EP0479020B1 - Steam conversion valve with spindle drive - Google Patents

Steam conversion valve with spindle drive Download PDF

Info

Publication number
EP0479020B1
EP0479020B1 EP19910115657 EP91115657A EP0479020B1 EP 0479020 B1 EP0479020 B1 EP 0479020B1 EP 19910115657 EP19910115657 EP 19910115657 EP 91115657 A EP91115657 A EP 91115657A EP 0479020 B1 EP0479020 B1 EP 0479020B1
Authority
EP
European Patent Office
Prior art keywords
spindle
auxiliary
steam
main
throttle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19910115657
Other languages
German (de)
French (fr)
Other versions
EP0479020A1 (en
Inventor
Hermann Dörr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0479020A1 publication Critical patent/EP0479020A1/en
Application granted granted Critical
Publication of EP0479020B1 publication Critical patent/EP0479020B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays
    • F22G5/123Water injection apparatus
    • F22G5/126Water injection apparatus in combination with steam-pressure reducing valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8158With indicator, register, recorder, alarm or inspection means
    • Y10T137/8225Position or extent of motion indicator
    • Y10T137/8275Indicator element rigidly carried by the movable element whose position is indicated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86928Sequentially progressive opening or closing of plural valves
    • Y10T137/86936Pressure equalizing or auxiliary shunt flow
    • Y10T137/86944One valve seats against other valve [e.g., concentric valves]
    • Y10T137/86984Actuator moves both valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87571Multiple inlet with single outlet
    • Y10T137/87652With means to promote mixing or combining of plural fluids
    • Y10T137/8766With selectively operated flow control means
    • Y10T137/87668Single actuator operates plural flow control means

Definitions

  • the invention relates to a steam conversion valve with a spindle drive, with a first valve with a first throttle body for controlling a first steam flow, wherein the thrust forces of a spindle drive can be transmitted from an associated spindle to the throttle body to open and close the first valve, and with a second Valve with a second throttle body for controlling a second steam flow, means for mixing an atomizing steam flow with a cooling water flow being provided.
  • a steam conversion valve according to the preamble of claim 1 is known from DE-B-1 071 094 (D1) or from DE-C-712 163 (D2).
  • D1 a double seat steam conversion valve is described, in which both a pre-stroke valve and the closure piece of a second valve each control a part, for example 40% and 60%, of the main steam flow, within two, one of the two valves assigned throttle zones, the steam flow is enveloped by a rotating water ring and is to mix with it.
  • annular chambers are assigned to each of the two valve throttling points, into which the cooling water is introduced tangentially. If such annular chambers high closing forces of the valve lifter exposed to the risk of breakage. In addition, it is difficult to achieve an equally good atomization of the water droplets with two throttle points working in parallel.
  • (D2) is also a double-seat valve with closure pieces arranged on the valve tappet at a fixed distance from one another.
  • the valve seat of one closure piece is used to inject the cooling water via a corresponding nozzle ring, the passage cross section of the other closure piece is provided for passage of a partial steam flow without water injection, although this second valve seat can also be provided with means for water injection.
  • the rigid spacing of the valve seats and valve lifters gives rise to the problem of the exact coordination of the two valves with one another; if one valve seat and one closure piece are reground, this must also be done with the other valve, in such a way that the intended control behavior is retained.
  • This known valve according to (D2) has no lift valve, so that considerable pressure forces act on the valve when opening and closing.
  • DE-A-1 959 446 discloses a steam conversion valve with a main valve for controlling the main steam flow and an auxiliary valve, the main and auxiliary spindles being connected to one another via a spring-elastic coupling. This allows a staggered closing or opening of the two valves , the auxiliary valve is only used to control a cooling water flow and not the atomizing steam flow. Furthermore, in this known valve, first the auxiliary valve and then the main valve is closed (when opening the first main valve and then the auxiliary valve), so that a pressure-relieving effect is not achieved during the closing or opening process.
  • the invention is intended to create a steam conversion valve with a spindle drive, by means of which the difficulties described can be overcome, namely by precisely controlling a main throttle body for the main steam flow by means of a main spindle and an auxiliary throttle body for the atomizing steam flow by means of an auxiliary spindle.
  • Another object is to create the structural requirements for the steam converter valve to be actuated in a compact design with both a rotary drive and a linear actuator, without having to make any fundamental changes to the valve housing, the throttle bodies and the spindles.
  • the main spindle In the closed direction, the main spindle is first moved to the end position, and only then is the auxiliary spindle actuated to interrupt the atomizing steam flow. In or below the main throttle body, the atomized cooling water experiences a 180 ° deflection and is thus optimally distributed into the main steam flow without directly reaching the valve or pipe walls.
  • a fixed cooling water inlet pipe is arranged in the low-pressure chamber of the outflow side of the steam conversion valve, into which the main throttle body is immersed with a nozzle pipe serving to introduce the atomizing steam flow.
  • the steam inlet of an axial nozzle pipe channel forms the valve seat for the auxiliary throttle body, atomizing steam supply channels leading to this steam inlet, which are open on the inlet side to the steam inflow side of the valve.
  • the auxiliary valve seat defines the passage cross section for a connection between the outlet ends of the atomizer vapor supply channels and the nozzle tube channel, so that the connection of the atomizer vapor supply channels is also closed or opened when the auxiliary valve is closed / opened.
  • the nozzle tube is provided at its end entering the cooling water inlet tube with a cone body which serves for the flow conduit of the incoming cooling water to the inlet tube wall.
  • Swirl vanes for generating a cooling water swirl flow are arranged on an annular channel downstream of the cone body on the outflow side of the cooling water. In this way, the cooling water is swirled before atomization in order to obtain the most symmetrical water introduction possible even when the steam converter valve is in the horizontal position.
  • a concentric, compact design is achieved by a preferred embodiment according to claim 6, according to which the pipe socket of the nozzle pipe forms the coaxial extension of a central channel of the main spindle, in which the auxiliary throttle body of the auxiliary spindle, which is designed as a tappet, is mounted in a longitudinally displaceable and sealing manner, in the transition region of the central Channel to the nozzle tube channel of the auxiliary valve seat, which in particular has conical seat surfaces, is arranged for the auxiliary throttle body.
  • the main throttle body or the nozzle tube are provided with axially and circumferentially distributed inlet channels for the main steam (orifice throttle body) or nozzle bores for the atomizer steam.
  • the special design of the first and second resilient couplings and a linear actuator or a rotary actuator are treated as the two valve spindles, the main and the auxiliary spindle, common spindle drive.
  • FIG. 1 shows the basic structure of a steam conversion valve according to the invention.
  • the steam forming process uses double-spindle-controlled steam pressure reduction and steam-atomized cooling water.
  • the steam conversion valve VU1 consists of a main valve V1, which is combined with an auxiliary valve V2.
  • the main spindle 5 with the main throttle body 6 is actuated via the split spindle nut arrangement 2, which is constructed to be non-rotatable by spring wedges 21, 22 and consists of the first spindle nut 2a and the second spindle nut 2b.
  • the sealing surface 6a of the main throttle body 6 is pressed onto the valve seat 7, ie corresponding seating surfaces 7a.
  • a prestressed compression spring arrangement 3 is inserted between the first (upper) spindle nut 2a and the second (lower) spindle nut 2b, which in a preferred embodiment is designed as a plate spring or plate spring assembly. To simplify matters, a (first) disk spring 3 is therefore discussed below.
  • the upper part 9 of the auxiliary spindle 50 is screwed directly into the first spindle nut 2a.
  • the thread pitch of the auxiliary spindle upper part 9 in the first spindle nut 2a corresponds exactly to the thread pitch of the main spindle 5 in the second spindle nut 2b.
  • the first and second spindle nuts 2a, 2b and the preloaded disk spring 3 inserted between them form the first spring-elastic coupling FK1.
  • the second resilient coupling FK2 is inserted in the form of a coupling piece with the prestressed disk spring assembly 11, the coupling piece connecting the two auxiliary spindle parts 9, 10 to one another in a rotationally secure manner.
  • the preloaded plate spring assembly 11 is referred to in the following for simplicity as the second plate spring, although in principle this could also be a preloaded compression spring or helical compression spring arrangement.
  • the stroke position indicator and anti-rotation device 12 are located on the main spindle 5.
  • the auxiliary spindle 50 is equipped with the anti-rotation device 4 relative to the main spindle 5, which, if required, for example for control purposes, can also serve as a stroke position indicator.
  • the auxiliary valve designated as a whole by V2 is arranged and mounted coaxially and centrally with the main spindle 5 with its auxiliary spindle 50 and its auxiliary throttle body 10a, which forms part of the lower spindle part 10; the outlet of its auxiliary seat 16, which is located within the main throttle body 6, opens into the nozzle tube 17, which projects into the cooling water inlet tube 14.
  • the inlet side of the auxiliary seat 16 is connected to the high-pressure chamber 13 of the steam conversion valve VU1 via the atomizer steam supply channels 19, designed as radial bores.
  • the high-pressure chamber 13 is on the inflow side 13 'of the valve VU1.
  • the presetting of the auxiliary spindle 50 is carried out in such a way that when the first disc spring 3 is stretched (ie the position of the main spindle 5 is greater than 0%) with the anti-rotation device 4 released and by turning the auxiliary spindle 50 with its upper and lower part 9, 10 a maximum stroke (distance between Auxiliary seat 16 and auxiliary spindle 50) of the auxiliary spindle 50 is set, which corresponds approximately to half the spring deflection of the first plate spring 3.
  • valve VU 1 in the closing direction is explained below.
  • the auxiliary spindle 50 has assumed the preset maximum stroke, ie the inflow side 13 'is connected via the feed channels 19 and the nozzle tube 17 to the outflow side 18' (low pressure chamber 18).
  • the atomizer vapor can flow from the inflow side 13 'through the supply channels 19, the (open) auxiliary seat 16 and the free nozzle bores 17c of the nozzle tube 17 - with atomization of the cooling water flowing in through the cooling water inlet tube 14 - into the low pressure chamber 18.
  • the main steam flow flows from the inflow side 13 'into the low-pressure chamber 18.
  • the main steam flow f11 is mixed intensively with the atomized cooling water, which is caused by a mixture of the atomizing steam flow f12 the cooling water flow f2 has arisen, so that the resulting formed steam flow f11 + f12 + f2 results (cf. the corresponding flow arrows).
  • the total amount of the incoming steam is designated f1, which is divided into the main steam flow f11 and the atomizing steam flow f12.
  • the starting position is assumed to be the tightly closed state of the valve.
  • the expansion of the plate springs 3 and 11 begins.
  • the auxiliary spindle lower part 10 begins to lift off the auxiliary seat 16 and continuously opens the connection from the inflow side 13 via the nozzle tube 17 to the outflow side 18 ', whereby the atomizing vapor stream f12 is brought to the - depending on the pressure gradient - maximum intensity.
  • the full amount of atomizing steam is already available for the cooling water f2 flowing in via the cooling water inlet pipe 14, which is set in swirl via the swirl vanes (deflection fins) 15 attached to the nozzle pipe 17. Only when the disc spring 3 is fully extended does the opening movement of the main spindle 5 with the main throttle body 6 and thus the flow of the main steam flow f11 begin.
  • the steam conversion valve VU1 according to FIG. 1 (and accordingly also that VU2 according to FIG. 2) has a spindle drive for a main valve V1 and for an auxiliary valve V2.
  • the main valve V1 of the steam conversion valve VU1 has a main throttle body 6 for controlling the main steam flow f11, the thrust forces of a spindle drive 1 (a rotary drive in FIG. 1) being able to be transmitted from an associated main spindle 5 to the main throttle body 6 in order to open and close the main valve V1.
  • the steam conversion valve VU1 also includes the auxiliary valve V2, which has an auxiliary throttle body 10a for controlling an atomizing steam flow f12, the thrust forces of the spindle drive 1 being able to be transmitted from an associated auxiliary spindle 50 to the auxiliary throttle body 10a in order to open and close the auxiliary valve V2.
  • the actuating forces of the common spindle drive 1 for the main and auxiliary spindles 5, 50 can each be transmitted to the main throttle body 6 and the auxiliary throttle body 10a via first and second spring-elastic couplings 3 and 11, the two spindles 5, 50 being matched to one another such that the main throttle body 6 closes during the closing operation before the auxiliary throttle body 10a reaches its auxiliary valve seat 16, so that the main steam flow f11 is shut off from the atomizer steam flow f12.
  • the tuning is such that during the opening process, the auxiliary throttle body 10a opens its auxiliary valve V2 before the main throttle body 6 leaves its main valve seat 7, so that the atomizer vapor stream f12 forms before the main vapor stream f11.
  • the structural details explained below are particularly advantageous for realizing the prescribed mode of operation.
  • the in the low pressure chamber 18 of the outflow side 18 'arranged cooling water inlet pipe 14 is fixed, the amount of cooling water can be adjusted to desired values by a cooling water setting valve, not shown.
  • the main throttle body 6 is immersed in the cooling water inlet pipe 14 with its nozzle pipe 17 serving to introduce the atomizing steam flow f12.
  • the steam inlet 17b of an axial nozzle tube duct 17a forms the valve seat (auxiliary seat) 16 for the auxiliary throttle body 10a.
  • the atomizer steam supply channels 19 lead to this steam inlet 17b and are open on the inlet side to the inflow side 13 (high-pressure chamber) of the valve VU1.
  • the auxiliary valve seat 16 defines the passage cross section for a connection between the outlet ends of the atomizer vapor supply channels 19 and the nozzle tube channel 17a, so that the connection of the supply channels 19 is also closed or opened when the auxiliary valve V2 is closed / opened.
  • the main throttle body 6, which has essentially a hollow cylindrical shape, has a cylindrical outer wall 6b on its outer circumference, which extends from its seat surfaces 6a in the direction of the low-pressure chamber 18.
  • the axes of the inlet channels 20 run radially to the valve axis y'-y 'in the example shown.
  • the nozzle tube 17 is provided at its end immersed in the cooling water inlet tube 14 with a cone body 23 which serves for the flow conduit of the incoming cooling water f2 to the inlet tube wall 14a.
  • Swirl blades 15 (which could also be referred to as deflection fins) for generating a cooling water swirl flow are arranged in a ring channel 24 connected to the cone body 23 on the outflow side of the cooling water.
  • the nozzle tube 17 is, as can be seen, designed as a centrally located and axially projecting pipe socket on the outflow side 18 'of the main throttle body 6.
  • this pipe socket of the nozzle pipe 17 is the coaxial extension of a central channel 5a of the main spindle 5, in which the auxiliary throttle body 10a of the auxiliary spindle 50, which is designed as a tappet, is mounted in a longitudinally displaceable and sealing manner.
  • the auxiliary valve seat 16, which in particular has conical seat surfaces, for the auxiliary throttle body 10a is arranged in the transition region from the central channel 5a to the axial nozzle tube channel 17a.
  • the nozzle tube 17 is provided with a plurality of axially and circumferentially distributed nozzle bores 17c for injecting the atomizer vapor stream f12 into the cooling water stream f2. In the open position of the main throttle body 6, all of these nozzle bores 17c are free, i.e. no longer dip into the inlet pipe 14.
  • the main throttle body 6 has on its inside facing the outflow side 18 'of the steam an annular deflection chamber 25, which is penetrated centrally by the nozzle tube 17 and is shaped by curved profiled wall walls. and bottom portions 6c of the main throttle body 6 is limited.
  • the inner circumference of the jacket wall portion initially runs obliquely inward at an acute angle to the valve axis y′-y ′ and then merges into a curved region near the ground, which in turn merges into the outer circumference of the nozzle tube 17 with a spiraling curvature .
  • the length adjustment device of the auxiliary spindle 50 is formed by the latter even when the anti-rotation lock 4 is released by screwing it more or less far into the threaded bore 26 of the first spindle nut 2.
  • the common drive member for the main and auxiliary spindle 5, 50 is formed by the shaft journal 27 of the rotary drive 1. Following the central channel 5a within a shaft part 5b of the main spindle 5, an enlarged cavity 5c is provided, and within this cavity 5c the auxiliary spindle 50 with its second spring-elastic coupling FK2 can be moved in the stroke direction ⁇ y.
  • the second spring-elastic coupling FK2 is preferably a spring cage with the prestressed disc spring 11, the spring cage 28 being seated on the auxiliary spindle lower part 10 and the auxiliary spindle upper part 9 having a reinforced head part 9a being longitudinally displaceable and loaded by the disc spring 11 and being loaded by a basket cover 28a is caught.
  • a spring key to prevent rotation between the upper spindle part 9 and the spring cage 28 is indicated.
  • this or its shaft part 5b is guided with laterally projecting roller arms 12 in longitudinal slots 30a of the peripheral wall of a valve lantern 30 in the stroke direction ⁇ y, the guide rollers being denoted by 12a.
  • the roller arms 4 with guide rollers 4a of the spring cage 28, the guide slots being designated 5d here.
  • the first spindle nut 2a is rotatably mounted by means of a first pressure bearing 31, which is supported in the housing cover 32, the second spindle nut 2b is correspondingly rotatably supported by means of a second pressure bearing 33, which is supported on an internal ring flange 30b of the valve lantern 30.
  • the first spindle nut 2a is connected in a rotationally fixed manner to the spindle drive 1 via the shaft journal 27 with the spring wedge 21; it forms with its internal thread 26 a screw bearing for the rotationally secured auxiliary spindle 50 for its axial movement.
  • the second spindle nut 2b is mounted on a guide shaft 2a1 of the first spindle nut 2a in a rotationally fixed but axially displaceable manner.
  • the first spring-elastic coupling FK1 is inserted in an axial intermediate space 34 between the first (2a) and the second spindle nut 2b.
  • the second spindle nut 2b forms, with a threaded shaft 2b1, a screw bearing for the main spindle 5, which is secured against rotation, for its axial movement.
  • the shaft part 5b of the main spindle 5 is slidably sealed by a stuffing box 35, the sealing packing is designated 35a, the end cap 35b. Accordingly, the auxiliary spindle 50 is guided in a sealing manner to the outside by means of the stuffing box 36 and thus this lead-through point is also sealed to the outside.
  • the stuffing box cover is labeled 36b, the pack 36a.
  • the stuffing box 35 sits on the inner circumference of an intermediate piece 37 between the valve housing 38 and the valve lantern 30. This intermediate piece 37 serves for the sealing flange connection between the valve lantern 30 and the valve housing 38 and forms a precise guide point for the main spindle 5.
  • the rotary drive 1 can in principle be an electrical, hydraulic or pneumatic rotary drive; it is preferably an electric control motor that has one of its setpoint / actual value difference gets the appropriate manipulated variable from the control system.
  • the steam conversion valve VU2 shown in FIG. 2 is constructed on the steam and water side in the same way as that according to FIG. 1, which is why the same parts are also provided with the same reference numerals.
  • a hydraulic linear actuator 1 'with a hydraulic piston-cylinder system 39 is provided here.
  • the cylinder structurally combined with the valve housing cover 32 is designated 39a, the piston 39b and the piston rod 39c.
  • the piston rod 39c is coupled via a clutch 40 to the drive rod 41 common to the two valve spindles, the main spindle 5 and the auxiliary spindle 50.
  • the latter is connected via the first spring-elastic coupling FK1 to the main spindle 5 and via a length adjustment device 42 to the auxiliary spindle upper part 9, the latter being coupled to the auxiliary spindle lower part 10 via the second spring-elastic coupling FK2.
  • the first spring-elastic coupling FK1 has a spring cage with the housing 43, the housing cover 43a, the housing base 43b and the prestressed disk spring assembly 3 arranged in the interior of the housing 43.
  • the flange 41a of the drive rod 41 is caught within the housing 43 by the attached and fastened housing cover 43a.
  • the design of the second resilient coupling FK2 in FIG. 2 is - except for the anti-rotation lock that is not required here - as in the first example according to FIG.
  • the adjustment of the auxiliary spindle 50 in relation to the main spindle 5 takes place in such a way that the first one is not pressed in Spring-elastic coupling FK1 (position of main spindle 5 greater than 0%) is adjusted via the adjusting device 42 a maximum stroke (distance between auxiliary seat 16 and auxiliary spindle 50) of the auxiliary spindle 50, which corresponds approximately to half the spring deflection of the first spring-elastic coupling FK1.

Description

Die Erfindung bezieht sich auf ein Dampfumformventil mit Spindelantrieb, mit einem ersten Ventil mit einem ersten Drosselkörper zur Steuerung eines ersten Dampfstromes, wobei zum Öffnen und Schließen des ersten Ventils die Schubkräfte eines Spindelantriebs von einer zugehörigen Spindel auf den Drosselkörper übertragbar sind, und mit einem zweiten Ventil mit einem zweiten Drosselkörper zur Steuerung eines zweiten Dampfstroms, wobei Mittel zur Mischung eines Zerstäuberdampfstroms mit einem Kühlwasserstrom vorgesehen sind.The invention relates to a steam conversion valve with a spindle drive, with a first valve with a first throttle body for controlling a first steam flow, wherein the thrust forces of a spindle drive can be transmitted from an associated spindle to the throttle body to open and close the first valve, and with a second Valve with a second throttle body for controlling a second steam flow, means for mixing an atomizing steam flow with a cooling water flow being provided.

Mit bisherigen Dampfumformventilen dieser Art wurden in der Verfahrens- und Kraftwerkstechnik nicht immer zufriedenstellende Ergebnisse erzielt. Dies gilt insbesondere im Schwachlastbereich oder bei der Zuführung großer Kühlwassermengen, um Dampftemperaturen in der Nähe der Sattdampftemperatur zu erreichen. Die Ursachen für die nicht optimalen Betriebsergebnisse liegen häufig in der ungenügenden Zerstäubung des Kühlwassers und/oder einer nicht optimalen Einleitung des Kühlwassers in den Hauptdampfstrom.Previous steam conversion valves of this type have not always achieved satisfactory results in process and power plant technology. This is especially true in the low-load range or when large amounts of cooling water are supplied in order to achieve steam temperatures close to the saturated steam temperature. The reasons for the non-optimal operating results are often the insufficient atomization of the cooling water and / or an inadequate introduction of the cooling water into the main steam flow.

Ein Dampfumformventil gemäß Oberbegriff des Anspruchs 1 ist bekannt durch die DE-B-1 071 094 (D1) oder durch die DE-C-712 163 (D2). In (D1) ist ein Doppelsitz-Dampfumformventil beschrieben, bei welchem sowohl ein Vorhubventil als auch das Verschlußstück eines zweiten Ventils je einen Teil, zum Beispiel 40 % bzw. 60 %, des Hauptdampfstroms steuern, wobei innerhalb von zwei, je einem der beiden Ventile zugeordneten Drosselzonen der Dampfstrom von einem rotierenden Wasserring umhüllt wird und sich mit diesem mischen soll. Jeder der beiden Ventil-Drosselstellen sind zu diesem Zweck Ringkammern zugeordnet, in welche das Kühlwasser tangential eingeleitet wird. Wenn solche Ringkammern hohen Schließkräften des Ventilstößels ausgesetzt werden, besteht die Gefahr des Brechens. Außerdem bereitet es Schwierigkeiten, bei zwei zueinander parallel arbeitenden Drosselstellen eine gleich gute Vernebelung der Wassertröpfchen zu erreichen.A steam conversion valve according to the preamble of claim 1 is known from DE-B-1 071 094 (D1) or from DE-C-712 163 (D2). In (D1) a double seat steam conversion valve is described, in which both a pre-stroke valve and the closure piece of a second valve each control a part, for example 40% and 60%, of the main steam flow, within two, one of the two valves assigned throttle zones, the steam flow is enveloped by a rotating water ring and is to mix with it. For this purpose, annular chambers are assigned to each of the two valve throttling points, into which the cooling water is introduced tangentially. If such annular chambers high closing forces of the valve lifter exposed to the risk of breakage. In addition, it is difficult to achieve an equally good atomization of the water droplets with two throttle points working in parallel.

Bei (D2) handelt es sich gleichfalls um ein Doppelsitzventil mit auf dem Ventilstößel mit festem Abstand zueinander angeordneten Verschlußstücken. Der Ventilsitz des einen Verschlußstückes dient zum Eindüsen des Kühlwassers über einen entsprechenden Düsenkranz, der Durchlaßquerschnitt des anderen Verschlußstückes ist zum Durchlassen eines Dampfteilstromes ohne Wassereindüsung vorgesehen, wenngleich auch dieser zweite Ventilsitz mit Mitteln zum Wassereindüsen versehen sein kann. Hierbei ergibt sich durch den starren Abstand der Ventilsitze und Ventilstößel das Problem der genauen Abstimmung der beiden Ventile aufeinander; wenn der eine Ventilsitz und das eine Verschlußstück nachgeschliffen wird, muß dies beim anderen Ventil ebenfalls geschehen, und zwar so, daß das beabsichtigte Steuer- und Regelverhalten erhalten bleibt. Bei diesem Dampfumformventil ergeben sich Probleme einer zufriedenstellenden Zerstäubung, wenn lastabhängig der Ventilstößel verändert wird, weil sich damit die Menge des Zerstäuberdampfes ändert und dementsprechend der nicht zur Zerstäubung herangezogene Dampfanteil, wobei dann wieder die Kühlwassermenge angepaßt werden muß.(D2) is also a double-seat valve with closure pieces arranged on the valve tappet at a fixed distance from one another. The valve seat of one closure piece is used to inject the cooling water via a corresponding nozzle ring, the passage cross section of the other closure piece is provided for passage of a partial steam flow without water injection, although this second valve seat can also be provided with means for water injection. The rigid spacing of the valve seats and valve lifters gives rise to the problem of the exact coordination of the two valves with one another; if one valve seat and one closure piece are reground, this must also be done with the other valve, in such a way that the intended control behavior is retained. With this steam conversion valve there are problems of a satisfactory atomization if the valve tappet is changed depending on the load, because this changes the amount of atomizing vapor and accordingly the amount of steam not used for atomization, the cooling water quantity then having to be adjusted again.

Dieses bekannte Ventil nach (D2) besitzt im übrigen kein Vorhubventil, so daß beim Öffnen und Schließen auf das Ventil erhebliche Druckkräfte wirken.This known valve according to (D2) has no lift valve, so that considerable pressure forces act on the valve when opening and closing.

Durch ein weiteres Dokument DE-A-1 959 446 (D3) ist zwar ein Dampfumformventil mit einem Hauptventil zur Steuerung des Hauptdampfstromes und einem Hilfsventil offenbart, wobei die Haupt- und Hilfsspindeln über eine federelastische Kupplung miteinander verbunden sind. Dadurch kann zwar eine zeitlich gestaffelte Schließung bzw. Öffnung der zwei Ventile ermöglicht werden, das Hilfsventil dient jedoch lediglich zur Steuerung eines Kühlwasserstroms und nicht des Zerstäuberdampfstroms. Ferner wird bei diesem bekannten Ventil zuerst das Hilfsventil und dann das Hauptventil geschlossen (beim Öffnen zuerst das Hauptventil und dann das Hilfsventil), so daß eine druckentlastende Wirkung beim Schließ- bzw. Öffnungsvorgang nicht erreicht wird.Another document DE-A-1 959 446 (D3) discloses a steam conversion valve with a main valve for controlling the main steam flow and an auxiliary valve, the main and auxiliary spindles being connected to one another via a spring-elastic coupling. This allows a staggered closing or opening of the two valves , the auxiliary valve is only used to control a cooling water flow and not the atomizing steam flow. Furthermore, in this known valve, first the auxiliary valve and then the main valve is closed (when opening the first main valve and then the auxiliary valve), so that a pressure-relieving effect is not achieved during the closing or opening process.

Durch die Erfindung soll ein Dampfumformventil mit Spindelantrieb geschaffen werden, durch welches die geschilderten Schwierigkeiten überwunden werden können, und zwar durch präzise zeitrichtige Steuerung eines Hauptdrosselkörpers für den Hauptdampfstrom mittels einer Hauptspindel und eines Hilfsdrosselkörpers für den Zerstäuberdampfstrom mittels einer Hilfsspindel. Eine weitere Aufgabe besteht darin, die konstruktiven Voraussetzungen dafür zu schaffen, daß das Dampfumformventil in einer kompakten Bauform sowohl mit einem Drehantrieb als auch mit einem Schubantrieb betätigbar ist, ohne daß grundsätzliche Änderungen am Ventilgehäuse, den Drosselkörpern und den Spindeln vorgenommen werden müßten.The invention is intended to create a steam conversion valve with a spindle drive, by means of which the difficulties described can be overcome, namely by precisely controlling a main throttle body for the main steam flow by means of a main spindle and an auxiliary throttle body for the atomizing steam flow by means of an auxiliary spindle. Another object is to create the structural requirements for the steam converter valve to be actuated in a compact design with both a rotary drive and a linear actuator, without having to make any fundamental changes to the valve housing, the throttle bodies and the spindles.

Zur Lösung der gestellten Aufgabe ist die Erfindung gemäß Patentanspruch 1 dadurch gekennzeichnet,

  • a) daß das erste Ventil ein Hauptventil und der erste Drosselkörper ein Hauptdrosselkörper zur Steuerung eines Hauptdampfstromes mittels einer Hauptspindel ist,
  • b) daß das zweite Ventil ein Hilfsventil und der zweite Drosselkörper ein Hilfsdrosselkörper zur Steuerung eines Zerstäuberdampfstroms ist, wobei zum Öffnen und Schließen des Hilfsventils die Schubkräfte des Spindelantriebs von einer zugehörigen Hilfsspindel auf den Hilfsdrosselkörper übertragbar sind, und
  • c) daß die Stellkräfte des gemeinsamen Spindelantriebs für Hauptspindel und Hilfsspindel jeweils über erste und zweite federelastische Kupplungen auf den Haupt- bzw. Hilfsdrosselkörper übertragbar sind, wobei die beiden Spindeln so aufeinander abgestimmt sind, daß
    • c1) beim Schließvorgang der Hauptdrosselkörper schließt, bevor der Hilfsdrosselkörper seinen Hilfsventilsitz erreicht, so daß der Hauptdampfstrom vor dem Zerstäuberdampfstrom abgesperrt ist, und
    • c2) beim Öffnungsvorgang der Hilfsdrosselkörper sein Hilfsventil öffnet, bevor der Hauptdrosselkörper seinen Hauptventilsitz verläßt, so daß sich der Zerstäuberdampfstrom vor dem Hauptdampfstrom ausbildet.
To achieve the object, the invention is characterized in that
  • a) that the first valve is a main valve and the first throttle body is a main throttle body for controlling a main steam flow by means of a main spindle,
  • b) that the second valve is an auxiliary valve and the second throttle body is an auxiliary throttle body for controlling an atomizing steam flow, the thrust forces of the spindle drive being transferable from an associated auxiliary spindle to the auxiliary throttle body for opening and closing the auxiliary valve, and
  • c) that the actuating forces of the common spindle drive for the main spindle and auxiliary spindle are each transferable to the main and auxiliary throttle bodies via first and second spring-elastic couplings, the two spindles being matched to one another in such a way that
    • c1) closes during the closing process of the main throttle body before the auxiliary throttle body reaches its auxiliary valve seat, so that the main steam flow is shut off from the atomizing steam flow, and
    • c2) during the opening process, the auxiliary throttle body opens its auxiliary valve before the main throttle body leaves its main valve seat, so that the atomizer vapor stream forms before the main steam stream.

Vorteilhafte Weiterbildungen sind in den Unteransprüchen 2 bis 23 angegeben.Advantageous further developments are specified in subclaims 2 to 23.

Die mit der Erfindung erzielbaren Vorteile sind vor allem darin zu sehen, daß nun eine zeitrichtige Steuerung des Zerstäuber- und Hauptdampfstroms bei einem Dampfumformventil über zwei getrennte Ventilspindeln, eine Hilfs- und eine Hauptspindel, von einem einzigen Stellantrieb aus ermöglicht ist. Es wird eine besonders effektive Dampfumformung durch konzentrische Einleitung des Zerstäuberdampfes in den Kühlwasserstrom erreicht. Es können nun Haupt- und Hilfsspindel zur Dampfdruckreduzierung zeitrichtig von einem einzigen Stellantrieb aus gesteuert werden. In Auf-Richtung wird zunächst nur die Hilfsspindel betätigt, und der hierdurch strömende Dampf wird über ein Düsenrohr konzentrisch in den Kühlwasserstrom zu dessen Zerstäubung eingeleitet, und erst danach wird die Hauptspindel von ihrem Sitz abgehoben. In Zu-Richtung wird zuerst die Hauptspindel in die Endlage gefahren, und erst danach wird die Hilfsspindel betätigt, um den Zerstäuberdampfstrom zu unterbrechen. Im bzw. unter dem Hauptdrosselkörper erfährt gemäß den Ansprüchen 8 und 9 das dampfzerstäubte Kühlwasser eine 180°-Umlenkung und wird dadurch optimal verteilt in den Hauptdampfstrom eingeleitet, ohne unmittelbar an die Armaturen- bzw. Rohrleitungswände zu gelangen.The advantages that can be achieved with the invention are to be seen primarily in the fact that a timely control of the atomizer and main steam flow in a steam converting valve is now possible via two separate valve spindles, an auxiliary and a main spindle, from a single actuator. A particularly effective steam conversion is achieved by concentrically introducing the atomizing steam into the cooling water flow. The main and auxiliary spindles for reducing steam pressure can now be controlled from a single actuator. Only the auxiliary spindle is initially in the up direction actuated, and the steam flowing thereby is introduced concentrically through a nozzle pipe into the cooling water flow to atomize it, and only then is the main spindle lifted from its seat. In the closed direction, the main spindle is first moved to the end position, and only then is the auxiliary spindle actuated to interrupt the atomizing steam flow. In or below the main throttle body, the atomized cooling water experiences a 180 ° deflection and is thus optimally distributed into the main steam flow without directly reaching the valve or pipe walls.

Gemäß einer bevorzugten Ausführungsform ist nach Patentanspruch 2 vorgesehen, daß im Niederdruckraum der Abströmseite des Dampfumformventils ein festehendes Kühlwasser-Eintrittsrohr angeordnet ist, in welches der Hauptdrosselkörper mit einem zur Einleitung des Zerstäuberdampfstroms dienenden Düsenrohr eintaucht. Dabei bildet der Dampfeinlaß eines axialen Düsenrohrkanals den Ventilsitz für den Hilfsdrosselkörper, wobei zu diesem Dampfeinlaß Zerstäuberdampf-Zufuhrkanäle führen, welche einlaßseitig zur Dampfzuströmseite des Ventils offen sind. Der Hilfsventilsitz definiert den Durchlaßquerschnitt für eine Verbindung zwischen den Auslaßenden der Zerstäuberdampf-Zufuhrkanäle und dem Düsenrohrkanal, so daß die Verbindung der Zerstäuberdampf-Zufuhrkanäle bei geschlossenem/geöffnetem Hilfsventil ebenfalls geschlossen bzw. geöffnet ist. Gemäß einer Weiterbildung nach Anspruch 4 ist das Düsenrohr an seinem in das Kühlwassereintrittsrohr eintretenden Ende mit einem der Strömungsleitung des zuströmenden Kühlwassers hin zur Eintrittsrohrwand dienenden Kegelkörper versehen. An einem an den Kegelkörper anschließenden Kühlwasser-abströmseitigen Ringkanal sind Drallschaufeln zur Erzeugung einer Kühlwasser-Drallströmung angeordnet. Auf diese Weise wird das Kühlwasser vor dem Zerstäuben in eine Drallbewegung gebracht, um auch bei liegender Einbaulage des Dampfumformventils eine möglichst symmetrische Wassereinleitung zu erhalten.According to a preferred embodiment it is provided according to claim 2 that a fixed cooling water inlet pipe is arranged in the low-pressure chamber of the outflow side of the steam conversion valve, into which the main throttle body is immersed with a nozzle pipe serving to introduce the atomizing steam flow. The steam inlet of an axial nozzle pipe channel forms the valve seat for the auxiliary throttle body, atomizing steam supply channels leading to this steam inlet, which are open on the inlet side to the steam inflow side of the valve. The auxiliary valve seat defines the passage cross section for a connection between the outlet ends of the atomizer vapor supply channels and the nozzle tube channel, so that the connection of the atomizer vapor supply channels is also closed or opened when the auxiliary valve is closed / opened. According to a development according to claim 4, the nozzle tube is provided at its end entering the cooling water inlet tube with a cone body which serves for the flow conduit of the incoming cooling water to the inlet tube wall. Swirl vanes for generating a cooling water swirl flow are arranged on an annular channel downstream of the cone body on the outflow side of the cooling water. In this way, the cooling water is swirled before atomization in order to obtain the most symmetrical water introduction possible even when the steam converter valve is in the horizontal position.

Eine konzentrische, kompakte Bauweise wird durch eine bevorzugte Ausführungsform gemäß Anspruch 6 erreicht, wonach der Rohrstutzen des Düsenrohres die gleichachsige Fortsetzung eines zentrischen Kanals der Hauptspindel bildet, in welchem der als Stößel ausgebildete Hilfsdrosselkörper der Hilfsspindel längsverschieblich und dichtend gelagert ist, wobei im Übergangsbereich des zentrischen Kanals zum Düsenrohrkanal der insbesondere konische Sitzflächen aufweisende Hilfsventilsitz für den Hilfsdrosselkörper angeordnet ist.A concentric, compact design is achieved by a preferred embodiment according to claim 6, according to which the pipe socket of the nozzle pipe forms the coaxial extension of a central channel of the main spindle, in which the auxiliary throttle body of the auxiliary spindle, which is designed as a tappet, is mounted in a longitudinally displaceable and sealing manner, in the transition region of the central Channel to the nozzle tube channel of the auxiliary valve seat, which in particular has conical seat surfaces, is arranged for the auxiliary throttle body.

Gemäß den Weiterbildungen nach Anspruch 3 und Anspruch 7 sind der Hauptdrosselkörper bzw. das Düsenrohr mit axial und in Umfangsrichtung verteilten Einlaßkanälen für den Hauptdampf (Lochdrosselkörper) bzw. Düsenbohrungen für den Zerstäuberdampf versehen.According to the developments according to claim 3 and claim 7, the main throttle body or the nozzle tube are provided with axially and circumferentially distributed inlet channels for the main steam (orifice throttle body) or nozzle bores for the atomizer steam.

Gemäß den Merkmalen der weiteren Unteransprüche 10 bis 23 werden die besondere Ausbildung der ersten und zweiten federelastischen Kupplungen und eines Schub- bzw. eines Drehantriebs als den beiden Ventilspindeln, der Haupt- und der Hilfsspindel, gemeinsamer Spindelantrieb behandelt.According to the features of the further subclaims 10 to 23, the special design of the first and second resilient couplings and a linear actuator or a rotary actuator are treated as the two valve spindles, the main and the auxiliary spindle, common spindle drive.

Weitere Merkmale und Vorteile der Erfindung sowie ihre Wirkungsweise werden im folgenden anhand von zwei in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. In der Zeichnung zeigen in vereinfachter Darstellung:

FIG 1
ein erstes Ausführungsbeispiel eines Dampfumformventils nach der Erfindung mit Drehantrieb in einem Axialschnitt durch das Ventilgehäuse und
FIG 2
ein zweites Ausführungsbeispiel eines Dampfumformventils nach der Erfindung mit einem Schubantrieb in einer Figur 1 entsprechenden Darstellung.
Further features and advantages of the invention and their mode of operation are explained in more detail below with reference to two exemplary embodiments shown in the drawing. The drawing shows in a simplified representation:
FIG. 1
a first embodiment of a steam conversion valve according to the invention with rotary drive in an axial section through the valve housing and
FIG 2
a second embodiment of a steam converter valve according to the invention with a linear actuator in a representation corresponding to Figure 1.

Figur 1 zeigt den prinzipiellen Aufbau eines Dampfumformventils nach der Erfindung. Dabei wird zur Dampfumformung mit Doppelspindel-gesteuerter Dampfdruckreduzierung und dampfzerstäubtem Kühlwasser gearbeitet. Das Dampfumformventil VU1 besteht aus einem Hauptventil V1, das mit einem Hilfsventil V2 kombiniert ist.Figure 1 shows the basic structure of a steam conversion valve according to the invention. The steam forming process uses double-spindle-controlled steam pressure reduction and steam-atomized cooling water. The steam conversion valve VU1 consists of a main valve V1, which is combined with an auxiliary valve V2.

Vom Drehantrieb 1 aus wird über die geteilte, jedoch durch Federkeile 21, 22 verdrehsicher aufgebaute Spindelmutteranordnung 2, bestehend aus der ersten Spindelmutter 2a und der zweiten Spindelmutter 2b, die Hauptspindel 5 mit dem Hauptdrosselkörper 6 betätigt. Im geschlossenen Zustand wird die Dichtfläche 6a des Hauptdrosselkörpers 6 auf den Ventilsitz 7, d.h. entsprechende Sitzflächen 7a, gepreßt. Zwischen der ersten (oberen) Spindelmutter 2a und der zweiten (unteren) Spindelmutter 2b ist eine vorgespannte Druckfeder-Anordnung 3 eingefügt, die in bevorzugter Ausführung als Tellerfeder oder Tellerfederpaket ausgebildet ist. Im folgenden ist deshalb zur Vereinfachung von einer (ersten) Tellerfeder 3 die Rede. Das Oberteil 9 der Hilfsspindel 50 ist direkt in die erste Spindelmutter 2a eingeschraubt. Die Gewindesteigung des Hilfsspindeloberteils 9 in der ersten Spindelmutter 2a entspricht genau der Gewindesteigung der Hauptspindel 5 in der zweiten Spindelmutter 2b. Die erste und zweite Spindelmutter 2a, 2b und die dazwischen eingefügte vorgespannte Tellerfeder 3 bilden die erste federelastische Kupplung FK1. Zwischen dem Oberteil 9 der Hilfsspindel 50 und ihrem Unterteil 10 ist die zweite federelastische Kupplung FK2 in Gestalt eines Kupplungsstücks mit dem vorgespannten Tellerfederpaket 11 eingefügt, wobei das Kupplungsstück beide Hilfsspindelteile 9, 10 verdrehsicher miteinander verbindet. Das vorgespannte Tellerfederpaket 11 wird im folgenden vereinfachend als zweite Tellerfeder bezeichnet, wenngleich es sich dabei grundsätzlich auch um eine vorgespannte Druckfeder- bzw. Schraubendruckfeder-Anordnung handeln könnte. An der Hauptspindel 5 befindet sich die Hubstellungsanzeige und Verdrehsicherung 12. Die Hilfsspindel 50 ist relativ zur Hauptspindel 5 mit der Verdrehsicherung 4 ausgestattet, die im Bedarfsfalle, z.B. zu Kontrollzwecken, auch als Hubstellungsanzeige dienen kann.From the rotary drive 1, the main spindle 5 with the main throttle body 6 is actuated via the split spindle nut arrangement 2, which is constructed to be non-rotatable by spring wedges 21, 22 and consists of the first spindle nut 2a and the second spindle nut 2b. In the closed state, the sealing surface 6a of the main throttle body 6 is pressed onto the valve seat 7, ie corresponding seating surfaces 7a. A prestressed compression spring arrangement 3 is inserted between the first (upper) spindle nut 2a and the second (lower) spindle nut 2b, which in a preferred embodiment is designed as a plate spring or plate spring assembly. To simplify matters, a (first) disk spring 3 is therefore discussed below. The upper part 9 of the auxiliary spindle 50 is screwed directly into the first spindle nut 2a. The thread pitch of the auxiliary spindle upper part 9 in the first spindle nut 2a corresponds exactly to the thread pitch of the main spindle 5 in the second spindle nut 2b. The first and second spindle nuts 2a, 2b and the preloaded disk spring 3 inserted between them form the first spring-elastic coupling FK1. Between the upper part 9 of the auxiliary spindle 50 and its lower part 10, the second resilient coupling FK2 is inserted in the form of a coupling piece with the prestressed disk spring assembly 11, the coupling piece connecting the two auxiliary spindle parts 9, 10 to one another in a rotationally secure manner. The preloaded plate spring assembly 11 is referred to in the following for simplicity as the second plate spring, although in principle this could also be a preloaded compression spring or helical compression spring arrangement. The stroke position indicator and anti-rotation device 12 are located on the main spindle 5. The auxiliary spindle 50 is equipped with the anti-rotation device 4 relative to the main spindle 5, which, if required, for example for control purposes, can also serve as a stroke position indicator.

Das als Ganzes mit V2 bezeichnete Hilfsventil ist mit seiner Hilfsspindel 50 und seinem Hilfsdrosselkörper 10a, der einen Teil des Spindelunterteils 10 bildet, koaxial und zentrisch zur Hauptspindel 5 angeordnet und gelagert; der Austritt seines Hilfssitzes 16, welcher sich innerhalb des Hauptdrosselkörpers 6 befindet, mündet in das Düsenrohr 17, das in das Kühlwasser-Eintrittsrohr 14 hineinragt. Über die Zerstäuberdampf-Zufuhrkanäle 19, ausgebildet als radiale Bohrungen, ist die Eintrittsseite des Hilfssitzes 16 mit dem Hochdruckraum 13 des Dampfumformventils VU1 verbunden. Der Hochdruckraum 13 liegt auf der Zuströmseite 13′ des Ventils VU1.The auxiliary valve, designated as a whole by V2, is arranged and mounted coaxially and centrally with the main spindle 5 with its auxiliary spindle 50 and its auxiliary throttle body 10a, which forms part of the lower spindle part 10; the outlet of its auxiliary seat 16, which is located within the main throttle body 6, opens into the nozzle tube 17, which projects into the cooling water inlet tube 14. The inlet side of the auxiliary seat 16 is connected to the high-pressure chamber 13 of the steam conversion valve VU1 via the atomizer steam supply channels 19, designed as radial bores. The high-pressure chamber 13 is on the inflow side 13 'of the valve VU1.

Die Voreinstellung der Hilfsspindel 50 erfolgt derart, daß bei gestreckter erster Tellerfeder 3 (d.h. Stellung der Hauptspindel 5 größer als 0 %) bei gelöster Verdrehsicherung 4 und durch Drehen der Hilfsspindel 50 mit ihrem Ober- und Unterteil 9, 10 ein maximaler Hub (Abstand zwischen Hilfssitz 16 und Hilfsspindel 50) der Hilfsspindel 50 eingestellt wird, der ungefähr dem halben Einfederweg der ersten Tellerfeder 3 entspricht.The presetting of the auxiliary spindle 50 is carried out in such a way that when the first disc spring 3 is stretched (ie the position of the main spindle 5 is greater than 0%) with the anti-rotation device 4 released and by turning the auxiliary spindle 50 with its upper and lower part 9, 10 a maximum stroke (distance between Auxiliary seat 16 and auxiliary spindle 50) of the auxiliary spindle 50 is set, which corresponds approximately to half the spring deflection of the first plate spring 3.

Im folgenden sei die Funktion des Ventils VU 1 in Schließrichtung erläutert. Hierzu sei von der Ausgangssituation ausgegangen, daß der Drehantrieb 1, die Hauptspindel 5 und der Hauptdrosselkörper 6 sich in Auf- oder einer Zwischenstellung befinden. Die vorgespannten Tellerfedern 3 und 11 sind gestreckt. Die Hilfsspindel 50 hat den voreingestellten maximalen Hub eingenommen, d.h. die Zuströmseite 13′ ist über die Zufuhrkanäle 19 und das Düsenrohr 17 mit der Abströmseite 18′ (Niederdruckraum 18) verbunden. Der Zerstäuberdampf kann von der Zuströmseite 13′ über die Zufuhrkanäle 19, den (offenen) Hilfssitz 16 und über die freien Düsenbohrungen 17c des Düsenrohres 17 - unter Zerstäubung des durch das Kühlwasser-Eintrittsrohres 14 einströmenden Kühlwassers - in den Niederdruckraum 18 abströmen. Über die Einlaßkanäle 20 in Gestalt einer Vielzahl von radial orientierten Bohrungen des Hauptdrosselkörpers 6 strömt der Hauptdampfstrom von der Zuströmseite 13′ in den Niederdruckraum 18. Im Hauptdrosselkörper 6 bzw. unmittelbar unterhalb dieses Hauptdrosselkörpers erfolgt dabei eine intensive Vermischung des Hauptdampfstroms f11 mit dem dampfzerstäubten Kühlwasser, welches durch eine Mischung des Zerstäuberdampfstroms f12 mit dem Kühlwasserstrom f2 entstanden ist, so daß sich der resultierende umgeformte Dampfstrom f11 + f12 + f2 ergibt (vgl. die entsprechenden Strömungspfeile). Die Gesamtmenge des zuströmenden Dampfes ist mit f1 bezeichnet, diese teilt sich in den Hauptdampfstrom f11 und den Zerstäuberdampfstrom f12 auf.The function of the valve VU 1 in the closing direction is explained below. For this purpose, it should be assumed from the initial situation that the rotary drive 1, the main spindle 5 and the main throttle body 6 are in the open or an intermediate position. The preloaded disc springs 3 and 11 are stretched. The auxiliary spindle 50 has assumed the preset maximum stroke, ie the inflow side 13 'is connected via the feed channels 19 and the nozzle tube 17 to the outflow side 18' (low pressure chamber 18). The atomizer vapor can flow from the inflow side 13 'through the supply channels 19, the (open) auxiliary seat 16 and the free nozzle bores 17c of the nozzle tube 17 - with atomization of the cooling water flowing in through the cooling water inlet tube 14 - into the low pressure chamber 18. Via the inlet channels 20 in the form of a variety of radially oriented bores of the main throttle body 6, the main steam flow flows from the inflow side 13 'into the low-pressure chamber 18. In the main throttle body 6 or immediately below this main throttle body, the main steam flow f11 is mixed intensively with the atomized cooling water, which is caused by a mixture of the atomizing steam flow f12 the cooling water flow f2 has arisen, so that the resulting formed steam flow f11 + f12 + f2 results (cf. the corresponding flow arrows). The total amount of the incoming steam is designated f1, which is divided into the main steam flow f11 and the atomizing steam flow f12.

Bewegt nun der Drehantrieb 1 durch Drehen der Spindelmutter-Anordnung 2 die Hauptspindel 5 mit dem Hauptdrosselkörper 6 in Schließrichtung - y (die Öffnungsrichtung ist mit + y und die Achse des Ventils VU1 mit y′-y′ bezeichnet), dann bleibt die relative Stellung der Hilfsspindel 50 zur Hauptspindel 5 bis zum Erreichen der Zu-Endlage, d.h. bis zum Aufsetzen des Hauptdrosselkörpers 6 auf den Ventilsitz 7, erhalten. Das bedeutet, daß der Zerstäuberdampfstrom f12 über den Hilfssitz 16 und das Düsenrohr 17 bis zur Zu-Endlage des Hauptdrosselkörpers 6 voll erhalten bleibt.Now moves the rotary drive 1 by turning the spindle nut assembly 2, the main spindle 5 with the main throttle body 6 in the closing direction - y (the opening direction is + y and the axis of the valve VU1 with y'-y '), then the relative position remains the auxiliary spindle 50 to the main spindle 5 until the end position is reached, ie until the main throttle body 6 is placed on the valve seat 7. This means that the atomizer vapor stream f12 is fully retained via the auxiliary seat 16 and the nozzle tube 17 up to the closed position of the main throttle body 6.

Erst beim Einfedern der ersten Tellerfedern 3, d.h. beim Aufwärtsbewegen der zweiten Spindelmutter 2b, wird das Hilfsspindel-Unterteil 10 in Richtung Hilfssitz 16 bewegt, bis schließlich beim halben Einfederweg der Tellerfeder 3 das Hilfsspindel-Unterteil 10 fest auf den Hilfssitz 16 aufgedrückt wird, wodurch auch der Zerstäuberdampfstrom f12 abgesperrt wird. Beim weiteren Zusammendrücken der Tellerfeder 3 werden dann auch die vorgespannten zweiten Tellerfedern 11 zusammengedrückt. Das Hilfsspindel Unterteil 10 wird mit der Federkraft der Tellerfedern 11 in den Hilfssitz 16 gedrückt, wodurch eine absolute Dichtschließendlage erreicht wird.Only when the first disc springs 3 are deflected, ie when the second spindle nut 2b is moved upwards, is the auxiliary spindle lower part 10 moved in the direction of the auxiliary seat 16, until finally, at half the spring deflection of the disc spring 3, the auxiliary spindle lower part 10 is pressed firmly onto the auxiliary seat 16, as a result of which the atomizer vapor stream f12 is also shut off. When the disc spring 3 is further compressed, the prestressed second disc springs 11 are then compressed. The auxiliary spindle lower part 10 is pressed into the auxiliary seat 16 with the spring force of the plate springs 11, whereby an absolute tightly closed end position is achieved.

Zur Beschreibung der Funktion in Öffnungsrichtung sei vom Dichtschließzustand des Ventils als Ausgangssituation ausgegangen. Sobald sich der Drehantrieb 1 in Aufrichtung + y bewegt, beginnt die Entspannung der Tellerfedern 3 und 11. Wenn die Tellerfeder 3 etwa zur Hälfte entspannt ist, beginnt sich das Hilfsspindel-Unterteil 10 vom Hilfssitz 16 abzuheben, und öffnet kontinuierlich die Verbindung von der Zuströmseite 13 über das Düsenrohr 17 zur Abströmseite 18′, wodurch der Zerstäuberdampfstrom f12 auf die - vom Druckgefälle abhängige - maximale Intensität gebracht wird. Bereits jetzt steht für das über das Kühlwassereintrittsrohr 14 einströmende Kühlwasser f2, welches über die am Düsenrohr 17 angebrachten Drallschaufeln (Ablenkflossen) 15 in Drall versetzt wird, die volle Zerstäuberdampfmenge zur Verfügung. Erst bei vollkommen gestreckter Tellerfeder 3 beginnt die Öffnungsbewegung der Hauptspindel 5 mit dem Hauptdrosselkörper 6 und damit der Fluß des Hauptdampfstroms f11.For the description of the function in the opening direction, the starting position is assumed to be the tightly closed state of the valve. As soon as the rotary drive 1 moves in the upward direction + y, the expansion of the plate springs 3 and 11 begins. When the plate spring 3 is approximately half relaxed, the auxiliary spindle lower part 10 begins to lift off the auxiliary seat 16 and continuously opens the connection from the inflow side 13 via the nozzle tube 17 to the outflow side 18 ', whereby the atomizing vapor stream f12 is brought to the - depending on the pressure gradient - maximum intensity. The full amount of atomizing steam is already available for the cooling water f2 flowing in via the cooling water inlet pipe 14, which is set in swirl via the swirl vanes (deflection fins) 15 attached to the nozzle pipe 17. Only when the disc spring 3 is fully extended does the opening movement of the main spindle 5 with the main throttle body 6 and thus the flow of the main steam flow f11 begin.

Aus Vorstehendem ergibt sich, daß das Dampfumformventil VU1 nach Figur 1 (und entsprechend auch dasjenige VU2 nach Figur 2) einen Spindelantrieb für ein Hauptventil V1 und für ein Hilfsventil V2 aufweist. Das Hauptventil V1 des Dampfumformventils VU1 weist einen Hauptdrosselkörper 6 zur Steuerung des Hauptdampfstromes f11 auf, wobei zum Öffnen und Schließen des Hauptventils V1 die Schubkräfte eines Spindelantriebs 1 (in FIG 1 einen Drehantrieb) von einer zugehörigen Hauptspindel 5 auf den Hauptdrosselkörper 6 übertragbar sind. Zum Dampfumformventil VU1 gehört ferner das Hilfsventil V2, welches einen Hilfsdrosselkörper 10a zur Steuerung eines Zerstäuberdampfstromes f12 aufweist, wobei zum Öffnen und Schließen des Hilfsventils V2 die Schubkräfte des Spindelantriebs 1 von einer zugehörigen Hilfsspindel 50 auf den Hilfsdrosselkörper 10a übertragbar sind. Die Stellkräfte des gemeinsamen Spindelantriebs 1 für Haupt- und Hilfsspindel 5, 50 sind jeweils über erste und zweite federelastische Kupplungen 3 bzw. 11 auf den Hauptdrosselkörper 6 und den Hilfsdrosselkörper 10a übertragbar, wobei die beiden Spindeln 5, 50 so aufeinander abgestimmt sind, daß beim Schließvorgang der Hauptdrosselkörper 6 schließt, bevor der Hilfsdrosselkörper 10a seinen Hilfsventilsitz 16 erreicht, so daß der Hauptdampfstrom f11 vor dem Zerstäuberdampfstrom f12 abgesperrt ist. Ferner ist die Abstimmung so, daß beim Öffnungsvorgang der Hilfsdrosselkörper 10a sein Hilfsventil V2 öffnet, bevor der Hauptdrosselkörper 6 seinen Hauptventilsitz 7 verläßt, so daß sich der Zerstäuberdampfstrom f12 vor dem Hauptdampfstrom f11 ausbildet.It follows from the above that the steam conversion valve VU1 according to FIG. 1 (and accordingly also that VU2 according to FIG. 2) has a spindle drive for a main valve V1 and for an auxiliary valve V2. The main valve V1 of the steam conversion valve VU1 has a main throttle body 6 for controlling the main steam flow f11, the thrust forces of a spindle drive 1 (a rotary drive in FIG. 1) being able to be transmitted from an associated main spindle 5 to the main throttle body 6 in order to open and close the main valve V1. The steam conversion valve VU1 also includes the auxiliary valve V2, which has an auxiliary throttle body 10a for controlling an atomizing steam flow f12, the thrust forces of the spindle drive 1 being able to be transmitted from an associated auxiliary spindle 50 to the auxiliary throttle body 10a in order to open and close the auxiliary valve V2. The actuating forces of the common spindle drive 1 for the main and auxiliary spindles 5, 50 can each be transmitted to the main throttle body 6 and the auxiliary throttle body 10a via first and second spring-elastic couplings 3 and 11, the two spindles 5, 50 being matched to one another such that the main throttle body 6 closes during the closing operation before the auxiliary throttle body 10a reaches its auxiliary valve seat 16, so that the main steam flow f11 is shut off from the atomizer steam flow f12. Furthermore, the tuning is such that during the opening process, the auxiliary throttle body 10a opens its auxiliary valve V2 before the main throttle body 6 leaves its main valve seat 7, so that the atomizer vapor stream f12 forms before the main vapor stream f11.

Zur Verwirklichung der vorgeschriebenen Arbeitsweise sind die im folgenden erläuterten konstruktiven Details besonders vorteilhaft. Das im Niederdruckraum 18 der Abströmseite 18′ angeordnete Kühlwasser-Eintrittsrohr 14 ist feststehend, wobei die Kühlwassermenge durch eine nicht dargestellte Kühlwasser-Einstellarmatur auf gewünschte Werte einstellbar ist. In das Kühlwasser-Eintrittsrohr 14 taucht der Hauptdrosselkörper 6 mit seinem zur Einleitung des Zerstäuberdampfstromes f12 dienenden Düsenrohr 17 ein. Der Dampfeinlaß 17b eines axialen Düsenrohrkanals 17a bildet den Ventilsitz (Hilfssitz) 16 für den Hilfsdrosselkörper 10a. Zu diesem Dampfeinlaß 17b führen die Zerstäuberdampf-Zufuhrkanäle 19, welche einlaßsseitig zur Zuströmseite 13 (Hochdruckraum) des Ventils VU1 offen sind. Der Hilfsventilsitz 16 definiert den Durchlaßquerschnitt für eine Verbindung zwischen den Auslaßenden der Zerstäuberdampf-Zufuhrkanäle 19 und dem Düsenrohrkanal 17a, so daß die Verbindung der Zufuhrkanäle 19 bei geschlossenem/geöffneten Hilfsventil V2 ebenfalls geschlossen bzw. geöffnet ist.The structural details explained below are particularly advantageous for realizing the prescribed mode of operation. The in the low pressure chamber 18 of the outflow side 18 'arranged cooling water inlet pipe 14 is fixed, the amount of cooling water can be adjusted to desired values by a cooling water setting valve, not shown. The main throttle body 6 is immersed in the cooling water inlet pipe 14 with its nozzle pipe 17 serving to introduce the atomizing steam flow f12. The steam inlet 17b of an axial nozzle tube duct 17a forms the valve seat (auxiliary seat) 16 for the auxiliary throttle body 10a. The atomizer steam supply channels 19 lead to this steam inlet 17b and are open on the inlet side to the inflow side 13 (high-pressure chamber) of the valve VU1. The auxiliary valve seat 16 defines the passage cross section for a connection between the outlet ends of the atomizer vapor supply channels 19 and the nozzle tube channel 17a, so that the connection of the supply channels 19 is also closed or opened when the auxiliary valve V2 is closed / opened.

Der Hauptdrosselkörper 6, welcher im wesentlichen eine hohlzylindrische Gestalt hat, weist eine an ihrem Außenumfang zylindrische Mantelwand 6b auf, welche sich von seinen Sitzflächen 6a in Richtung auf den Niederdruckraum 18 erstreckt. Die im Mantelwand 6b ist, wie ersichtlich, über ihren Umfang und ihre axiale Länge verteilt mit einer Vielzahl von Einlaßkanälen 20 für den Hauptdampf f11 versehen (Lochdrosselkörper), von denen in Schließrichtung bzw. in der Zu-Endlage des Hauptdrosselkörpers 6 keiner, in der Auf-Endlage alle und in Zwischenstellungen ein hubabhängiger Prozentsatz geöffnet sind bzw. ist. Die Achsen der Einlaßkanäle 20 verlaufen im dargestellten Beispiel radial zur Ventilachse y′-y′.The main throttle body 6, which has essentially a hollow cylindrical shape, has a cylindrical outer wall 6b on its outer circumference, which extends from its seat surfaces 6a in the direction of the low-pressure chamber 18. As can be seen, that in the jacket wall 6b is distributed over its circumference and its axial length with a large number of inlet channels 20 for the main steam f11 (orifice throttle body), none of which are or are open in the closing direction or in the closed-end position of the main throttle body 6, in the open-closed position all and in intermediate positions a stroke-dependent percentage. The axes of the inlet channels 20 run radially to the valve axis y'-y 'in the example shown.

Zur guten Vermischung des Kühlwassers mit dem Zerstäuberdampf ist das Düsenrohr 17 an seinem in das Kühlwasser-Eintrittsrohr 14 eintauchenden Ende mit einem der Strömungsleitung des zuströmenden Kühlwassers f2 hin zur Eintrittsrohrwand 14a dienenden Kegelkörper 23 versehen. In einem an den Kegelkörper 23 anschließenden Kühlwasser-abströmseitigen Ringkanal 24 sind Drallschaufeln 15 (die man auch als Ablenkflossen bezeichnen könnte) zur Erzeugung einer Kühlwasser-Drallströmung angeordnet. Das Düsenrohr 17 ist, wie ersichtlich, als ein auf der Abströmseite 18′ des Hauptdrosselkörpers 6 zentrisch angeordneter und axial vorspringender Rohrstutzen ausgebildet. Insbesondere ist dieser Rohrstutzen des Düsenrohres 17 die gleichachsige Fortsetzung eines zentrischen Kanals 5a der Hauptspindel 5, in welchem der als Stößel ausgebildete Hilfsdrosselkörper 10a der Hilfsspindel 50 längs verschieblich und dichtend gelagert ist. Im Übergangsbereich des zentrischen Kanals 5a zum axialen Düsenrohrkanal 17a ist der insbesondere konische Sitzflächen aufweisende Hilfsventilsitz 16 für den Hilfsdrosselkörper 10a angeordnet. Das Düsenrohr 17 ist zum Eindüsen des Zerstäuberdampfstromes f12 in den Kühlwasserstrom f2 mit einer Vielzahl von axial und in Umfangsrichtung verteilten Düsenbohrungen 17c versehen. In der Öffnungsstellung des Hauptdrosselkörpers 6 sind alle diese Düsenbohrungen 17c frei, d.h. tauchen nicht mehr in das Eintrittsrohr 14 ein.For a good mixing of the cooling water with the atomizing steam, the nozzle tube 17 is provided at its end immersed in the cooling water inlet tube 14 with a cone body 23 which serves for the flow conduit of the incoming cooling water f2 to the inlet tube wall 14a. Swirl blades 15 (which could also be referred to as deflection fins) for generating a cooling water swirl flow are arranged in a ring channel 24 connected to the cone body 23 on the outflow side of the cooling water. The nozzle tube 17 is, as can be seen, designed as a centrally located and axially projecting pipe socket on the outflow side 18 'of the main throttle body 6. In particular, this pipe socket of the nozzle pipe 17 is the coaxial extension of a central channel 5a of the main spindle 5, in which the auxiliary throttle body 10a of the auxiliary spindle 50, which is designed as a tappet, is mounted in a longitudinally displaceable and sealing manner. The auxiliary valve seat 16, which in particular has conical seat surfaces, for the auxiliary throttle body 10a is arranged in the transition region from the central channel 5a to the axial nozzle tube channel 17a. The nozzle tube 17 is provided with a plurality of axially and circumferentially distributed nozzle bores 17c for injecting the atomizer vapor stream f12 into the cooling water stream f2. In the open position of the main throttle body 6, all of these nozzle bores 17c are free, i.e. no longer dip into the inlet pipe 14.

Zur Umlenkung des dampfzerstäubten Kühlwassers um praktisch oder angenähert 180° weist der Hauptdrosselkörper 6 auf seiner der Abströmseite 18′ des Dampfes zugewandten Innenseite eine ringförmige Umlenkkammer 25 auf, welche vom Düsenrohr 17 zentrisch durchdrungen und von bogenförmig profilierten Mantelwand- und Boden-Partien 6c des Hauptdrosselkörpers 6 begrenzt ist. Insbesondere verläuft, wie dargestellt, der Innenumfang der Mantelwand-Partie zunächst schräg einwärts unter einem spitzen Winkel zur Ventilachse y′-y′ und geht dann in einen bodennahen gekrümmten Bereich über, welcher seinerseits mit spiralig kleiner werdender Krümmung in den Außenumfang des Düsenrohres 17 übergeht.To redirect the steam-atomized cooling water by practically or approximately 180 °, the main throttle body 6 has on its inside facing the outflow side 18 'of the steam an annular deflection chamber 25, which is penetrated centrally by the nozzle tube 17 and is shaped by curved profiled wall walls. and bottom portions 6c of the main throttle body 6 is limited. In particular, as shown, the inner circumference of the jacket wall portion initially runs obliquely inward at an acute angle to the valve axis y′-y ′ and then merges into a curved region near the ground, which in turn merges into the outer circumference of the nozzle tube 17 with a spiraling curvature .

Die Längenverstelleinrichtung der Hilfsspindel 50 wird durch diese selbst bei gelöster Verdrehsicherung 4 gebildet, indem diese mehr oder weniger weit in die Gewindebohrung 26 der ersten Spindelmutter 2 eingeschraubt wird. Das gemeinsame Antriebsglied für Haupt- und Hilfsspindel 5, 50 wird durch den Wellenzapfen 27 des Drehantriebs 1 gebildet. Im Anschluß an den zentrischen Kanal 5a innerhalb eines Schaftteiles 5b der Hauptspindel 5 ist ein erweiterter Hohlraum 5c vorgesehen, und innerhalb dieses Hohlraumes 5c ist die Hilfsspindel 50 mit ihrer zweiten federelastischen Kupplung FK2 in Hubrichtung ±y bewegbar. Die zweite federelastische Kupplung FK2 ist vorzugsweise ein Federkorb mit der vorgespannten Tellerfeder 11, wobei an dem Hilfsspindelunterteil 10 der Federkorb 28 sitzt und das Hilfsspindeloberteil 9 mit einem verstärkten Kopfteil 9a innerhalb des Federkorbes 28 längsverschieblich und belastet durch die Tellerfeder 11 gelagert sowie durch einen Korbdeckel 28a gefangen ist. Bei 29 ist ein Federkeil zur Verdrehsicherung zwischen Spindeloberteil 9 und Federkorb 28 angedeutet.The length adjustment device of the auxiliary spindle 50 is formed by the latter even when the anti-rotation lock 4 is released by screwing it more or less far into the threaded bore 26 of the first spindle nut 2. The common drive member for the main and auxiliary spindle 5, 50 is formed by the shaft journal 27 of the rotary drive 1. Following the central channel 5a within a shaft part 5b of the main spindle 5, an enlarged cavity 5c is provided, and within this cavity 5c the auxiliary spindle 50 with its second spring-elastic coupling FK2 can be moved in the stroke direction ± y. The second spring-elastic coupling FK2 is preferably a spring cage with the prestressed disc spring 11, the spring cage 28 being seated on the auxiliary spindle lower part 10 and the auxiliary spindle upper part 9 having a reinforced head part 9a being longitudinally displaceable and loaded by the disc spring 11 and being loaded by a basket cover 28a is caught. At 29, a spring key to prevent rotation between the upper spindle part 9 and the spring cage 28 is indicated.

Zur Verdrehsicherung und Hubanzeige der Hauptspindel 5 ist diese bzw. ihr Schaftteil 5b mit seitlich abstehenden Rollenarmen 12 in Längsschlitzen 30a der Umfangswand einer Ventillaterne 30 in Hubrichtung ±y geführt, wobei die Führungsrollen mit 12a bezeichnet sind. Entsprechendes gilt für die Rollenarme 4 mit Führungsrollen 4a des Federkorbes 28, wobei hier die Führungsschlitze mit 5d bezeichnet sind.To prevent the main spindle 5 from rotating and indicating the stroke, this or its shaft part 5b is guided with laterally projecting roller arms 12 in longitudinal slots 30a of the peripheral wall of a valve lantern 30 in the stroke direction ± y, the guide rollers being denoted by 12a. The same applies to the roller arms 4 with guide rollers 4a of the spring cage 28, the guide slots being designated 5d here.

Die erste Spindelmutter 2a ist mittels eines ersten Drucklagers 31, welche sich im Gehäusedeckel 32 abstützt, drehbar gelagert, die zweite Spindelmutter 2b ist entsprechend mittels eines zweiten Drucklagers 33, welches sich an einem gehäuseinternen Ringflansch 30b der Ventillaterne 30 abstützt, drehbar gelagert. Wie man erkennt, ist die erste Spindelmutter 2a mit dem Spindeltrieb 1 drehfest verbunden über den Wellenzapfen 27 mit Federkeil 21; sie bildet mit ihrem Innengewinde 26 eine Schraublagerung für die verdrehungsgesicherte Hilfsspindel 50 zu deren Axialbewegung. Auf einem Führungsschaft 2a1 der ersten Spindelmutter 2a ist die zweite Spindelmutter 2b drehfest, jedoch axial verschieblich gelagert. Die erste federelastische Kupplung FK1 ist in einem axialen Zwischenraum 34 zwischend der ersten (2a) und der zweiten Spindelmutter 2b eingefügt. Die zweite Spindelmutter 2b bildet mit einem Gewindeschaft 2b1 eine Schraublagerung für die verdrehungsgesicherte Hauptspindel 5 zu deren Axialbewegung.The first spindle nut 2a is rotatably mounted by means of a first pressure bearing 31, which is supported in the housing cover 32, the second spindle nut 2b is correspondingly rotatably supported by means of a second pressure bearing 33, which is supported on an internal ring flange 30b of the valve lantern 30. As can be seen, the first spindle nut 2a is connected in a rotationally fixed manner to the spindle drive 1 via the shaft journal 27 with the spring wedge 21; it forms with its internal thread 26 a screw bearing for the rotationally secured auxiliary spindle 50 for its axial movement. The second spindle nut 2b is mounted on a guide shaft 2a1 of the first spindle nut 2a in a rotationally fixed but axially displaceable manner. The first spring-elastic coupling FK1 is inserted in an axial intermediate space 34 between the first (2a) and the second spindle nut 2b. The second spindle nut 2b forms, with a threaded shaft 2b1, a screw bearing for the main spindle 5, which is secured against rotation, for its axial movement.

Zur Abdichtung der Hauptspindel-Durchführung und des Hochdruckraums 13 nach außen ist der Schaftteil 5b der Hauptspindel 5 durch eine Stopfbuchse 35 gleitend abgedichtet, die Dichtpackung ist mit 35a, der Abschlußdeckel mit 35b bezeichnet. Dementsprechend ist die Hilfsspindel 50 mittels der Stopfbuchse 36 nach außen dichtend geführt und damit auch diese Durchführungsstelle nach außen abgedichtet. Der Stopfbuchsdeckel ist mit 36b, die Packung mit 36a bezeichnet. Die Stopfbuchse 35 sitzt am Innenumfang eines Zwischenstücks 37 zwischen dem Ventilgehäuse 38 und der Ventillaterne 30. Dieses Zwischenstück 37 dient der dichtenden Flanschverbindung zwischen Ventillaterne 30 und Ventilgehäuse 38 und bildet eine präzise Führungsstelle für die Hauptspindel 5.To seal the main spindle feedthrough and the high-pressure chamber 13 to the outside, the shaft part 5b of the main spindle 5 is slidably sealed by a stuffing box 35, the sealing packing is designated 35a, the end cap 35b. Accordingly, the auxiliary spindle 50 is guided in a sealing manner to the outside by means of the stuffing box 36 and thus this lead-through point is also sealed to the outside. The stuffing box cover is labeled 36b, the pack 36a. The stuffing box 35 sits on the inner circumference of an intermediate piece 37 between the valve housing 38 and the valve lantern 30. This intermediate piece 37 serves for the sealing flange connection between the valve lantern 30 and the valve housing 38 and forms a precise guide point for the main spindle 5.

Der Drehantrieb 1 kann grundsätzlich ein elektrischer, hydraulischer oder pneumatischer Drehantrieb sein; bevorzugt handelt es sich um einen elektrischen Regelmotor, der eine seiner Sollwert-Istwert-Differenz entsprechende Stellgröße von den leittechnischen Einrichtungen bekommt.The rotary drive 1 can in principle be an electrical, hydraulic or pneumatic rotary drive; it is preferably an electric control motor that has one of its setpoint / actual value difference gets the appropriate manipulated variable from the control system.

Das in Figur 2 dargestellte Dampfumformventil VU2 ist auf der Dampf- und Wasserseite genauso aufgebaut wie dasjenige nach Figur 1, weshalb gleiche Teile auch mit den gleichen Bezugszeichen versehen sind. Anstelle eines Drehantriebs 1 ist hier ein hydraulischer Schubantrieb 1′ mit einem hydraulischen Kolben-Zylinder-System 39 vorgesehen. Der mit dem Ventilgehäusedeckel 32 baulich vereinigte Zylinder ist mit 39a, der Kolben mit 39b und die Kolbenstange mit 39c bezeichnet. Über eine Kupplung 40 ist die Kolbenstange 39c mit der den beiden Ventilspindeln, der Hauptspindel 5 und der Hilfsspindel 50 gemeinsamen Antriebsstange 41 gekoppelt. Letztere ist über die erste federelastische Kupplung FK1 mit der Hauptspindel 5 und über eine Längenverstelleinrichtung 42 mit dem Hilfsspindeloberteil 9 verbunden, letzteres ist über die zweite federelastische Kupplung FK2 mit dem Hilfsspindel-Unterteil 10 gekoppelt. Die erste federelastische Kupplung FK1 weist einen Federkorb mit Gehäuse 43, Gehäusedeckel 43a, Gehäuseboden 43b und den im Inneren des Gehäuses 43 angeordneten vorgespannten Tellerfederpaket 3 auf. Der Flansch 41a der Antriebsstange 41 ist innerhalb des Gehäuses 43 durch den aufgesetzten und befestigten Gehäusedeckel 43a gefangen. Die Ausbildung der zweiten federelastischen Kupplung FK2 in Figur 2 ist - bis auf die hier nicht erforderliche Verdrehsicherung - so wie beim ersten Beispiel nach Figur 1. Die Justierung der Hilfsspindel 50 in Bezug auf die Hauptspindel 5 erfolgt so, daß bei nicht eingedrücktem Federkorb der ersten federelastischen Kupplung FK1 (Stellung der Hauptspindel 5 größer als 0 %) über die Verstelleinrichtung 42 ein maximaler Hub (Abstand zwischen Hilfssitz 16 und Hilfsspindel 50) der Hilfsspindel 50 eingestellt wird, der ungefähr dem halben Einfederweg der ersten federelastischen Kupplung FK1 entspricht. Der Ablauf der Schließ- und Öffnungsbewegung der Haupt- und Hilfsspindel 5, 50 und der zugehörigen Drosselkörper 6, 10a erfolgt sinngemäß so, wie anhand des ersten Ausführungsbeispiels bereits beschrieben, lediglich mit dem Unterschied, daß durch das hydraulische Kolben-Zylinder-System 39 mit seinen beiden Anschlußstutzen 39.1 und 39.2 für das hydraulische Medium Schubkräfte auf die Kolbenstange 39c ausgeübt werden.The steam conversion valve VU2 shown in FIG. 2 is constructed on the steam and water side in the same way as that according to FIG. 1, which is why the same parts are also provided with the same reference numerals. Instead of a rotary drive 1, a hydraulic linear actuator 1 'with a hydraulic piston-cylinder system 39 is provided here. The cylinder structurally combined with the valve housing cover 32 is designated 39a, the piston 39b and the piston rod 39c. The piston rod 39c is coupled via a clutch 40 to the drive rod 41 common to the two valve spindles, the main spindle 5 and the auxiliary spindle 50. The latter is connected via the first spring-elastic coupling FK1 to the main spindle 5 and via a length adjustment device 42 to the auxiliary spindle upper part 9, the latter being coupled to the auxiliary spindle lower part 10 via the second spring-elastic coupling FK2. The first spring-elastic coupling FK1 has a spring cage with the housing 43, the housing cover 43a, the housing base 43b and the prestressed disk spring assembly 3 arranged in the interior of the housing 43. The flange 41a of the drive rod 41 is caught within the housing 43 by the attached and fastened housing cover 43a. The design of the second resilient coupling FK2 in FIG. 2 is - except for the anti-rotation lock that is not required here - as in the first example according to FIG. 1. The adjustment of the auxiliary spindle 50 in relation to the main spindle 5 takes place in such a way that the first one is not pressed in Spring-elastic coupling FK1 (position of main spindle 5 greater than 0%) is adjusted via the adjusting device 42 a maximum stroke (distance between auxiliary seat 16 and auxiliary spindle 50) of the auxiliary spindle 50, which corresponds approximately to half the spring deflection of the first spring-elastic coupling FK1. The sequence of the closing and opening movement of the main and auxiliary spindles 5, 50 and the associated throttle body 6, 10a takes place in a manner analogous to that using the already described in the first embodiment, only with the difference that the hydraulic piston-cylinder system 39 with its two connecting pieces 39.1 and 39.2 exert thrust forces on the piston rod 39c for the hydraulic medium.

Claims (23)

  1. A steam converting valve (VU1; VU2) having spindle actuation (1; 1′) and comprising a first valve (V1) with a first throttle body (6) for controlling a first steam flow (f11), the thrust forces of a spindle actuator (1, 1′) being transmittable from an associated spindle (5) to the throttle body (6) for opening and closing the first valve (V1), the device comprising a second valve (V2) with a second throttle body (10a) for controlling a second steam flow, means being provided for mixing an atomiser steam flow (f12) with a cooling-water flow (f2), characterised in that
    a) the first valve (V1) is a main valve and the first throttle body (6) is a main throttle body for controlling a main steam flow (f11) via a main spindle (5),
    b) the second valve (V2) is an auxiliary valve and the second throttle body (10a) is an auxiliary throttle body for controlling an atomiser steam flow (f12), the thrust forces of the spindle actuator (1; 1′) being transmittable by an associated auxiliary spindle (50) to the auxiliary throttle body (10a) for opening and closing the auxiliary valve (V2), and
    c) the adjusting forces of the common spindle actuator (1; 1′) for the main spindle (5) and the auxiliary spindle (50) are transmittable via first and second spring-elastic couplings (FK1, FK2) to the main or auxiliary throttle body (6, 10a) respectively, the two spindles (5, 50) being matched to one another so that
    c1) during the closing process, the main throttle body (6) closes before the auxiliary throttle body (10a) reaches the auxiliary valve seat (16), so that the main steam flow (f11) is blocked before the atomiser steam flow (f12) is blocked and
    c2) during the opening process, the auxiliary throttle body (10a) opens the auxiliary valve (V2) before the main throttle body (6) leaves the main valve seat (7), so that the atomiser steam flow (f12) builds up before the main steam flow (f2) builds up.
  2. A steam converting valve according to claim 1, characterised in that a stationary cooling-water entry tube (14) is disposed in the low-pressure chamber (18) at the outflow side (18′), the main throttle body (6) having a nozzle tube (17) for introducing the atomiser steam flow (f12) and immersed in the entry tube (14), the steam inlet (17b) of an axial nozzle tube duct (17a) forms the valve seat (16) for the auxiliary throttle body, and atomiser-steam supply ducts (19) lead to the steam inlet (17b) and are open on the inlet side towards the steam inflow side of the valve (VU1) and
    the auxiliary valve seat (16) defines the flow cross-section for a connection between the outlet ends of the atomiser steam supply ducts (19) and the nozzle tube duct (17a), so that the connection of the atomiser-steam supply ducts (19) is closed when the auxiliary valve (V2) is closed and open when the auxiliary valve (V2) is open.
  3. A steam converting valve according to claim 1 or 2, characterised in that the main throttle body (6) on its periphery has a cylindrical jacket wall (6b) which extends from its seat surfaces (6a) towards the low-pressure chamber (18),
    the jacket wall has a number of inlet ducts (20), distributed over its periphery and its axial length, for the main steam, none of the ducts being open when the main throttle body (6) is in the closed position or closed terminal position, whereas all the inlet ducts are open in the open terminal position and a stroke-dependent percentage are open in intermediate positions.
  4. A steam converting valve according to claim 2, characterised in that the nozzle tube (17), at its end immersed in the cooling-water entry tube (14), has a conical body for guiding the inflowing cooling water to the entry tube wall (14), and vortex vanes for generating a cooling-water vortex flow are disposed on an annular duct (24) on the cooling-water outflow side and adjoining the conical body.
  5. A steam converting valve according to any of claims 2 to 4, characterised in that the nozzle tube (17) is an axially projecting short tube disposed centrally on the outflow side (18′) of the main throttle body (6).
  6. A steam converting valve according to claim 5, characterised in that the short nozzle tube (17) is a coaxial extension of a central duct (5a) of the main spindle (5), in which the auxiliary throttle body (10a), in the form of a tappet, of the auxiliary spindle is longitudinally movable and sealingly mounted, and the auxiliary valve seat (16), which more particularly has conical seat surfaces, for the auxiliary throttle body (10a) is disposed in the transition region of the central duct (5a) towards the axial nozzle tube duct (17a).
  7. A steam converting valve according to any of claims 2 to 6, characterised in that the nozzle tube (17) is provided with a number of axially and peripherally distributed nozzle bores (17c) for injecting the atomiser steam flow (f12) into the cooling-water flow (f2).
  8. A steam converting valve according to any of claims 2 to 7, characterised in that, for the purpose of deflecting the steam-atomised cooling water through substantially 180°, the main throttle body (6), on its inner side facing the steam outflow side (18′), has an annular deflection chamber (25) which is centrally penetrated by the nozzle tube (17) and bounded by curved-section jacket wall and bottom portions of the main throttle body (6).
  9. A steam converting valve according to claim 8, characterised in that the inner periphery of the jacket-wall portion initially extends inwards at an acute angle to the valve axis and merges into a curved region near the bottom, which in turn merges with diminishing spiral curvature into the outer periphery of the nozzle tube (17).
  10. A steam converting valve according to any of claims 1 to 9, characterised in that the main and auxiliary spindles (5, 50) are movable by the common spindle actuator (1) via an actuating component (27), and the actuating component (27) of the spindle actuator is coupled to the main spindle (5) via the first spring-elastic coupling (FK1) and to the auxiliary spindle (50) via the second spring-elastic coupling (FK2).
  11. A steam converting valve according to claim 10, characterised in that a means for adjusting the length of the auxiliary spindle (50) is inserted between the actuating component (27) and the second spring-elastic coupling (FK2).
  12. A steam converting valve according to any of claims 1 to 11, characterised in that a shank part (5b) of the main spindle (5) adjoining the main throttle body (6) is provided with a widened cavity (6f) adjacent the central duct (5a) for the auxiliary throttle body (10a), and the auxiliary spindle (50) is movable with the second spring-elastic coupling (FK2) in the stroke direction inside the cavity (5c).
  13. A steam converting valve according to any of claims 1 to 12, characterised in that the second spring-elastic coupling (FK2) is a spring basket comprising a prestressed compression spring arrangement, more particularly a cup spring arrangement, the spring basket (28) being disposed on a lower part (10) of the auxiliary spindle, and an upper part (9) of the auxiliary spindle having a reinforced cap part (9a) is longitudinally movable inside the spring basket and mounted under load by the compression-spring arrangement and trapped by a basket lid.
  14. A steam converting valve according to any of claims 1 to 13, characterised in that, for the purpose of torsionally securing and indicating the stroke of the main spindle (5), the spindle or its shank part (5b) are guided via laterally projecting roller arms (12) in longitudinal slots (30a) in the peripheral wall of a valve yoke (30) in the stroke direction (± y).
  15. A steam converting valve according to any of claims 1 to 14, characterised in that a maximum stroke corresponding approximately to half the compression travel of the first spring-elastic coupling (FK1) is provided for the auxiliary spindle (50) when the first spring-elastic coupling (FK1) of the main spindle (5) has not yet been pressed in.
  16. A steam converting valve according to any of claims 1 to 15, characterised in that a spindle drive in the form of a thrust actuator (1′) and an actuating component in the form of a piston rod (39c) are provided, and the first spring-elastic coupling (FK1) is a spring basket comprising a prestressed compression spring (3) mounted in the basket casing (43) and bearing at one end against the basket bottom (43) and at the other end against an annular flange (41a) on the actuator rod (41), the flange being trapped in the basket casing (43) by a casing cover (43a).
  17. A steam converting valve according to claim 16, characterised in that the compression spring (4c) is a prestressed cup-spring arrangement.
  18. A steam converting valve according to claim 16 or 17, characterised in that the thrust actuator is a hydraulic piston-cylinder system.
  19. A steam converting valve according to any of claims 1 to 15, characterised in that the spindle actuator (1) is a rotary actuator comprising a spindle nut arrangement (32), the rotation of which imparts motion to the main spindle (5) and to the auxiliary spindle (50) in the stroke direction, axial relative motion of the two spindles being made possible by the first spring-elastic coupling (FK1) associated with the main spindle (5) and by the second spring-elastic coupling (FK2) associated with the auxiliary spindle (50).
  20. A steam converting valve according to claim 19, characterised in that a first spindle nut (2a) non-rotatably connected to the spindle drive (1) and having an internal thread (26) forms a screw bearing for imparting axial motion to the torsionally-secured auxiliary spindle (50), a second spindle nut (2b) is non-rotatably but axially movably mounted on a guide shank (2a1) of the first spindle nut (2a), the first spring-elastic coupling (FK1) is inserted in an axial space (34) between the first (2a) and the second (2b) spindle nut, and the second spindle nut (2b) has a threaded shank (2b1) forming a screw bearing for axially moving the torsionally secured main spindle (5).
  21. A steam converting valve according to claim 20, characterised in that the first spring-elastic coupling (FK1) is a prestressed compression-spring arrangement, more particularly a prestressed cup-spring arrangement (3).
  22. A steam converting valve according to any of claims 19 to 21, characterised in that the thread pitches of the first spindle nut (2a) and the auxiliary spindle (50) screw-mounted therein are equal to the thread pitches of the second spindle nut (2b) and the main spindle (5) screw-mounted therein.
  23. A steam converting valve according to claim 6, characterised in that the tappet-like auxiliary throttle body (10a) of the bottom part (10) of the auxiliary spindle (50) is guided for sliding in sealing-tight manner, via a gland (36), in the end region of the central duct (5a) in the main spindle (5).
EP19910115657 1990-09-29 1991-09-16 Steam conversion valve with spindle drive Expired - Lifetime EP0479020B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4030902 1990-09-29
DE4030902 1990-09-29
DE4040736 1990-12-19
DE4040736 1990-12-19

Publications (2)

Publication Number Publication Date
EP0479020A1 EP0479020A1 (en) 1992-04-08
EP0479020B1 true EP0479020B1 (en) 1994-11-23

Family

ID=25897328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19910115657 Expired - Lifetime EP0479020B1 (en) 1990-09-29 1991-09-16 Steam conversion valve with spindle drive

Country Status (4)

Country Link
US (1) US5113903A (en)
EP (1) EP0479020B1 (en)
JP (1) JPH04262175A (en)
DE (1) DE59103579D1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4304972C2 (en) * 1993-02-18 1996-12-05 Holter Gmbh & Co Steam conversion valve
DE19719120C2 (en) * 1997-05-07 2000-10-12 Schneider Bochumer Maschf A Device for cooling superheated steam
CN106286853A (en) * 2016-08-23 2017-01-04 成都欧浦特控制阀门有限公司 Service life length control valve
CN106090419A (en) * 2016-08-23 2016-11-09 成都欧浦特控制阀门有限公司 A kind of valve sealing structure of fluid erosion prevention
CN108087570B (en) * 2017-12-18 2020-04-07 马奔 Application method of automatic professional adjustable valve
CN108061187B (en) * 2017-12-18 2019-09-24 马奔 A kind of Automation Specialty adjustable valve
JP6909740B2 (en) * 2018-01-31 2021-07-28 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
RU193754U1 (en) * 2019-01-10 2019-11-13 Акционерное общество "Опытное Конструкторское Бюро Машиностроения имени И.И. Африкантова" (АО "ОКБМ Африкантов") DOUBLE VALVE COMBINED ACTUATOR
JP7361628B2 (en) * 2020-02-19 2023-10-16 株式会社鷺宮製作所 Electric valve and refrigeration cycle system
JP7449844B2 (en) 2020-11-27 2024-03-14 株式会社鷺宮製作所 electric valve
RU2764950C1 (en) * 2021-05-24 2022-01-24 Александр Михайлович Юрасов Two-way valve

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1071094B (en) *
US1217726A (en) * 1913-01-31 1917-02-27 Wilbur F Hamilton Valve.
FR672462A (en) * 1929-04-03 1929-12-28 Improvements to taps, valves, etc. for stopping or adjusting the flow of fluids
DE712163C (en) * 1937-01-26 1941-10-14 Fr Des Regulateurs Universels Device for simultaneous cooling and relaxation of superheated steam
US2160657A (en) * 1937-12-18 1939-05-30 George P Haynes Valve for control of mediums under pressure
US2213488A (en) * 1938-09-20 1940-09-03 Dowrick Thomas Whistle valve
DE1144984B (en) * 1960-02-12 1963-03-07 Istag A G Stop valve with plunger
US3529630A (en) * 1968-04-11 1970-09-22 Westinghouse Electric Corp Combined stop and control valve
US3580288A (en) * 1968-10-18 1971-05-25 Fisher Governor Co Flow control device including a pressure-balanced single-seated valve plug
SE326456B (en) * 1968-11-29 1970-07-27 Kaelle Regulatorer Ab
DE2123163B2 (en) * 1971-05-11 1979-07-12 Deutsche Babcock Ag, 4200 Oberhausen Steam cooler water injection regulating valve - incorporates stroke valve with paraboloid throttle and further stage apertured hollow throttle slide valve
CH594156A5 (en) * 1975-07-25 1977-12-30 Sulzer Ag
DE2830609C2 (en) * 1978-07-12 1984-09-27 Welland & Tuxhorn, 4800 Bielefeld Adjustable throttle valve for steam
JPS5920062B2 (en) * 1980-01-25 1984-05-10 株式会社クボタ sleeve valve
DE3126295C2 (en) * 1981-07-03 1986-08-14 Bochumer Maschinenfabrik Arthur Schneider GmbH & Co KG, 4630 Bochum Steam converting valve
DE3300752C2 (en) * 1983-01-12 1986-10-02 C.H. Zikesch GmbH, 4100 Duisburg Steam converting valve
DE3304523A1 (en) * 1983-02-10 1984-08-16 Holter Regelarmaturen Gmbh & Co Kg, 4815 Schloss Holte-Stukenbrock STEAM FORMING VALVE
DE3525141A1 (en) * 1985-07-13 1987-01-22 Welland & Tuxhorn Steam conversion valve
DE3720918C1 (en) * 1987-06-25 1988-11-24 Welland & Tuxhorn Steam reducing valve
US4834133A (en) * 1988-09-28 1989-05-30 Westinghouse Electric Corp. Control valve

Also Published As

Publication number Publication date
JPH04262175A (en) 1992-09-17
US5113903A (en) 1992-05-19
EP0479020A1 (en) 1992-04-08
DE59103579D1 (en) 1995-01-05

Similar Documents

Publication Publication Date Title
EP0656474B1 (en) Fuel injector for internal combustion engines
EP0479020B1 (en) Steam conversion valve with spindle drive
DE1916876A1 (en) Combined shut-off and control valve
DE3637568A1 (en) Laser machine tool
WO1994018499A1 (en) Injection cooler
DE102019125604B4 (en) Clamping unit for a molding machine, molding machine and method of opening or closing a clamping unit for a molding machine
EP3711923A1 (en) Nozzle assembly with pressure regulating device, granulating device and related method
EP0856657A2 (en) Exhaust gas recirculation valve for a combustion engine
WO1996025615A1 (en) Valve operated by its own medium
DE3045075C1 (en) Vent stage for throttle device
EP0479021B1 (en) Servo-valve for vapourous or liquid media
DE2544347A1 (en) VALVE ARRANGEMENT WITH TWO STAGES
WO1986002410A1 (en) Fuel injection nozzle for combustion engine
DE3525141C2 (en)
WO2004040125A1 (en) Valve for control of a fluid
DE3804333C2 (en) Device for changing the control angle between a machine part and a drive unit actuating it
DE925477C (en) Multi-stage control nozzle
DE19826046A1 (en) Valve control device for an internal combustion engine
DD201762A5 (en) SCREW PRESS
EP0854407B1 (en) Gas pressure regulator
EP0258595B1 (en) Sanitary armature
DE2408678C3 (en) Control valve with a hollow cylindrical, balanced valve body
DE202018106532U1 (en) Valve for controlling a flow of a fluid
EP0678692A2 (en) Valve arrangement
DE19917246C2 (en) Steam-Conditioning

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR LI

17P Request for examination filed

Effective date: 19920609

17Q First examination report despatched

Effective date: 19930714

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR LI

REF Corresponds to:

Ref document number: 59103579

Country of ref document: DE

Date of ref document: 19950105

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970924

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19971120

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19971217

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST