; NaphDATA purchased from SynTec; 4,4 ', 4 "-Tris (N-1-naphthyl-N-phenylamino)) - triphenylamine S-TAD 20 nm (evaporated; S-TAD manufactured according to W099 / 12888; 2,2 ', 7,7'-tetrakis (diphenylamino) -spirobifluorene)
Emitter-Schicht: CBP 20 nm (aufgedampft; CBP bezogen von ALDRICH und weiter aufgereinigt, schließlich noch zweimal sublimiert; 4,4'-Bis-(N- carbazolyl)biphenyl) (Vergleichsstandard)Emitter layer: CBP 20 nm (evaporated; CBP obtained from ALDRICH and further purified, finally sublimed twice; 4,4'-bis (N-carbazolyl) biphenyl) (comparison standard)
ODER: Bis(9,9'-spiro-bifluoren-2-yl)keton 20 nm (aufgedampft, synthetisiert und aufgereinigt nach Beispiel 1 ), jeweils dotiert mit 10 % Triplett- Emitter lr(PPy)3 (aufgedampft)OR: Bis (9,9 '-spiro-bifluorene-2-yl) ketone 20 nm (evaporated synthesized and purified according to Example 1), in each case doped with 10% of triplet emitter Ir (PPy) 3 (evaporated)
ODER: lr(BTP)3 (aufgedampft)OR: lr (BTP) 3 (evaporated)
ODER: lr(piq)3 (aufgedampft)OR: lr (piq) 3 (evaporated)
ODER: lr(FMepiq)3 (aufgedampft)OR: lr (FMepiq) 3 (evaporated)
Bathocuproin (BCP) 10 nm (aufgedampft; BCP bezogen von ABCR, verwendet wie erhalten;Bathocuproin (BCP) 10 nm (evaporated; BCP purchased from ABCR, used as received;
2,9-Dimethyl-4,7-diphenyl-1 ,10-phenanthrolin); nicht in allen Beispielen verwendet AIQ3 10 nm (aufgedampft; AIQ3 bezogen von SynTec;2,9-dimethyl-4,7-diphenyl-1, 10-phenanthroline); not used in all examples AIQ 3 10 nm (evaporated; AIQ 3 purchased from SynTec;
Tris(chinolinolato)aluminium(III)), nicht in allen Beispielen verwendet Ba-Al 3 nm Ba, darauf 150 nm AI als KathodeTris (quinolinolato) aluminum (III)), not used in all examples Ba-Al 3 nm Ba, then 150 nm Al as cathode
Diese noch nicht optimierten OLEDs wurden standardmäßig charakterisiert; hierfür wurden die Elektrolumineszenzspektren, die Effizienz (gemessen in Cd/A) in Abhängigkeit von der Helligkeit, berechnet aus Strom-Spannungs-Helligkeit-Kennlinien (lUL-Kennlinien), und die Lebensdauer bestimmt.These OLEDs, which have not yet been optimized, were characterized as standard; For this purpose, the electroluminescence spectra, the efficiency (measured in Cd / A) as a function of the brightness, calculated from current-voltage-brightness characteristics (IUL characteristics), and the service life were determined.
Zur Übersicht sind im folgenden die verwendeten Triplett-Emitter und die verwendeten Wirtsmaterialien abgebildet: The triplet emitters and host materials used are shown below for an overview:
lr(FMepiq)3 lr (FMepiq) 3
Bis(9,9'-spirobifluoren-2-yl)keton Matrixmaterial M2 Matrixmaterial M1Bis (9,9'-spirobifluoren-2-yl) ketone matrix material M2 matrix material M1
Matrixmaterial M3 Matrixmaterial 4Matrix material M3 Matrix material 4
CBP (Vergleichsmatrixmaterial)CBP (comparison matrix material)
Anwendungsbeispiel 1 : lr(PPy)3 Elektrolumineszenzspektren:Application example 1: lr (PPy) 3 electroluminescence spectra:
Die OLEDs, sowohl der Vergleichsstandard OLED mit CBP, als auch die OLED mit Bis(9,9' spiro-bifluoren-2-yI)keton als Wirtsmaterial zeigen eine grüne Emission, resultierend aus dem Dotanden lr(PPy)3.The OLEDs, both the comparison standard OLED with CBP, and the OLED with bis (9,9 ' spiro-bifluoren-2-yI) ketone as host material show a green emission, resulting from the dopant lr (PPy) 3 .
Effizienz als Funktion der Helligkeit:Efficiency as a function of brightness:
Für OLEDs hergestellt mit dem Wirtsmaterial CBP erhält man typischerweise eine maximale Effizienz von etwa 25 cd/A und für die Referenzleuchtdichte von 100 cd/m2 werden 4.8 V benötigt. Im Gegensatz dazu zeigen OLEDs hergestellt mit dem Wirtsmaterial Bis(9,9'-spiro- bifluoren-2-yl)keton eine maximale Effizienz von über 30 cd/A, wobei die benötigte Spannung für die Referenzleuchtdichte von 100 cd/m2 sogar auf 4.6 V sinkt. Ganz besonders hoch ist die Effizienz, wenn weder eine Lochblockierschicht (HBL) noch eine Elektronentransportschicht (ETL) verwendet wird und die dotierte Emissionsschicht (EML) bis an die Kathode reicht. Eine maximale Effizienz von über 35 cd/A wird erreicht, wobei die benötigte Spannung für die Referenzleuchtdichte von 100 cd/m2 sogar unter 3 V sinkt. Besonders die Leistungseffizienz erhöht sich mit Verwendung von Bis(9,9'-spiro-bifluoren-2- yl)keton als Wirtsmaterial (A) gegenüber CBP (♦) als Wirtsmaterial um 20% bis 100% (Fig. 1). Ganz besonders hohe Leistungseffizienzen bis 50 Im/W (o) erhält man, wenn weder eine Lochblockierschicht (HBL) noch eine Elektronentransportschicht (ETL) verwendet wird und die Dotierung der Emissionsschicht (EML) bis an die Kathode reicht.For OLEDs produced with the host material CBP, a maximum efficiency of about 25 cd / A is typically obtained and 4.8 V are required for the reference luminance of 100 cd / m 2 . In contrast, OLEDs produced with the host material bis (9,9 '-spiro- bifluoren-2-yl) ketone a maximum efficiency of about 30 cd / A, where the required voltage for the reference luminance of 100 cd / m 2 even on 4.6 V drops. Efficiency is particularly high if neither a hole blocking layer (HBL) nor one Electron transport layer (ETL) is used and the doped emission layer (EML) extends to the cathode. A maximum efficiency of over 35 cd / A is achieved, and the voltage required for the reference luminance of 100 cd / m 2 even drops below 3 V. In particular, the power efficiency increases with use of bis (9,9 '-spiro-bifluorene-2-yl) ketone as the host material (A) against CBP (♦) as the host material by 20% to 100% (Fig. 1). Very high power efficiencies up to 50 Im / W (o) are obtained if neither a hole blocking layer (HBL) nor an electron transport layer (ETL) is used and the doping of the emission layer (EML) extends to the cathode.
Lebensdauervergleich:Lifetime comparison:
Die beiden Lebensdauerkurven (Fig. 2) mit CBP und mit Bis(9,9'-spiro-bifluoren-2-yl)keton als Wirtsmaterialien (beide hier verwendet mit Lochblockier- und Elektronentransportschicht) wurden zur besseren Vergleichbarkeit in derselben Figur dargestellt. Die Figur zeigt den Verlauf der Leuchtdichte, gemessen in cd/m2, mit der Zeit. Als Lebensdauer bezeichnet man üblicherweise die Zeit, nach der nur noch 50 % der Anfangsleuchtdichte erreicht werden.The two life curves (Fig. 2) with CBP and with bis (9,9 ' -spiro-bifluoren-2-yl) ketone as host materials (both used here with hole blocking and electron transport layers) were shown in the same figure for better comparability. The figure shows the course of the luminance, measured in cd / m 2 , over time. The lifespan is usually the time after which only 50% of the initial luminance is reached.
Man erhält mit CBP als Wirtsmaterial eine Lebensdauer von ca. 150 Stunden bei einer Anfangshelligkeit von 1400 cd/m2, was einer beschleunigten Messung entspricht, da die Anfangshelligkeit deutlich über der Helligkeit liegt, die man für typische Aktiv-Matrix- angesteuerte Display-Anwendungen benötigt (250 cd/m2). Für Bis(9,9'-spiro-bifluoren-2- yl)keton erhält man bei derselben Anfangshelligkeit eine Lebensdauer von ca. 2000 Stunden, was einer Steigerung der Lebensdauer um etwa 1300 % entspricht; dies gilt auch, wenn weder eine Lochblockierschicht (HBL) noch eine Elektronentransportschicht (ETL) verwendet wird.With CBP as the host material, a lifespan of approximately 150 hours is obtained with an initial brightness of 1400 cd / m 2 , which corresponds to an accelerated measurement, since the initial brightness is significantly higher than the brightness required for typical active matrix-controlled display applications required (250 cd / m 2 ). For bis (9,9 ' -spiro-bifluoren-2-yl) ketone, a lifespan of approximately 2000 hours is obtained with the same initial brightness, which corresponds to a lifespan increase of approximately 1300%; this also applies if neither a hole blocking layer (HBL) nor an electron transport layer (ETL) is used.
Aus diesen gemessenen Lebensdauern lassen sich nun Lebensdauern für eine Anfangshelligkeit von 250 cd/m2 berechnen. Im Falle des Wirtsmaterial CBP erhält man lediglich eine Lebensdauer von 4700 Stunden, was deutlich unter den geforderten 10000 Stunden für eine Display-Anwendungen liegt. Im Gegensatz dazu erhält man mit Bis(9,9'- spiro-bifluoren-2-yl)keton eine Lebensdauer von über 60000 Stunden, was die Mindestanforderungen deutlich übertrifft.From these measured lifetimes, lifetimes can now be calculated for an initial brightness of 250 cd / m 2 . In the case of the host material CBP, the service life is only 4700 hours, which is significantly less than the 10,000 hours required for display applications. In contrast, bis (9,9 ' - spiro-bifluoren-2-yl) ketone gives a lifespan of over 60,000 hours, which clearly exceeds the minimum requirements.
Anwendungsbeispiel 2: lr(BTP)3 Application example 2: lr (BTP) 3
Analoge Experimente wurden mit einem roten Triplettemitter lr(BTP)3 durchgeführt. Elektrolumineszenzspektren:Analogous experiments were carried out with a red triplet emitter lr (BTP) 3 . electroluminescence:
Die OLEDs, sowohl der Vergleichsstandard OLED mit CBP, als auch die OLED mit Bis(9,9'- spiro-bifluoren-2-yl)keton als Wirtsmaterial, zeigen eine rote Emission, resultierend aus dem Dotanden lr(BTP)3. Die beiden Spektren sind in Abb. 3 dargestellt.The OLEDs, both the reference standard OLED with CBP and the OLED with bis (9,9 ' - spiro-bifluoren-2-yl) ketone as the host material, show a red emission resulting from the dopant lr (BTP) 3 . The two spectra are shown in Fig. 3.
Effizienz als Funktion der Helligkeit:Efficiency as a function of brightness:
Für OLEDs hergestellt mit dem Wirtsmaterial CBP erhält man typischerweise eine maximale Effizienz von etwa 8 cd/A und für die Referenzleuchtdichte von 100 cd/m2 werden 6.2 V benötigt. Im Gegensatz dazu zeigen OLEDs hergestellt mit dem Wirtsmaterial Bis(9,9'-spiro- bifluoren-2-yl)keton eine maximale Effizienz von über 1 1 cd/A, wobei die benötigte Spannung für die Referenzleuchtdichte von 100 cd/m2 sogar auf 5.2 V sinkt (Abb. 4).A maximum efficiency of about 8 cd / A is typically obtained for OLEDs produced with the host material CBP and 6.2 V are required for the reference luminance of 100 cd / m 2 . In contrast, OLEDs made with the host material bis (9,9 ' -spiro- bifluoren-2-yl) ketone a maximum efficiency of over 1 1 cd / A, whereby the voltage required for the reference luminance of 100 cd / m 2 even drops to 5.2 V (Fig. 4).
Lebensdauervergleich:Lifetime comparison:
Die beiden Lebensdauerkurven (Abb. 5) wurden zur besseren Vergleichbarkeit in derselben Figur dargestellt. Die Figur zeigt den Verlauf der Leuchtdichte, gemessen in cd/m2, mit der Zeit.The two life curves (Fig. 5) were shown in the same figure for better comparability. The figure shows the course of the luminance, measured in cd / m 2 , over time.
Man erhält mit CBP als Wirtsmaterial eine Lebensdauer von ca. 53 Stunden bei einerWith CBP as the host material, a lifetime of approx. 53 hours is obtained
Anfangshelligke ιit von knapp 1300 cd/m2, was auch in diesem Beispiel einer beschleunigten Messung entspr ϊicht. Mit Bis(9,9'-spiro-bifluoren-2-yl)keton erhält man bei derselben Anfangshelligke sit eine Lebensdauer von ca. 275 Stunden, was einer Steigerung der Lebensdauer um etwa 500 % entspricht.Initial brightness of just under 1300 cd / m 2 , which also corresponds to an accelerated measurement in this example. Bis (9,9 ' -spiro-bifluoren-2-yl) ketone gives a life of approx. 275 hours with the same initial brightness, which corresponds to an increase in life of around 500%.
Aus diesen gemessenen Lebensdauern lassen sich nun Lebensdauern für eine Anfangshelligkeit von 250 cd/m2 berechnen. Im Falle des Wirtsmaterial CBP erhält man lediglich eine Lebensdauer von 1600 Stunden, was deutlich unter den geforderten 10000 Stunden für Display-Anwendungen liegt. Im Gegensatz dazu erhält man mit Bis(9,9'- spiro-bifluoren-2-yl)keton eine Lebensdauer von über 8200 Stunden, was nahe an die Mindestanforderung herankommt.From these measured lifetimes, lifetimes can now be calculated for an initial brightness of 250 cd / m 2 . In the case of the host material CBP, the lifespan is only 1600 hours, which is significantly less than the 10,000 hours required for display applications. In contrast, bis (9,9'-spiro-bifluoren-2-yl) ketone gives a lifespan of over 8,200 hours, which is close to the minimum requirement.
Anwendungsbeispiel 3: lr(piq)3 und lr(FMepiq)3 Application example 3: lr (piq) 3 and lr (FMepiq) 3
Ebenfalls konnten Experimente mit einem tiefroten Triplettemitter lr(piq)3 mit Bis(9,9'-spiro- bifluoren-2-yl)keton und einem roten Triplettemitter lr(FMepiq)3 mit Bis(9,9'-spiro-bifluoren-2- yl)keton durchgeführt werden.Also, experiments were with a deep red triplet emitter Ir (piq) 3 with bis (9,9'-spiro-bifluorene-2-yl) ketone and a red triplet emitter Ir (FMepiq) 3 with bis (9,9 '-spiro-bifluoren- 2-yl) ketone can be carried out.
Elektrolumineszenzspektren:electroluminescence:
Die OLEDs zeigen eine tiefrote Emission und eine rote Emission, resultierend aus den Dotanden lr(piq)3 (A) und lr(FMepiq)3 (♦). Die beiden Spektren sind in Figur 6 dargestellt. Aus den Spektren ergeben sich für lr(piq)3 in Bis(9,9'-spiro-bifluoren-2-yl)keton (A) die CIE Farbkoordinaten x = 0.69; y = 0.31 und für lr(FMepiq)3 in Bis(9,9'-spiro-bifluoren-2-yl)keton (♦) x = 0.66; y = 0.34.The OLEDs show a deep red emission and a red emission, resulting from the dopants lr (piq) 3 (A) and lr (FMepiq) 3 (♦). The two spectra are shown in FIG. 6. Are derived from the spectra of Ir (piq) 3, in bis (9,9 '-spiro-bifluorene-2-yl) ketone (A), the CIE color coordinates x = 0.69; y = 0.31 and for lr (FMepiq) 3 in bis (9,9 ' -spiro-bifluoren-2-yl) ketone (♦) x = 0.66; y = 0.34.
Effizienz als Funktion der Helligkeit:Efficiency as a function of brightness:
Sowohl lr(piq)3 (A) in Bis(9,9'-spiro-bifluoren-2-yl)keton als auch lr(FMepiq)3 (*) in Bis(9,9'- spiro-bifluoren-2-yl)keton zeigen eine sehr hohe Effizienz von max. 8 cd/A (für lr(piq)3 ( A) bei CIE Farbkoordinaten x = 0.69, y = 0.31) und 14 cd/A (für lr(FMepiq)3 (*) bei CIE Farbkoordinaten x = 0.66, y = 0.34) (Abb. 7). Die benötigte Spannung für 100 cd/m2 sank in beiden Fällen unter 6 V.Both Ir (piq) 3 (A) in bis (9,9 '-spiro-bifluorene-2-yl) ketone as well as Ir (FMepiq) 3 (*) in bis (9,9' - spiro-bifluorene-2 yl) ketones show a very high efficiency of max. 8 cd / A (for lr (piq) 3 (A) with CIE color coordinates x = 0.69, y = 0.31) and 14 cd / A (for lr (FMepiq) 3 (*) with CIE color coordinates x = 0.66, y = 0.34 ) (Fig. 7). The required voltage for 100 cd / m 2 dropped below 6 V in both cases.
Lebensdauer:Lifespan:
In Figur 8 ist die Lebensdauer von Jr(piq)3 mit Bis(9,9'-spiro-bifluoren-2-yl)keton bei konstantem Strom von 10 mA/cm2 bei einer Anfanshelligkeit von ca. 800 cd/m2 und 5 mA cm2 bei einer Anfangshelligkeit von ca. 400 cd/m2 dargestellt. Dabei erhält man einen Abfall der Helligkeit nach 1680 h bei 800 cd/m2 Anfangshelligkeit von ca. 10% und nach 1680 h bei 400 cd/m2 Anfangshelligkeit von ca. 5%. Eine Extrapolation ergibt eine Lebensdauer von ca. 5000 h bei 800 cd/m2 Anfangshelligkeit und 20000 h bei 400 cd/m2 Anfangshelligkeit. Für eine Anfangshelligkeit 200 cd/m2 errechnet sich eine Lebensdauer von 80000 h. lr(FMepiq)3 in Bis(9,9'-spiro-bifluoren-2-yl)keton zeigt eine vergleichbare Lebensdauer.FIG. 8 shows the lifespan of Jr (piq) 3 with bis (9,9 ' -spiro-bifluoren-2-yl) ketone at a constant current of 10 mA / cm 2 with an initial brightness of approx. 800 cd / m 2 and 5 mA cm 2 with an initial brightness of approx. 400 cd / m 2 . This results in a drop in brightness after 1680 h at 800 cd / m 2 initial brightness of approximately 10% and after 1680 h at 400 cd / m 2 initial brightness of approximately 5%. An extrapolation gives a lifespan of approx. 5000 h at an initial brightness of 800 cd / m 2 and 20,000 h at an initial brightness of 400 cd / m 2 . For an initial brightness of 200 cd / m 2 , a lifespan of 80000 h is calculated. lr (FMepiq) 3 in bis (9,9 ' -spiro-bifluoren-2-yl) ketone shows a comparable lifespan.
Weitere Device-Beispiele sind in der folgenden Tabelle 2 zusammengefaßt, wobei die Emission jeweils aus dem entsprechenden Emitter stammt. Further device examples are summarized in the following Table 2, the emission originating in each case from the corresponding emitter.
Tabelle 2:Table 2:

Claims

Patentansprüche:claims:
1. Mischungen enthaltend1. Containing mixtures
- mindestens ein Matrixmaterial A, welches eine Struktureinheit der Form C=Q enthält, bei dem Q mindestens ein nicht-bindendes Elektronenpaar aufweist und für das Element O, S, Se oder N steht, undat least one matrix material A which contains a structural unit of the form C = Q, in which Q has at least one non-binding electron pair and represents the element O, S, Se or N, and
- mindestens ein zur Emission befähigtes Emissionsmaterial B, welches eine Verbindung ist, die bei geeigneter Anregung Licht emittiert und mindestens ein Element der Ordungszahl größer 20 enthält.- At least one emission material B capable of emission, which is a compound that emits light with suitable excitation and contains at least one element with an atomic number greater than 20.
2. Mischung gemäß Anspruch 1 , dadurch gekennzeichnet, daß das Matrixmaterial A glasartige Schichten bilden kann.2. Mixture according to claim 1, characterized in that the matrix material A can form glass-like layers.
3. Mischung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Matrixmaterial A eine Glastemperatur Tg (gemessen als Reinsubstanz) größer 70 °C aufweist.3. Mixture according to claim 1 or 2, characterized in that the matrix material A has a glass transition temperature T g (measured as pure substance) greater than 70 ° C.
4. Mischung gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Matrixmaterial A mindestens eine Verbindung gemäß Formel (1 ), Formel (2) und/oder Formel (3) eingesetzt wird,4. Mixture according to one or more of claims 1 to 3, characterized in that at least one compound of the formula (1), formula (2) and / or formula (3) is used as matrix material A,
Formel (1 ) Formel (2) Formel (3) wobei die Symbole und Indizes folgende Bedeutung haben:Formula (1) Formula (2) Formula (3) where the symbols and indices have the following meaning:
X ist bei jedem Auftreten gleich oder verschieden O, S oder Se;X is the same or different at each occurrence O, S or Se;
Y ist bei jedem Auftreten N;Y is N on every occurrence;
R1, R2, R3 ist gleich oder verschieden bei jedem Auftreten H, CN, eine geradkettige, verzweigte oder cyclische Alkyl-, Alkoxy- oder Alkylaminogruppe mit 1 bis 40 C-Atomen, wobei ein oder mehrere nicht benachbarte CH2-Gruppen durch -R4C=CR4-, -C≡C-, C=0, C=S, C=Se, C=NR4, -O-, -S-, -NR5- oder -CONR6- ersetzt sein können und wobei ein oder mehrere H-Atome durch F, Cl, Br, I ersetzt sein können, oder ein aromatisches oder heteroaromatisches System mit 1 bis 40 C-Atomen, wobei ein oder mehrere H-Atome durch F, Cl, Br, I ersetzt sein können und das durch einen oder mehrere, nicht aromatische Reste R1 substituiert sein kann, wobei mehrere Substituenten R1 und/oder R1, R2 sowohl am selben Ring als auch an den beiden unterschiedlichen Ringen zusammen wiederum ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können; mit der Maßgabe, daß R1=R2=R3 ungleich Wasserstoff ist; R4, R5, R6 sind gleich oder verschieden bei jedem Auftreten H oder ein aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen.R 1 , R 2 , R 3 is the same or different at each occurrence H, CN, a straight-chain, branched or cyclic alkyl, alkoxy or alkylamino group with 1 to 40 C atoms, one or more non-adjacent CH 2 groups by -R 4 C = CR 4 -, -C≡C-, C = 0, C = S, C = Se, C = NR 4 , -O-, -S-, -NR 5 - or -CONR 6 - can be replaced and where one or more H atoms can be replaced by F, Cl, Br, I, or an aromatic or heteroaromatic system with 1 to 40 C atoms, where one or more H atoms by F, Cl, Br , I can be replaced and which can be substituted by one or more, non-aromatic radicals R 1 , wherein several substituents R 1 and / or R 1 , R 2 both on the same ring and on the two different rings together in turn a further mono - Or can span polycyclic, aliphatic or aromatic ring system; with the proviso that R 1 = R 2 = R 3 is not hydrogen; R 4 , R 5 , R 6 are the same or different at each occurrence H or an aliphatic or aromatic hydrocarbon radical having 1 to 20 carbon atoms.
Mischung gemäß einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als Matrixmaterial A mindestens eine Verbindung gemäß Formel (4) bis (9) eingesetzt wird,Mixture according to one or more of claims 1 to 4, characterized in that at least one compound of the formula (4) to (9) is used as matrix material A,
Formel (4) Formel (6) Formel (8)Formula (4) Formula (6) Formula (8)
Formel (5) Formel (7) Formel (9) wobei die Symbole X, Y, R1, R2, R3, R4, R5 und R6 die unter Anspruch 4 genannten Bedeutungen haben und Z gleich oder verschieden bei jedem Auftreten CR1 oder N ist.Formula (5) Formula (7) Formula (9) wherein the symbols X, Y, R 1 , R 2 , R 3 , R 4 , R 5 and R 6 have the meanings given in claim 4 and Z is the same or different in each Occurrence is CR 1 or N.
Mischung gemäß Anspruch 4 oder 5, dadurch gekennzeichnet, daß als Matrixmaterial A mindestens eine Verbindung gemäß Formel (1) bis (9) eingesetzt wird, bei der für die verwendeten Symbole gilt:Mixture according to claim 4 or 5, characterized in that at least one compound of the formula (1) to (9) is used as matrix material A, in which the following applies to the symbols used:
X ist gleich oder verschieden bei jedem Auftreten O oder S steht, Y ist bei jedem Auftreten N;X is the same or different in each occurrence O or S, Y is N in each occurrence;
Z ist bei jedem Auftreten CR1; R\ R2, R3 ist gleich oder verschieden bei jedem Auftreten H, eine geradkettige, verzweigte oder cyclische Alkylgruppe mit 1 bis 40 C-Atomen ohne H- Atome in α-Position zur Keto- bzw. Iminfunktion, wobei ein oder mehrere nicht benachbarte CH2-Gruppen durch -R4C=CR4-, -C≡C-, C=0, C=S, C=Se, C=NR4, -O-, -S-, -NR5- oder -CONR6- ersetzt sein können und wobei ein oder mehrere H-Atome durch F, Cl, Br, I ersetzt sein können, oder ein ein aromatisches oder heteroaromatisches System mit 1 bis 40 C-Atomen, wobei ein oder mehrere H-Atome durch F, Cl, Br, I ersetzt sein können und das durch einen oder mehrere, nicht aromatische Reste R1 substituiert sein kann, wobei mehrere Substituenten R und/oder R1, R2, sowohl am selben Ring als auch an den unterschiedlichen Ringen zusammen wiederum ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können,Z is CR 1 at each occurrence; R \ R 2 , R 3 is the same or different at each occurrence H, a straight-chain, branched or cyclic alkyl group with 1 to 40 C atoms without H atoms in the α-position to the keto or imine function, one or more of which are not neighboring CH 2 groups by -R 4 C = CR 4 -, -C≡C-, C = 0, C = S, C = Se, C = NR 4 , -O-, -S-, -NR 5 - or -CONR 6 - can be replaced and where one or more H atoms can be replaced by F, Cl, Br, I, or an aromatic or heteroaromatic system with 1 to 40 C atoms, where one or more H atoms can be replaced by F, Cl, Br, I and that by one or more, non-aromatic Radicals R 1 can be substituted, where a plurality of substituents R and / or R 1 , R 2 , both on the same ring and on the different rings, can in turn form a further mono- or polycyclic, aliphatic or aromatic ring system,
R4, R5, R6 sind wie unter Anspruch 4 beschrieben.R 4 , R 5 , R 6 are as described in claim 4.
Mischung gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Matrixmaterial A mindestens eine Verbindung der Formel (10) bis (15) eingesetzt wird,Mixture according to one or more of claims 1 to 3, characterized in that at least one compound of the formula (10) to (15) is used as matrix material A,
Formel (10) Formel (11)Formula (10) Formula (11)
Formel (12) Formula (12)
Formel (13) Formel (14)Formula (13) Formula (14)
Formel (15) wobei Z, Y und R1 bis R6 dieselbe Bedeutung haben, wie unter Anspruch 4 und 5 beschrieben, und für die weiteren Symbole und Indizes gilt:Formula (15) where Z, Y and R 1 to R 6 have the same meaning as described in claims 4 and 5, and the following applies to the other symbols and indices:
Ar ist bei jedem Auftreten gleich oder verschieden ein aromatisches oder heteroaromatisches System mit 2 bis 40 C-Atomen, wobei ein oder mehrere H-Atome durch F, Cl, Br, I ersetzt sein können und die durch einen oder mehrere, nicht aromatische Reste R1 substituiert sein kann, wobei mehrere Substituenten R1, sowohl am selben Ring als auch an unterschiedlichen Ringen zusammen wiederum ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können; n ist bei jedem Auftreten gleich oder verschieden 0 oder 1.Ar is the same or different with each occurrence an aromatic or heteroaromatic system with 2 to 40 C-atoms, whereby one or more H-atoms can be replaced by F, Cl, Br, I and which by one or more, non-aromatic residues R 1 can be substituted, wherein a plurality of substituents R 1 , both on the same ring and on different rings, can in turn span another mono- or polycyclic, aliphatic or aromatic ring system; n is the same or different at each occurrence 0 or 1.
8. Mischung gemäß einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß als Emitter B mindestens eine Verbindung eingesetzt wird, die bei geeigneter Anregung Licht emittiert und mindestens ein Atom der Ordungszahl größer 38 und kleiner 84 enthält.8. Mixture according to one or more of claims 1 to 7, characterized in that at least one compound is used as emitter B which emits light with suitable excitation and contains at least one atom of atomic number greater than 38 and less than 84.
9. Mischung gemäß Anspruch 8, dadurch gekennzeichnet, daß als Emitter B mindestens eine Verbindung eingesetzt wird, die bei geeigneter Anregung Licht emittiert und mindestens ein Atom der Ordungszahl größer 56 und kleiner 80 enthält.9. Mixture according to claim 8, characterized in that at least one compound is used as emitter B, which emits light with suitable excitation and contains at least one atom of atomic number greater than 56 and less than 80.
10. Mischung gemäß Anspruch 9, dadurch gekennzeichnet, daß als Emitter B mindestens eine Verbindung eingesetzt wird, die bei geeigneter Anregung Licht emittiert und mindestens ein Atom aus der Gruppe Molybdän, Wolfram, Rhenium, Ruthenium, Osmium, Rhodium, Iridium, Palladium, Platin, Silber, Gold oder Europium enthält. 10. Mixture according to claim 9, characterized in that at least one compound is used as emitter B, which emits light with suitable excitation and at least one atom from the group molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum , Contains silver, gold or europium.
11. Mischung gemäß einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß als Emitter B mindestens eine Verbindung der Formel (16) bis (19) eingesetzt wird,11. Mixture according to one or more of claims 1 to 10, characterized in that at least one compound of the formula (16) to (19) is used as emitter B,
Formel (16) Formel (17)Formula (16) Formula (17)
Formel (18) Formel (19) worin für die verwendeten Sym bole i gilt:Formula (18) Formula (19) in which the following applies to the symbols i used:
DCy ist bei jedem Auftreten gleich oder verschieden eine cyclische Gruppe, die mindestens ein Donoratom enthält, über welches die cyclische Gruppe an das Metall gebunden ist, und die wiederum ein oder mehrere Substituenten R9 tragen kann; die Gruppen DCy und CCy sind über eine kovalente Bindung miteinander verbunden;Each time DCy occurs, the same or different, is a cyclic group which contains at least one donor atom via which the cyclic group is bonded to the metal and which in turn can carry one or more substituents R 9 ; the groups DCy and CCy are connected to one another via a covalent bond;
CCy ist bei jedem Auftreten gleich oder verschieden eine cyclische Gruppe, die ein Kohlenstoffatom enthält, über welches die cyclische Gruppe an das Metall gebunden ist und die wiederum ein oder mehrere Substituenten R9 tragen kann;CCy is the same or different at each occurrence a cyclic group which contains a carbon atom via which the cyclic group is bonded to the metal and which in turn can carry one or more substituents R 9 ;
R9 ist gleich oder verschieden bei jedem Auftreten H, F, Cl, Br, l, N02, CN, eine geradkettige oder verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 1 bis 40 C-Atomen, wobei ein oder mehrere nicht benachbarte CH2-Gruppen durch -CR4=CR4-, -C=C-, C=0, C=S, C=Se, C=NR4, -O-, -S-, -NR°- oder -CONR6- ersetzt sein können und wobei ein oder mehrere H-Atome durch F ersetzt sein können, oder ein aromatisches oder heteroaromatisches System mit 4 bis 40 C-Atomen, das durch einen oder mehrere, nicht aromatische Reste R9 substituiert sein kann; wobei mehrere Substituenten R9, sowohl am selben Ring als auch an den beiden unterschiedlichen Ringen zusammen wiederum ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können; ist bei jedem Auftreten gleich oder verschieden ein zweizähnig, chelatisierender Ligand;R 9 is the same or different with each occurrence of H, F, Cl, Br, I, NO 2 , CN, a straight-chain or branched or cyclic alkyl or alkoxy group with 1 to 40 C atoms, one or more non-adjacent CH 2 Groups by -CR 4 = CR 4 -, -C = C-, C = 0, C = S, C = Se, C = NR 4 , -O-, -S-, -NR ° - or -CONR 6 - Can be replaced and where one or more H atoms can be replaced by F, or an aromatic or heteroaromatic system with 4 to 40 C atoms, which can be substituted by one or more non-aromatic radicals R 9 ; where a plurality of substituents R 9 , both on the same ring and on the two different rings together, can in turn span a further mono- or polycyclic, aliphatic or aromatic ring system; is a bidentate chelating ligand, the same or different, on each occurrence;
R4, R5, R6 ist gleich oder verschieden bei jedem Auftreten H oder ein aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen.R 4 , R 5 , R 6 are the same or different with each occurrence H or an aliphatic or aromatic hydrocarbon radical with 1 to 20 C atoms.
12. Mischung gemäß einem oder mehreren der Ansprüche 1 bis 11 , dadurch gekennzeichnet, daß das Matrixmaterial ein oder mehrere Polymere oder Dendrimere enthält. 12. Mixture according to one or more of claims 1 to 11, characterized in that the matrix material contains one or more polymers or dendrimers.
13. Mischung gemäß Anspruch 12, dadurch gekennzeichnet, daß das Polymer konjugiert, teilkonjugiert oder nicht-konjugiert ist.13. Mixture according to claim 12, characterized in that the polymer is conjugated, partially conjugated or non-conjugated.
14. Mischung gemäß Anspruch 12 und/oder 13, dadurch gekennzeichnet, daß das Polymer aus der Gruppe Polyfluorene, Poly-spirobifluorene, Poly-para-phenylene, Poly-carbazole, Poly-vinylcarbazole, Polythiophene oder auch aus Copolymeren, die mehrere dieser Einheiten aufweisen, ausgewählt ist.14. Mixture according to claim 12 and / or 13, characterized in that the polymer from the group polyfluorenes, poly-spirobifluorenes, poly-para-phenylenes, poly-carbazoles, poly-vinyl carbazoles, polythiophenes or from copolymers which comprise several of these units have selected.
15. Mischung gemäß einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Mischung zwischen 1 bis 99 Gew.% an Emitter B bezogen auf die Gesamtmischung aus Emitter B und Matrixmaterial A enthält.15. Mixture according to one or more of claims 1 to 14, characterized in that the mixture contains between 1 to 99% by weight of emitter B, based on the total mixture of emitter B and matrix material A.
16. Verbindungen gemäß Formel (10a) bis (15),16. Compounds of the formulas (10a) to (15),
Formel (10a) Formel (11)Formula (10a) Formula (11)
Formel (12) Formula (12)
Formel (13) Formel (14)Formula (13) Formula (14)
Formel (15) bei denen die Symbole Z, Y, Ar und R1 bis Re dieselbe Bedeutung haben, wie unterFormula (15) in which the symbols Z, Y, Ar and R 1 to R e have the same meaning as under
Anspruch 4, 5 und 7 beschrieben, und für die weiteren verwendeten Symbole gilt:Claim 4, 5 and 7 described, and for the other symbols used applies:
E ist bei jedem Auftreten gleich oder verschieden C oder N;E is the same or different at each occurrence C or N;
R7 ist bei jedem Auftreten gleich oder verschieden eine Alkyl-, Alkoxy- oderR 7 is the same or different each time an alkyl, alkoxy or
Alkylaminogruppe mit 1 bis 40 C-Atomen, in der auch ein oder mehrere CH2-Gruppen durch -R C=CR4-, -C=C-, C=O, C=S, C=Se, C=NR4, -O-, -S-, -NR4- oder -CONR4- ersetzt sein können und in der auch ein oder mehrere H-Atome durch F, Cl, Br, I ersetzt sein können, mit der Maßgabe, daß in α-Position zur Carbonylgruppe keine H-Atome gebunden sind, oder eine aromatische Gruppe, die gegebenenfalls mit Halogen, Alkyl, Trifluormethyl, Hydroxy, -SH, -S-Alkyl, Alkoxy, Nitro, Cyano, -COOH, -COOAlkyl, -NH2, -NAIkyl, Benzyl oder Benzoyl substituiert sein kann, oder ein größeres aromatisches System mit 2 bis 40 C-Atomen, wobei ein oder mehrere H- Atome durch F, Cl, Br, I ersetzt sein können und die durch ein oder mehrere nichtaromatische Reste R substituiert sein kann, wobei mehrere Substituenten R wiederum ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können;Alkylamino group with 1 to 40 C atoms, in which one or more CH 2 groups are also represented by -RC = CR 4 -, -C = C-, C = O, C = S, C = Se, C = NR 4 , -O-, -S-, -NR 4 - or -CONR 4 - can be replaced and in which one or more H atoms can also be replaced by F, Cl, Br, I, with the proviso that in α- Position to the carbonyl group no H atoms are bound, or an aromatic group which may be substituted with halogen, alkyl, trifluoromethyl, hydroxy, -SH, -S-alkyl, alkoxy, nitro, cyano, -COOH, -COOalkyl, -NH 2 , -NAIkyl, Benzyl or Benzoyl can be substituted, or a larger aromatic system with 2 to 40 C-atoms, whereby one or more H-atoms can be replaced by F, Cl, Br, I and which by one or more non-aromatic residues R can be substituted, wherein a plurality of substituents R can in turn span another mono- or polycyclic, aliphatic or aromatic ring system;
A1 ist bei jedem Auftreten R8 oder CO-R7, wenn X = C ist, oder ein freies Elektronenpaar, wenn X = N ist;A 1 is R 8 or CO-R 7 whenever X = C, or a lone pair of electrons when X = N;
A2 ist bei jedem Auftreten R8 oder CO-R7, wenn X = C ist, oder ein freies Elektronenpaar, wenn X = N ist;A 2 is R 8 or CO-R 7 whenever X = C, or a lone pair of electrons when X = N;
A3 ist bei jedem Auftreten R8 oder CO-R7, wenn X = C ist, oder ein freies Elektronenpaar, wenn X = N ist;A 3 on each occurrence is R 8 or CO-R 7 if X = C, or a lone pair of electrons if X = N;
R8 ist gleich oder verschieden bei jedem Auftreten H, F, Cl, Br, I, CN, N02, eine geradkettige oder verzweigte oder cyclische Alkylgruppe mit 1 bis 40 C-Atomen, wobei ein oder mehrere nicht benachbarte CH2-Gruppen durch -R4C=CR4-, -CsC-, C=S, C=Se, C=NR4, -O-, -S-, -NR4- oder -CONR4- ersetzt sein können und wobei ein oder mehrere H-Atome durch F, Cl, Br, I ersetzt sein können, oder ein aromatisches oder heteroaromatisches System mit 1 bis 40 C-Atomen, wobei ein oder mehrere H-Atome durch F, Cl, Br, I ersetzt sein können und die durch einen oder mehrere, nicht-aromatische Reste R substituiert sein kann, wobei mehrere Substituenten R1 und/oder R1/R4, sowohl am selben Ring als auch an den unterschiedlichen Ringen zusammen wiederum ein weiteres mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem aufspannen können; mit der Maßgabe, daß für die Verbindung gemäß Formel (10a) für die beschriebenen Symbole nur folgende Kombinationen zugelassen sind, wobei R8 und R4 beliebig gemäß der Definition zu wählen sind:R 8 is the same or different with each occurrence H, F, Cl, Br, I, CN, NO 2 , a straight-chain or branched or cyclic alkyl group with 1 to 40 C atoms, where one or more non-adjacent CH 2 groups by -R 4 C = CR 4 -, -CsC-, C = S, C = Se, C = NR 4 , -O-, -S-, -NR 4 - or - CONR 4 - can be replaced and one or more H atoms can be replaced by F, Cl, Br, I, or an aromatic or heteroaromatic system with 1 to 40 C atoms, one or more H atoms being replaced by F, Cl, Br, I can be replaced and which can be substituted by one or more non-aromatic radicals R, where several substituents R 1 and / or R 1 / R 4 , both on the same ring and on the different rings together in turn can span another mono- or polycyclic, aliphatic or aromatic ring system; with the proviso that only the following combinations are permitted for the compound according to formula (10a) for the symbols described, R 8 and R 4 being arbitrary according to the definition:
• wenn R7 eine Alkylgruppe ohne α-H-Atome ist, sind die Symbole Z, E, A1, A2 und A3 beliebig gemäß der Definition zu wählen;• If R 7 is an alkyl group without α-H atoms, the symbols Z, E, A 1 , A 2 and A 3 are to be chosen as desired;
• wenn R7 eine aromatische Gruppe ist und mindestens ein Z für N steht, sind die Symbole E, A1, A2 und A3 beliebig gemäß der Definition zu wählen;• if R 7 is an aromatic group and at least one Z is N, the symbols E, A 1 , A 2 and A 3 are to be chosen as desired;
• wenn R7 eine aromatische Gruppe ist und mindestens ein Z für eine Gruppe CR1 mit R ungleich H steht, sind die Symbole E, A\ A2 und A3 beliebig gemäß der Definition zu wählen;• if R 7 is an aromatic group and at least one Z stands for a group CR 1 with R not equal to H, the symbols E, A \ A 2 and A 3 are to be chosen as desired;
• wenn R7 eine aromatische Gruppe ist und alle Z für CH stehen und mindestens ein Symbol E für N steht, sind die Symbole A , A2 und A3 beliebig gemäß der Definition zu wählen;• if R 7 is an aromatic group and all Z stand for CH and at least one symbol E stands for N, the symbols A, A 2 and A 3 are to be chosen as desired;
• wenn R7 eine aromatische Gruppe ist, alle Z für CH stehen und alle E für C stehen, muß mindestens eines der Symbole A1, A2 und/oder A3 für eine Gruppe R8 ungleich Alkyl stehen, während die beiden anderen Gruppen beliebig gemäß der Definition gewählt werden können;• If R 7 is an aromatic group, all Z stand for CH and all E stand for C, at least one of the symbols A 1 , A 2 and / or A 3 must stand for a group R 8 not equal to alkyl, while the other two groups can be chosen arbitrarily according to the definition;
• wenn R7 eine aromatische Gruppe ist, alle Z für CH stehen, alle E für C stehen und die beiden Symbole A1 und A2 beliebig gemäß der Definition gewählt sind, wobei mindestens eines der beiden Symbole für eine Gruppe ungleich H steht, dann steht das Symbol A3 für eine Gruppe CO-R7, wobei R7 hier beliebig gemäß der Definition zu wählen ist;• if R 7 is an aromatic group, all Z stand for CH, all E stand for C and the two symbols A 1 and A 2 are chosen according to the definition, whereby at least one of the two symbols stands for a group not equal to H, then the symbol A 3 stands for a group CO-R 7 , where R 7 can be chosen here according to the definition;
• wenn R7 ein größeres aromatisches System, wie beispielsweise Fluoren, Spirobifluoren, Triarylamin, etc., ist, dann sind die Symbole Z, E, A1, A2 und A3 beliebig gemäß der Definition zu wählen.• if R 7 is a larger aromatic system, such as fluorene, spirobifluorene, triarylamine, etc., then the symbols Z, E, A 1 , A 2 and A 3 can be chosen as desired.
17. Elektronisches Bauteil, enthaltend mindestens eine Mischung gemäß einem oder mehreren der Ansprüche 1 bis 15 und/oder mindestens eine Verbindung gemäß Anspruch 16.17. Electronic component containing at least one mixture according to one or more of claims 1 to 15 and / or at least one compound according to claim 16.
18. Elektronisches Bauteil gemäß Anspruch 17, dadurch gekennzeichnet, daß es sich um eine Organische Leuchtdiode (OLED), eine Organische Integrierte Schaltung (O-IC), einen Organischen Feld-Effekt-Transistor (OFET), einen Organischen Dünnfilmtransistor (OTFT), eine Organische Solarzelle (O-SC) oder eine Organische Laserdiode (O-Laser) handelt.18. Electronic component according to claim 17, characterized in that it is an organic light-emitting diode (OLED), an organic integrated circuit (O-IC), an organic field-effect transistor (OFET), an organic Thin film transistor (OTFT), an organic solar cell (O-SC) or an organic laser diode (O-laser).
19. Elektronische Bauteil gemäß Anspruch 17 und/oder 18, dadurch gekennzeichnet, daß das elektronische Bauteil eine Organische Leuchtdiode (OLED) ist, die mindestens eine Lochinjektionsschicht und/oder mindestens eine Lochtransportschicht und/oder mindestens eine Lochblockierschicht und/oder eine mindestens Elektronentransportschicht und/oder mindestens eine Elektroneninjektionsschicht und/oder weitere Schichten enthält und die mindestens eine erfindungsgemäße Mischung gemäß einem oder mehreren der Ansprüche 1 bis 15 in der Emissionsschicht enthält.19. Electronic component according to claim 17 and / or 18, characterized in that the electronic component is an organic light-emitting diode (OLED), the at least one hole injection layer and / or at least one hole transport layer and / or at least one hole blocking layer and / or at least one electron transport layer and / or contains at least one electron injection layer and / or further layers and which contains at least one mixture according to the invention according to one or more of claims 1 to 15 in the emission layer.
20. Elektronisches Bauteil gemäß Anspruch 9, dadurch gekennzeichnet, daß eine Mischung gemäß einem oder mehreren der Ansprüche 1 bis 15 ohne Verwendung einer separaten Lochblockierschicht direkt an eine Elektronentransportschicht grenzt.20. Electronic component according to claim 9, characterized in that a mixture according to one or more of claims 1 to 15 directly adjoins an electron transport layer without using a separate hole blocking layer.
21. Elektronisches Bauteil gemäß Anspruch 19 und/oder 20, dadurch gekennzeichnet, daß eine Mischung gemäß einem oder mehreren der Ansprüche 1 bis 15 ohne Verwendung einer separaten Lochblockierschicht und einer separaten Elektronentransportschicht direkt an eine Elektroneninjektionsschicht oder an die Kathode grenzt. 21. Electronic component according to claim 19 and / or 20, characterized in that a mixture according to one or more of claims 1 to 15 directly adjoins an electron injection layer or the cathode without the use of a separate hole blocking layer and a separate electron transport layer.
EP04726968A 2003-04-15 2004-04-13 Mixtures of matrix materials and organic semiconductors capable of emission, use of the same and electronic components containing said mixtures Withdrawn EP1618170A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10008254A EP2281861A3 (en) 2003-04-15 2004-04-13 Mixture of organic emission-enabled semiconductors and matrix materials, use of same and electronic components containing same
EP06014637A EP1717291A3 (en) 2003-04-15 2004-04-13 Mixtures of matrix materials and organic semiconductors capable of emission, use of the same and electronic components containing said mixtures

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10317556.3A DE10317556B4 (en) 2003-04-15 2003-04-15 Mixtures of organic semiconductors capable of emission and matrix materials, their use and electronic components containing them
DE10355358A DE10355358A1 (en) 2003-11-25 2003-11-25 Mixtures for use in organic electronic devices of simplified layer structure comprise matrix materials (some of which in e.g. (hetero)aromatic ketone form are new) and emitters containing an element of atomic number above 20
PCT/EP2004/003861 WO2004093207A2 (en) 2003-04-15 2004-04-13 Mixtures of matrix materials and organic semiconductors capable of emission, use of the same and electronic components containing said mixtures

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP06014637A Division EP1717291A3 (en) 2003-04-15 2004-04-13 Mixtures of matrix materials and organic semiconductors capable of emission, use of the same and electronic components containing said mixtures

Publications (1)

Publication Number Publication Date
EP1618170A2 true EP1618170A2 (en) 2006-01-25

Family

ID=33300838

Family Applications (3)

Application Number Title Priority Date Filing Date
EP10008254A Withdrawn EP2281861A3 (en) 2003-04-15 2004-04-13 Mixture of organic emission-enabled semiconductors and matrix materials, use of same and electronic components containing same
EP04726968A Withdrawn EP1618170A2 (en) 2003-04-15 2004-04-13 Mixtures of matrix materials and organic semiconductors capable of emission, use of the same and electronic components containing said mixtures
EP06014637A Withdrawn EP1717291A3 (en) 2003-04-15 2004-04-13 Mixtures of matrix materials and organic semiconductors capable of emission, use of the same and electronic components containing said mixtures

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10008254A Withdrawn EP2281861A3 (en) 2003-04-15 2004-04-13 Mixture of organic emission-enabled semiconductors and matrix materials, use of same and electronic components containing same

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP06014637A Withdrawn EP1717291A3 (en) 2003-04-15 2004-04-13 Mixtures of matrix materials and organic semiconductors capable of emission, use of the same and electronic components containing said mixtures

Country Status (5)

Country Link
US (1) US7345301B2 (en)
EP (3) EP2281861A3 (en)
JP (2) JP5318347B2 (en)
KR (1) KR101162933B1 (en)
WO (1) WO2004093207A2 (en)

Families Citing this family (996)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20020411A1 (en) * 2002-08-01 2004-02-02 Univ Roma La Sapienza SPIROBIFLUORENE DERIVATIVES, THEIR PREPARATION AND USE.
DE10318096A1 (en) * 2003-04-17 2004-11-11 Covion Organic Semiconductors Gmbh Process for molecular weight control in the synthesis of poly (arylenevinylenes)
WO2005003253A2 (en) * 2003-07-07 2005-01-13 Covion Organic Semiconductors Gmbh Mixtures of organic emissive semiconductors and matrix materials, their use and electronic components comprising said materials
WO2005040302A1 (en) * 2003-10-22 2005-05-06 Merck Patent Gmbh New materials for electroluminescence and the utilization thereof
KR101196683B1 (en) 2003-11-25 2012-11-06 메르크 파텐트 게엠베하 Organic electroluminescent element
DE10356099A1 (en) 2003-11-27 2005-07-07 Covion Organic Semiconductors Gmbh Organic electroluminescent element
DE10357315A1 (en) * 2003-12-05 2005-07-07 Covion Organic Semiconductors Gmbh Organic electroluminescent element
DE102004008304A1 (en) 2004-02-20 2005-09-08 Covion Organic Semiconductors Gmbh Organic electronic devices
DE102004031000A1 (en) * 2004-06-26 2006-01-12 Covion Organic Semiconductors Gmbh Organic electroluminescent devices
ITRM20040352A1 (en) * 2004-07-15 2004-10-15 Univ Roma La Sapienza OLIGOMERIC DERIVATIVES OF SPIROBIFLUORENE, THEIR PREPARATION AND THEIR USE.
KR101289975B1 (en) * 2004-07-15 2013-07-26 메르크 파텐트 게엠베하 Oligomeric derivatives of spirobifluorene, their preparation and use
DE102005014284A1 (en) * 2005-03-24 2006-09-28 Basf Ag Use of compounds containing aromatic or heteroaromatic rings containing groups via carbonyl groups as matrix materials in organic light-emitting diodes
US9070884B2 (en) 2005-04-13 2015-06-30 Universal Display Corporation Hybrid OLED having phosphorescent and fluorescent emitters
US8586204B2 (en) 2007-12-28 2013-11-19 Universal Display Corporation Phosphorescent emitters and host materials with improved stability
US8007927B2 (en) 2007-12-28 2011-08-30 Universal Display Corporation Dibenzothiophene-containing materials in phosphorescent light emitting diodes
US20070003785A1 (en) * 2005-06-30 2007-01-04 Eastman Kodak Company Electroluminescent devices containing benzidine derivatives
DE102005040411A1 (en) 2005-08-26 2007-03-01 Merck Patent Gmbh New materials for organic electroluminescent devices
US20070116984A1 (en) * 2005-09-21 2007-05-24 Doosan Corporation Spiro-compound for electroluminescent display device and electroluminescent display device comprising the same
KR100798817B1 (en) * 2006-07-28 2008-01-28 주식회사 두산 Spiro-compound for electroluminescent display device and electroluminescent display device comprising the same
JP5080774B2 (en) * 2005-10-04 2012-11-21 富士フイルム株式会社 Organic electroluminescence device
US8206839B2 (en) 2005-10-04 2012-06-26 Fujifilm Corporation Organic electroluminescent element
US7645524B2 (en) * 2005-10-19 2010-01-12 Eastman Kodak Company OLED device with improved high temperature operation
US8310146B2 (en) * 2005-10-27 2012-11-13 Konica Minolta Holdings, Inc. Organic electroluminescent device, liquid crystal display and illuminating device
US20070252516A1 (en) * 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent devices including organic EIL layer
US7651791B2 (en) * 2005-12-15 2010-01-26 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and electroluminescence device employing the same
KR102103062B1 (en) 2006-02-10 2020-04-22 유니버셜 디스플레이 코포레이션 METAL COMPLEXES OF CYCLOMETALLATED IMIDAZO[1,2-f]PHENANTHRIDINE AND DIIMIDAZO[1,2-A:1',2'-C]QUINAZOLINE LIGANDS AND ISOELECTRONIC AND BENZANNULATED ANALOGS THEREOF
US9118020B2 (en) * 2006-04-27 2015-08-25 Global Oled Technology Llc Electroluminescent devices including organic eil layer
DE102006025777A1 (en) * 2006-05-31 2007-12-06 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102006031990A1 (en) 2006-07-11 2008-01-17 Merck Patent Gmbh New materials for organic electroluminescent devices
US8778508B2 (en) 2006-12-08 2014-07-15 Universal Display Corporation Light-emitting organometallic complexes
TWI481089B (en) 2006-12-28 2015-04-11 Universal Display Corp Long lifetime phosphorescent organic light emitting device (oled) structures
DE102007002714A1 (en) 2007-01-18 2008-07-31 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102007023876A1 (en) 2007-03-02 2008-09-04 Osram Opto Semiconductors Gmbh Electric organic component comprises substrate, former electrode, which has anode, former electrically semiconducting layer on former electrode, organic functional layer on former electrically semiconducting layer
US9130177B2 (en) 2011-01-13 2015-09-08 Universal Display Corporation 5-substituted 2 phenylquinoline complexes materials for light emitting diode
EP2489716B1 (en) 2007-03-08 2017-12-27 Universal Display Corporation Phosphorescent materials
US20130032785A1 (en) 2011-08-01 2013-02-07 Universal Display Corporation Materials for organic light emitting diode
US8102275B2 (en) * 2007-07-02 2012-01-24 Procter & Gamble Package and merchandising system
US20100006462A1 (en) * 2008-07-14 2010-01-14 Mcguire Kenneth Stephen Packaging assembly having a sensory interactable element
US20090008275A1 (en) * 2007-07-02 2009-01-08 Ferrari Michael G Package and merchandising system
DE102007031261A1 (en) * 2007-07-05 2009-01-08 Universtität Regensburg Luminescent metal complexes with bulky auxiliary ligands
EP2045848B1 (en) * 2007-07-18 2017-09-27 Idemitsu Kosan Co., Ltd. Organic electroluminescent device material and organic electroluminescent device
JP6009144B2 (en) 2007-08-08 2016-10-19 ユニバーサル ディスプレイ コーポレイション Benzo-fused thiophene or benzo-fused furan compounds containing a triphenylene group
KR20160104752A (en) 2007-08-08 2016-09-05 유니버셜 디스플레이 코포레이션 Single triphenylene chromophores in phosphorescent light emitting diodes
JP2009081265A (en) * 2007-09-26 2009-04-16 Idemitsu Kosan Co Ltd Organic thin film transistor
US8221905B2 (en) 2007-12-28 2012-07-17 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
US20090191427A1 (en) * 2008-01-30 2009-07-30 Liang-Sheng Liao Phosphorescent oled having double hole-blocking layers
US8040053B2 (en) 2008-02-09 2011-10-18 Universal Display Corporation Organic light emitting device architecture for reducing the number of organic materials
DE102008013691A1 (en) 2008-03-11 2009-09-17 Merck Patent Gmbh Use of compositions of neutral transition metal complexes in opto-electronic devices
DE102008015526B4 (en) 2008-03-25 2021-11-11 Merck Patent Gmbh Metal complexes
DE102008027005A1 (en) 2008-06-05 2009-12-10 Merck Patent Gmbh Organic electronic device containing metal complexes
US8440326B2 (en) 2008-06-30 2013-05-14 Universal Display Corporation Hole transport materials containing triphenylene
DE102008033563A1 (en) 2008-07-17 2010-01-21 Merck Patent Gmbh Complexes with Small Singlet-Triplet Energy Intervals for Use in Opto-Electronic Devices (Singlet Harvesting Effect)
DE102008033943A1 (en) * 2008-07-18 2010-01-21 Merck Patent Gmbh New materials for organic electroluminescent devices
DE102008036247A1 (en) 2008-08-04 2010-02-11 Merck Patent Gmbh Electronic devices containing metal complexes
DE102008036982A1 (en) 2008-08-08 2010-02-11 Merck Patent Gmbh Organic electroluminescent device
WO2010027583A1 (en) 2008-09-03 2010-03-11 Universal Display Corporation Phosphorescent materials
CN102203977B (en) 2008-09-04 2014-06-04 通用显示公司 White phosphorescent organic light emitting devices
US9034483B2 (en) 2008-09-16 2015-05-19 Universal Display Corporation Phosphorescent materials
DE102008048336A1 (en) 2008-09-22 2010-03-25 Merck Patent Gmbh Mononuclear neutral copper (I) complexes and their use for the production of optoelectronic devices
JP5676454B2 (en) 2008-09-25 2015-02-25 ユニバーサル ディスプレイ コーポレイション Organic selenium materials and their use in organic light emitting devices
DE102008050841B4 (en) 2008-10-08 2019-08-01 Merck Patent Gmbh New materials for organic electroluminescent devices
US8053770B2 (en) 2008-10-14 2011-11-08 Universal Display Corporation Emissive layer patterning for OLED
JP5854839B2 (en) 2008-11-11 2016-02-09 ユニバーサル ディスプレイ コーポレイション Phosphorescent emitter
DE102009022858A1 (en) 2009-05-27 2011-12-15 Merck Patent Gmbh Organic electroluminescent devices
WO2010054730A1 (en) 2008-11-11 2010-05-20 Merck Patent Gmbh Organic electroluminescent devices
DE102008056688A1 (en) 2008-11-11 2010-05-12 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102008057050B4 (en) * 2008-11-13 2021-06-02 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102008057051B4 (en) 2008-11-13 2021-06-17 Merck Patent Gmbh Materials for organic electroluminescent devices
US8815415B2 (en) 2008-12-12 2014-08-26 Universal Display Corporation Blue emitter with high efficiency based on imidazo[1,2-f] phenanthridine iridium complexes
US8778511B2 (en) 2008-12-12 2014-07-15 Universal Display Corporation OLED stability via doped hole transport layer
DE102008063470A1 (en) 2008-12-17 2010-07-01 Merck Patent Gmbh Organic electroluminescent device
DE102008063490B4 (en) * 2008-12-17 2023-06-15 Merck Patent Gmbh Organic electroluminescent device and method for adjusting the color locus of a white-emitting electroluminescent device
US9067947B2 (en) 2009-01-16 2015-06-30 Universal Display Corporation Organic electroluminescent materials and devices
DE102009007038A1 (en) 2009-02-02 2010-08-05 Merck Patent Gmbh metal complexes
DE102009009277B4 (en) 2009-02-17 2023-12-07 Merck Patent Gmbh Organic electronic device, process for its production and use of compounds
DE102009011223A1 (en) 2009-03-02 2010-09-23 Merck Patent Gmbh metal complexes
DE102009012346B4 (en) 2009-03-09 2024-02-15 Merck Patent Gmbh Organic electroluminescent device and method for producing the same
DE102009013041A1 (en) 2009-03-13 2010-09-16 Merck Patent Gmbh Materials for organic electroluminescent devices
US11910700B2 (en) 2009-03-23 2024-02-20 Universal Display Corporation Heteroleptic iridium complexes as dopants
US8709615B2 (en) 2011-07-28 2014-04-29 Universal Display Corporation Heteroleptic iridium complexes as dopants
US8722205B2 (en) 2009-03-23 2014-05-13 Universal Display Corporation Heteroleptic iridium complex
DE102009014513A1 (en) 2009-03-23 2010-09-30 Merck Patent Gmbh Organic electroluminescent device
CN105820192B (en) 2009-04-06 2020-04-07 通用显示公司 Metal complexes comprising novel ligand structures
DE102009017064A1 (en) 2009-04-09 2010-10-14 Merck Patent Gmbh Organic electroluminescent device
US8350679B2 (en) * 2009-04-24 2013-01-08 The Procter & Gamble Company Consumer product kit having enhanced product presentation
TWI638807B (en) 2009-04-28 2018-10-21 環球展覽公司 Iridium complex with methyl-d3 substitution
TWI541234B (en) 2009-05-12 2016-07-11 環球展覽公司 2-azatriphenylene materials for organic light emitting diodes
US8586203B2 (en) 2009-05-20 2013-11-19 Universal Display Corporation Metal complexes with boron-nitrogen heterocycle containing ligands
DE102009023154A1 (en) 2009-05-29 2011-06-16 Merck Patent Gmbh A composition comprising at least one emitter compound and at least one polymer having conjugation-interrupting units
DE102009023155A1 (en) 2009-05-29 2010-12-02 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2010149259A2 (en) 2009-06-22 2010-12-29 Merck Patent Gmbh Conducting formulation
DE102009031021A1 (en) 2009-06-30 2011-01-05 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102009032922B4 (en) 2009-07-14 2024-04-25 Merck Patent Gmbh Materials for organic electroluminescent devices, processes for their preparation, their use and electronic device
WO2011015265A2 (en) 2009-08-04 2011-02-10 Merck Patent Gmbh Electronic devices comprising multi cyclic hydrocarbons
DE102009053644B4 (en) 2009-11-17 2019-07-04 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102009041289A1 (en) 2009-09-16 2011-03-17 Merck Patent Gmbh Organic electroluminescent device
DE102009041414A1 (en) 2009-09-16 2011-03-17 Merck Patent Gmbh metal complexes
DE102009053645A1 (en) 2009-11-17 2011-05-19 Merck Patent Gmbh Materials for organic electroluminescent device
EP2477999B1 (en) 2009-09-16 2019-01-23 Merck Patent GmbH Formulations for electronic devices
DE102009042693A1 (en) 2009-09-23 2011-03-24 Merck Patent Gmbh Materials for electronic devices
DE102009048791A1 (en) 2009-10-08 2011-04-14 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102009049587A1 (en) 2009-10-16 2011-04-21 Merck Patent Gmbh metal complexes
US8545996B2 (en) 2009-11-02 2013-10-01 The University Of Southern California Ion-pairing soft salts based on organometallic complexes and their applications in organic light emitting diodes
DE102009052428A1 (en) 2009-11-10 2011-05-12 Merck Patent Gmbh Connection for electronic devices
DE102009053382A1 (en) 2009-11-14 2011-05-19 Merck Patent Gmbh Materials for electronic devices
DE102009053836A1 (en) 2009-11-18 2011-05-26 Merck Patent Gmbh Materials for organic electroluminescent devices
US8580394B2 (en) 2009-11-19 2013-11-12 Universal Display Corporation 3-coordinate copper(I)-carbene complexes
DE102009057167A1 (en) 2009-12-05 2011-06-09 Merck Patent Gmbh Electronic device containing metal complexes
WO2011076326A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent functional surfactants
JP5968786B2 (en) 2009-12-22 2016-08-10 メルク パテント ゲーエムベーハー Electroluminescence formulation
JP5836970B2 (en) 2009-12-22 2015-12-24 メルク パテント ゲーエムベーハー Formulations containing functional materials
CN102668152A (en) 2009-12-23 2012-09-12 默克专利有限公司 Compositions comprising polymeric binders
WO2011076324A1 (en) 2009-12-23 2011-06-30 Merck Patent Gmbh Compositions comprising organic semiconducting compounds
DE102010004803A1 (en) 2010-01-16 2011-07-21 Merck Patent GmbH, 64293 Materials for organic electroluminescent devices
US8288187B2 (en) 2010-01-20 2012-10-16 Universal Display Corporation Electroluminescent devices for lighting applications
DE102010005697A1 (en) 2010-01-25 2011-07-28 Merck Patent GmbH, 64293 Connections for electronic devices
DE102010006377A1 (en) 2010-01-29 2011-08-04 Merck Patent GmbH, 64293 Styrene-based copolymers, in particular for use in optoelectronic components
DE102010009193B4 (en) 2010-02-24 2022-05-19 MERCK Patent Gesellschaft mit beschränkter Haftung Composition containing fluorine-fluorine associates, processes for their production, their use and organic electronic devices containing them
US9156870B2 (en) 2010-02-25 2015-10-13 Universal Display Corporation Phosphorescent emitters
DE102010009903A1 (en) 2010-03-02 2011-09-08 Merck Patent Gmbh Connections for electronic devices
US9175211B2 (en) 2010-03-03 2015-11-03 Universal Display Corporation Phosphorescent materials
DE102010010481A1 (en) 2010-03-06 2011-09-08 Merck Patent Gmbh Organic electroluminescent device
JP6246468B2 (en) 2010-03-11 2017-12-13 メルク パテント ゲーエムベーハー Fiber in therapy and cosmetics
EP2545600A2 (en) 2010-03-11 2013-01-16 Merck Patent GmbH Radiative fibers
KR20130031827A (en) 2010-03-23 2013-03-29 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
DE102010012738A1 (en) 2010-03-25 2011-09-29 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2011119162A1 (en) 2010-03-25 2011-09-29 Universal Display Corporation Solution processable doped triarylamine hole injection materials
DE102010013068A1 (en) 2010-03-26 2011-09-29 Merck Patent Gmbh Connections for electronic devices
EP2559079B1 (en) * 2010-04-12 2020-04-01 Merck Patent GmbH Composition and method for preparation of organic electronic devices
EP2559078A1 (en) 2010-04-12 2013-02-20 Merck Patent GmbH Composition having improved performance
DE102010014933A1 (en) 2010-04-14 2011-10-20 Merck Patent Gmbh Materials for electronic devices
DE102010018321A1 (en) 2010-04-27 2011-10-27 Merck Patent Gmbh Organic electroluminescent device
US8968887B2 (en) 2010-04-28 2015-03-03 Universal Display Corporation Triphenylene-benzofuran/benzothiophene/benzoselenophene compounds with substituents joining to form fused rings
US9040962B2 (en) 2010-04-28 2015-05-26 Universal Display Corporation Depositing premixed materials
DE102010019306B4 (en) 2010-05-04 2021-05-20 Merck Patent Gmbh Organic electroluminescent devices
DE102010020044A1 (en) 2010-05-11 2011-11-17 Merck Patent Gmbh Organic electroluminescent device
DE102010020567A1 (en) 2010-05-14 2011-11-17 Merck Patent Gmbh metal complexes
EP2576723B1 (en) 2010-05-27 2017-09-20 Merck Patent GmbH Compositions comprising quantum dots
RU2012156386A (en) 2010-05-27 2014-07-10 Мерк Патент Гмбх COMPOSITION AND METHOD FOR PRODUCING ORGANIC ELECTRONIC DEVICES
US8673458B2 (en) 2010-06-11 2014-03-18 Universal Display Corporation Delayed fluorescence OLED
US8742657B2 (en) 2010-06-11 2014-06-03 Universal Display Corporation Triplet-Triplet annihilation up conversion (TTA-UC) for display and lighting applications
DE112011102008B4 (en) 2010-06-15 2022-04-21 Merck Patent Gmbh metal complexes
DE102010024335A1 (en) 2010-06-18 2011-12-22 Merck Patent Gmbh Connections for electronic devices
DE102010024542A1 (en) 2010-06-22 2011-12-22 Merck Patent Gmbh Materials for electronic devices
DE102010024897A1 (en) 2010-06-24 2011-12-29 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102010027218A1 (en) 2010-07-15 2012-01-19 Merck Patent Gmbh Organic complexes containing metals
DE102010027320A1 (en) 2010-07-16 2012-01-19 Merck Patent Gmbh Polymeric materials for organic electroluminescent devices
DE102010027316A1 (en) 2010-07-16 2012-01-19 Merck Patent Gmbh metal complexes
DE102010027319A1 (en) 2010-07-16 2012-01-19 Merck Patent Gmbh metal complexes
DE102010027317A1 (en) 2010-07-16 2012-01-19 Merck Patent Gmbh metal complexes
CN106887522B (en) 2010-07-26 2018-09-18 默克专利有限公司 Include the device of nanocrystal
JP2013539584A (en) 2010-07-26 2013-10-24 メルク パテント ゲーエムベーハー Quantum dots and hosts
US9435021B2 (en) 2010-07-29 2016-09-06 University Of Southern California Co-deposition methods for the fabrication of organic optoelectronic devices
WO2012013271A1 (en) 2010-07-30 2012-02-02 Merck Patent Gmbh Organic electroluminescent device
DE102010033548A1 (en) 2010-08-05 2012-02-09 Merck Patent Gmbh Materials for electronic devices
US9954180B2 (en) 2010-08-20 2018-04-24 Universal Display Corporation Bicarbazole compounds for OLEDs
WO2012028238A1 (en) * 2010-09-01 2012-03-08 Merck Patent Gmbh Quenching of photoluminescence in an organic device
DE102010045405A1 (en) 2010-09-15 2012-03-15 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102010046412B4 (en) 2010-09-23 2022-01-13 Merck Patent Gmbh metal-ligand coordination compounds
DE102010046512A1 (en) 2010-09-24 2012-03-29 Merck Patent Gmbh Phosphorus-containing metal complexes
US8932734B2 (en) 2010-10-08 2015-01-13 Universal Display Corporation Organic electroluminescent materials and devices
DE102010048074A1 (en) 2010-10-09 2012-04-12 Merck Patent Gmbh Materials for electronic devices
DE102010048497A1 (en) 2010-10-14 2012-04-19 Merck Patent Gmbh Formulations for organic electroluminescent devices
DE102010048498A1 (en) 2010-10-14 2012-04-19 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102010048608A1 (en) 2010-10-15 2012-04-19 Merck Patent Gmbh Materials for organic electroluminescent devices
DE102010048607A1 (en) 2010-10-15 2012-04-19 Merck Patent Gmbh Connections for electronic devices
US8269317B2 (en) 2010-11-11 2012-09-18 Universal Display Corporation Phosphorescent materials
CN103228647B (en) 2010-11-24 2017-02-15 默克专利有限公司 Materials for organic electroluminescent devices
JP5669539B2 (en) 2010-12-01 2015-02-12 キヤノン株式会社 Quinolino [3,2,1-kl] phenoxazine compound and organic light emitting device using the same
US20120138906A1 (en) 2010-12-07 2012-06-07 The University of Southern California USC Stevens Institute for Innovation Capture agents for unsaturated metal complexes
DE102010054316A1 (en) 2010-12-13 2012-06-14 Merck Patent Gmbh Substituted tetraarylbenzenes
DE102010054525A1 (en) 2010-12-15 2012-04-26 Merck Patent Gmbh Organic electroluminescent device
DE102011106849A1 (en) 2010-12-15 2012-06-21 Merck Patent Gmbh Process for the synthesis of N-N linked and around the N-N bond of rotation-inhibited bis-N-heterocyclic carbenes and their use as ligands for metal complexes
DE102010055902A1 (en) 2010-12-23 2012-06-28 Merck Patent Gmbh Organic electroluminescent device
DE102010055901A1 (en) * 2010-12-23 2012-06-28 Merck Patent Gmbh Organic electroluminescent device
US10008677B2 (en) 2011-01-13 2018-06-26 Universal Display Corporation Materials for organic light emitting diode
DE112011104715A5 (en) 2011-01-13 2014-02-06 Merck Patent Gmbh Compounds for organic electroluminescent devices
DE102012000064A1 (en) 2011-01-21 2012-07-26 Merck Patent Gmbh New heterocyclic compound excluding 9,10-dioxa-4b-aza-9a-phospha-indeno(1,2-a)indene and 9,10-dioxa-4b-aza-indeno(1,2-a)indene, useful e.g. as matrix material for fluorescent or phosphorescent emitters of electronic devices
US8415031B2 (en) 2011-01-24 2013-04-09 Universal Display Corporation Electron transporting compounds
US8751777B2 (en) 2011-01-28 2014-06-10 Honeywell International Inc. Methods and reconfigurable systems to optimize the performance of a condition based health maintenance system
DE102011010841A1 (en) 2011-02-10 2012-08-16 Merck Patent Gmbh (1,3) -dioxane-5-one compounds
DE102011011104A1 (en) 2011-02-12 2012-08-16 Merck Patent Gmbh Substituted dibenzonaphthacenes
JP6351974B2 (en) 2011-02-14 2018-07-04 メルク パテント ゲーエムベーハー Devices and methods for treatment of cells and cellular tissues
DE102011011539A1 (en) 2011-02-17 2012-08-23 Merck Patent Gmbh Connections for electronic devices
CN103476781B (en) 2011-02-23 2017-02-15 通用显示公司 Novel tetradentate platinum complexes
US8748011B2 (en) 2011-02-23 2014-06-10 Universal Display Corporation Ruthenium carbene complexes for OLED material
US9005772B2 (en) 2011-02-23 2015-04-14 Universal Display Corporation Thioazole and oxazole carbene metal complexes as phosphorescent OLED materials
US8563737B2 (en) 2011-02-23 2013-10-22 Universal Display Corporation Methods of making bis-tridentate carbene complexes of ruthenium and osmium
US8492006B2 (en) 2011-02-24 2013-07-23 Universal Display Corporation Germanium-containing red emitter materials for organic light emitting diode
US8883322B2 (en) 2011-03-08 2014-11-11 Universal Display Corporation Pyridyl carbene phosphorescent emitters
EP2688120B1 (en) 2011-03-14 2017-08-23 Toray Industries, Inc. Light-emitting element material and light-emitting element
JP6356060B2 (en) 2011-03-24 2018-07-11 メルク パテント ゲーエムベーハー Organic ionic functional materials
WO2012136296A1 (en) 2011-04-04 2012-10-11 Merck Patent Gmbh Metal complexes
US9385335B2 (en) 2011-04-05 2016-07-05 Merck Patent Gmbh Organic electroluminescent device
US8580399B2 (en) 2011-04-08 2013-11-12 Universal Display Corporation Substituted oligoazacarbazoles for light emitting diodes
EP2697225B1 (en) 2011-04-13 2015-10-07 Merck Patent GmbH Materials for electronic devices
JP5922223B2 (en) 2011-04-13 2016-05-24 メルク パテント ゲーエムベーハー Compounds for electronic devices
JP6022541B2 (en) 2011-04-18 2016-11-09 メルク パテント ゲーエムベーハー Compounds for electronic devices
EP2699571B1 (en) 2011-04-18 2018-09-05 Merck Patent GmbH Materials for organic electroluminescent devices
WO2012149992A1 (en) 2011-05-04 2012-11-08 Merck Patent Gmbh Device for preserving fresh goods
US10177312B2 (en) 2011-05-05 2019-01-08 Merck Patent Gmbh Compounds for electronic devices
CN103503187B (en) 2011-05-05 2016-11-02 默克专利有限公司 compound for electronic device
US8927308B2 (en) 2011-05-12 2015-01-06 Universal Display Corporation Method of forming bus line designs for large-area OLED lighting
US8432095B2 (en) 2011-05-11 2013-04-30 Universal Display Corporation Process for fabricating metal bus lines for OLED lighting panels
US9391288B2 (en) 2011-05-12 2016-07-12 Toray Industries, Inc. Light emitting device material and light emitting device
EP2707911B1 (en) 2011-05-12 2017-07-05 Merck Patent GmbH Compositions and electronic devices
GB201107905D0 (en) 2011-05-12 2011-06-22 Cambridge Display Tech Ltd Light-emitting material, composition and device
DE102012007810A1 (en) 2011-05-16 2012-11-22 Merck Patent Gmbh Electronic device, preferably organic electroluminescent device comprises a transition metal compound exhibiting a transition metal-tin bond
US9212197B2 (en) 2011-05-19 2015-12-15 Universal Display Corporation Phosphorescent heteroleptic phenylbenzimidazole dopants
US8795850B2 (en) 2011-05-19 2014-08-05 Universal Display Corporation Phosphorescent heteroleptic phenylbenzimidazole dopants and new synthetic methodology
US8748012B2 (en) 2011-05-25 2014-06-10 Universal Display Corporation Host materials for OLED
US10079349B2 (en) 2011-05-27 2018-09-18 Universal Display Corporation Organic electroluminescent materials and devices
US10158089B2 (en) 2011-05-27 2018-12-18 Universal Display Corporation Organic electroluminescent materials and devices
DE102011102586A1 (en) 2011-05-27 2012-11-29 Merck Patent Gmbh Organic electronic device
CN103619860B (en) 2011-06-03 2016-08-17 默克专利有限公司 Metal complex
WO2012163465A1 (en) 2011-06-03 2012-12-06 Merck Patent Gmbh Organic electroluminescence device
CN103596967B (en) 2011-06-08 2016-12-21 环球展览公司 Heteroleptic iridium carbene complex and use its light-emitting device
US8884316B2 (en) 2011-06-17 2014-11-11 Universal Display Corporation Non-common capping layer on an organic device
US8659036B2 (en) 2011-06-17 2014-02-25 Universal Display Corporation Fine tuning of emission spectra by combination of multiple emitter spectra
JP6038908B2 (en) 2011-06-28 2016-12-07 メルク パテント ゲーエムベーハー Metal complex
US9023420B2 (en) 2011-07-14 2015-05-05 Universal Display Corporation Composite organic/inorganic layer for organic light-emitting devices
WO2013009708A1 (en) 2011-07-14 2013-01-17 Universal Display Corporation Inorganic hosts in oleds
US9397310B2 (en) 2011-07-14 2016-07-19 Universal Display Corporation Organice electroluminescent materials and devices
US9783564B2 (en) 2011-07-25 2017-10-10 Universal Display Corporation Organic electroluminescent materials and devices
JP6234666B2 (en) * 2011-07-25 2017-11-22 ユニバーサル ディスプレイ コーポレイション Tetradentate platinum complex
US8409729B2 (en) 2011-07-28 2013-04-02 Universal Display Corporation Host materials for phosphorescent OLEDs
CN107814820B (en) 2011-07-29 2020-08-11 默克专利有限公司 Compounds for electronic devices
KR101739629B1 (en) 2011-08-03 2017-05-24 메르크 파텐트 게엠베하 Materials for electronic devices
US8926119B2 (en) 2011-08-04 2015-01-06 Universal Display Corporation Extendable light source with variable light emitting area
WO2013020631A1 (en) 2011-08-10 2013-02-14 Merck Patent Gmbh Metal complexes
DE102012016192A1 (en) 2011-08-19 2013-02-21 Merck Patent Gmbh New compounds capable of forming hydrogen bonds are useful in electronic device, e.g. organic electroluminescent device, organic light-emitting transistor and organic light-emitting electrochemical cell
CN103765623B (en) 2011-08-22 2016-06-01 默克专利有限公司 Organic electroluminescence device
US9493698B2 (en) 2011-08-31 2016-11-15 Universal Display Corporation Organic electroluminescent materials and devices
RU2626977C2 (en) 2011-09-21 2017-08-02 Мерк Патент Гмбх Derivatives of carbazole for organic electroluminescent devices
KR101992506B1 (en) 2011-10-06 2019-06-24 메르크 파텐트 게엠베하 Organic electroluminescent device
DE102011116165A1 (en) 2011-10-14 2013-04-18 Merck Patent Gmbh Benzodioxepin-3-one compounds
US9515266B2 (en) 2011-10-20 2016-12-06 Merck Patent Gmbh Materials for organic electroluminescent devices
JP6223984B2 (en) 2011-10-27 2017-11-01 メルク パテント ゲーエムベーハー Materials for electronic devices
DE102011117422A1 (en) 2011-10-28 2013-05-02 Merck Patent Gmbh Hyperbranched polymers, process for their preparation and their use in electronic devices
US9337430B2 (en) 2011-11-01 2016-05-10 Merck Patent Gmbh Organic electroluminescent device
US8652656B2 (en) 2011-11-14 2014-02-18 Universal Display Corporation Triphenylene silane hosts
US9193745B2 (en) 2011-11-15 2015-11-24 Universal Display Corporation Heteroleptic iridium complex
CN103946215B (en) 2011-11-17 2016-09-28 默克专利有限公司 Spiral shell acridan derivant and it is as the purposes of material for organic electroluminescent device
US9217004B2 (en) 2011-11-21 2015-12-22 Universal Display Corporation Organic light emitting materials
US9512355B2 (en) 2011-12-09 2016-12-06 Universal Display Corporation Organic light emitting materials
US9944729B2 (en) * 2011-12-09 2018-04-17 University of Pittsburgh—of the Commonwealth System of Higher Education Redox stimulated variable-modulus material
KR20180126629A (en) 2011-12-12 2018-11-27 메르크 파텐트 게엠베하 Compounds for electronic devices
DE102011121022A1 (en) 2011-12-13 2013-06-13 Merck Patent Gmbh Organic sensitizers for up-conversion
US20130146875A1 (en) 2011-12-13 2013-06-13 Universal Display Corporation Split electrode for organic devices
DE102012022880A1 (en) 2011-12-22 2013-06-27 Merck Patent Gmbh Electronic device e.g. organic integrated circuits, organic field-effect transistors, organic thin-film transistors, organic light emitting transistors, comprises an organic layer comprising substituted heteroaryl compounds
US20140350642A1 (en) 2011-12-27 2014-11-27 Merck Patent Gmbh Metal Complexes Comprising 1,2,3-Triazoles
US8987451B2 (en) 2012-01-03 2015-03-24 Universal Display Corporation Synthesis of cyclometallated platinum(II) complexes
US9461254B2 (en) 2012-01-03 2016-10-04 Universal Display Corporation Organic electroluminescent materials and devices
US9163174B2 (en) 2012-01-04 2015-10-20 Universal Display Corporation Highly efficient phosphorescent materials
KR102012047B1 (en) 2012-01-06 2019-08-19 유니버셜 디스플레이 코포레이션 Highly efficient phosphorescent materials
US8969592B2 (en) 2012-01-10 2015-03-03 Universal Display Corporation Heterocyclic host materials
CN104053746B (en) 2012-01-16 2016-11-09 默克专利有限公司 Metal-organic complex
US10211413B2 (en) 2012-01-17 2019-02-19 Universal Display Corporation Organic electroluminescent materials and devices
CN104081553B (en) 2012-01-30 2017-07-04 默克专利有限公司 Nanocrystal on fiber
CN105218302B (en) 2012-02-14 2018-01-12 默克专利有限公司 The fluorene compound of spiral shell two for organic electroluminescence device
US9118017B2 (en) 2012-02-27 2015-08-25 Universal Display Corporation Host compounds for red phosphorescent OLEDs
US9386657B2 (en) 2012-03-15 2016-07-05 Universal Display Corporation Organic Electroluminescent materials and devices
US9054323B2 (en) 2012-03-15 2015-06-09 Universal Display Corporation Secondary hole transporting layer with diarylamino-phenyl-carbazole compounds
US9871201B2 (en) 2012-03-15 2018-01-16 Merck Patent Gmbh Electronic devices
JP6105040B2 (en) 2012-03-23 2017-03-29 メルク パテント ゲーエムベーハー 9,9'-spirobixanthene derivatives for electroluminescent devices
US8723209B2 (en) 2012-04-27 2014-05-13 Universal Display Corporation Out coupling layer containing particle polymer composite
US9184399B2 (en) 2012-05-04 2015-11-10 Universal Display Corporation Asymmetric hosts with triaryl silane side chains
US9773985B2 (en) 2012-05-21 2017-09-26 Universal Display Corporation Organic electroluminescent materials and devices
JP6324948B2 (en) 2012-05-24 2018-05-16 メルク パテント ゲーエムベーハー Metal complexes containing fused heterocyclic aromatic rings
DE102012011335A1 (en) 2012-06-06 2013-12-12 Merck Patent Gmbh Connections for Organic Electronic Devices
US9670404B2 (en) 2012-06-06 2017-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US9502672B2 (en) 2012-06-21 2016-11-22 Universal Display Corporation Organic electroluminescent materials and devices
US9725476B2 (en) 2012-07-09 2017-08-08 Universal Display Corporation Silylated metal complexes
US9231218B2 (en) 2012-07-10 2016-01-05 Universal Display Corporation Phosphorescent emitters containing dibenzo[1,4]azaborinine structure
US10622567B2 (en) 2012-07-10 2020-04-14 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2014008982A1 (en) 2012-07-13 2014-01-16 Merck Patent Gmbh Metal complexes
US9540329B2 (en) 2012-07-19 2017-01-10 Universal Display Corporation Organic electroluminescent materials and devices
US9059412B2 (en) 2012-07-19 2015-06-16 Universal Display Corporation Transition metal complexes containing substituted imidazole carbene as ligands and their application in OLEDs
US9768391B2 (en) 2012-07-23 2017-09-19 Merck Patent Gmbh Derivatives of 2-diarylaminofluorene and organic electronic compounds containing them
WO2014015937A1 (en) 2012-07-23 2014-01-30 Merck Patent Gmbh Compounds and organic electroluminescent devices
KR102125199B1 (en) 2012-07-23 2020-06-22 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
KR20220003643A (en) 2012-07-23 2022-01-10 메르크 파텐트 게엠베하 Fluorenes and electronic devices containing them
CN104488105B (en) 2012-07-25 2017-03-22 东丽株式会社 Light emitting element material and light emitting element
US9663544B2 (en) 2012-07-25 2017-05-30 Universal Display Corporation Organic electroluminescent materials and devices
US9318710B2 (en) 2012-07-30 2016-04-19 Universal Display Corporation Organic electroluminescent materials and devices
JP6363075B2 (en) 2012-08-07 2018-07-25 メルク パテント ゲーエムベーハー Metal complex
CN104541576B (en) 2012-08-10 2017-03-08 默克专利有限公司 Material for organic electroluminescence device
US9978958B2 (en) 2012-08-24 2018-05-22 Universal Display Corporation Phosphorescent emitters with phenylimidazole ligands
US20150207080A1 (en) 2012-08-24 2015-07-23 Konica Minolta Inc. Transparent electrode, electronic device, and method for manufacturing transparent electrode
US8952362B2 (en) 2012-08-31 2015-02-10 The Regents Of The University Of Michigan High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion
US10957870B2 (en) 2012-09-07 2021-03-23 Universal Display Corporation Organic light emitting device
US10454040B2 (en) 2012-09-18 2019-10-22 Merck Patent Gmbh Materials for electronic devices
WO2014044347A1 (en) 2012-09-20 2014-03-27 Merck Patent Gmbh Metal complexes
US9287513B2 (en) 2012-09-24 2016-03-15 Universal Display Corporation Organic electroluminescent materials and devices
US9312505B2 (en) 2012-09-25 2016-04-12 Universal Display Corporation Organic electroluminescent materials and devices
US9252363B2 (en) 2012-10-04 2016-02-02 Universal Display Corporation Aryloxyalkylcarboxylate solvent compositions for inkjet printing of organic layers
JP6250684B2 (en) 2012-10-11 2017-12-20 メルク パテント ゲーエムベーハー Materials for organic electroluminescent devices
CN104781368B (en) 2012-10-12 2018-05-01 默克专利有限公司 Illuminator and main body with aromatic units
DE102012020167A1 (en) 2012-10-13 2014-04-17 Eberhard Karls Universität Tübingen metal complexes
KR101963104B1 (en) 2012-10-31 2019-03-28 메르크 파텐트 게엠베하 Electronic device
DE102012021650A1 (en) 2012-11-03 2014-05-08 Eberhard Karls Universität Tübingen metal complexes
US8692241B1 (en) 2012-11-08 2014-04-08 Universal Display Corporation Transition metal complexes containing triazole and tetrazole carbene ligands
US9685617B2 (en) 2012-11-09 2017-06-20 Universal Display Corporation Organic electronuminescent materials and devices
US9634264B2 (en) 2012-11-09 2017-04-25 Universal Display Corporation Organic electroluminescent materials and devices
US8946697B1 (en) 2012-11-09 2015-02-03 Universal Display Corporation Iridium complexes with aza-benzo fused ligands
US9748500B2 (en) 2015-01-15 2017-08-29 Universal Display Corporation Organic light emitting materials
CN104781247B (en) 2012-11-12 2017-08-15 默克专利有限公司 Material for electronic device
US10069090B2 (en) 2012-11-20 2018-09-04 Universal Display Corporation Organic electroluminescent materials and devices
US9190623B2 (en) 2012-11-20 2015-11-17 Universal Display Corporation Organic electroluminescent materials and devices
JP6407877B2 (en) 2012-11-20 2018-10-17 メルク パテント ゲーエムベーハー Formulations in high purity solvents for the manufacture of electronic devices
US9512136B2 (en) 2012-11-26 2016-12-06 Universal Display Corporation Organic electroluminescent materials and devices
US9166175B2 (en) 2012-11-27 2015-10-20 Universal Display Corporation Organic electroluminescent materials and devices
JP6363090B2 (en) 2012-11-30 2018-07-25 メルク パテント ゲーエムベーハー Electronic element
US9196860B2 (en) 2012-12-04 2015-11-24 Universal Display Corporation Compounds for triplet-triplet annihilation upconversion
US8716484B1 (en) 2012-12-05 2014-05-06 Universal Display Corporation Hole transporting materials with twisted aryl groups
US9209411B2 (en) 2012-12-07 2015-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US9653691B2 (en) 2012-12-12 2017-05-16 Universal Display Corporation Phosphorescence-sensitizing fluorescence material system
US20150329772A1 (en) 2013-01-03 2015-11-19 Merck Patent Gmbh Materials for Electronic Devices
WO2014106524A2 (en) 2013-01-03 2014-07-10 Merck Patent Gmbh Materials for electronic devices
US10400163B2 (en) 2013-02-08 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US10367154B2 (en) 2013-02-21 2019-07-30 Universal Display Corporation Organic electroluminescent materials and devices
US8927749B2 (en) 2013-03-07 2015-01-06 Universal Display Corporation Organic electroluminescent materials and devices
US9419225B2 (en) 2013-03-14 2016-08-16 Universal Display Corporation Organic electroluminescent materials and devices
US9997712B2 (en) 2013-03-27 2018-06-12 Universal Display Corporation Organic electroluminescent materials and devices
JP6350518B2 (en) 2013-03-29 2018-07-04 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENCE ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE HAVING THE SAME
US9537106B2 (en) 2013-05-09 2017-01-03 Universal Display Corporation Organic electroluminescent materials and devices
DE102013008189A1 (en) 2013-05-14 2014-12-04 Eberhard Karls Universität Tübingen metal complexes
US9735373B2 (en) 2013-06-10 2017-08-15 Universal Display Corporation Organic electroluminescent materials and devices
US9673401B2 (en) 2013-06-28 2017-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US10199581B2 (en) 2013-07-01 2019-02-05 Universal Display Corporation Organic electroluminescent materials and devices
US10121975B2 (en) 2013-07-03 2018-11-06 Universal Display Corporation Organic electroluminescent materials and devices
US9761807B2 (en) 2013-07-15 2017-09-12 Universal Display Corporation Organic light emitting diode materials
US9324949B2 (en) 2013-07-16 2016-04-26 Universal Display Corporation Organic electroluminescent materials and devices
US9553274B2 (en) 2013-07-16 2017-01-24 Universal Display Corporation Organic electroluminescent materials and devices
US9224958B2 (en) 2013-07-19 2015-12-29 Universal Display Corporation Organic electroluminescent materials and devices
US20150028290A1 (en) 2013-07-25 2015-01-29 Universal Display Corporation Heteroleptic osmium complex and method of making the same
JP2016525781A (en) 2013-07-29 2016-08-25 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Electro-optic element and use thereof
CN105409021B (en) 2013-07-29 2018-07-13 默克专利有限公司 Electroluminescent device
EP3027707B1 (en) 2013-07-30 2019-12-11 Merck Patent GmbH Materials for electronic devices
US20160164002A1 (en) 2013-07-30 2016-06-09 Merck Patent Gmbh Materials for electronic devices
US9831437B2 (en) 2013-08-20 2017-11-28 Universal Display Corporation Organic electroluminescent materials and devices
US10074806B2 (en) 2013-08-20 2018-09-11 Universal Display Corporation Organic electroluminescent materials and devices
US9932359B2 (en) 2013-08-30 2018-04-03 University Of Southern California Organic electroluminescent materials and devices
US10199582B2 (en) 2013-09-03 2019-02-05 University Of Southern California Organic electroluminescent materials and devices
US9735378B2 (en) 2013-09-09 2017-08-15 Universal Display Corporation Organic electroluminescent materials and devices
US9748503B2 (en) 2013-09-13 2017-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US10003034B2 (en) 2013-09-30 2018-06-19 Universal Display Corporation Organic electroluminescent materials and devices
KR102310370B1 (en) 2013-10-02 2021-10-07 메르크 파텐트 게엠베하 Boron-containing compounds for use in oleds
US9831447B2 (en) 2013-10-08 2017-11-28 Universal Display Corporation Organic electroluminescent materials and devices
US9293712B2 (en) 2013-10-11 2016-03-22 Universal Display Corporation Disubstituted pyrene compounds with amino group containing ortho aryl group and devices containing the same
US9853229B2 (en) 2013-10-23 2017-12-26 University Of Southern California Organic electroluminescent materials and devices
US20150115250A1 (en) 2013-10-29 2015-04-30 Universal Display Corporation Organic electroluminescent materials and devices
US9306179B2 (en) 2013-11-08 2016-04-05 Universal Display Corporation Organic electroluminescent materials and devices
US9647218B2 (en) 2013-11-14 2017-05-09 Universal Display Corporation Organic electroluminescent materials and devices
US9905784B2 (en) 2013-11-15 2018-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US10056565B2 (en) 2013-11-20 2018-08-21 Universal Display Corporation Organic electroluminescent materials and devices
US10644251B2 (en) 2013-12-04 2020-05-05 Universal Display Corporation Organic electroluminescent materials and devices
JP6896422B2 (en) 2013-12-06 2021-06-30 メルク パテント ゲーエムベーハー Compounds and organic electronic devices
KR102380808B1 (en) 2013-12-06 2022-03-30 메르크 파텐트 게엠베하 Substituted oxepines
EP3077475B1 (en) 2013-12-06 2018-07-04 Merck Patent GmbH Compositions containing a polymeric binder which comprises acrylic and/or methacrylic acid ester units
US9876173B2 (en) 2013-12-09 2018-01-23 Universal Display Corporation Organic electroluminescent materials and devices
CN105814170B (en) 2013-12-12 2019-11-05 默克专利有限公司 The material of electronic device
US10355227B2 (en) 2013-12-16 2019-07-16 Universal Display Corporation Metal complex for phosphorescent OLED
WO2015090504A2 (en) 2013-12-19 2015-06-25 Merck Patent Gmbh Heterocyclic spiro compounds
US9847496B2 (en) 2013-12-23 2017-12-19 Universal Display Corporation Organic electroluminescent materials and devices
US10135008B2 (en) 2014-01-07 2018-11-20 Universal Display Corporation Organic electroluminescent materials and devices
US9978961B2 (en) 2014-01-08 2018-05-22 Universal Display Corporation Organic electroluminescent materials and devices
US9755159B2 (en) 2014-01-23 2017-09-05 Universal Display Corporation Organic materials for OLEDs
US9935277B2 (en) 2014-01-30 2018-04-03 Universal Display Corporation Organic electroluminescent materials and devices
US9590194B2 (en) 2014-02-14 2017-03-07 Universal Display Corporation Organic electroluminescent materials and devices
US10003033B2 (en) 2014-02-18 2018-06-19 Universal Display Corporation Organic electroluminescent materials and devices
US9847497B2 (en) 2014-02-18 2017-12-19 Universal Display Corporation Organic electroluminescent materials and devices
US10707423B2 (en) 2014-02-21 2020-07-07 Universal Display Corporation Organic electroluminescent materials and devices
US9502656B2 (en) 2014-02-24 2016-11-22 Universal Display Corporation Organic electroluminescent materials and devices
US9647217B2 (en) 2014-02-24 2017-05-09 Universal Display Corporation Organic electroluminescent materials and devices
US10403825B2 (en) 2014-02-27 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US9181270B2 (en) 2014-02-28 2015-11-10 Universal Display Corporation Method of making sulfide compounds
US9590195B2 (en) 2014-02-28 2017-03-07 Universal Display Corporation Organic electroluminescent materials and devices
US9673407B2 (en) 2014-02-28 2017-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US9190620B2 (en) 2014-03-01 2015-11-17 Universal Display Corporation Organic electroluminescent materials and devices
US9397309B2 (en) 2014-03-13 2016-07-19 Universal Display Corporation Organic electroluminescent devices
US10208026B2 (en) 2014-03-18 2019-02-19 Universal Display Corporation Organic electroluminescent materials and devices
US9748504B2 (en) 2014-03-25 2017-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US9859504B2 (en) 2014-03-31 2018-01-02 Commonwealth Scientific And Industrial Research Organisation Diamine compounds for phosphorescent diazaborole metal complexes and electroluminescent devices
EP2927300B1 (en) 2014-03-31 2016-11-16 Commonwealth Scientific and Industrial Research Organisation Phenylenediamine compounds for phosphorescent diazaborole metal complexes
US9929353B2 (en) 2014-04-02 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US9691993B2 (en) 2014-04-09 2017-06-27 Universal Display Corporation Organic electroluminescent materials and devices
US9905785B2 (en) 2014-04-14 2018-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US10008679B2 (en) 2014-04-14 2018-06-26 Universal Display Corporation Organic electroluminescent materials and devices
US10256427B2 (en) 2014-04-15 2019-04-09 Universal Display Corporation Efficient organic electroluminescent devices
US9450198B2 (en) 2014-04-15 2016-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US9741941B2 (en) 2014-04-29 2017-08-22 Universal Display Corporation Organic electroluminescent materials and devices
CN106255687B (en) 2014-04-30 2020-06-05 默克专利有限公司 Material for electronic devices
US10457699B2 (en) 2014-05-02 2019-10-29 Universal Display Corporation Organic electroluminescent materials and devices
CN114394958A (en) 2014-05-05 2022-04-26 默克专利有限公司 Material for organic light emitting device
EP3140871B1 (en) 2014-05-08 2018-12-26 Universal Display Corporation Stabilized imidazophenanthridine materials
US10636983B2 (en) 2014-05-08 2020-04-28 Universal Display Corporation Organic electroluminescent materials and devices
US10301338B2 (en) 2014-05-08 2019-05-28 Universal Display Corporation Organic electroluminescent materials and devices
US10403830B2 (en) 2014-05-08 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US9997716B2 (en) 2014-05-27 2018-06-12 Universal Display Corporation Organic electroluminescent materials and devices
US10461260B2 (en) 2014-06-03 2019-10-29 Universal Display Corporation Organic electroluminescent materials and devices
DE102015006708A1 (en) 2014-06-12 2015-12-17 Merck Patent Gmbh metal complexes
DE102014008722A1 (en) 2014-06-18 2015-12-24 Merck Patent Gmbh Compositions for electronic devices
US10644246B2 (en) 2014-06-25 2020-05-05 Merck Patent Gmbh Materials for organic electroluminescent devices
US9911931B2 (en) 2014-06-26 2018-03-06 Universal Display Corporation Organic electroluminescent materials and devices
EP2960315A1 (en) 2014-06-27 2015-12-30 cynora GmbH Organic electroluminescent device
EP2963044A1 (en) 2014-06-30 2016-01-06 cynora GmbH Binuclear metal (I) complexes with tetradentate ligands for optoelectronic applications
US10297762B2 (en) 2014-07-09 2019-05-21 Universal Display Corporation Organic electroluminescent materials and devices
US10566546B2 (en) 2014-07-14 2020-02-18 Universal Display Corporation Organic electroluminescent materials and devices
WO2016012075A1 (en) 2014-07-21 2016-01-28 Merck Patent Gmbh Materials for electronic devices
US9929357B2 (en) 2014-07-22 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US11108000B2 (en) 2014-08-07 2021-08-31 Unniversal Display Corporation Organic electroluminescent materials and devices
US10411200B2 (en) 2014-08-07 2019-09-10 Universal Display Corporation Electroluminescent (2-phenylpyridine)iridium complexes and devices
DE102014012818A1 (en) 2014-08-28 2016-03-03 Eberhard Karls Universität Tübingen metal complexes
CN106687563B (en) 2014-09-05 2023-03-14 默克专利有限公司 Preparation and electronic device
JP6752780B2 (en) * 2014-09-24 2020-09-09 メルク パテント ゲーエムベーハー Materials for OLED devices
US10135007B2 (en) 2014-09-29 2018-11-20 Universal Display Corporation Organic electroluminescent materials and devices
US10043987B2 (en) 2014-09-29 2018-08-07 Universal Display Corporation Organic electroluminescent materials and devices
US10749113B2 (en) 2014-09-29 2020-08-18 Universal Display Corporation Organic electroluminescent materials and devices
US10361375B2 (en) 2014-10-06 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
US10854826B2 (en) 2014-10-08 2020-12-01 Universal Display Corporation Organic electroluminescent compounds, compositions and devices
EP3204463B1 (en) 2014-10-08 2019-04-17 cynora GmbH Metal complexes with tridentate ligands for optoelectronic applications
US9397302B2 (en) 2014-10-08 2016-07-19 Universal Display Corporation Organic electroluminescent materials and devices
US10950803B2 (en) 2014-10-13 2021-03-16 Universal Display Corporation Compounds and uses in devices
US9484541B2 (en) 2014-10-20 2016-11-01 Universal Display Corporation Organic electroluminescent materials and devices
US10868261B2 (en) 2014-11-10 2020-12-15 Universal Display Corporation Organic electroluminescent materials and devices
KR102496045B1 (en) 2014-11-11 2023-02-03 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
US10411201B2 (en) 2014-11-12 2019-09-10 Universal Display Corporation Organic electroluminescent materials and devices
US10038151B2 (en) 2014-11-12 2018-07-31 Universal Display Corporation Organic electroluminescent materials and devices
US9882151B2 (en) 2014-11-14 2018-01-30 Universal Display Corporation Organic electroluminescent materials and devices
US9871212B2 (en) 2014-11-14 2018-01-16 Universal Display Corporation Organic electroluminescent materials and devices
WO2016079097A1 (en) 2014-11-18 2016-05-26 Cynora Gmbh Copper(i) complexes for optoelectronic applications
US9761814B2 (en) 2014-11-18 2017-09-12 Universal Display Corporation Organic light-emitting materials and devices
US9444075B2 (en) 2014-11-26 2016-09-13 Universal Display Corporation Emissive display with photo-switchable polarization
JP2018501354A (en) 2014-12-12 2018-01-18 メルク パテント ゲーエムベーハー Organic compounds having soluble groups
US9450195B2 (en) 2014-12-17 2016-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US10636978B2 (en) 2014-12-30 2020-04-28 Universal Display Corporation Organic electroluminescent materials and devices
EP3241248A1 (en) 2014-12-30 2017-11-08 Merck Patent GmbH Formulations and electronic devices
US10253252B2 (en) 2014-12-30 2019-04-09 Universal Display Corporation Organic electroluminescent materials and devices
US9312499B1 (en) 2015-01-05 2016-04-12 Universal Display Corporation Organic electroluminescent materials and devices
US9406892B2 (en) 2015-01-07 2016-08-02 Universal Display Corporation Organic electroluminescent materials and devices
US10418569B2 (en) 2015-01-25 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US9711730B2 (en) 2015-01-25 2017-07-18 Universal Display Corporation Organic electroluminescent materials and devices
JP7030519B2 (en) 2015-01-30 2022-03-07 メルク パテント ゲーエムベーハー Formulations with low particle content
WO2016119992A1 (en) 2015-01-30 2016-08-04 Merck Patent Gmbh Materials for electronic devices
EP3254317B1 (en) 2015-02-03 2019-07-31 Merck Patent GmbH Metal complexes
US10355222B2 (en) 2015-02-06 2019-07-16 Universal Display Corporation Organic electroluminescent materials and devices
US10644247B2 (en) 2015-02-06 2020-05-05 Universal Display Corporation Organic electroluminescent materials and devices
US10418562B2 (en) 2015-02-06 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
DE102015101767A1 (en) 2015-02-06 2016-08-11 Technische Universität Dresden Blue fluorescence emitter
US10177316B2 (en) 2015-02-09 2019-01-08 Universal Display Corporation Organic electroluminescent materials and devices
US10144867B2 (en) 2015-02-13 2018-12-04 Universal Display Corporation Organic electroluminescent materials and devices
JP5831654B1 (en) 2015-02-13 2015-12-09 コニカミノルタ株式会社 Aromatic heterocycle derivative, organic electroluminescence device using the same, illumination device and display device
US10680183B2 (en) 2015-02-15 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US10600966B2 (en) 2015-02-27 2020-03-24 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
US10686143B2 (en) 2015-03-05 2020-06-16 Universal Display Corporation Organic electroluminescent materials and devices
US10270046B2 (en) 2015-03-06 2019-04-23 Universal Display Corporation Organic electroluminescent materials and devices
US9780316B2 (en) 2015-03-16 2017-10-03 Universal Display Corporation Organic electroluminescent materials and devices
US9911928B2 (en) 2015-03-19 2018-03-06 Universal Display Corporation Organic electroluminescent materials and devices
US9871214B2 (en) 2015-03-23 2018-01-16 Universal Display Corporation Organic electroluminescent materials and devices
US10529931B2 (en) 2015-03-24 2020-01-07 Universal Display Corporation Organic Electroluminescent materials and devices
US10297770B2 (en) 2015-03-27 2019-05-21 Universal Display Corporation Organic electroluminescent materials and devices
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US10693082B2 (en) 2015-04-06 2020-06-23 Universal Display Corporation Organic electroluminescent materials and devices
US10403826B2 (en) 2015-05-07 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices
US10777749B2 (en) 2015-05-07 2020-09-15 Universal Display Corporation Organic electroluminescent materials and devices
US9478758B1 (en) 2015-05-08 2016-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10109799B2 (en) 2015-05-21 2018-10-23 Universal Display Corporation Organic electroluminescent materials and devices
US10256411B2 (en) 2015-05-21 2019-04-09 Universal Display Corporation Organic electroluminescent materials and devices
US10033004B2 (en) 2015-06-01 2018-07-24 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US11925102B2 (en) 2015-06-04 2024-03-05 Universal Display Corporation Organic electroluminescent materials and devices
KR102543777B1 (en) 2015-06-10 2023-06-14 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
US10808170B2 (en) 2015-06-12 2020-10-20 Merck Patent Gmbh Esters containing non-aromatic cycles as solvents for OLED formulations
US10825997B2 (en) 2015-06-25 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US10873036B2 (en) 2015-07-07 2020-12-22 Universal Display Corporation Organic electroluminescent materials and devices
KR102643183B1 (en) 2015-07-15 2024-03-04 메르크 파텐트 게엠베하 Compositions Comprising Organic Semiconducting Compounds
US9978956B2 (en) 2015-07-15 2018-05-22 Universal Display Corporation Organic electroluminescent materials and devices
KR102660538B1 (en) 2015-07-22 2024-04-24 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
GB201513037D0 (en) 2015-07-23 2015-09-09 Merck Patent Gmbh Phenyl-derived compound for use in organic electronic devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
US11538995B2 (en) 2015-07-29 2022-12-27 Merck Patent Gmbh Materials for organic electroluminescent devices
EP3328841B1 (en) 2015-07-30 2023-10-11 Merck Patent GmbH Materials for organic electroluminescent devices
US11018309B2 (en) 2015-08-03 2021-05-25 Universal Display Corporation Organic electroluminescent materials and devices
US10934292B2 (en) 2015-08-13 2021-03-02 Merck Patent Gmbh Hexamethylindanes
US10696664B2 (en) 2015-08-14 2020-06-30 Merck Patent Gmbh Phenoxazine derivatives for organic electroluminescent devices
US11522140B2 (en) 2015-08-17 2022-12-06 Universal Display Corporation Organic electroluminescent materials and devices
US10522769B2 (en) 2015-08-18 2019-12-31 Universal Display Corporation Organic electroluminescent materials and devices
US10181564B2 (en) 2015-08-26 2019-01-15 Universal Display Corporation Organic electroluminescent materials and devices
WO2017036573A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Compounds for electronic devices
US10361381B2 (en) 2015-09-03 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
US11706972B2 (en) 2015-09-08 2023-07-18 Universal Display Corporation Organic electroluminescent materials and devices
US11302872B2 (en) 2015-09-09 2022-04-12 Universal Display Corporation Organic electroluminescent materials and devices
US10770664B2 (en) 2015-09-21 2020-09-08 Universal Display Corporation Organic electroluminescent materials and devices
US20170092880A1 (en) 2015-09-25 2017-03-30 Universal Display Corporation Organic electroluminescent materials and devices
US10847728B2 (en) 2015-10-01 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US10593892B2 (en) 2015-10-01 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
US10991895B2 (en) 2015-10-06 2021-04-27 Universal Display Corporation Organic electroluminescent materials and devices
DE102015013381A1 (en) 2015-10-14 2017-04-20 Eberhard Karls Universität Tübingen metal complexes
KR20180077216A (en) 2015-10-27 2018-07-06 메르크 파텐트 게엠베하 Material for organic electroluminescence device
US10388893B2 (en) 2015-10-29 2019-08-20 Universal Display Corporation Organic electroluminescent materials and devices
US10177318B2 (en) 2015-10-29 2019-01-08 Universal Display Corporation Organic electroluminescent materials and devices
US10388892B2 (en) 2015-10-29 2019-08-20 Universal Display Corporation Organic electroluminescent materials and devices
US10998507B2 (en) 2015-11-23 2021-05-04 Universal Display Corporation Organic electroluminescent materials and devices
US10476010B2 (en) 2015-11-30 2019-11-12 Universal Display Corporation Organic electroluminescent materials and devices
DE102015016016A1 (en) 2015-12-10 2017-06-14 Eberhard Karls Universität Tübingen metal complexes
WO2017097391A1 (en) 2015-12-10 2017-06-15 Merck Patent Gmbh Formulations containing ketones comprising non-aromatic cycles
KR20180095854A (en) 2015-12-15 2018-08-28 메르크 파텐트 게엠베하 Esters containing aromatic groups as solvents for organic electronic formulations
EP3390550B1 (en) 2015-12-16 2022-09-28 Merck Patent GmbH Formulations containing a mixture of at least two different solvents
JP7438661B2 (en) 2015-12-16 2024-02-27 メルク パテント ゲーエムベーハー Formulations containing solid solvents
DE102015122869A1 (en) 2015-12-28 2017-06-29 Technische Universität Dresden New emitter materials and matrix materials for opto-electronic and electronic components, in particular organic light-emitting diodes (OLEDs)
US11024808B2 (en) 2015-12-29 2021-06-01 Universal Display Corporation Organic electroluminescent materials and devices
US10957861B2 (en) 2015-12-29 2021-03-23 Universal Display Corporation Organic electroluminescent materials and devices
US10135006B2 (en) 2016-01-04 2018-11-20 Universal Display Corporation Organic electroluminescent materials and devices
JP6788314B2 (en) 2016-01-06 2020-11-25 コニカミノルタ株式会社 Organic electroluminescence element, manufacturing method of organic electroluminescence element, display device and lighting device
EP3411455B1 (en) 2016-02-05 2020-10-21 Merck Patent GmbH Materials for electronic devices
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices
US10457864B2 (en) 2016-02-09 2019-10-29 Universal Display Corporation Organic electroluminescent materials and devices
US10707427B2 (en) 2016-02-09 2020-07-07 Universal Display Corporation Organic electroluminescent materials and devices
KR20180110125A (en) 2016-02-17 2018-10-08 메르크 파텐트 게엠베하 Formulation of organic functional material
US10600967B2 (en) 2016-02-18 2020-03-24 Universal Display Corporation Organic electroluminescent materials and devices
KR20180118748A (en) 2016-03-03 2018-10-31 메르크 파텐트 게엠베하 Material for organic electroluminescence device
DE102016003104A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Container comprising a formulation containing at least one organic semiconductor
US11094891B2 (en) 2016-03-16 2021-08-17 Universal Display Corporation Organic electroluminescent materials and devices
TWI745361B (en) 2016-03-17 2021-11-11 德商麥克專利有限公司 Compounds having spirobifluorene structures
US10276809B2 (en) 2016-04-05 2019-04-30 Universal Display Corporation Organic electroluminescent materials and devices
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US20190165282A1 (en) 2016-04-11 2019-05-30 Merck Patent Gmbh Heterocyclic compounds comprising dibenzofuran and/or dibenzothiophene structures
US10566552B2 (en) 2016-04-13 2020-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US11228002B2 (en) 2016-04-22 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11081647B2 (en) 2016-04-22 2021-08-03 Universal Display Corporation Organic electroluminescent materials and devices
US11228003B2 (en) 2016-04-22 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
WO2017186760A1 (en) 2016-04-29 2017-11-02 Merck Patent Gmbh Materials for organic electroluminescent devices
US10840458B2 (en) 2016-05-25 2020-11-17 Universal Display Corporation Organic electroluminescent materials and devices
US10468609B2 (en) 2016-06-02 2019-11-05 Universal Display Corporation Organic electroluminescent materials and devices
KR20230011476A (en) 2016-06-03 2023-01-20 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
DE102016110970A1 (en) 2016-06-15 2017-12-21 Technische Universität Dresden Efficient light-emitting emitter molecules for optoelectronic applications by targeted enhancement of emission from charge-separated CT states based on dual-fluorescent benzene (poly) carboxylate acceptors
WO2017216129A1 (en) 2016-06-16 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
JP2019523998A (en) 2016-06-17 2019-08-29 メルク パテント ゲーエムベーハー Formulation of organic functional materials
US10686140B2 (en) 2016-06-20 2020-06-16 Universal Display Corporation Organic electroluminescent materials and devices
US10672997B2 (en) 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10651403B2 (en) 2016-06-20 2020-05-12 Universal Display Corporation Organic electroluminescent materials and devices
US10727423B2 (en) 2016-06-20 2020-07-28 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US10862054B2 (en) 2016-06-20 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
TW201815998A (en) 2016-06-28 2018-05-01 德商麥克專利有限公司 Formulation of an organic functional material
US10957866B2 (en) 2016-06-30 2021-03-23 Universal Display Corporation Organic electroluminescent materials and devices
KR102404836B1 (en) 2016-06-30 2022-06-02 메르크 파텐트 게엠베하 Method for separation of enantiomeric mixtures from metal complexes
WO2018007421A1 (en) 2016-07-08 2018-01-11 Merck Patent Gmbh Materials for organic electroluminescent devices
US9929360B2 (en) 2016-07-08 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US10680184B2 (en) 2016-07-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
TWI749026B (en) 2016-07-14 2021-12-11 德商麥克專利有限公司 Metal complexes
US10153443B2 (en) 2016-07-19 2018-12-11 Universal Display Corporation Organic electroluminescent materials and devices
US10720587B2 (en) 2016-07-19 2020-07-21 Universal Display Corporation Organic electroluminescent materials and devices
EP3487864B1 (en) 2016-07-25 2020-04-29 Merck Patent GmbH Metal complexes for use as emitters in organic electroluminescence devices
WO2018019687A1 (en) 2016-07-25 2018-02-01 Merck Patent Gmbh Dinuclear and oligonuclear metal complexes containing tripodal bidentate part ligands and their use in electronic devices
CN109563402B (en) 2016-08-04 2022-07-15 默克专利有限公司 Preparation of organic functional materials
US10205105B2 (en) 2016-08-15 2019-02-12 Universal Display Corporation Organic electroluminescent materials and devices
WO2018041769A1 (en) 2016-08-30 2018-03-08 Merck Patent Gmbh Binuclear and trinuclear metal complexes composed of two inter-linked tripodal hexadentate ligands for use in electroluminescent devices
EP3512848B1 (en) 2016-09-14 2020-11-18 Merck Patent GmbH Compounds with carbazole structures
KR102468446B1 (en) 2016-09-14 2022-11-18 메르크 파텐트 게엠베하 A compound having a spirobifluorene-structure
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10505127B2 (en) 2016-09-19 2019-12-10 Universal Display Corporation Organic electroluminescent materials and devices
US11136343B2 (en) 2016-09-21 2021-10-05 Merck Patent Gmbh Binuclear metal complexes for use as emitters in organic electroluminescent devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
TWI766884B (en) 2016-09-30 2022-06-11 德商麥克專利有限公司 Compounds having diazadibenzofuran or diazadibenzothiophene structures, process for preparing the same and use thereof
WO2018060218A1 (en) 2016-09-30 2018-04-05 Merck Patent Gmbh Carbazoles with diazadibenzofurane or diazadibenzothiophene structures
US11183642B2 (en) 2016-10-03 2021-11-23 Universal Display Corporation Organic electroluminescent materials and devices
US11127906B2 (en) 2016-10-03 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
US11081658B2 (en) 2016-10-03 2021-08-03 Universal Display Corporation Organic electroluminescent materials and devices
US11189804B2 (en) 2016-10-03 2021-11-30 Universal Display Corporation Organic electroluminescent materials and devices
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
TWI764942B (en) 2016-10-10 2022-05-21 德商麥克專利有限公司 Electronic device
EP3526227B1 (en) 2016-10-12 2020-06-03 Merck Patent GmbH Binuclear metal complexes and electronic devices, in particular organic electroluminescent devices containing said metal complexes
US11322696B2 (en) 2016-10-12 2022-05-03 Merck Patent Gmbh Metal complexes
WO2018069273A1 (en) 2016-10-13 2018-04-19 Merck Patent Gmbh Metal complexes
US11239432B2 (en) 2016-10-14 2022-02-01 Universal Display Corporation Organic electroluminescent materials and devices
US10608185B2 (en) 2016-10-17 2020-03-31 Univeral Display Corporation Organic electroluminescent materials and devices
DE102017008794A1 (en) 2016-10-17 2018-04-19 Merck Patent Gmbh Materials for use in electronic devices
US10236458B2 (en) 2016-10-24 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
JP2019535683A (en) 2016-10-25 2019-12-12 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Metal complex
KR102451842B1 (en) 2016-10-31 2022-10-07 메르크 파텐트 게엠베하 Formulation of organic functional materials
WO2018077662A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
US11302870B2 (en) 2016-11-02 2022-04-12 Merck Patent Gmbh Materials for electronic devices
KR102564613B1 (en) 2016-11-08 2023-08-07 메르크 파텐트 게엠베하 Compounds for Electronic Devices
CN109890813B (en) 2016-11-09 2023-05-30 默克专利有限公司 Material for organic electroluminescent device
US20180130956A1 (en) 2016-11-09 2018-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US10340464B2 (en) 2016-11-10 2019-07-02 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
TWI756292B (en) 2016-11-14 2022-03-01 德商麥克專利有限公司 Compounds having an acceptor group and a donor group
US10897016B2 (en) 2016-11-14 2021-01-19 Universal Display Corporation Organic electroluminescent materials and devices
KR102580980B1 (en) 2016-11-17 2023-09-20 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
US10662196B2 (en) 2016-11-17 2020-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US10964893B2 (en) 2016-11-17 2021-03-30 Universal Display Corporation Organic electroluminescent materials and devices
US10833276B2 (en) 2016-11-21 2020-11-10 Universal Display Corporation Organic electroluminescent materials and devices
US10153445B2 (en) 2016-11-21 2018-12-11 Universal Display Corporation Organic electroluminescent materials and devices
TW201833118A (en) 2016-11-22 2018-09-16 德商麥克專利有限公司 Materials for electronic devices
KR102523619B1 (en) * 2016-11-25 2023-04-20 엘티소재주식회사 Hetero-cyclic compound and organic light emitting device using the same
CN109996788B (en) 2016-11-30 2023-11-17 默克专利有限公司 Compounds having valerolactam structure
US11555048B2 (en) 2016-12-01 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
WO2018104194A1 (en) 2016-12-05 2018-06-14 Merck Patent Gmbh Materials for organic electroluminescent devices
TW201831468A (en) 2016-12-05 2018-09-01 德商麥克專利有限公司 Nitrogen-containing heterocycles
US20190378996A1 (en) 2016-12-05 2019-12-12 Merck Patent Gmbh Materials for organic electroluminescent devices
CN110168047B (en) 2016-12-13 2023-08-08 默克专利有限公司 Preparation of organic functional material
US11548905B2 (en) 2016-12-15 2023-01-10 Universal Display Corporation Organic electroluminescent materials and devices
US10490753B2 (en) 2016-12-15 2019-11-26 Universal Display Corporation Organic electroluminescent materials and devices
US11545636B2 (en) 2016-12-15 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US10811618B2 (en) 2016-12-19 2020-10-20 Universal Display Corporation Organic electroluminescent materials and devices
WO2018114744A1 (en) 2016-12-20 2018-06-28 Merck Patent Gmbh A white light emitting solid state light source
TW201835300A (en) 2016-12-22 2018-10-01 德商麥克專利有限公司 Mixtures comprising at least two organic-functional compounds
TWI761406B (en) 2016-12-22 2022-04-21 德商麥克專利有限公司 Materials for electronic devices
US11152579B2 (en) 2016-12-28 2021-10-19 Universal Display Corporation Organic electroluminescent materials and devices
JP2020504762A (en) 2017-01-04 2020-02-13 メルク パテント ゲーエムベーハー Materials for organic electroluminescent devices
US11201298B2 (en) 2017-01-09 2021-12-14 Universal Display Corporation Organic electroluminescent materials and devices
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US10804475B2 (en) 2017-01-11 2020-10-13 Universal Display Corporation Organic electroluminescent materials and devices
US11545637B2 (en) 2017-01-13 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US10629820B2 (en) 2017-01-18 2020-04-21 Universal Display Corporation Organic electroluminescent materials and devices
US10964904B2 (en) 2017-01-20 2021-03-30 Universal Display Corporation Organic electroluminescent materials and devices
US11053268B2 (en) 2017-01-20 2021-07-06 Universal Display Corporation Organic electroluminescent materials and devices
US11765968B2 (en) 2017-01-23 2023-09-19 Universal Display Corporation Organic electroluminescent materials and devices
US11050028B2 (en) 2017-01-24 2021-06-29 Universal Display Corporation Organic electroluminescent materials and devices
KR102625926B1 (en) 2017-01-25 2024-01-17 메르크 파텐트 게엠베하 Carbazole derivatives
TWI763772B (en) 2017-01-30 2022-05-11 德商麥克專利有限公司 Method for forming an organic element of an electronic device
US11407766B2 (en) 2017-01-30 2022-08-09 Merck Patent Gmbh Materials for organic electroluminescent devices
US20200013960A1 (en) 2017-02-02 2020-01-09 Merck Patent Gmbh Materials for electronic devices
TW201835075A (en) 2017-02-14 2018-10-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
US10978647B2 (en) 2017-02-15 2021-04-13 Universal Display Corporation Organic electroluminescent materials and devices
US10844084B2 (en) 2017-02-22 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US11393987B2 (en) 2017-03-01 2022-07-19 Merck Patent Gmbh Organic electroluminescent device
KR102557516B1 (en) 2017-03-02 2023-07-20 메르크 파텐트 게엠베하 Materials for Organic Electronic Devices
US10745431B2 (en) 2017-03-08 2020-08-18 Universal Display Corporation Organic electroluminescent materials and devices
US10741780B2 (en) 2017-03-10 2020-08-11 Universal Display Corporation Organic electroluminescent materials and devices
TW201843143A (en) 2017-03-13 2018-12-16 德商麥克專利有限公司 Compounds containing arylamine structures
EP3596066B1 (en) 2017-03-15 2022-05-18 Merck Patent GmbH Materials for organic electroluminescent devices
US10672998B2 (en) 2017-03-23 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US10873037B2 (en) 2017-03-28 2020-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US10910577B2 (en) 2017-03-28 2021-02-02 Universal Display Corporation Organic electroluminescent materials and devices
US10844085B2 (en) 2017-03-29 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
US11056658B2 (en) 2017-03-29 2021-07-06 Universal Display Corporation Organic electroluminescent materials and devices
JP2020515602A (en) 2017-03-29 2020-05-28 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Aromatic compounds
US11158820B2 (en) 2017-03-29 2021-10-26 Universal Display Corporation Organic electroluminescent materials and devices
US10862046B2 (en) 2017-03-30 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US11139443B2 (en) 2017-03-31 2021-10-05 Universal Display Corporation Organic electroluminescent materials and devices
US11276829B2 (en) 2017-03-31 2022-03-15 Universal Display Corporation Organic electroluminescent materials and devices
CN110446611B (en) 2017-03-31 2021-05-25 默克专利有限公司 Printing method for Organic Light Emitting Diodes (OLEDs)
US11038117B2 (en) 2017-04-11 2021-06-15 Universal Display Corporation Organic electroluminescent materials and devices
US10777754B2 (en) 2017-04-11 2020-09-15 Universal Display Corporation Organic electroluminescent materials and devices
CN110520503A (en) 2017-04-13 2019-11-29 默克专利有限公司 Composition for organic electronic device
US11101434B2 (en) 2017-04-21 2021-08-24 Universal Display Corporation Organic electroluminescent materials and devices
US10975113B2 (en) 2017-04-21 2021-04-13 Universal Display Corporation Organic electroluminescent materials and devices
US11084838B2 (en) 2017-04-21 2021-08-10 Universal Display Corporation Organic electroluminescent materials and device
US11649249B2 (en) 2017-04-25 2023-05-16 Merck Patent Gmbh Compounds for electronic devices
US11038137B2 (en) 2017-04-28 2021-06-15 Universal Display Corporation Organic electroluminescent materials and devices
US10910570B2 (en) 2017-04-28 2021-02-02 Universal Display Corporation Organic electroluminescent materials and devices
US11117897B2 (en) 2017-05-01 2021-09-14 Universal Display Corporation Organic electroluminescent materials and devices
US10941170B2 (en) 2017-05-03 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US11201299B2 (en) 2017-05-04 2021-12-14 Universal Display Corporation Organic electroluminescent materials and devices
US10870668B2 (en) 2017-05-05 2020-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US10862055B2 (en) 2017-05-05 2020-12-08 Universal Display Corporation Organic electroluminescent materials and devices
US10930864B2 (en) 2017-05-10 2021-02-23 Universal Display Corporation Organic electroluminescent materials and devices
US10822362B2 (en) 2017-05-11 2020-11-03 Universal Display Corporation Organic electroluminescent materials and devices
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
KR102592391B1 (en) 2017-05-11 2023-10-20 메르크 파텐트 게엠베하 Organoboron complexes for organic electroluminescent devices
KR102592390B1 (en) 2017-05-11 2023-10-20 메르크 파텐트 게엠베하 Carbazole-based bodypiece for organic electroluminescent devices
US11038115B2 (en) 2017-05-18 2021-06-15 Universal Display Corporation Organic electroluminescent materials and device
US10934293B2 (en) 2017-05-18 2021-03-02 Universal Display Corporation Organic electroluminescent materials and devices
US10944062B2 (en) 2017-05-18 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US10790455B2 (en) 2017-05-18 2020-09-29 Universal Display Corporation Organic electroluminescent materials and devices
US10840459B2 (en) 2017-05-18 2020-11-17 Universal Display Corporation Organic electroluminescent materials and devices
KR102596593B1 (en) 2017-05-22 2023-11-01 메르크 파텐트 게엠베하 Hexacyclic heteroaromatic compounds for electronic devices
US10930862B2 (en) 2017-06-01 2021-02-23 Universal Display Corporation Organic electroluminescent materials and devices
TW201920343A (en) 2017-06-21 2019-06-01 德商麥克專利有限公司 Materials for electronic devices
US11174259B2 (en) 2017-06-23 2021-11-16 Universal Display Corporation Organic electroluminescent materials and devices
US10968226B2 (en) 2017-06-23 2021-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US11725022B2 (en) 2017-06-23 2023-08-15 Universal Display Corporation Organic electroluminescent materials and devices
CN110753685A (en) 2017-06-23 2020-02-04 默克专利有限公司 Material for organic electroluminescent device
US11552261B2 (en) 2017-06-23 2023-01-10 Universal Display Corporation Organic electroluminescent materials and devices
US11814403B2 (en) 2017-06-23 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US11758804B2 (en) 2017-06-23 2023-09-12 Universal Display Corporation Organic electroluminescent materials and devices
US11495757B2 (en) 2017-06-23 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US20180370999A1 (en) 2017-06-23 2018-12-27 Universal Display Corporation Organic electroluminescent materials and devices
US11678565B2 (en) 2017-06-23 2023-06-13 Universal Display Corporation Organic electroluminescent materials and devices
US11802136B2 (en) 2017-06-23 2023-10-31 Universal Display Corporation Organic electroluminescent materials and devices
US11832510B2 (en) 2017-06-23 2023-11-28 Universal Display Corporation Organic electroluminescent materials and devices
US11608321B2 (en) 2017-06-23 2023-03-21 Universal Display Corporation Organic electroluminescent materials and devices
KR20200022010A (en) 2017-06-26 2020-03-02 메르크 파텐트 게엠베하 Homogeneous mixture
CN110799484B (en) 2017-06-28 2023-09-26 默克专利有限公司 Material for electronic devices
TWI813576B (en) 2017-07-03 2023-09-01 德商麥克專利有限公司 Formulations with a low content of phenol type impurities
EP3649213B1 (en) 2017-07-05 2021-06-23 Merck Patent GmbH Composition for organic electronic devices
KR102594782B1 (en) 2017-07-05 2023-10-27 메르크 파텐트 게엠베하 Compositions for organic electronic devices
US11469382B2 (en) 2017-07-12 2022-10-11 Universal Display Corporation Organic electroluminescent materials and devices
CN110892543B (en) 2017-07-18 2023-07-28 默克专利有限公司 Preparation of organic functional material
TWI776926B (en) 2017-07-25 2022-09-11 德商麥克專利有限公司 Metal complexes
US11322691B2 (en) 2017-07-26 2022-05-03 Universal Display Corporation Organic electroluminescent materials and devices
US11228010B2 (en) 2017-07-26 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11765970B2 (en) 2017-07-26 2023-09-19 Universal Display Corporation Organic electroluminescent materials and devices
US11968883B2 (en) 2017-07-26 2024-04-23 Universal Display Corporation Organic electroluminescent materials and devices
US11917843B2 (en) 2017-07-26 2024-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US11239433B2 (en) 2017-07-26 2022-02-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3658541A1 (en) 2017-07-28 2020-06-03 Merck Patent GmbH Spirobifluorene derivatives for use in electronic devices
US11744141B2 (en) 2017-08-09 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US11508913B2 (en) 2017-08-10 2022-11-22 Universal Display Corporation Organic electroluminescent materials and devices
US11910699B2 (en) 2017-08-10 2024-02-20 Universal Display Corporation Organic electroluminescent materials and devices
US11349083B2 (en) 2017-08-10 2022-05-31 Universal Display Corporation Organic electroluminescent materials and devices
US11744142B2 (en) 2017-08-10 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US11462697B2 (en) 2017-08-22 2022-10-04 Universal Display Corporation Organic electroluminescent materials and devices
US11723269B2 (en) 2017-08-22 2023-08-08 Universal Display Corporation Organic electroluminescent materials and devices
US11437591B2 (en) 2017-08-24 2022-09-06 Universal Display Corporation Organic electroluminescent materials and devices
US11605791B2 (en) 2017-09-01 2023-03-14 Universal Display Corporation Organic electroluminescent materials and devices
US11444249B2 (en) 2017-09-07 2022-09-13 Universal Display Corporation Organic electroluminescent materials and devices
US11424420B2 (en) 2017-09-07 2022-08-23 Universal Display Corporation Organic electroluminescent materials and devices
US11696492B2 (en) 2017-09-07 2023-07-04 Universal Display Corporation Organic electroluminescent materials and devices
TW201923028A (en) 2017-09-08 2019-06-16 德商麥克專利有限公司 Materials for electronic devices
US10608188B2 (en) 2017-09-11 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
CN111065640B (en) 2017-09-12 2023-04-18 默克专利有限公司 Material for organic electroluminescent device
US11778897B2 (en) 2017-09-20 2023-10-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3692043B1 (en) 2017-10-06 2022-11-02 Merck Patent GmbH Materials for organic electroluminescent devices
CN108675975A (en) 2017-10-17 2018-10-19 默克专利有限公司 Material for organic electroluminescence device
WO2019081391A1 (en) 2017-10-24 2019-05-02 Merck Patent Gmbh Materials for organic electroluminescent devices
US11214587B2 (en) 2017-11-07 2022-01-04 Universal Display Corporation Organic electroluminescent materials and devices
US11910702B2 (en) 2017-11-07 2024-02-20 Universal Display Corporation Organic electroluminescent devices
US11183646B2 (en) 2017-11-07 2021-11-23 Universal Display Corporation Organic electroluminescent materials and devices
TWI785142B (en) 2017-11-14 2022-12-01 德商麥克專利有限公司 Composition for organic electronic devices
US11168103B2 (en) 2017-11-17 2021-11-09 Universal Display Corporation Organic electroluminescent materials and devices
EP3714022B1 (en) 2017-11-23 2023-06-07 Merck Patent GmbH Materials for electronic devices
TWI820057B (en) 2017-11-24 2023-11-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
US11639339B2 (en) 2017-11-24 2023-05-02 Merck Patent Gmbh Materials for organic electroluminescent devices
US11825735B2 (en) 2017-11-28 2023-11-21 Universal Display Corporation Organic electroluminescent materials and devices
US20190161504A1 (en) 2017-11-28 2019-05-30 University Of Southern California Carbene compounds and organic electroluminescent devices
EP3492480B1 (en) 2017-11-29 2021-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11937503B2 (en) 2017-11-30 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
EP3724202B1 (en) 2017-12-13 2022-08-17 Merck Patent GmbH Metal complexes
US11233204B2 (en) 2017-12-14 2022-01-25 Universal Display Corporation Organic electroluminescent materials and devices
US10971687B2 (en) 2017-12-14 2021-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US11233205B2 (en) 2017-12-14 2022-01-25 Universal Display Corporation Organic electroluminescent materials and devices
WO2019115577A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Substituted aromatic amines for use in organic electroluminescent devices
WO2019115573A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Formulation of an organic functional material
TW201938562A (en) 2017-12-19 2019-10-01 德商麥克專利有限公司 Heterocyclic compounds
US20210036245A1 (en) 2017-12-20 2021-02-04 Merck Patent Gmbh Heteroaromatic compounds
US11700765B2 (en) 2018-01-10 2023-07-11 Universal Display Corporation Organic electroluminescent materials and devices
US11081659B2 (en) 2018-01-10 2021-08-03 Universal Display Corporation Organic electroluminescent materials and devices
US11515493B2 (en) 2018-01-11 2022-11-29 Universal Display Corporation Organic electroluminescent materials and devices
US11271177B2 (en) 2018-01-11 2022-03-08 Universal Display Corporation Organic electroluminescent materials and devices
TWI811290B (en) 2018-01-25 2023-08-11 德商麥克專利有限公司 Materials for organic electroluminescent devices
US11542289B2 (en) 2018-01-26 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
US11845764B2 (en) 2018-01-26 2023-12-19 Universal Display Corporation Organic electroluminescent materials and devices
US11367840B2 (en) 2018-01-26 2022-06-21 Universal Display Corporation Organic electroluminescent materials and devices
US11239434B2 (en) 2018-02-09 2022-02-01 Universal Display Corporation Organic electroluminescent materials and devices
US11180519B2 (en) 2018-02-09 2021-11-23 Universal Display Corporation Organic electroluminescent materials and devices
US11957050B2 (en) 2018-02-09 2024-04-09 Universal Display Corporation Organic electroluminescent materials and devices
US11342509B2 (en) 2018-02-09 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices
US20220289778A1 (en) 2018-02-13 2022-09-15 Merck Patent Gmbh Metal complexes
WO2019162483A1 (en) 2018-02-26 2019-08-29 Merck Patent Gmbh Formulation of an organic functional material
TWI802656B (en) 2018-03-06 2023-05-21 德商麥克專利有限公司 Materials for organic electroluminescent devices
TW201938761A (en) 2018-03-06 2019-10-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
US11217757B2 (en) 2018-03-12 2022-01-04 Universal Display Corporation Host materials for electroluminescent devices
US11557733B2 (en) 2018-03-12 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US11165028B2 (en) 2018-03-12 2021-11-02 Universal Display Corporation Organic electroluminescent materials and devices
US11142538B2 (en) 2018-03-12 2021-10-12 Universal Display Corporation Organic electroluminescent materials and devices
US11279722B2 (en) 2018-03-12 2022-03-22 Universal Display Corporation Organic electroluminescent materials and devices
CN111819167A (en) 2018-03-16 2020-10-23 默克专利有限公司 Material for organic electroluminescent device
TWI828664B (en) 2018-03-19 2024-01-11 愛爾蘭商Udc愛爾蘭責任有限公司 Metal complexes
US11390639B2 (en) 2018-04-13 2022-07-19 Universal Display Corporation Organic electroluminescent materials and devices
US11882759B2 (en) 2018-04-13 2024-01-23 Universal Display Corporation Organic electroluminescent materials and devices
US11616203B2 (en) 2018-04-17 2023-03-28 Universal Display Corporation Organic electroluminescent materials and devices
US11515494B2 (en) 2018-05-04 2022-11-29 Universal Display Corporation Organic electroluminescent materials and devices
US11753427B2 (en) 2018-05-04 2023-09-12 Universal Display Corporation Organic electroluminescent materials and devices
US11342513B2 (en) 2018-05-04 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices
US11793073B2 (en) 2018-05-06 2023-10-17 Universal Display Corporation Host materials for electroluminescent devices
US11459349B2 (en) 2018-05-25 2022-10-04 Universal Display Corporation Organic electroluminescent materials and devices
US11450822B2 (en) 2018-05-25 2022-09-20 Universal Display Corporation Organic electroluminescent materials and devices
US20220332724A1 (en) 2018-05-30 2022-10-20 Merck Patent Gmbh Composition for organic electronic devices
US11716900B2 (en) 2018-05-30 2023-08-01 Universal Display Corporation Host materials for electroluminescent devices
US11404653B2 (en) 2018-06-04 2022-08-02 Universal Display Corporation Organic electroluminescent materials and devices
US11925103B2 (en) 2018-06-05 2024-03-05 Universal Display Corporation Organic electroluminescent materials and devices
US20220336754A1 (en) 2018-06-07 2022-10-20 Merck Patent Gmbh Organic electroluminescence devices
US11339182B2 (en) 2018-06-07 2022-05-24 Universal Display Corporation Organic electroluminescent materials and devices
EP3807367B1 (en) 2018-06-15 2023-07-19 Merck Patent GmbH Formulation of an organic functional material
US11228004B2 (en) 2018-06-22 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11261207B2 (en) 2018-06-25 2022-03-01 Universal Display Corporation Organic electroluminescent materials and devices
CN112384595A (en) 2018-07-09 2021-02-19 默克专利有限公司 Material for organic electroluminescent device
US11753425B2 (en) 2018-07-11 2023-09-12 Universal Display Corporation Organic electroluminescent materials and devices
EP3823958B1 (en) 2018-07-20 2023-08-23 Merck Patent GmbH Materials for organic electroluminescent devices
US20200075870A1 (en) 2018-08-22 2020-03-05 Universal Display Corporation Organic electroluminescent materials and devices
TWI823993B (en) 2018-08-28 2023-12-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
EP3844244B1 (en) 2018-08-28 2022-08-03 Merck Patent GmbH Materials for organic electroluminescent devices
KR20210052487A (en) 2018-08-28 2021-05-10 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
US11233203B2 (en) 2018-09-06 2022-01-25 Universal Display Corporation Organic electroluminescent materials and devices
US11485706B2 (en) 2018-09-11 2022-11-01 Universal Display Corporation Organic electroluminescent materials and devices
TWI826522B (en) 2018-09-12 2023-12-21 德商麥克專利有限公司 Electroluminescent devices
CN112639052A (en) 2018-09-12 2021-04-09 默克专利有限公司 Material for organic electroluminescent device
TW202030902A (en) 2018-09-12 2020-08-16 德商麥克專利有限公司 Electroluminescent devices
US11718634B2 (en) 2018-09-14 2023-08-08 Universal Display Corporation Organic electroluminescent materials and devices
EP3857621A1 (en) 2018-09-24 2021-08-04 Merck Patent GmbH Method for the production of a granular material
US11903305B2 (en) 2018-09-24 2024-02-13 Universal Display Corporation Organic electroluminescent materials and devices
EP3856717A2 (en) 2018-09-27 2021-08-04 Merck Patent GmbH Method for producing sterically hindered, nitrogen-containing heteroaromatic compounds
EP3856868B1 (en) 2018-09-27 2023-01-25 Merck Patent GmbH Compounds that can be used in an organic electronic device as active compounds
US11469383B2 (en) 2018-10-08 2022-10-11 Universal Display Corporation Organic electroluminescent materials and devices
US11495752B2 (en) 2018-10-08 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11476430B2 (en) 2018-10-15 2022-10-18 Universal Display Corporation Organic electroluminescent materials and devices
US11515482B2 (en) 2018-10-23 2022-11-29 Universal Display Corporation Deep HOMO (highest occupied molecular orbital) emitter device structures
JP2022509407A (en) 2018-10-31 2022-01-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Materials for organic electroluminescence devices
US11469384B2 (en) 2018-11-02 2022-10-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3877369A1 (en) 2018-11-05 2021-09-15 Merck Patent GmbH Compounds that can be used in an organic electronic device
WO2020094542A1 (en) 2018-11-06 2020-05-14 Merck Patent Gmbh 5,6-diphenyl-5,6-dihydro-dibenz[c,e][1,2]azaphosphorin and 6-phenyl-6h-dibenzo[c,e][1,2]thiazin-5,5-dioxide derivatives and similar compounds as organic electroluminescent materials for oleds
JP2022506510A (en) 2018-11-06 2022-01-17 メルク パテント ゲーエムベーハー How to Form Organic Devices for Electronic Devices
JP2022509064A (en) 2018-11-14 2022-01-20 メルク パテント ゲーエムベーハー Compounds that can be used in the manufacture of organic electronic devices
KR20210091762A (en) 2018-11-15 2021-07-22 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
US11825736B2 (en) 2018-11-19 2023-11-21 Universal Display Corporation Organic electroluminescent materials and devices
US11963441B2 (en) 2018-11-26 2024-04-16 Universal Display Corporation Organic electroluminescent materials and devices
US11690285B2 (en) 2018-11-28 2023-06-27 Universal Display Corporation Electroluminescent devices
US11672176B2 (en) 2018-11-28 2023-06-06 Universal Display Corporation Host materials for electroluminescent devices
US11706980B2 (en) 2018-11-28 2023-07-18 Universal Display Corporation Host materials for electroluminescent devices
US11672165B2 (en) 2018-11-28 2023-06-06 Universal Display Corporation Organic electroluminescent materials and devices
US11716899B2 (en) 2018-11-28 2023-08-01 Universal Display Corporation Organic electroluminescent materials and devices
US11623936B2 (en) 2018-12-11 2023-04-11 Universal Display Corporation Organic electroluminescent materials and devices
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices
US11737349B2 (en) 2018-12-12 2023-08-22 Universal Display Corporation Organic electroluminescent materials and devices
TW202039493A (en) 2018-12-19 2020-11-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
US20220127285A1 (en) 2019-01-16 2022-04-28 Merck Patent Gmbh Materials for organic electroluminescent devices
US11780829B2 (en) 2019-01-30 2023-10-10 The University Of Southern California Organic electroluminescent materials and devices
US11812624B2 (en) 2019-01-30 2023-11-07 The University Of Southern California Organic electroluminescent materials and devices
US20200251664A1 (en) 2019-02-01 2020-08-06 Universal Display Corporation Organic electroluminescent materials and devices
US11325932B2 (en) 2019-02-08 2022-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US11370809B2 (en) 2019-02-08 2022-06-28 Universal Display Corporation Organic electroluminescent materials and devices
TW202043247A (en) 2019-02-11 2020-12-01 德商麥克專利有限公司 Metal complexes
CN113424332A (en) 2019-02-18 2021-09-21 默克专利有限公司 Composition for organic electronic device
US11773320B2 (en) 2019-02-21 2023-10-03 Universal Display Corporation Organic electroluminescent materials and devices
US11871653B2 (en) 2019-02-22 2024-01-09 Universal Display Corporation Organic electroluminescent materials and devices
US11557738B2 (en) 2019-02-22 2023-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US11512093B2 (en) 2019-03-04 2022-11-29 Universal Display Corporation Compound used for organic light emitting device (OLED), consumer product and formulation
US20220127286A1 (en) 2019-03-04 2022-04-28 Merck Patent Gmbh Ligands for nano-sized materials
US11739081B2 (en) 2019-03-11 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
US20200295291A1 (en) 2019-03-12 2020-09-17 Universal Display Corporation OLED WITH TRIPLET EMITTER AND EXCITED STATE LIFETIME LESS THAN 200 ns
US11569480B2 (en) 2019-03-12 2023-01-31 Universal Display Corporation Plasmonic OLEDs and vertical dipole emitters
US11637261B2 (en) 2019-03-12 2023-04-25 Universal Display Corporation Nanopatch antenna outcoupling structure for use in OLEDs
WO2020182779A1 (en) 2019-03-12 2020-09-17 Merck Patent Gmbh Materials for organic electroluminescent devices
KR20210141593A (en) 2019-03-20 2021-11-23 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
CN113614082A (en) 2019-03-25 2021-11-05 默克专利有限公司 Material for organic electroluminescent device
US11963438B2 (en) 2019-03-26 2024-04-16 The University Of Southern California Organic electroluminescent materials and devices
JP2020158491A (en) 2019-03-26 2020-10-01 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent materials and devices
US20220181552A1 (en) 2019-04-11 2022-06-09 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020212296A1 (en) 2019-04-15 2020-10-22 Merck Patent Gmbh Metal complexes
US11639363B2 (en) 2019-04-22 2023-05-02 Universal Display Corporation Organic electroluminescent materials and devices
US11613550B2 (en) 2019-04-30 2023-03-28 Universal Display Corporation Organic electroluminescent materials and devices comprising benzimidazole-containing metal complexes
US11495756B2 (en) 2019-05-07 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11827651B2 (en) 2019-05-13 2023-11-28 Universal Display Corporation Organic electroluminescent materials and devices
US11634445B2 (en) 2019-05-21 2023-04-25 Universal Display Corporation Organic electroluminescent materials and devices
US11647667B2 (en) 2019-06-14 2023-05-09 Universal Display Corporation Organic electroluminescent compounds and organic light emitting devices using the same
US11920070B2 (en) 2019-07-12 2024-03-05 The University Of Southern California Luminescent janus-type, two-coordinated metal complexes
US11685754B2 (en) 2019-07-22 2023-06-27 Universal Display Corporation Heteroleptic organic electroluminescent materials
US11926638B2 (en) 2019-07-22 2024-03-12 Universal Display Corporation Organic electroluminescent materials and devices
US20210032278A1 (en) 2019-07-30 2021-02-04 Universal Display Corporation Organic electroluminescent materials and devices
US11708355B2 (en) 2019-08-01 2023-07-25 Universal Display Corporation Organic electroluminescent materials and devices
US11374181B2 (en) 2019-08-14 2022-06-28 Universal Display Corporation Organic electroluminescent materials and devices
US11930699B2 (en) 2019-08-15 2024-03-12 Universal Display Corporation Organic electroluminescent materials and devices
US20210047354A1 (en) 2019-08-16 2021-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US11925105B2 (en) 2019-08-26 2024-03-05 Universal Display Corporation Organic electroluminescent materials and devices
KR20220052966A (en) 2019-08-26 2022-04-28 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
US11937494B2 (en) 2019-08-28 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11600787B2 (en) 2019-08-30 2023-03-07 Universal Display Corporation Organic electroluminescent materials and devices
WO2021043703A1 (en) 2019-09-02 2021-03-11 Merck Patent Gmbh Materials for organic electroluminescent devices
TW202122558A (en) 2019-09-03 2021-06-16 德商麥克專利有限公司 Materials for organic electroluminescent devices
US11820783B2 (en) 2019-09-06 2023-11-21 Universal Display Corporation Organic electroluminescent materials and devices
CN114450286A (en) 2019-09-16 2022-05-06 默克专利有限公司 Material of organic electroluminescent device
KR20220065801A (en) 2019-09-19 2022-05-20 메르크 파텐트 게엠베하 organic electroluminescent device
WO2021053046A1 (en) 2019-09-20 2021-03-25 Merck Patent Gmbh Peri-condensed heterocyclic compounds as materials for electronic devices
US11864458B2 (en) 2019-10-08 2024-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US11950493B2 (en) 2019-10-15 2024-04-02 Universal Display Corporation Organic electroluminescent materials and devices
US11697653B2 (en) 2019-10-21 2023-07-11 Universal Display Corporation Organic electroluminescent materials and devices
EP4049325A1 (en) 2019-10-22 2022-08-31 Merck Patent GmbH Materials for organic electroluminescent devices
US11919914B2 (en) 2019-10-25 2024-03-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4048675A1 (en) 2019-10-25 2022-08-31 Merck Patent GmbH Compounds that can be used in an organic electronic device
US11765965B2 (en) 2019-10-30 2023-09-19 Universal Display Corporation Organic electroluminescent materials and devices
US20210135130A1 (en) 2019-11-04 2021-05-06 Universal Display Corporation Organic electroluminescent materials and devices
EP4055642A1 (en) 2019-11-04 2022-09-14 Merck Patent GmbH Materials for organic electroluminescent devices
TW202134252A (en) 2019-11-12 2021-09-16 德商麥克專利有限公司 Materials for organic electroluminescent devices
JP2021082801A (en) 2019-11-14 2021-05-27 ユニバーサル ディスプレイ コーポレイション Organic electroluminescence material and device
US11889708B2 (en) 2019-11-14 2024-01-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4069709A1 (en) 2019-12-04 2022-10-12 Merck Patent GmbH Metal complexes
TW202136181A (en) 2019-12-04 2021-10-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
TW202136471A (en) 2019-12-17 2021-10-01 德商麥克專利有限公司 Materials for organic electroluminescent devices
CN114787169A (en) 2019-12-18 2022-07-22 默克专利有限公司 Aromatic compound for organic electroluminescent device
CN114867729A (en) 2019-12-19 2022-08-05 默克专利有限公司 Polycyclic compound for organic electroluminescent device
US20210217969A1 (en) 2020-01-06 2021-07-15 Universal Display Corporation Organic electroluminescent materials and devices
US11778895B2 (en) 2020-01-13 2023-10-03 Universal Display Corporation Organic electroluminescent materials and devices
US20220336759A1 (en) 2020-01-28 2022-10-20 Universal Display Corporation Organic electroluminescent materials and devices
US11917900B2 (en) 2020-01-28 2024-02-27 Universal Display Corporation Organic electroluminescent materials and devices
CN115052865A (en) 2020-01-29 2022-09-13 默克专利有限公司 Benzimidazole derivatives
US11932660B2 (en) 2020-01-29 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
WO2021170522A1 (en) 2020-02-25 2021-09-02 Merck Patent Gmbh Use of heterocyclic compounds in an organic electronic device
EP4115457A1 (en) 2020-03-02 2023-01-11 Merck Patent GmbH Use of sulfone compounds in an organic electronic device
EP4122028A1 (en) 2020-03-17 2023-01-25 Merck Patent GmbH Heterocyclic compounds for organic electroluminescent devices
EP4121432A1 (en) 2020-03-17 2023-01-25 Merck Patent GmbH Heteroaromatic compounds for organic electroluminescent devices
KR20220157456A (en) 2020-03-23 2022-11-29 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
CN115210234A (en) 2020-03-24 2022-10-18 默克专利有限公司 Material for electronic devices
CN115335383A (en) 2020-03-26 2022-11-11 默克专利有限公司 Cyclic compound for organic electroluminescent device
KR20220162156A (en) 2020-04-02 2022-12-07 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
JP2023520710A (en) 2020-04-06 2023-05-18 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Polycyclic compounds for organic electroluminescent devices
KR20230002655A (en) 2020-04-21 2023-01-05 메르크 파텐트 게엠베하 Formulation of Organic Functional Materials
EP4139971A1 (en) 2020-04-21 2023-03-01 Merck Patent GmbH Emulsions comprising organic functional materials
US11970508B2 (en) 2020-04-22 2024-04-30 Universal Display Corporation Organic electroluminescent materials and devices
TW202208594A (en) 2020-05-27 2022-03-01 德商麥克專利有限公司 Materials for electronic devices
KR20230027175A (en) 2020-06-18 2023-02-27 메르크 파텐트 게엠베하 indenoazanaphthalene
EP4169082A1 (en) 2020-06-23 2023-04-26 Merck Patent GmbH Method for producing a mixture
WO2022002771A1 (en) 2020-06-29 2022-01-06 Merck Patent Gmbh Heterocyclic compounds for organic electroluminescent devices
EP4172164A1 (en) 2020-06-29 2023-05-03 Merck Patent GmbH Heteroaromatic compounds for organic electroluminescent devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
KR20230043106A (en) 2020-07-22 2023-03-30 메르크 파텐트 게엠베하 Materials for organic electroluminescent devices
CN116157402A (en) 2020-08-06 2023-05-23 默克专利有限公司 Material for organic electroluminescent device
CN116134113A (en) 2020-08-13 2023-05-16 默克专利有限公司 Metal complex
CN115956074A (en) 2020-08-18 2023-04-11 默克专利有限公司 Material for organic electroluminescent device
TW202223066A (en) 2020-08-19 2022-06-16 德商麥克專利有限公司 Materials for organic electroluminescent devices
EP4214779A1 (en) 2020-09-18 2023-07-26 Samsung Display Co., Ltd. Organic electroluminescent device
WO2022069380A1 (en) 2020-09-29 2022-04-07 Merck Patent Gmbh Mononuclear tripodal hexadentate iridium complexes for use in oleds
TW202222748A (en) 2020-09-30 2022-06-16 德商麥克專利有限公司 Compounds usable for structuring of functional layers of organic electroluminescent devices
TW202229215A (en) 2020-09-30 2022-08-01 德商麥克專利有限公司 Compounds for structuring of functional layers of organic electroluminescent devices
EP4229064A1 (en) 2020-10-16 2023-08-23 Merck Patent GmbH Heterocyclic compounds for organic electroluminescent devices
KR20230088748A (en) 2020-10-16 2023-06-20 메르크 파텐트 게엠베하 Compounds Containing Heteroatoms for Organic Electroluminescent Devices
US20230422610A1 (en) 2020-11-10 2023-12-28 Merck Patent Gmbh Sulfurous compounds for organic electroluminescent devices
US20220158096A1 (en) 2020-11-16 2022-05-19 Universal Display Corporation Organic electroluminescent materials and devices
US20220162243A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220165967A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
KR20230116023A (en) 2020-12-02 2023-08-03 메르크 파텐트 게엠베하 Heterocyclic compounds for organic electroluminescent devices
CN116635491A (en) 2020-12-08 2023-08-22 默克专利有限公司 Ink system and method for inkjet printing
WO2022122682A2 (en) 2020-12-10 2022-06-16 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2022129114A1 (en) 2020-12-18 2022-06-23 Merck Patent Gmbh Nitrogenous compounds for organic electroluminescent devices
EP4263544A1 (en) 2020-12-18 2023-10-25 Merck Patent GmbH Indolo[3.2.1-jk]carbazole-6-carbonitrile derivatives as blue fluorescent emitters for use in oleds
EP4263746A1 (en) 2020-12-18 2023-10-25 Merck Patent GmbH Nitrogenous heteroaromatic compounds for organic electroluminescent devices
WO2022148717A1 (en) 2021-01-05 2022-07-14 Merck Patent Gmbh Materials for organic electroluminescent devices
KR20230137375A (en) 2021-01-25 2023-10-04 메르크 파텐트 게엠베하 Nitrogen compounds for organic electroluminescent devices
US20220271241A1 (en) 2021-02-03 2022-08-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A3 (en) 2021-02-26 2023-03-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A3 (en) 2021-02-26 2022-12-28 Universal Display Corporation Organic electroluminescent materials and devices
EP4301757A1 (en) 2021-03-02 2024-01-10 Merck Patent GmbH Compounds for organic electroluminescent devices
US20220298192A1 (en) 2021-03-05 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298190A1 (en) 2021-03-12 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298193A1 (en) 2021-03-15 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20240092783A1 (en) 2021-03-18 2024-03-21 Merck Patent Gmbh Heteroaromatic compounds for organic electroluminescent devices
US20220340607A1 (en) 2021-04-05 2022-10-27 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4079742A1 (en) 2021-04-14 2022-10-26 Merck Patent GmbH Metal complexes
US20220352478A1 (en) 2021-04-14 2022-11-03 Universal Display Corporation Organic eletroluminescent materials and devices
JP2024515366A (en) 2021-04-23 2024-04-09 メルク パテント ゲーエムベーハー Organic functional materials formulations
US20220407020A1 (en) 2021-04-23 2022-12-22 Universal Display Corporation Organic electroluminescent materials and devices
US20230006149A1 (en) 2021-04-23 2023-01-05 Universal Display Corporation Organic electroluminescent materials and devices
CN117279902A (en) 2021-04-29 2023-12-22 默克专利有限公司 Material for organic electroluminescent device
CN117203191A (en) 2021-04-29 2023-12-08 默克专利有限公司 Material for organic electroluminescent device
WO2022229234A1 (en) 2021-04-30 2022-11-03 Merck Patent Gmbh Nitrogenous heterocyclic compounds for organic electroluminescent devices
KR20240012506A (en) 2021-05-21 2024-01-29 메르크 파텐트 게엠베하 Method for continuous purification of at least one functional substance and device for continuous purification of at least one functional substance
US20230133787A1 (en) 2021-06-08 2023-05-04 University Of Southern California Molecular Alignment of Homoleptic Iridium Phosphors
WO2022200638A1 (en) 2021-07-06 2022-09-29 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2023012084A1 (en) 2021-08-02 2023-02-09 Merck Patent Gmbh A printing method by combining inks
CN117980439A (en) 2021-09-14 2024-05-03 默克专利有限公司 Boron-containing heterocyclic compounds for organic electroluminescent devices
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
WO2023052275A1 (en) 2021-09-28 2023-04-06 Merck Patent Gmbh Materials for electronic devices
WO2023052314A1 (en) 2021-09-28 2023-04-06 Merck Patent Gmbh Materials for electronic devices
WO2023052313A1 (en) 2021-09-28 2023-04-06 Merck Patent Gmbh Materials for electronic devices
WO2023052272A1 (en) 2021-09-28 2023-04-06 Merck Patent Gmbh Materials for electronic devices
TW202349760A (en) 2021-10-05 2023-12-16 德商麥克專利有限公司 Method for forming an organic element of an electronic device
WO2023072799A1 (en) 2021-10-27 2023-05-04 Merck Patent Gmbh Boronic and nitrogenous heterocyclic compounds for organic electroluminescent devices
WO2023094412A1 (en) 2021-11-25 2023-06-01 Merck Patent Gmbh Materials for electronic devices
WO2023099543A1 (en) 2021-11-30 2023-06-08 Merck Patent Gmbh Compounds having fluorene structures
WO2023110742A1 (en) 2021-12-13 2023-06-22 Merck Patent Gmbh Materials for organic electroluminescent devices
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
WO2023117837A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Process for preparing deuterated organic compounds
WO2023117836A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023117835A1 (en) 2021-12-21 2023-06-29 Merck Patent Gmbh Electronic devices
WO2023152063A1 (en) 2022-02-09 2023-08-17 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2023152346A1 (en) 2022-02-14 2023-08-17 Merck Patent Gmbh Materials for electronic devices
WO2023161168A1 (en) 2022-02-23 2023-08-31 Merck Patent Gmbh Aromatic hetreocycles for organic electroluminescent devices
WO2023161167A1 (en) 2022-02-23 2023-08-31 Merck Patent Gmbh Nitrogenous heterocycles for organic electroluminescent devices
US20230292592A1 (en) 2022-03-09 2023-09-14 Universal Display Corporation Organic electroluminescent materials and devices
US20230337516A1 (en) 2022-04-18 2023-10-19 Universal Display Corporation Organic electroluminescent materials and devices
WO2023213837A1 (en) 2022-05-06 2023-11-09 Merck Patent Gmbh Cyclic compounds for organic electroluminescent devices
WO2023222559A1 (en) 2022-05-18 2023-11-23 Merck Patent Gmbh Process for preparing deuterated organic compounds
US20230389421A1 (en) 2022-05-24 2023-11-30 Universal Display Corporation Organic electroluminescent materials and devices
WO2023237458A1 (en) 2022-06-07 2023-12-14 Merck Patent Gmbh Method of printing a functional layer of an electronic device by combining inks
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
WO2023247338A1 (en) 2022-06-20 2023-12-28 Merck Patent Gmbh Organic heterocycles for photoelectric devices
WO2023247345A1 (en) 2022-06-20 2023-12-28 Merck Patent Gmbh Heterocycles for photoelectric devices
US20240016051A1 (en) 2022-06-28 2024-01-11 Universal Display Corporation Organic electroluminescent materials and devices
WO2024013004A1 (en) 2022-07-11 2024-01-18 Merck Patent Gmbh Materials for electronic devices
EP4311849A1 (en) 2022-07-27 2024-01-31 UDC Ireland Limited Metal complexes
US20240107880A1 (en) 2022-08-17 2024-03-28 Universal Display Corporation Organic electroluminescent materials and devices
WO2024061942A1 (en) 2022-09-22 2024-03-28 Merck Patent Gmbh Nitrogen-containing compounds for organic electroluminescent devices
WO2024061948A1 (en) 2022-09-22 2024-03-28 Merck Patent Gmbh Nitrogen-containing hetreocycles for organic electroluminescent devices
EP4362631A3 (en) 2022-10-27 2024-05-08 Universal Display Corporation Organic electroluminescent materials and devices
EP4362645A3 (en) 2022-10-27 2024-05-15 Universal Display Corporation Organic electroluminescent materials and devices
EP4362630A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
JPH02152194A (en) * 1988-12-01 1990-06-12 Hitachi Maxell Ltd Distributed el element
DE4111878A1 (en) 1991-04-11 1992-10-15 Wacker Chemie Gmbh LADDER POLYMERS WITH CONJUGATED DOUBLE BINDINGS
US5679760A (en) 1991-04-11 1997-10-21 Hoechst Aktiengesellschaft Ladder polymers containing conjugated double bonds
US5151629A (en) 1991-08-01 1992-09-29 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (I)
JP3302064B2 (en) 1992-12-25 2002-07-15 キヤノン株式会社 EL device
DE4436773A1 (en) 1994-10-14 1996-04-18 Hoechst Ag Conjugated polymers with spirocenters and their use as electroluminescent materials
JP3050066B2 (en) * 1994-11-25 2000-06-05 東レ株式会社 Light emitting element
JP3865406B2 (en) 1995-07-28 2007-01-10 住友化学株式会社 2,7-Aryl-9-substituted fluorene and 9-substituted fluorene oligomers and polymers
US5763636A (en) 1995-10-12 1998-06-09 Hoechst Aktiengesellschaft Polymers containing spiro atoms and methods of using the same as electroluminescence materials
DE19614971A1 (en) 1996-04-17 1997-10-23 Hoechst Ag Polymers with spiro atoms and their use as electroluminescent materials
BR9612111A (en) * 1995-12-01 1999-02-17 Ciba Geigy Ag Poli (9'9- spirobisfluorenes), their preparation and use
US6187224B1 (en) * 1996-10-31 2001-02-13 Axiva Gmbh Optical brightening agent
DE19738860A1 (en) 1997-09-05 1999-03-11 Hoechst Ag Process for the preparation of aryl oligoamines
JPH11256148A (en) * 1998-03-12 1999-09-21 Oki Electric Ind Co Ltd Luminous material and organic el element using the same
DE19846766A1 (en) 1998-10-10 2000-04-20 Aventis Res & Tech Gmbh & Co A conjugated fluorene-based polymer useful as an organic semiconductor, electroluminescence material, and for display elements
US6166172A (en) 1999-02-10 2000-12-26 Carnegie Mellon University Method of forming poly-(3-substituted) thiophenes
JP2000273316A (en) * 1999-03-26 2000-10-03 Idemitsu Kosan Co Ltd Fluorescent medium, preparation of fluorescent medium and organic electroluminescence display device using fluorescent medium
EP3321954A1 (en) 1999-05-13 2018-05-16 The Trustees of Princeton University Very high efficiency organic light emitting devices based on electrophosphorescence
EP1933395B2 (en) 1999-12-01 2019-08-07 The Trustees of Princeton University Complexes of form L2IrX
JP4048521B2 (en) 2000-05-02 2008-02-20 富士フイルム株式会社 Light emitting element
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
CN102041001B (en) 2000-08-11 2014-10-22 普林斯顿大学理事会 Organometallic compounds and emission-shifting organic electrophosphorescence
JP4154140B2 (en) 2000-09-26 2008-09-24 キヤノン株式会社 Metal coordination compounds
JP4154139B2 (en) 2000-09-26 2008-09-24 キヤノン株式会社 Light emitting element
JP4154138B2 (en) 2000-09-26 2008-09-24 キヤノン株式会社 Light emitting element, display device and metal coordination compound
JP4003388B2 (en) 2000-10-17 2007-11-07 コニカミノルタホールディングス株式会社 Electroluminescence element and color conversion filter
JP3889564B2 (en) 2000-10-31 2007-03-07 三洋電機株式会社 Organic electroluminescence device
DE10104426A1 (en) 2001-02-01 2002-08-08 Covion Organic Semiconductors Process for the production of high-purity, tris-ortho-metallated organo-iridium compounds
DE10109027A1 (en) 2001-02-24 2002-09-05 Covion Organic Semiconductors Rhodium and iridium complexes
DE50200971D1 (en) * 2001-03-24 2004-10-14 Covion Organic Semiconductors CONJUGATED POLYMERS CONTAINING SPIROBIFLUORINE UNITS AND FLUORINE UNITS AND THEIR USE
DE10116962A1 (en) 2001-04-05 2002-10-10 Covion Organic Semiconductors Rhodium and iridium complexes
JP2002367786A (en) * 2001-06-08 2002-12-20 Toray Ind Inc Luminous element
JP4089331B2 (en) * 2001-07-25 2008-05-28 東レ株式会社 Light emitting element
DE10155064A1 (en) 2001-11-09 2003-05-28 Covion Organic Semiconductors Rhodium and iridium complexes
GB0204989D0 (en) 2002-03-04 2002-04-17 Opsys Ltd Phosphorescent compositions and organic light emitting devices containing them
JP3975335B2 (en) * 2002-04-05 2007-09-12 日亜化学工業株式会社 Red light emitting material, method for producing the same, and organic electroluminescent device using the same
DE10215010A1 (en) 2002-04-05 2003-10-23 Covion Organic Semiconductors Rhodium and iridium complexes
DE10223337A1 (en) 2002-05-25 2003-12-04 Covion Organic Semiconductors Process for the production of high-purity, tris-orthometallized organo-iridium compounds
ITRM20020411A1 (en) * 2002-08-01 2004-02-02 Univ Roma La Sapienza SPIROBIFLUORENE DERIVATIVES, THEIR PREPARATION AND USE.
DE10238903A1 (en) 2002-08-24 2004-03-04 Covion Organic Semiconductors Gmbh New heteroaromatic rhodium and iridium complexes, useful in electroluminescent and/or phosphorescent devices as the emission layer and for use in solar cells, photovoltaic devices and organic photodetectors
WO2005003253A2 (en) * 2003-07-07 2005-01-13 Covion Organic Semiconductors Gmbh Mixtures of organic emissive semiconductors and matrix materials, their use and electronic components comprising said materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004093207A2 *

Also Published As

Publication number Publication date
WO2004093207A2 (en) 2004-10-28
EP1717291A3 (en) 2007-03-21
US20060208221A1 (en) 2006-09-21
EP1717291A2 (en) 2006-11-02
JP5318347B2 (en) 2013-10-16
KR20060003020A (en) 2006-01-09
EP2281861A3 (en) 2012-03-28
JP2011201878A (en) 2011-10-13
US7345301B2 (en) 2008-03-18
EP2281861A2 (en) 2011-02-09
KR101162933B1 (en) 2012-07-05
WO2004093207A3 (en) 2005-06-09
JP2006523740A (en) 2006-10-19
JP5362759B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
EP1618170A2 (en) Mixtures of matrix materials and organic semiconductors capable of emission, use of the same and electronic components containing said mixtures
EP2251396B1 (en) Organic emission-capable materials and electronic components containing same
EP1687857B1 (en) Organic electroluminescent element
EP1675929B1 (en) Metal complexes
EP1924590B1 (en) Metal complexes
EP1558662B1 (en) Conjugated polymers containing arylamine units, the representation thereof and the use of the same
EP1869141B1 (en) Compounds for organic electronic devices
EP1668718B1 (en) Organic electroluminescent element
EP1656706A1 (en) Organic electroluminescent element
EP1578885A2 (en) Organic electroluminescent element
EP1649731A1 (en) Organic electroluminescent element
EP1697483B1 (en) Organic electroluminescent element
DE10317556B4 (en) Mixtures of organic semiconductors capable of emission and matrix materials, their use and electronic components containing them
DE10330761A1 (en) New organometallic compounds are useful for the production of electronic components, organic light emitting diodes, organic integrated circuits and organic field effect transistors
DE10355380A1 (en) New organometallic compounds are useful for the production of electronic components, organic light emitting diodes, organic integrated circuits and organic field effect transistors
DE10355358A1 (en) Mixtures for use in organic electronic devices of simplified layer structure comprise matrix materials (some of which in e.g. (hetero)aromatic ketone form are new) and emitters containing an element of atomic number above 20
EP3911716B1 (en) Materials for organic electroluminescent devices
DE10355381A1 (en) Organic electroluminescent device for semiconductors/organic LEDs has an anode, a cathode and a matrix layer with matrix material doped with a phosphorescent emitter
DE10357318A1 (en) Organic electroluminescent device, useful e.g. in organic transistors and integrated circuits, comprises electrodes, doped emission layer and a hole-blocking layer containing a spiro-bifluorene compound

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20051209

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MERCK PATENT GMBH

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB NL

17Q First examination report despatched

Effective date: 20061116

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SPREITZER, HUBERT

Inventor name: HEUN, SUSANNE

Inventor name: STOESSEL, PHILIPP

Inventor name: VESTWEBER, HORST

Inventor name: GERHARD, ANJA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100324