EP0774705B1 - Comparator with hysteresis for use in a voltage regulating circuit - Google Patents

Comparator with hysteresis for use in a voltage regulating circuit Download PDF

Info

Publication number
EP0774705B1
EP0774705B1 EP96118126A EP96118126A EP0774705B1 EP 0774705 B1 EP0774705 B1 EP 0774705B1 EP 96118126 A EP96118126 A EP 96118126A EP 96118126 A EP96118126 A EP 96118126A EP 0774705 B1 EP0774705 B1 EP 0774705B1
Authority
EP
European Patent Office
Prior art keywords
transistor
voltage
load
comparator
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96118126A
Other languages
German (de)
French (fr)
Other versions
EP0774705A3 (en
EP0774705A2 (en
Inventor
Udo John
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics GmbH
Original Assignee
SGS Thomson Microelectronics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGS Thomson Microelectronics GmbH filed Critical SGS Thomson Microelectronics GmbH
Publication of EP0774705A2 publication Critical patent/EP0774705A2/en
Publication of EP0774705A3 publication Critical patent/EP0774705A3/en
Application granted granted Critical
Publication of EP0774705B1 publication Critical patent/EP0774705B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/267Current mirrors using both bipolar and field-effect technology

Definitions

  • the invention relates to a hysteresis comparator circuit for Use as a comparison stage and control signal generator of an electrical Voltage control circuit with a voltage supplying the voltage to be regulated Voltage source, and a control circuit with such Comparator circuit.
  • circuits for which a potential is provided must be above the potential of the supply voltage source lies.
  • An example are circuits with NMOS transistors that are on the side of high supply voltage potential of your circuit are located and their gate electrode when they are turned on to be, a gate potential must be supplied, which is above the high supply voltage potential.
  • Examples are CMOS circuits. To provide such a high gate potential Booster circuits used. For AC circuits you use bootstrap circuits. For DC applications one uses charge pumps or voltage pump circuits.
  • Such voltage pump circuits have a charging voltage capacitor on, which is about twice the value of the supply voltage source is charged with the help of the AC voltage a pump oscillator, usually in the form of a rectangular pulse train provided.
  • EMR electromagnetic radiation
  • DE 37 23 579 C1 describes a series voltage regulator with a comparator circuit known, which contains a difference level, which a Load stage is connected upstream, and which is a current mirror circuit is connected downstream.
  • a comparator circuit known, which contains a difference level, which a Load stage is connected upstream, and which is a current mirror circuit is connected downstream.
  • this known longitudinal voltage regulator Comparator circuit for comparing output voltage and Input voltage of the controller, to one on the longitudinal controller branch Turn off the control transistor when the input voltage of the regulator drops below a nominal regulator output voltage in order to thereby caused by voltage drops on the input side Mitigate malfunctions.
  • the object of the present invention is therefore a circuit arrangement to make available with such pump circuits completely eliminates the problem of EMR.
  • the basic idea for solving this task is as follows: When the gate of said NMOS transistor is charged to the required pump voltage, the pumping process is ended, so that from then on the pumping frequency causing EMR no longer occurs. Since a MOS transistor has a very high gate input resistance, the pump voltage can be maintained for a relatively long time. In order not to counteract this, it is necessary to make the regulation of the pump voltage essentially loss-free, so that the capacitor holding the pump voltage is not burdened by the control circuit, that is to say, to discharge, which leads to the start of a new pumping process with the recurrence of EMR Episode.
  • the realization of this idea happens with a comparator circuit, that for the practically powerless recording of one Used a differential level compared to the voltage value one end of the load transistor and the other end a negative feedback stage and preferably between the differential stage and negative feedback stage uses a current mirror stage.
  • the control electrode of a first one Load transistor which is a transistor with high input impedance, e.g. is a MOS transistor, the one to be compared Voltage supplied.
  • the control electrode of a second load transistor becomes a Reference voltage supplied, due to which this load transistor has a constant Represents load impedance.
  • the second load transistor is a third load transistor connected in parallel depending on the output signal of the Comparator conducts or blocks, so that the impedance of the second load transistor a further load impedance depending on the output signal of the comparator is connected in parallel or not.
  • a differential stage in the basic circuit is known per se see. US-A 3,938,055 or JP-A 58 202 613.
  • the comparator circuit according to the invention is at a control circuit can be used.
  • Figure 1 shows a circuit diagram of a pump voltage control circuit with a supply voltage connection VA to which the high potential VS is supplied to a supply voltage source.
  • a Comparator COM Between the supply voltage connection VA and a first input E1 one Comparator COM is a series connection of two diodes D1 and D2. The anode of D1 with VA and the cathode of D2 connected to E1.
  • a second input E2 of the comparator COM is with a parallel connection of two reference resistors RREF1 and RREF2 connected. These are, after all, ground potential connected while at the other end they are connected to E2, RREF1 direct and RREF2 via a first switch S1.
  • a circuit node K between the two diodes D1 and D2 is on one side of a pump capacitor CP connected, the other side to an output of an oscillator OSC is connected, which when switching on a second switch S2 a pump pulse sequence with a pump frequency supplies.
  • Is located between the diode D2 and the first input E1 a parallel connection of a load capacitor CL and a Load resistance RL, which is the input capacitance and the input resistance the load to be fed with the pump voltage, in the case of called NMOS transistor whose gate capacitance or gate input resistance, represent.
  • the pump pulse sequence causes in itself a known way of charging the pump capacitor CP to a Pump voltage VP, which is about twice the supply voltage VS is. If the desired pump voltage is reached, the Switch S2 opened to end the pumping process, the discharges Pump voltage across the load resistor RL. Is the pump voltage VP falls below a predetermined threshold, is by Closing, i.e. switching switch S2 to on, means a new pumping process began.
  • the comparator COM determines whether this output signal is the switch S2 switches conductive or non-conductive.
  • the comparator with hysteresis behavior educated.
  • the two reference resistors are RREF1 and RREF2 are provided, of which depending on the position of switch S1 only the reference resistor RREF1 or the parallel connection from the two reference resistors RREF1 and RREF2 takes effect.
  • the hysteresis comparator COM comprises a cascade connection between one supplying the positive supply voltage VS.
  • Supply voltage connection VA and the negative pole of the Supply voltage source forming ground connection GND a differential stage D, a load impedance stage located on the high potential side of D. L, a negative feedback stage located on the low potential side of D. G and between D and G a current mirror stage S.
  • the differential stage D has a first differential stage transistor QP1, a second differential stage transistor QP2 and a first current source I1 on.
  • QP1 and QP2 are each as a bipolar PNP multi-collector transistor trained with two collectors.
  • the basic connections of QP1 and QP2 are connected to GND together via the first current source I1.
  • One of the two collectors of each of the two differential stage transistors QP1 and QP2 is with the common base connection connected.
  • the current mirror stage S has a current mirror circuit with a Current mirror diode QN1 in the form of a bipolar connected as a diode NPN transistor and a current mirror transistor QN2 in the form of a bipolar NPN transistor.
  • a Current mirror diode QN1 in the form of a bipolar connected as a diode NPN transistor and a current mirror transistor QN2 in the form of a bipolar NPN transistor.
  • the negative feedback stage G has a first negative feedback resistor R1 and a second negative feedback resistor R2.
  • the load impedance stage L has a first load transistor MN1 in Form of an N-channel MOS transistor, a second load transistor MP1 in the form of a P-channel MOS transistor and a third load transistor MP2 in the form of a P-channel MOS transistor.
  • the Load impedance stage L a reference voltage source V1, which between the Gate of MP1 and VS is switched, and a second current source I2, which is connected between the gate of MP2 and VS.
  • MN1, QP1, QN1 and R1 form a first series connection, while MP1, QP2, QN2 and R2 form a second series connection.
  • R1 and R2 form negative feedback impedances for QP1 and QP2.
  • MN1 forms a load impedance for QP1.
  • a circuit node SK is located between QP2 and QN2 the base of a bipolar NPN switching transistor QN3 is connected. Its emitter is connected to GND while its collector both with the gate of MP2 and with the second current source I2 connected is. A common connection point between the power source I2, gate of MP2 and collector of QN3 forms the comparator output A.
  • the load impedance formed by the first load transistor MN1 is of pump voltage VP present at the first comparator input E1.
  • the through the parallel connection of the two load transistors MP1 and MP2 formed load impedance at the emitter of QP2 depends on Potential at the comparator output.
  • MP1 is using the reference voltage source V1 permanently in a certain state of conduct held, so permanently has a constant predetermined impedance on, also referred to below as the first reference load impedance becomes.
  • the third load transistor MP2 is depending on the one at the comparator output A occurring potential switched conductive or non-conductive. Its impedance, hereinafter also referred to as the second reference load impedance, depends on the potential at comparator output A.
  • the effective load impedance at the emitter of QP2 practically formed only by the constant impedance of MP1. If MP2 is switched on, the effective one at the emitter of QP2 Load impedance through the parallel connection of the first and second reference load impedance educated. Depending on the potential at the comparator output A therefore, a lower or a higher load impedance acts on the emitter of QP2.
  • a protection diode D3 to protect the gate-source path by MN1 against overvoltages that come across the supply voltage connection VA could be supplied.
  • the pump pulse sequence In order to achieve an increase in the pump voltage VP, the pump pulse sequence must reach the pump capacitor CP in Figure 1.
  • a potential value must therefore be available at comparator output A, which controls the switch S2 in Figure 1 in the conductive state, thus controls the oscillator in the on state.
  • the impedance of the load transistor MN1 depends on the current one Voltage value of the pump voltage at comparator input E1 VP from. This pump voltage determines the value of the gate-source voltage VGS from MN1. Assuming VP is big enough to to drive the load transistor MN1 into the conductive state at all, the lower the impedance, the greater the load impedance formed by MN1 Pump voltage VP is and the lower, the higher the pump voltage VP is. The load impedance formed by MN1 therefore sets Measure for the respective existing value of the pump voltage VP. Da the pump voltage VP is applied to the gate of a MOS transistor the instantaneous or actual value is recorded and evaluated the pump voltage VP practically without power. The pump voltage source, namely the pump capacitor CP, is by this type Actual value acquisition is therefore practically not loaded and unloaded.
  • the impedance value representing the respective actual value of the pump voltage of MN1 is compared to the reference impedance, as ever after switching state of the third load transistor MP2 by the load impedance of MP1 alone or the parallel connection of the load impedances is formed by MP1 and MP2. Since the pump voltage VP after Turning on the supply voltage increases, which is formed by MN1 Load impedance thus decreases accordingly, that at the emitter effective load impedance of QP2 must be correspondingly lower than that Impedance of MN1, which is present as long as the pump voltage VP has not yet reached the desired voltage value or setpoint.
  • the comparator circuit therefore behaves in the phase in which the Pump voltage VP is still below the desired value, asymmetrical, since the two differential stage transistors QP1 and QP2 Difference level D different load impedances are offered. Since the load impedance effective at the emitter of QP2 is lower than the load impedance acting on the emitter of QP1 flows through QP2 more electricity than through QP1. The one on the SK circuit node from the collector The current supplied by QP2 is therefore higher than that via the current mirror stage S current supplied to the circuit node SK from the collector of QP1. In addition, the voltage drop across the negative feedback resistor R2 greater than the voltage drop across the negative feedback resistor R1, which leads to an increase in the potential at the circuit node SK.
  • the pump voltage VP becomes like this large that the value of the impedance from MN1 to that impedance value has dropped from the parallel connection of the first and second reference load impedance results.
  • the Comparator circuit symmetrical behavior. If minor further increase in the pump voltage value this symmetrical behavior is lost again, the comparator output A goes into the other of the two possible states: The comparator output A takes high potential. This is because the one that is effective on the emitter of QP1 Load impedance value has become lower than that at the emitter of QP2 effective load impedance value and accordingly that of QP1 current flowing has become higher than the current flowing through QP2.
  • the comparator circuit according to Figure 2 was part considered a pump voltage control circuit. This comparator circuit but can also be used advantageously for other purposes. It is suitable for any application in which an input variable compared to a hysterical reference variable with practically no performance shall be. Because the gate with the size to be measured of a MOS transistor, such becomes practical powerless measurement of those of interest or to be monitored Size possible.
  • comparator circuit not only one practically powerless measurement of the monitored or regulated Achieve voltage value but you can use it for the control process easily program the determining threshold through the Selection of the voltage value of the reference voltage source V1.
  • Comparator circuit of this type designed as an integrated circuit you could provide several reference voltage sources that you ever according to the threshold value required in the special case by programming could make selectable.
  • the ratio of the transconductances must be used to determine the threshold value of MN1 and MP1 can be set using the respective W / L ratio.
  • the threshold value can therefore be dependent on the channel widths and the channel lengths of the two CMOS transistors MN1 and MP1 can be selected.
  • a hysteresis can be achieved by parallel to the second Load transistor MP1, the third load transistor MP2 is switched, the Channel type is also opposite to that of MN1 and where it is is a transistor with a P-channel.
  • the amount of hysteresis can also be selected by selecting the length and width of the channel become.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Electronic Switches (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Dc-Dc Converters (AREA)

Description

Die Erfindung betrifft eine hysteresebehaftete Komparatorschaltung zur Verwendung als Vergleichsstufe und Stellsignalgeber einer elektrischen Spannungsregelungsschaltung mit einer die zu regelnde Spannung liefernden Spannungsquelle, sowie eine Regelungsschaltung mit einer derartigen Komparatorschaltung.The invention relates to a hysteresis comparator circuit for Use as a comparison stage and control signal generator of an electrical Voltage control circuit with a voltage supplying the voltage to be regulated Voltage source, and a control circuit with such Comparator circuit.

Es gibt elektrische Schaltungen, für welche ein Potential bereitgestellt werden muß, das über dem Potential der Versorgunsspannungsquelle liegt. Ein Beispiel sind Schaltungen mit NMOS-Transistoren, die sich auf der Seite hohen Versorgungsspannungspotentials ihrer Schaltung befinden und deren Gate-Elektrode dann, wenn sie leitend geschaltet werden sollen, ein Gatepotential zugeführt werden muß, das über dem hohen Versorgungsspannungspotential liegt. Beispiele sind CMOS-Schaltungen. Zur Bereitstellung eines solchen hohen Gatepotentials werden Spannungserhöhungsschaltungen verwendet. Für Wechselstromschaltungen verwendet man Bootstrap-Schaltungen. Für Gleichstromanwendungen benutzt man Ladungspumpen oder Spannungspumpschaltungen.There are electrical circuits for which a potential is provided must be above the potential of the supply voltage source lies. An example are circuits with NMOS transistors that are on the side of high supply voltage potential of your circuit are located and their gate electrode when they are turned on to be, a gate potential must be supplied, which is above the high supply voltage potential. Examples are CMOS circuits. To provide such a high gate potential Booster circuits used. For AC circuits you use bootstrap circuits. For DC applications one uses charge pumps or voltage pump circuits.

Solche Spannungspumpschaltungen weisen einen Ladespannungskondensator auf, der auf etwa den doppelten Wert der Versorgungsspannungsquelle aufgeladen wird, und zwar mit Hilfe der Wechselspannung eines Pumposzillators, die üblicherweise in Form einer Rechteckimpulsfolge bereitgestellt wird. Diese führt zu elektromagnetischer Strahlung (EMR), die insbesondere bei Gleichspannungsanwendungen recht störend sein kann. Es sind daher Maßnahmen erforderlich, um solcher EMR zu begegnen.Such voltage pump circuits have a charging voltage capacitor on, which is about twice the value of the supply voltage source is charged with the help of the AC voltage a pump oscillator, usually in the form of a rectangular pulse train provided. This leads to electromagnetic radiation (EMR), which is particularly annoying in DC voltage applications can be. Measures are therefore required to achieve such EMR to encounter.

Eine Verringerung der EMR kann man durch Herabsetzung der Frequenz der Pumpimpulsfolge und/oder durch gezielte Verringerung der Flankensteilheit der Pumpimpulse erreichen. Hauptnachteil dieser Maßnahmen ist es aber, daß sie das Problem mit der EMR nur verringern, nicht jedoch beseitigen. One can reduce the EMR by lowering the frequency the pump pulse sequence and / or by deliberately reducing the Raised slope of the pump pulses. Main disadvantage of this However, measures are that they only reduce the problem with the EMR, don't eliminate however.

Aus der DE 37 23 579 C1 ist ein Längsspannungsregler mit einer Komparatorschaltung bekannt, die eine Differenzstufe enthält, welcher eine Laststufe vorgeschaltet ist, und welcher eine Stromspiegelschaltung nachgeschaltet ist. Bei diesem bekannten Längsspannungsregler dient die Komparatorschaltung zum Vergleichen von Ausgangsspannung und Eingangsspannung des Reglers, um einen auf den Reglerlängszweig einwirkenden Steuertransistor auszuschalten, wenn die Eingangsspannung des Reglers unter eine Regler-Nenn-Ausgangsspannung abfällt, um dadurch durch eingangsseitige Spannungseinbrüche hervorgerufene Funktionsstörungen zu mildern.DE 37 23 579 C1 describes a series voltage regulator with a comparator circuit known, which contains a difference level, which a Load stage is connected upstream, and which is a current mirror circuit is connected downstream. In this known longitudinal voltage regulator Comparator circuit for comparing output voltage and Input voltage of the controller, to one on the longitudinal controller branch Turn off the control transistor when the input voltage of the regulator drops below a nominal regulator output voltage in order to thereby caused by voltage drops on the input side Mitigate malfunctions.

Aus Electronics, Sept. 16, 1976, Seiten 42 und 44 ist eine Spannungspumpschaltung bekannt, bei der die Pumpspannung auf einen vorbestimmten Wert eingeregelt wird, wozu abhängig vom Ausgangssignal eines Komparators ein Pumposzillator ein- und ausgeschaltet wird.Electronics, Sept. 16, 1976, pages 42 and 44 is a voltage pump circuit known in which the pump voltage to a predetermined Value is adjusted, depending on the output signal of a comparator a pump oscillator is switched on and off.

Aufgabe der vorliegenden Erfindung ist es daher, eine Schaltungsanordnung verfügbar zu machen, mit der sich bei solchen Pumpschaltungen das Problem der EMR gänzlich beseitigen läßt.The object of the present invention is therefore a circuit arrangement to make available with such pump circuits completely eliminates the problem of EMR.

Die grundsätzliche Idee zur Lösung dieser Aufgabe ist folgende:
Wenn das Gate des genannten NMOS-Transistors auf die erforderliche Pumpspannung aufgeladen ist, wird der Pumpvorgang beendet, so daß ab da die EMR verursachende Pumpfrequenz nicht mehr auftritt. Da ein MOS-Transistor einen sehr hohen Gate-Eingangswiderstand aufweist, kann die Pumpspannung relativ lange aufrechterhalten werden. Um dem nicht entgegenzuwirken, ist es erforderlich, die Regelung der Pumpspannung im wesentlichen verlustleistungsfrei zu machen, um den die Pumpspannung haltenden Kondensator durch die Regelungsschaltung nicht zu belasten, das heißt, zu entladen, was den Beginn eines neuen Pumpvorgangs unter erneutem Auftreten von EMR zur Folge hätte.
The basic idea for solving this task is as follows:
When the gate of said NMOS transistor is charged to the required pump voltage, the pumping process is ended, so that from then on the pumping frequency causing EMR no longer occurs. Since a MOS transistor has a very high gate input resistance, the pump voltage can be maintained for a relatively long time. In order not to counteract this, it is necessary to make the regulation of the pump voltage essentially loss-free, so that the capacitor holding the pump voltage is not burdened by the control circuit, that is to say, to discharge, which leads to the start of a new pumping process with the recurrence of EMR Episode.

Die Verwirklichung dieser Idee geschieht mit einer Komparatorschaltung, die zur praktisch leistungslosen Erfassung des einem Vergleich zu unterziehenden Spannungswertes eine Differenzstufe verwendet, die einen Endes Lasttransistoren und anderen Endes eine Gegenkopplungsstufe und vorzugsweise zwischen Differenzstufe und Gegenkopplungsstufe eine Stromspiegelstufe verwendet. Der Steuerelektrode eines ersten Lasttransistors, bei dem es sich um einen Transistor mit hoher Eingangsimpedanz, z.B. einen MOS-Transistor handelt, wird die dem Vergleich zuzuführende Spannung geliefert. Der Steuerelektrode eines zweiten Lasttransistors wird eine Referenzspannung zugeführt, aufgrund welcher dieser Lasttransistor eine konstante Lastimpedanz darstellt. Dem zweiten Lasttransistor ist ein dritter Lasttransistor parallel geschaltet, der in Abhängigkeit von dem Ausgangssignal des Komparators leitet oder sperrt, so daß der Impedanz des zweiten Lasttransistors in Abhängigkeit vom Ausgangssignal des Komparators eine weitere Lastimpedanz parallel geschaltet wird oder nicht.The realization of this idea happens with a comparator circuit, that for the practically powerless recording of one Used a differential level compared to the voltage value one end of the load transistor and the other end a negative feedback stage and preferably between the differential stage and negative feedback stage uses a current mirror stage. The control electrode of a first one Load transistor, which is a transistor with high input impedance, e.g. is a MOS transistor, the one to be compared Voltage supplied. The control electrode of a second load transistor becomes a Reference voltage supplied, due to which this load transistor has a constant Represents load impedance. The second load transistor is a third load transistor connected in parallel depending on the output signal of the Comparator conducts or blocks, so that the impedance of the second load transistor a further load impedance depending on the output signal of the comparator is connected in parallel or not.

Eine Differenzstufe in Basisschaltung ist an sich bekannt vgl. US-A 3,938,055 oder JP-A 58 202 613.A differential stage in the basic circuit is known per se see. US-A 3,938,055 or JP-A 58 202 613.

Eine Verwendung einer derartigen Komparatorschaltung im Zusammenhang mit einer Spannungsregelungsschaltung ist in abhängigen Anspruch 3 angegeben. Nach Anspruch 15 ist die erfindungsgemäße Komparatorschaltung bei einer Regelungsschaltung einsetzbar.Use of such a comparator circuit in context with a voltage control circuit is specified in dependent claim 3. According to claim 15, the comparator circuit according to the invention is at a control circuit can be used.

Weiterbildungen der erfindungsgemäßen Komparatorschaltung sind in den Ansprüchen 2 und 4 bis 15 angegeben.Further developments of the comparator circuit according to the invention are in the Claims 2 and 4 to 15 indicated.

Die Erfindung wird nun anhand von Ausführungsformen näher erläutert. In den beiliegenden Zeichnungen zeigen:

Fig. 1
ein elektrisches Schaltbild, teilweise in Blockdarstellung, einer erfindungsgemäßen Pumpspannungsregelungsschaltung;
Fig. 2
ein Schaltbild einer hysteresebehafteten Komparatorschaltung, die bei der Pumpspannungsregelungsschaltung der Figur 1 verwendbar ist; und
Fig. 3
Spannungsverläufe, die bei der Komparatorschaltung nach Figur 2 auftreten
The invention will now be explained in more detail by means of embodiments. In the accompanying drawings:
Fig. 1
an electrical circuit diagram, partially in block diagram, of a pump voltage control circuit according to the invention;
Fig. 2
a circuit diagram of a hysteresis comparator circuit which can be used in the pump voltage control circuit of Figure 1; and
Fig. 3
Voltage curves that occur in the comparator circuit according to FIG. 2

Figur 1 zeigt ein Schaltbild einer Pumpspannungsregelungsschaltung mit einem Versorgungsspannungsanschluß VA, dem das hohe Potential VS einer Versorgungsspannungsquelle zugeführt wird. Zwischen dem Versorgungsspannungsanschluß VA und einem ersten Eingang E1 eines Komparators COM befindet sich eine Reihenschaltung aus zwei Dioden D1 und D2. Dabei ist die Anode von D1 mit VA und die Kathode von D2 mit E1 verbunden. Ein zweiter Eingang E2 des Komparators COM ist mit einer Parallelschaltung aus zwei Referenzwiderständen RREF1 und RREF2 verbunden. Diese sind einen Endes mit Massepotential verbunden, während sie anderen Endes mit E2 verbunden sind, RREF1 direkt und RREF2 über einen ersten Schalter S1. Ein Schaltungsknoten K zwischen den beiden Dioden D1 und D2 ist an eine Seite eines Pumpkondensators CP angeschlossen, dessen andere Seite an einen Ausgang eines Oszillators OSC angeschlossen ist, der beim Leitendschalten eines zweiten Schalters S2 eine Pumpimpulsfolge mit einer Pumpfrequenz liefert. Zwischen der Diode D2 und dem ersten Eingang E1 befindet sich eine Parallelschaltung aus einem Lastkondensator CL und einem Lastwiderstand RL, welche die Eingangskapazität und den Eingangswiderstand der mit der Pumpspannung zu speisenden Last, im Fall des genannten NMOS-Transistors dessen Gatekapazität bzw. Gateeingangswiderstand, darstellen.Figure 1 shows a circuit diagram of a pump voltage control circuit with a supply voltage connection VA to which the high potential VS is supplied to a supply voltage source. Between the supply voltage connection VA and a first input E1 one Comparator COM is a series connection of two diodes D1 and D2. The anode of D1 with VA and the cathode of D2 connected to E1. A second input E2 of the comparator COM is with a parallel connection of two reference resistors RREF1 and RREF2 connected. These are, after all, ground potential connected while at the other end they are connected to E2, RREF1 direct and RREF2 via a first switch S1. A circuit node K between the two diodes D1 and D2 is on one side of a pump capacitor CP connected, the other side to an output of an oscillator OSC is connected, which when switching on a second switch S2 a pump pulse sequence with a pump frequency supplies. Is located between the diode D2 and the first input E1 a parallel connection of a load capacitor CL and a Load resistance RL, which is the input capacitance and the input resistance the load to be fed with the pump voltage, in the case of called NMOS transistor whose gate capacitance or gate input resistance, represent.

Ist der Schalter S2 geschlossen, bewirkt die Pumpimpulsfolge in an sich bekannter Weise eine Aufladung des Pumpkondensators CP auf eine Pumpspannung VP, die etwa doppelt so groß wie die Versorgungsspannung VS ist. Wird nach Erreichen der gewünschten Pumpspannung der Schalter S2 zur Beendigung des Pumpvorgangs geöffnet, entlädt sich die Pumpspannung über den Lastwiderstand RL. Ist die Pumpspannung VP unter einen vorbestimmten Schwellenwert abgefallen, wird durch Schließen, also Leitendschalten des Schalters S2 ein erneuter Pumpvorgang begonnen.If the switch S2 is closed, the pump pulse sequence causes in itself a known way of charging the pump capacitor CP to a Pump voltage VP, which is about twice the supply voltage VS is. If the desired pump voltage is reached, the Switch S2 opened to end the pumping process, the discharges Pump voltage across the load resistor RL. Is the pump voltage VP falls below a predetermined threshold, is by Closing, i.e. switching switch S2 to on, means a new pumping process began.

Wann ein Pumpvorgang beendet werden kann und wann ein neuer Pumpvorgang erforderlich ist, wird mit Hilfe des Komparators COM bestimmt, von dessen an einem Komparatorausgang A auftretendem Ausgangssignal es abhängt, ob dieses Ausgangssignal den Schalter S2 leitend oder nicht-leitend schaltet. Um hinsichtlich der Pumpspannung VP eine Zweipunktregelung zu erzielen, ist der Komparator mit Hystereseverhalten ausgebildet. Zu diesem Zweck sind die beiden Referenzwiderstände RREF1 und RREF2 vorgesehen, von denen je nach Stellung des Schalters S1 nur der Referenzwiderstand RREF1 oder die Parallelschaltung aus den beiden Referenzwiderständen RREF1 und RREF2 wirksam wird. Da der Eingangswiderstand RL des genannten NMOS-Transistors sehr hoch ist, können die Zeitabstände zwischen den Zeiten, zu denen durch Schließen des Schalters S2 jeweils ein Pumpvorgang durchgeführt wird, sehr groß sein, wenn der Eingangswiderstand des Eingangs E1 des Komparators COM ebenfalls sehr groß ist. Zwischen diesen langen Zeitabständen findet kein Pumpspannungsvorgang statt, kann somit der Pumposzillator abgeschaltet werden, so daß zwischen diesen langen Zeitabständen keine EMR auftritt.When a pumping process can be ended and when a new one Pumping process is required, using the comparator COM determined, of which occurs at a comparator output A. Output signal it depends on whether this output signal is the switch S2 switches conductive or non-conductive. To regarding the pump voltage VP to achieve two-point control is the comparator with hysteresis behavior educated. For this purpose, the two reference resistors are RREF1 and RREF2 are provided, of which depending on the position of switch S1 only the reference resistor RREF1 or the parallel connection from the two reference resistors RREF1 and RREF2 takes effect. Since the input resistance RL of the NMOS transistor is very high, the time intervals between the times, to which a pumping process by closing switch S2 will be very large if the input resistance of the Input E1 of the comparator COM is also very large. Between there is no pump voltage operation at these long intervals, the pump oscillator can thus be switched off, so that between no EMR occurs during these long time intervals.

Eine Ausführungsform eines erfindungsgemäßen, hysteresebehafteten Komparators, der die Pumpspannungsquelle möglichst wenig belastet, ist in Figur 2 gezeigt und umfaßt den gestrichelt umrahmten Teil der in Figur 1 gezeigten Schaltung.An embodiment of an inventive hysteresis Comparator, which loads the pump voltage source as little as possible shown in Figure 2 and includes the dashed part of the in Figure 1 circuit shown.

Der Hystereskomparator COM gemäß Figur 2 umfaßt in Kaskadenschaltung zwischen einem die positive Versorgunsspannung VS zuführenden Versorgungsspannungsanschluß VA und einem den negativen Pol der Versorgungsspannungsquelle bildenden Masseanschluß GND eine Differenzstufe D, eine auf der Hochpotentialseite von D befindliche Lastimpedanzstufe L, eine auf der Niederpotentialseite von D befindliche Gegenkopplungsstufe G und zwischen D und G eine Stromspiegelstufe S.The hysteresis comparator COM according to FIG. 2 comprises a cascade connection between one supplying the positive supply voltage VS. Supply voltage connection VA and the negative pole of the Supply voltage source forming ground connection GND a differential stage D, a load impedance stage located on the high potential side of D. L, a negative feedback stage located on the low potential side of D. G and between D and G a current mirror stage S.

Die Differenzstufe D weist einen ersten Differenzstufentransistor QP1, einen zweiten Differenzstufentransistor QP2 und eine erste Stromquelle I1 auf. QP1 und QP2 sind je als bipolarer PNP-Multikollektortransistor mit zwei Kollektoren ausgebildet. Die Basisanschlüsse von QP1 und QP2 sind gemeinsam über die erste Stromquelle I1 mit GND verbunden. Einer der beiden Kollektoren eines jeden der beiden Differenzstufenstransistoren QP1 und QP2 ist mit dem gemeinsamen Basisanschluß verbunden. The differential stage D has a first differential stage transistor QP1, a second differential stage transistor QP2 and a first current source I1 on. QP1 and QP2 are each as a bipolar PNP multi-collector transistor trained with two collectors. The basic connections of QP1 and QP2 are connected to GND together via the first current source I1. One of the two collectors of each of the two differential stage transistors QP1 and QP2 is with the common base connection connected.

Die Stromspiegelstufe S weist eine Stromspiegelschaltung mit einer Stromspiegeldiode QN1 in Form eines als Diode geschalteten bipolaren NPN-Transistors und einen Stromspiegeltransistor QN2 in Form eines bipolaren NPN-Transistors auf. In für Stromspiegel üblicher Weise sind die Basisanschlüsse von QN1 und QN2 miteinander verbunden.The current mirror stage S has a current mirror circuit with a Current mirror diode QN1 in the form of a bipolar connected as a diode NPN transistor and a current mirror transistor QN2 in the form of a bipolar NPN transistor. In the usual way for current mirrors the basic connections of QN1 and QN2 connected to each other.

Die Gegenkopplungsstufe G weist einen ersten Gegenkopplungswiderstand R1 und einen zweiten Gegenkopplungswiderstand R2 auf.The negative feedback stage G has a first negative feedback resistor R1 and a second negative feedback resistor R2.

Die Lastimpedanzstufe L besitzt einen ersten Lasttransistor MN1 in Form eines N-Kanal-MOS-Transistors, einen zweiten Lasttransistor MP1 in Form eines P-Kanal-MOS-Transistors und einen dritten Lasttransistor MP2 in Form eines P-Kanal-MOS-Transistors auf. Außerdem umfaßt die Lastimpedanzstufe L eine Referenzspannungsquelle V1, die zwischen das Gate von MP1 und VS geschaltet ist, und eine zweite Stromquelle I2, die zwischen das Gate von MP2 und VS geschaltet ist.The load impedance stage L has a first load transistor MN1 in Form of an N-channel MOS transistor, a second load transistor MP1 in the form of a P-channel MOS transistor and a third load transistor MP2 in the form of a P-channel MOS transistor. In addition, the Load impedance stage L a reference voltage source V1, which between the Gate of MP1 and VS is switched, and a second current source I2, which is connected between the gate of MP2 and VS.

MN1, QP1, QN1 und R1 bilden eine erste Reihenschaltung, während MP1, QP2, QN2 und R2 eine zweite Reihenschaltung bilden. R1 und R2 bilden Gegenkopplungsimpedanzen für QP1 und QP2. MN1 bildet eine Lastimpedanz für QP1. Die parallel geschalteten Lasttransistoren MP1 und MP2 bilden gemeinsam eine Lastimpedanz für QP2.MN1, QP1, QN1 and R1 form a first series connection, while MP1, QP2, QN2 and R2 form a second series connection. R1 and R2 form negative feedback impedances for QP1 and QP2. MN1 forms a load impedance for QP1. The load transistors connected in parallel MP1 and MP2 together form a load impedance for QP2.

Zwischen QP2 und QN2 befindet sich ein Schaltungsknoten SK, an den die Basis eines bipolaren NPN-Schalttransistors QN3 angeschlossen ist. Dessen Emitter ist mit GND verbunden, während dessen Kollektor sowohl mit dem Gate von MP2 als auch mit der zweiten Stromquelle I2 verbunden ist. Ein gemeinsamer Verbindungspunkt zwischen Stromquelle I2, Gate von MP2 und Kollektor von QN3 bildet den Komparatorausgang A.A circuit node SK is located between QP2 and QN2 the base of a bipolar NPN switching transistor QN3 is connected. Its emitter is connected to GND while its collector both with the gate of MP2 and with the second current source I2 connected is. A common connection point between the power source I2, gate of MP2 and collector of QN3 forms the comparator output A.

Die vom ersten Lasttransistor MN1 gebildete Lastimpedanz ist von der am ersten Komparatoreingang E1 anliegenden Pumpspannung VP abhängig. Die durch die Parallelschaltung der beiden Lasttransistoren MP1 und MP2 gebildete Lastimpedanz am Emitter von QP2 hängt vom Potential am Komparatorausgang ab. MP1 wird mittels der Referenzspannungsquelle V1 permanent in einem bestimmten Zustand des Leitens gehalten, weist also permanent eine konstante vorbestimmte Impedanz auf, die im folgenden auch erste Referenzlastimpedanz genannt wird. Der dritte Lasttransistor MP2 wird je nach dem am Komparatorausgang A auftretenden Potential leitend oder nicht-leitend geschaltet. Seine Impedanz, im folgenden auch zweite Referenzlastimpedanz genannt, hängt damit vom Potential am Komparatorausgang A ab. Ist MP2 nicht-leitend geschaltet, wird die am Emitter von QP2 wirksame Lastimpedanz praktisch nur durch die konstante Impedanz von MP1 gebildet. Ist MP2 leitend geschaltet, wird die am Emitter von QP2 wirksame Lastimpedanz durch die Parallelschaltung von erster und zweiter Referenzlastimpedanz gebildet. Je nach Potential am Komparatorausgang A wirkt somit am Emitter von QP2 eine niedrigere oder eine höhere Lastimpedanz.The load impedance formed by the first load transistor MN1 is of pump voltage VP present at the first comparator input E1. The through the parallel connection of the two load transistors MP1 and MP2 formed load impedance at the emitter of QP2 depends on Potential at the comparator output. MP1 is using the reference voltage source V1 permanently in a certain state of conduct held, so permanently has a constant predetermined impedance on, also referred to below as the first reference load impedance becomes. The third load transistor MP2 is depending on the one at the comparator output A occurring potential switched conductive or non-conductive. Its impedance, hereinafter also referred to as the second reference load impedance, depends on the potential at comparator output A. Is MP2 switched non-conductive, the effective load impedance at the emitter of QP2 practically formed only by the constant impedance of MP1. If MP2 is switched on, the effective one at the emitter of QP2 Load impedance through the parallel connection of the first and second reference load impedance educated. Depending on the potential at the comparator output A therefore, a lower or a higher load impedance acts on the emitter of QP2.

Zwischen dem Versorgungsspannungsanschluß VA und dem Gate von MN1 befindet sich eine Schutzdiode D3 zum Schutz der Gate-Source-Strecke von MN1 gegen Überspannungen, die über den Versorgungsspannungsanschluß VA zugeführt werden könnten.Between the supply voltage terminal VA and the gate of MN1 is a protection diode D3 to protect the gate-source path by MN1 against overvoltages that come across the supply voltage connection VA could be supplied.

In Figur 1 ist die Impedanz des leitenden Lasttransistors MP2 durch RREF2 dargestellt, während die Impedanz des permanent leitenden Lasttransistors MP1 durch RREF1 dargestellt ist. Der Schalter S1 in Figur 1 wird durch den als Schalter betriebenen Lasttransistor MP2 angedeutet.In Figure 1, the impedance of the conductive load transistor MP2 is through RREF2 is shown while the impedance of the permanently conductive Load transistor MP1 is represented by RREF1. The switch S1 in Figure 1 is by the load transistor MP2 operated as a switch indicated.

Unter Zuhilfenahme von Figur 3 wird nun die Wirkungsweise der in Figur 2 gezeigten Komparatorschaltung betrachtet. Dabei wird zunächst von einem Betriebszustand ausgegangen, bei welchem die Pumpspannung VP unterhalb des gewünschten Spannungswertes liegt, wie dies zunächst beim Einschalten der Spannungsversorgung der Fall ist. Dieser Zeitabschnitt ist in Figur 3 mit T1 gekennzeichnet.With the help of Figure 3, the mode of operation of the in Figure 2 considered comparator circuit. This will start with assumed an operating state in which the pump voltage VP is below the desired voltage value, as is initially the case when the power supply is switched on. This Time period is identified in Figure 3 with T1.

Um ein Ansteigen der Pumpspannung VP zu erzielen, muß die Pumpimpulsfolge auf den Pumpkondensator CP in Figur 1 gelangen können. In order to achieve an increase in the pump voltage VP, the pump pulse sequence must can reach the pump capacitor CP in Figure 1.

Am Komparatorausgang A muß daher ein Potentialwert vorhanden sein, der den Schalter S2 in Figur 1 in den leitenden Zustand steuert, somit den Oszillator in den Einschaltzustand steuert.A potential value must therefore be available at comparator output A, which controls the switch S2 in Figure 1 in the conductive state, thus controls the oscillator in the on state.

Die Impedanz des Lasttransistors MN1 hängt von dem momentanen Spannungswert der am Komparatoreingang E1 anliegenden Pumpspannung VP ab. Diese Pumpspannung bestimmt den Wert der Gate-Source-Spannung VGS von MN1. Vorausgesetzt, VP ist ausreichend groß, um den Lasttransistor MN1 überhaupt in den leitenden Zustand zu steuern, ist die durch MN1 gebildete Lastimpedanz umso größer, je niedriger die Pumpspannung VP ist und umso niedriger, je höher die Pumpspannung VP ist. Die jeweils durch MN1 gebildete Lastimpedanz stellt daher ein Maß für den jeweils vorhandenen Wert der Pumpspannung VP dar. Da die Pumpspannung VP auf das Gate eines MOS-Transistors gegeben wird, erfolgt die Erfassung und Auswertung des Momentan- oder Ist-Wertes der Pumpspannung VP praktisch leistungslos. Die Pumpspannungsquelle, nämlich der Pumpkondensator CP, wird durch diese Art Istwerterfassung somit praktisch nicht belastet und entladen.The impedance of the load transistor MN1 depends on the current one Voltage value of the pump voltage at comparator input E1 VP from. This pump voltage determines the value of the gate-source voltage VGS from MN1. Assuming VP is big enough to to drive the load transistor MN1 into the conductive state at all, the lower the impedance, the greater the load impedance formed by MN1 Pump voltage VP is and the lower, the higher the pump voltage VP is. The load impedance formed by MN1 therefore sets Measure for the respective existing value of the pump voltage VP. Da the pump voltage VP is applied to the gate of a MOS transistor the instantaneous or actual value is recorded and evaluated the pump voltage VP practically without power. The pump voltage source, namely the pump capacitor CP, is by this type Actual value acquisition is therefore practically not loaded and unloaded.

Der den jeweiligen Istwert der Pumpspannung darstellende Impedanzwert von MN1 wird mit der Referenzimpedanz verglichen, wie sie je nach Schaltzustand des dritten Lasttransistors MP2 durch die Lastimpedanz von MP1 alleine oder die Parallelschaltung der Lastimpedanzen von MP1 und MP2 gebildet wird. Da die Pumpspannung VP nach dem Einschalten der Versorgungsspannung ansteigt, die durch MN1 gebildete Lastimpedanz somit entsprechend abnimmt, muß die am Emitter von QP2 wirksame Lastimpedanz entsprechend niedriger sein als die Impedanz von MN1, die vonhanden ist, solange die Pumpspannung VP den gewünschten Spannungswert oder Sollwert noch nicht erreicht hat. Die Komparatorschaltung verhält sich daher in der Phase, in welcher die Pumpspannung VP noch unter dem gewünschten Wert liegt, unsymmetrisch, da den beiden Differenzstufentransistoren QP1 und QP2 der Differenzstufe D unterschiedlich große Lastimpedanzen angeboten werden. Da die am Emitter von QP2 wirksame Lastimpedanz niedriger ist als die am Emitter von QP1 wirkende Lastimpedanz, fließt durch QP2 mehr Strom als durch QP1. Der am Schaltungsknoten SK vom Kollektor von QP2 gelieferte Strom ist daher höher als der über die Stromspiegelstufe S zum Schaltungsknoten SK gelieferte Strom vom Kollektor von QP1. Außerdem ist der Spannungsabfall am Gegenkopplungswiderstand R2 größer als der Spannungsabfall am Gegenkopplungswiderstand R1, was zu einem Anheben des Potentials am Schaltungsknoten SK führt. Diese beiden Erscheinungen bewirken, daß der Schalttransistor QN3 eingeschaltet ist, so daß an seinem Kollektor ein niedriges Potential auftritt, was zum Leiten des dritten Lasttransistors MP2 führt. Am Emitter von QP2 wird somit die Parallelschaltung aus der von MP1 gebildeten ersten Referenzlastimpedanz und der von dem leitenden MP2 gebildeten zweiten Referenzlastimpedanz wirksam.The impedance value representing the respective actual value of the pump voltage of MN1 is compared to the reference impedance, as ever after switching state of the third load transistor MP2 by the load impedance of MP1 alone or the parallel connection of the load impedances is formed by MP1 and MP2. Since the pump voltage VP after Turning on the supply voltage increases, which is formed by MN1 Load impedance thus decreases accordingly, that at the emitter effective load impedance of QP2 must be correspondingly lower than that Impedance of MN1, which is present as long as the pump voltage VP has not yet reached the desired voltage value or setpoint. The comparator circuit therefore behaves in the phase in which the Pump voltage VP is still below the desired value, asymmetrical, since the two differential stage transistors QP1 and QP2 Difference level D different load impedances are offered. Since the load impedance effective at the emitter of QP2 is lower than the load impedance acting on the emitter of QP1 flows through QP2 more electricity than through QP1. The one on the SK circuit node from the collector The current supplied by QP2 is therefore higher than that via the current mirror stage S current supplied to the circuit node SK from the collector of QP1. In addition, the voltage drop across the negative feedback resistor R2 greater than the voltage drop across the negative feedback resistor R1, which leads to an increase in the potential at the circuit node SK. These two phenomena cause the switching transistor QN3 to turn on is so that a low potential occurs at its collector, which leads to the conduction of the third load transistor MP2. At the emitter of QP2 thus becomes the parallel connection from the first one formed by MP1 Reference load impedance and the second one formed by the conductive MP2 Reference load impedance effective.

Da im Zustand zu niedriger Pumpspannung VP am Kollektor von QN3 und damit am Komparatorausgang A niedriges Potential liegt, ist die gesamte Regelschaltung so auszulegen, daß bei niedrigem Potential am Komparatorausgang A eine Pumpimpulsfolge auf den Pumpkondensator CP gegeben wird.Since the pump voltage VP is too low at the collector of QN3 and so that there is a low potential at the comparator output A is entire control circuit so that at low potential at Comparator output A a pump pulse train on the pump capacitor CP is given.

Während ihres Anstiegs wird die Pumpspannung VP irgendwann so groß, daß der Wert der Impedanz von MN1 bis auf denjenigen Impedanzwert abgefallen ist, der sich aus der Parallelschaltung von erster und zweiter Referenzlastimpedanz ergibt. In diesem Moment erreicht die Komparatorschaltung symmetrisches Verhalten. Wenn bei geringfügiger weiterer Erhöhung des Pumpspannungswertes dieses symmetrische Verhalten wieder verlorengeht, geht der Komparatorausgang A in den anderen der beiden möglichen Zustände: Der Komparatorausgang A nimmt hohes Potential an. Dies deshalb, weil der am Emitter von QP1 wirksame Lastimpedanzwert niedriger geworden ist als der am Emitter von QP2 wirksame Lastimpedanzwert und dementsprechend der durch QP1 fließende Strom höher geworden ist als der durch QP2 fließende Strom. Die Strombilanz am Schaltungsknoten SK kehrt sich entsprechend um und wegen des kleiner gewordenen Stroms durch QP2 ist der Spannungsabfall über dem Gegenkopplungswiderstand R2 und damit das Potential am Schaltungsknoten SK abgefallen. Als Folge davon sperrt der Schalttransistor QN3. Dies führt einerseits zu dem bereits erwähnten hohen Potentialwert am Komparatorausgang A und andererseits zum Sperren des dritten Lasttransistors MP2. Von diesem Zeitpunkt ab ist am Emitter von QP2 nur noch die durch MP1 gebildete, konstante erste Referenzlastimpedanz wirksam.At some point during its rise, the pump voltage VP becomes like this large that the value of the impedance from MN1 to that impedance value has dropped from the parallel connection of the first and second reference load impedance results. At that moment the Comparator circuit symmetrical behavior. If minor further increase in the pump voltage value this symmetrical behavior is lost again, the comparator output A goes into the other of the two possible states: The comparator output A takes high potential. This is because the one that is effective on the emitter of QP1 Load impedance value has become lower than that at the emitter of QP2 effective load impedance value and accordingly that of QP1 current flowing has become higher than the current flowing through QP2. The current balance at the circuit node SK is reversed accordingly and because of the decreased current through QP2 the voltage drop is across the negative feedback resistor R2 and thus that Potential dropped at circuit node SK. As a result, locks the switching transistor QN3. On the one hand, this leads to the already mentioned high potential value at the comparator output A and on the other hand to Block the third load transistor MP2. From this point on, Emitter of QP2 only the constant first formed by MP1 Reference load impedance effective.

Aufgrund des Übergangs des Potentials am Komparatorausgang A zu einem hohen Potentialwert wird die weitere Beaufschlagung des Pumpkondensators CP in Figur 1 mit Pumpimpulsen unterbunden.Due to the transition of the potential at the comparator output A to The further loading of the pump capacitor becomes a high potential value CP in Figure 1 prevented with pump pulses.

Dieser Zustand ist am Ende der Zeitdauer T1 in Figur 3 erreicht. Während der sich anschließenden Zeitdauer T2 treten keine Pumpimpulse auf, bleibt die Pumpspannung VP während eines ersten Abschnittes T2a des Zeitabschnitts T2 praktisch konstant und befindet sich das Potential am Komparatorausgang A, in Figur 3 mit VSA bezeichnet, auf hohem Wert.This state is reached at the end of time period T1 in FIG. 3. While No pump pulses occur in the subsequent time period T2 on, the pump voltage VP remains during a first section T2a of the period T2 practically constant and the potential is at the comparator output A, designated VSA in FIG. 3, is high Value.

Da auch MOS-Transistoren keinen unendlich hohen Gate-Source-Eingangswiderstand aufweisen, und möglicherweise aufgrund anderer Einflüsse kann es zu einer allmählichen Entladung des Pumpkondensators CP und somit zu einem allmählichen Abfall des Pumpspannungswertes kommen. Wird mit der Pumpspannung das Gate eines MOS-Transistors gesteuert und wird die Istwertmessung der Pumpspannung entsprechend der erfindungsgemäßen Komparatorschaltung durch Beaufschlagung des Gates eines MOS-Transistors mit der Pumpspannung durchgeführt, ist die Zeitdauer, während welcher der am Ende der Zeitdauer T1 erreichte Pumpspannungswert merklich abgefallen ist, normalerweise sehr lang. Um aber anhand von Figur 3 zeigen zu können, was passiert, wenn der Pumpspannungswert nach Erreichen des Sollwertes um einen vorbestimmten Betrag abgefallen ist, wird im zweiten Teilabschnitt T2b in Figur 3 angenommen, daß der Pumpspannungswert rapide abfällt. Dies führt zu einer entsprechenden Erhöhung der von MN1 gebildeten Lastimpedanz. Wenn diese auf die von MP1 gebildete erste Referenzlastimpedanz angestiegen ist und auch nur geringfügig darüber hinaus ansteigt, kippt die Komparatorschaltung wieder in den anfangs betrachteten Zustand, in welchem das Potential am Komparatorausgang A niedrigen Potentialwert annimmt. Dieser Zustand ist am Ende der Zeitdauer T2 erreicht und führt dazu, daß der Pumpkondensator CP nun wieder mit Pumpimpulsen beaufschlagt wird. Während einer Zeitdauer, die in Figur 3 mit T3 bezeichnet ist, steigt der Pumpspannungswert aufgrund dieser Beaufschlagung von CP mit Pumpimpulsen wieder an, bis am Ende der Zeitdauer T3, bei welchem der Wert der von MN1 gebildeten Lastimpedanz wieder auf den Wert der von MP1 und dem leitenden MP2 gemeinsam gebildeten Referenzlastimpedanz abgefallen ist, in den Zustand hohen Potentials am Komparatorausgang A übergeht, was zum Sperren der Beaufschlagung von CP mit weiteren Pumpimpulsen führt. Dieser Zustand dauert während der Zeitdauer T4 in Figur 3 an.Since MOS transistors do not have an infinitely high gate-source input resistance and possibly due to other influences there may be a gradual discharge of the pump capacitor CP and thus a gradual drop in the pump voltage value come. With the pump voltage becomes the gate of a MOS transistor is controlled and the actual value measurement of the pump voltage is adjusted accordingly the comparator circuit according to the invention by applying the Gates of a MOS transistor with the pump voltage is performed the period of time during which the T1 reached at the end of the period Pump voltage value has dropped significantly, usually very long. However, in order to be able to use FIG. 3 to show what happens when the Pump voltage value after reaching the setpoint by a predetermined Amount has dropped, is in the second subsection T2b in Figure 3 assumes that the pump voltage value drops rapidly. This leads to a corresponding increase in those formed by MN1 Load impedance. If this matches the first reference load impedance formed by MP1 has risen and only slightly more increases, the comparator circuit tilts back into the one initially considered State in which the potential at the comparator output A is low Potential value. This state is at the end of the period T2 reaches and leads to the pump capacitor CP now again pump impulses are applied. During a period of time in Figure 3 is designated T3, the pump voltage value increases due to this application of CP with pump pulses again until on End of the period T3 at which the value of that formed by MN1 Load impedance back to the value of that of MP1 and the conductive MP2 commonly formed reference load impedance has dropped into the State of high potential at comparator output A, which leads to Blocking the application of CP leads to further pump pulses. This state persists during the period T4 in FIG. 3.

Die in Figur 1 gezeigte und die Komparatorschaltung gemäß Figur 2 enthaltende Pumpspannungsregelungsschaltung bewirkt somit eine Zweipunktregelung zwischen einem hohen Pumpspannungsschwellenwert und einem niedrigen Pumpspannungsschwellenwert, die in Figur 3 mit VPH bzw. VPL bezeichnet sind. Die zu dieser Zweipunktregelung führende Hysterese wird durch das steuerbare Zuschalten und Wegschalten der durch MP2 gebildeten Impedanz zu bzw. von der von MP1 gebildeten permanenten, konstanten Lastimpedanz bewirkt.1 and the comparator circuit according to FIG. 2 containing pump voltage control circuit thus effects a two-point control between a high pump voltage threshold and a low pump voltage threshold, which in Figure 3 with VPH or VPL are designated. The one leading to this two-point control Hysteresis is caused by the controllable switching on and off of the Impedance formed by MP2 to or from that formed by MP1 permanent, constant load impedance.

Vorausgehend wurde die Komparatorschaltung gemäß Figur 2 als Teil einer Pumpspannungsregelungsschaltung betrachtet. Diese Komparatorschaltung ist aber auch für andere Einsatzzwecke vorteilhaft verwendbar. Sie eignet sich bei jeder Anwendung, bei welcher eine Eingangsgröße mit einer hysterebehafteten Bezugsgröße praktisch leistungsfrei verglichen werden soll. Dadurch, daß mit der zu messenden Größe das Gate eines MOS-Transistors beaufschlagt wird, wird eine solche praktisch leistungslose Messung der interessierenden oder zu überwachenden Größe möglich.Previously, the comparator circuit according to Figure 2 was part considered a pump voltage control circuit. This comparator circuit but can also be used advantageously for other purposes. It is suitable for any application in which an input variable compared to a hysterical reference variable with practically no performance shall be. Because the gate with the size to be measured of a MOS transistor, such becomes practical powerless measurement of those of interest or to be monitored Size possible.

Bei der erfindungsgemäßen Komparatorschaltung läßt sich nicht nur eine praktisch leistungslose Messung des zu überwachenden oder zu regelnden Spannungswertes erzielen sondern man kann den für den Regelungsvorgang bestimmenden Schwellenwert leicht programmieren durch die Wahl des Spannungswertes der Referenzspannungsquelle V1. Bei einer als integrierte Schaltung ausgebildeten Komparatorschaltung dieser Art könnte man mehrere Referenzspannungsquellen vorsehen, die man je nach dem im speziellen Fall benötigten Schwellenwert durch Programmierung auswählbar machen könnte.In the comparator circuit according to the invention, not only one practically powerless measurement of the monitored or regulated Achieve voltage value but you can use it for the control process easily program the determining threshold through the Selection of the voltage value of the reference voltage source V1. At a Comparator circuit of this type designed as an integrated circuit you could provide several reference voltage sources that you ever according to the threshold value required in the special case by programming could make selectable.

Die Verwendung von Multikollektor-Transistoren für QP1 und QP2, bei denen je ein Kollektor mit der Basis verbunden ist, führt zu einer hohen Transkonduktanz oder Steilheit aufgrund des daraus resultierenden nichtlinearen Diodenverhaltens eines jeden der beiden Differenztransistoren QP1 und QP2 an deren Emittern, so daß mittels der Differenzstufe D sehr kleine Spannungsunterschiede festgestellt werden können, und somit sehr kleine Unterschiede in den Lastimpedanzen, die auf den Emitter von QP1 bzw. auf den Emitter von QP2 wirken. Daher muß bei gleichen Drainströmen die Drain-Source-Spannung des ersten Lasttransistors MN1 gleich der Drain-Source-Spannung des zweiten Lasttransistors MP1 sein, um an der Stromspiegelstufe S ausgeglichene Bedingungen zu erreichen. Die Gate-Source-Spannung von MP1 ist durch die Referenzspannung V1 der Referenzspannungsquelle gegeben. In vereinfachten Gleichungen für nichtgesättigte CMOS-Transistoren kann das Schwellenwertpotential, das erforderlich ist, um am Komparatorausgang A das hohe Potential zu erreichen, berechnet werden als ein Multiplikatorfaktor a der Referenzspannung V1, und zwar mit den nachfolgend aufgelisteten Annahmen.

ID MN1
= ID MP1
VDS MN1 - VDS MP1
= VDS
Vth MN1
= Vth MP1 = Vth
VGS MN1
= a*V1
VGS MP1
= V1
βMN1
V1 - Vth - VDS * 0,5
βMP1
a * V1 - Vth - VDS * 0,5
Figure 00120001
The use of multi-collector transistors for QP1 and QP2, in each of which a collector is connected to the base, leads to a high transconductance or steepness due to the resulting non-linear diode behavior of each of the two differential transistors QP1 and QP2 at their emitters, so that by means of the difference stage D very small voltage differences can be determined, and thus very small differences in the load impedances that act on the emitter of QP1 or on the emitter of QP2. Therefore, with the same drain currents, the drain-source voltage of the first load transistor MN1 must be equal to the drain-source voltage of the second load transistor MP1 in order to achieve balanced conditions at the current mirror stage S. The gate-source voltage of MP1 is given by the reference voltage V1 of the reference voltage source. In simplified equations for unsaturated CMOS transistors, the threshold potential required to reach the high potential at the comparator output A can be calculated as a multiplier factor a of the reference voltage V1, with the assumptions listed below.
I D MN1
= I D MP1
V DS MN1 - V DS MP1
= V DS
V th MN1
= V th MP1 = V th
V GS MN1
= a * V1
V GS MP1
= V1
βMN1
V1 - V th - V DS * 0.5
βMP1
a * V1 - V th - V DS * 0.5
Figure 00120001

In den obigen Formeln bedeuten:

ID MN1, ID MP1
= Drainstrom von MN1 bzw. MP1
VDS MN1, VDS MP1
= Drain-Source-Spannung von MN1 bzw. MP1
Vth MN1, Vth MP1
= Schwellenspannung von MN1 bzw. MP1
VGS MN1, VGS MP1
= Gate-Source-Spannung von MN1 bzw. MP1
V1
= Referenzspannung der Referenzspannungsquelle
β
= Transkonduktanz (Steilheit) eines MOS-Transistors
βMN1, βMP1
= Transkonduktanz von MN1 bzw. MP1
W
= Kanalbreite
L
= Kanallänge
In the above formulas:
I D MN1 , I D MP1
= Drain current of MN1 or MP1
V DS MN1 , V DS MP1
= Drain-source voltage of MN1 or MP1
V th MN1 , V th MP1
= Threshold voltage of MN1 or MP1
V GS MN1 , V GS MP1
= Gate-source voltage of MN1 or MP1
V1
= Reference voltage of the reference voltage source
β
= Transconductance (slope) of a MOS transistor
β MN1 , β MP1
= Transconductance of MN1 or MP1
W
= Channel width
L
= Channel length

Zur Schwellenwertfestlegung muß das Verhältnis der Transkonduktanzen von MN1 und MP1 eingestellt werden, und zwar mittels des jeweiligen W/L-Verhältnisses. Der Schwellenwert kann somit in Abhängigkeit von den Kanalbreiten und den Kanallängen der beiden CMOS-Transistoren MN1 und MP1 gewählt werden.The ratio of the transconductances must be used to determine the threshold value of MN1 and MP1 can be set using the respective W / L ratio. The threshold value can therefore be dependent on the channel widths and the channel lengths of the two CMOS transistors MN1 and MP1 can be selected.

Eine Hysterese kann dadurch erreicht werden, daß parallel zum zweiten Lasttransistor MP1 der dritte Lasttransistor MP2 geschaltet wird, dessen Kanaltyp ebenfalls entgegengesetzt zu dem von MN1 ist und bei dem es sich um einen Transistor mit P-Kanal handelt. Der Betrag der Hysterese kann ebenfalls durch Auswahl von Länge und Breite des Kanals gewählt werden.A hysteresis can be achieved by parallel to the second Load transistor MP1, the third load transistor MP2 is switched, the Channel type is also opposite to that of MN1 and where it is is a transistor with a P-channel. The amount of hysteresis can also be selected by selecting the length and width of the channel become.

Im Rahmen der Erfindung ist es nicht notwendig, die Transistoren der Komparatorschaltung alle mit dem Kanaltyp oder Leitfähigkeitstyp zu wählen, wie sie in Figur 2 angegeben sind. Benötigt man anstelle einer positiven Pumpspannung, von der in Figur 2 ausgegangen wird, eine negative Pumpspannung, kann man die in Figur 2 gezeigte Komparatorschaltung insofern umkehren, als man die Lasttransistoren auf die Masseseite (GND) verlagert und entgegengesetzten Kanaltyp wählt, wobei man für die Transistoren der Differenzstufe D und der Stromspiegelstufe S entsprechend Transistoren entgegengesetzten Leitfähigkeitstyps wählt.In the context of the invention, it is not necessary to use the transistors Comparator circuit all with the channel type or conductivity type too choose as indicated in Figure 2. You need one instead of one positive pump voltage, which is assumed in Figure 2, a negative pump voltage, you can use the comparator circuit shown in Figure 2 reverse in that you put the load transistors on the ground side (GND) and chooses opposite channel type, where one for the transistors of the differential stage D and the current mirror stage S selects corresponding transistors of opposite conductivity type.

Claims (17)

  1. A hysteresis comparator circuit for ascertaining in virtually power-free manner a voltage value to be used for a comparison, comprising a differential stage (D) that is part of a cascade circuit (L, D, S, G) having on one side of the differential stage (D) a load stage (L) with load transistors (MN1, MP1) and having on the other side of the differential stage (D) a negative feedback stage (G), with the control electrode of a first load transistor (MN1), which is a transistor with high input impedance, having the voltage applied thereto that is to be used for the comparison, and the control electrode of a second load transistor (MP1) having a reference voltage applied thereto on the basis of which this second load transistor (MP1) forms a constant load impedance, and with the second load transistor (MP1) having a third load transistor (MP2) connected in parallel thereto that is in the conducting or blocking state depending on an output signal of the comparator circuit, so that in accordance with the output signal of the comparator circuit, the impedance of the second load transistor (MP1) has an additional load impedance connected in parallel thereto or no such connection is made.
  2. The comparator circuit of claim 1,
    wherein a current mirror stage (S) is connected between differential stage (D) and negative feedback stage (G).
  3. A hysteresis comparator circuit for use as a comparator stage and actuating signal generator of an electric voltage regulating circuit having a voltage source (CP) which delivers the voltage to be regulated and whose output voltage (VP) is variable by means of an actuating signal delivered by an output of the comparator circuit, said comparator circuit
    a) comprising a comparator input (EI) adapted to have the output voltage (VP) of the voltage source (CP) applied thereto and a comparator output (A) delivering the actuating signal;
    b) being fed by a supply voltage source having a first supply voltage pole (VS) and a second supply voltage pole (GND);
    wherein
    c) the differential stage (D) has a first differential stage transistor (QP1) and a second differential stage transistor (QP2) each having a control electrode, a first main path electrode and a second main path electrode,
    c1) the control electrodes thereof being coupled jointly to the second supply voltage pole (GND),
    c2) the first main path electrodes thereof being connected via a first load impedance and a second load impedance, respectively, to the first supply voltage pole (VS) each, and
    c3) the second main path electrodes thereof being each coupled via a negative feedback impedance to the second supply voltage pole (GND);
    wherein
    d) the first load impedance is produced by the first load transistor (MN1) which has a control electrode coupled to the comparator input (E1) such that the first load impedance is dependent on the output voltage (VP) of voltage source (CP),
    wherein
    e) a reference voltage source (VR) is connected between a control electrode of the second load transistor (MP1) and the first supply voltage pole (VS), said reference voltage source (VR) controlling the second load transistor (MP1) to the conducting state such that it has a predetermined first reference load impedance, and wherein
    f) the third load transistor (MP2) is adapted to be switched to the conducting or blocking state under the control of the actuating signal at comparator output (A), such that the third load transistor (MP2) is switched to the blocking state in case of an actuating signal occurring at comparator output (A) when the increasing output voltage (VP) of voltage source (CP) reaches an upper threshold value (VPH), and is switched to the conducting state in case of an actuating signal occurring at comparator output (A) when the decreasing output voltage (VP) of voltage source (CP) reaches a lower threshold value (VPL), thereby forming a predetermined second reference load impedance.
  4. The comparator circuit of any of claims 1 to 3,
    wherein said first load transistor (MN1) is a MOS transistor.
  5. The comparator circuit of any of claims 1 to 4,
    wherein the three load transistors (MN1, MP1, MP2) are each constituted by a MOS transistor whose gate electrodes form the control electrodes thereof.
  6. The comparator circuit of claim 5,
    wherein the first load transistor (MN1) on the one hand and the second (MP1) and third load transistors (MP2) on the other hand are of different channel type.
  7. The comparator circuit of claim 5 or 6,
    wherein the gate electrode of the third load transistor (MP2) is coupled to the comparator output (A).
  8. The comparator circuit of any of claims 1 to 7,
    wherein the two differential stage transistors (QP1, QP2) are constituted by a bipolar transistor each.
  9. The comparator circuit of claim 8,
    wherein the two differential stage transistors (QP1, QP2) are each connected on the emitter side to the associated load impedance and on the collector side to the associated negative feedback impedance (R1, R2).
  10. The comparator circuit of claim 8 or 9,
    wherein a current mirror circuit (S) is disposed between the differential stage transistors (QP1, QP2) and the negative feedback impedances (R1, R2), said current mirror circuit (S) having a current mirror diode (QN1) connected between the first differential stage transistor (QP1) and the negative feedback impedance (R1) thereof and having a current mirror transistor (QN2) connected between the second differential stage transistor (QP2) and the negative feedback impedance (R2) thereof.
  11. The comparator circuit of any of claims 8 to 10,
    wherein the two differential stage transistors (QP1, QP2) are each constituted by a multicollector transistor, a first one of said collectors being coupled to the respectively associated negative feedback impedance (R1, R2) and a second one of said collectors being coupled to the base of the respective differential stage transistor (QP1, QP2).
  12. The comparator circuit of any of claims 3 to 11,
    wherein the control electrodes of the two differential stage transistors (QP1, QP2) are commonly connected via a first current source (I1) to the second supply voltage pole (GND).
  13. The comparator circuit of any of claims 3 to 12,
    wherein the comparator output (A) is coupled to a connecting point (SK) between one differential stage transistor (QP2) and the associated negative feedback impedance (R2), and in case of interposition of a current mirror circuit (S), between this differential stage transistor (QP2) and the associated current mirror element (QN2).
  14. The comparator circuit of claim 13,
    wherein a switching transistor (QN3) is connected between the connecting point (SK) and the comparator output (A), said switching transistor (QN3) having its control electrode connected to the connecting point, its main path connected between the control electrode of the third load transistor (MP2) and the second supply voltage pole (GND) and its main path electrode, which is connected to the control electrode of the third load transistor (MP2), to the comparator output.
  15. The comparator circuit of claim 14,
    wherein the switching transistor (QN3) is constituted by a bipolar transistor having a conductivity type opposite to the conductivity type of the bipolar differential stage transistors (QP1, QP2) and having one of its main path electrodes connected on the one hand to the control electrode of the third load transistor (MP2) and on the other hand via a second current source (I2) to the first supply voltage pole (VS).
  16. An electric regulating circuit comprising a comparator circuit according to any of claims 1 to 15.
  17. A regulating circuit according to claim 16, for regulating a pumping voltage of a voltage pumping circuit that is higher than the supply voltage value of the first supply voltage pole (VS), to a predetermined pumping voltage value, wherein:
    a) the voltage pumping circuit comprises a pumping voltage accumulator (CP) adapted to have applied on its input side a charging alternating current voltage (OSC) via a controllable pumping circuit switch means (S2), with the accumulated pumping voltage increasing when the pumping circuit switch means (S2) is controlled to its conducting state, and decreasing in accordance with a specific discharging time constant when the pumping circuit switch means (S2) is not controlled to its conducting state; and
    b) a switching control input of the pumping circuit switch means (S2) is coupled to the comparator output (A) and an output of the pumping voltage accumulator (CP) delivering the pumping voltage (VP) is coupled to the comparator input (E1).
EP96118126A 1995-11-16 1996-11-12 Comparator with hysteresis for use in a voltage regulating circuit Expired - Lifetime EP0774705B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19542823 1995-11-16
DE19542823A DE19542823C2 (en) 1995-11-16 1995-11-16 Hysteresis comparator circuit for use in a voltage regulation circuit

Publications (3)

Publication Number Publication Date
EP0774705A2 EP0774705A2 (en) 1997-05-21
EP0774705A3 EP0774705A3 (en) 1998-01-28
EP0774705B1 true EP0774705B1 (en) 2003-07-23

Family

ID=7777670

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96118126A Expired - Lifetime EP0774705B1 (en) 1995-11-16 1996-11-12 Comparator with hysteresis for use in a voltage regulating circuit

Country Status (3)

Country Link
US (1) US5739705A (en)
EP (1) EP0774705B1 (en)
DE (1) DE19542823C2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1209793A1 (en) * 2000-11-23 2002-05-29 Semiconductor Components Industries LLC Apparatus and method for controlling a power supply
KR100433362B1 (en) * 2002-07-11 2004-06-07 에이디반도체(주) Impedance comparator integrated circuits
US7646115B2 (en) * 2007-01-05 2010-01-12 Standard Microsystems Corporation Regulator circuit with multiple supply voltages
US9356587B2 (en) * 2014-02-19 2016-05-31 Stmicroelectronics S.R.L. High voltage comparison circuit
JP6498649B2 (en) * 2016-10-17 2019-04-10 株式会社東海理化電機製作所 Level shifter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938055A (en) * 1975-01-17 1976-02-10 Aeronutronic Ford Corporation (Formerly Philco-Ford Corporation) High performance differential amplifier
JPS58202613A (en) * 1982-05-21 1983-11-25 Nec Corp Differential amplifying circuit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259601A (en) * 1978-12-08 1981-03-31 Motorola, Inc. Comparison circuit having bidirectional hysteresis
JPS55144437U (en) * 1979-04-05 1980-10-16
CA1203290A (en) * 1982-04-28 1986-04-15 Yoshio Shimizu Signal comparing circuit
DE3723579C1 (en) * 1987-07-16 1989-02-16 Sgs Halbleiterbauelemente Gmbh Longitudinal voltage regulator
JPH03248616A (en) * 1990-02-27 1991-11-06 Seiko Instr Inc Comparator circuit
JPH04196812A (en) * 1990-11-28 1992-07-16 Fujitsu Ltd Level converter
DE69320326T2 (en) * 1993-05-07 1998-12-24 Sgs Thomson Microelectronics Comparator operating with a low supply voltage and having a hysteresis
FR2719135B1 (en) * 1994-04-21 1996-06-28 Sgs Thomson Microelectronics Voltage limiting circuit with hysteresis comparator.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938055A (en) * 1975-01-17 1976-02-10 Aeronutronic Ford Corporation (Formerly Philco-Ford Corporation) High performance differential amplifier
JPS58202613A (en) * 1982-05-21 1983-11-25 Nec Corp Differential amplifying circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 049 (E - 230) 6 March 1984 (1984-03-06) *

Also Published As

Publication number Publication date
EP0774705A3 (en) 1998-01-28
US5739705A (en) 1998-04-14
DE19542823A1 (en) 1997-05-22
DE19542823C2 (en) 1997-09-04
EP0774705A2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
DE10164923B4 (en) High-speed current switching circuit
DE60017049T2 (en) Linear regulator with low series voltage drop
EP0483537B1 (en) Current source circuit
DE2359646A1 (en) INTEGRATED DRIVER CIRCUIT WITH FIELD EFFECT TRANSISTORS
DE2933854C2 (en) Oscillator circuit
DE2143093C2 (en) Polyphase field effect transistor control circuit
DE2554054A1 (en) DIFFERENTIAL AMPLIFIER CIRCUIT IN CMOS DESIGN
DE2639790A1 (en) CIRCUIT ARRANGEMENT FOR THE DELIVERY OF CONSTANT CURRENT
DE2542403A1 (en) COMPARATOR CIRCUIT
EP0010149B1 (en) Reference source for fet integrated circuits and method using such a reference source
DE3017669A1 (en) CONTROL AMPLIFIER
DE1766998C3 (en) Pulse measuring device
DE2745302C2 (en) Circuit arrangement for controlling the supply voltage for preferably integrated circuits
DE3505308C2 (en)
DE3227296A1 (en) PULSE WIDTH MODULATOR CIRCUIT
EP0774705B1 (en) Comparator with hysteresis for use in a voltage regulating circuit
DE3031197C2 (en) Driver circuit with field effect transistors
DE2328634A1 (en) ELECTRONIC TIMER
EP1523703A1 (en) Band-gap reference circuit
WO2004019149A1 (en) Circuit and method for adjusting the operating point of a bgr circuit
DE3136300A1 (en) "DRIVING CIRCUIT FOR AN OSCILLATOR WITH LOW POWER CONSUMPTION"
DE2431487C2 (en) Trigger circuit
DE1948178C3 (en) A monolithic semiconductor circuit consisting of a large number of individual logic circuits with an integrated DC voltage stabilization semiconductor circuit
DE2635574B2 (en) Current mirror circuit
DE2813127C2 (en) Circuit arrangement for generating a pulse with a delayed edge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RHK1 Main classification (correction)

Ipc: H03K 3/0233

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): FR GB IT

17P Request for examination filed

Effective date: 19980226

17Q First examination report despatched

Effective date: 20020726

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031009

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071129

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20131025

Year of fee payment: 18

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20141112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141112