DE19708537A1 - New surface protein (SpsA protein) from Streptococcus pneumoniae etc. - Google Patents

New surface protein (SpsA protein) from Streptococcus pneumoniae etc.

Info

Publication number
DE19708537A1
DE19708537A1 DE19708537A DE19708537A DE19708537A1 DE 19708537 A1 DE19708537 A1 DE 19708537A1 DE 19708537 A DE19708537 A DE 19708537A DE 19708537 A DE19708537 A DE 19708537A DE 19708537 A1 DE19708537 A1 DE 19708537A1
Authority
DE
Germany
Prior art keywords
spsa
protein
streptococcus pneumoniae
surface protein
positions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19708537A
Other languages
German (de)
Inventor
Gursharan Singh Dr Chhatwal
Sven Dr Hammerschmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GESELLSCHAFT fur BIOTECHNOLOGISCHE FORSCHUNG MBH (GBF) 38124 BRAUNSCHWEIG DE
Original Assignee
GESELLSCHAFT fur BIOTECHNOLOGISCHE FORSCHUNG MBH (GBF) 38124 BRAUNSCHWEIG DE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GESELLSCHAFT fur BIOTECHNOLOGISCHE FORSCHUNG MBH (GBF) 38124 BRAUNSCHWEIG DE filed Critical GESELLSCHAFT fur BIOTECHNOLOGISCHE FORSCHUNG MBH (GBF) 38124 BRAUNSCHWEIG DE
Priority to DE19708537A priority Critical patent/DE19708537A1/en
Priority to JP53813798A priority patent/JP2001524073A/en
Priority to PCT/EP1998/001149 priority patent/WO1998039450A2/en
Priority to EP98916880A priority patent/EP0991762A2/en
Publication of DE19708537A1 publication Critical patent/DE19708537A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/315Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci
    • C07K14/3156Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Streptococcus (G), e.g. Enterococci from Streptococcus pneumoniae (Pneumococcus)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies

Abstract

The invention relates to a novel surface protein (SPsA protein) of streptococcus pneumoniae, deleted derivatives of the surface protein, an expression system for the surface protein and its derivatives as well as a vaccine that uses them.

Description

Streptococcus pneumoniae (Pneumokokken) sind gram-positive Bak­ terien, die von einem Kapselpolysaccharid umgeben sind und erstmals 1881 von einem gesunden Träger isoliert werden konnten (1). Pneumokokken gehören zur natürlichen Flora des oberen men­ schlichen Respirationstrakts und kolonisieren den Nasopharynx in bis zu 40% der gesunden Erwachsenen, wobei bis zu vier verschiedene Serotypen über mehrere Monate nachgewiesen werden konnten (2). Streptococcus pneumoniae ist in den USA und vielen anderen Teilen der Welt ein häufiger Verursacher von Infektio­ nen. Die Infektionen, die meist endogen erfolgen, und Todesfälle treten vor allem bei sehr jungen Kindern unter 2 Jahren, bei Per­ sonen über 60 Jahren sowie bei immungeschwächten Personen auf (3). Streptococcus pneumoniae (pneumococci) are gram-positive Bak series surrounded by a capsule polysaccharide and could be isolated from a healthy carrier for the first time in 1881 (1). Pneumococci are part of the natural flora of the upper men crept respiratory tract and colonize the nasopharynx up to 40% of healthy adults, with up to four different serotypes can be detected over several months could (2). Streptococcus pneumoniae is in the US and many a common cause of infection in other parts of the world nen. The infections, which are mostly endogenous, and deaths occur especially in very young children under 2 years, in Per people over the age of 60 as well as in immunocompromised people (3).  

Des weiteren sind Pneumokokken die zweithäufigsten Verursacher von bakterieller Meningitis (nach Haemophilus influenzae Typ b) (4) und Otitis Media (Mittelohrentzündung) bei Kindern (5). So verursachten Pneumokokken allein in den USA innerhalb eines Jahres 500 000 Pneumonien, 7 Millionen Fälle von Otitis Media und 40 000 Todesfälle (6, 7).Pneumococci are also the second most common cause bacterial meningitis (Haemophilus influenzae type b) (4) and otitis media (otitis media) in children (5). For example, pneumococci caused within one in the United States alone 500,000 annual pneumonia, 7 million cases of otitis media and 40,000 deaths (6, 7).

Auch die Sterblichkeitsrate bei den durch Streptococcus pneu­ moniae verursachten Erkrankungen liegt, trotz der zur Verfügung stehenden Antibiotika, auf einem konstant hohen Niveau. Zum Bei­ spiel betrug die Sterblichkeit bei Bakteriämien, die durch Pneu­ mokokken verursacht wurden, in den letzten vier Jahrzehnten zwi­ schen 25 und 29% (8).The mortality rate among those due to Streptococcus pneu Diseases caused by moniae lie, despite the available ones standing antibiotics, at a consistently high level. For the case The mortality rate from bacteremia caused by pneumonia mococci have been caused in the past four decades between 25 and 29% (8).

Aufgrund der Zusammensetzung der Kapselpolysaccharidstrukturen werden Pneumokokken in 90 Serotypen unterteilt (9). Das Kapsel­ polysaccharid schützt die Pneumokokken vor der Phagozytose durch polymorphkernige Leukozyten (PMN's), verhindert die Aktivierung des alternativen Weges des Komplements (10, 11, 12) und ist daher ein wichtiger Virulenzfaktor von Streptococcus pneumoniae (13, 14, 15).Due to the composition of the capsule polysaccharide structures pneumococci are divided into 90 serotypes (9). The capsule polysaccharide protects the pneumococci from phagocytosis polymorphonuclear leukocytes (PMN's), prevents activation the alternative way of complement (10, 11, 12) and is therefore an important virulence factor of Streptococcus pneumoniae (13, 14, 15).

Die Virulenz des Stammes ist in Bezug auf die Kapsel abhängig von der chemischen Zusammensetzung des Polysaccharids und nicht von der Größe des Kapselpolysaccharids (16).The virulence of the strain is dependent on the capsule on the chemical composition of the polysaccharide and not the size of the capsule polysaccharide (16).

Der zur Zeit verwendete Impfstoff (Pneumokokken-Vakzin) zur ak­ tiven Immunisierung enthält die unkonjugierte Form von 23 Kap­ selpolysacchariden von Streptococcus pneumoniae. Dieser Impf­ stoff enthält die Polysacccharide der Serotypen, die 85-90 Pro­ zent der bakteriämischen Infektionen verursachen. Da bei Kindern und älteren Menschen keine Stimulation der T-Helferzellen durch ein Polysaccharidantigen erfolgt (17), ist die Anwendung dieses Impfstoffes ausschließlich auf Erwachsene beschränkt. The currently used vaccine (pneumococcal vaccine) for the ac The immunization contains the unconjugated form of 23 ch selpolysaccharides from Streptococcus pneumoniae. This vaccination fabric contains the polysacccharides of the serotypes, the 85-90 Pro cause of bacteraemic infections. Because with children and older people did not stimulate the T helper cells a polysaccharide antigen occurs (17), the application of this is Vaccine limited to adults only.  

Ein weiteres Problem der Behandlung bei Pneumokokken-Infektionen ist das weltweit verstärkte Auftreten von antibiotikaresistenten Stämmen (Penicillin-Resistenz) (18). Außerdem führt der Einsatz von β-Laktam-Antibiotika bei empfindlichen Stämmen von Strepto­ coccus pneumoniae in 30% der behandelten Kindern zum Tod oder es verbleiben permante, irreversible Gehirnschäden. Die Bakte­ rien werden durch β-Laktam-Antibiotika lysiert und die freiwer­ denden Zellwandbestandteile verursachen eine Anschwellung des Gehirns. Die Schwellung des Gehirns führt dann zu einem gefähr­ lich hohen interkranialen Druck, der einen irreversiblen Schaden auslöst (19).Another treatment problem with pneumococcal infections is the worldwide increased occurrence of antibiotic-resistant Strains (penicillin resistance) (18). In addition, the application leads of β-lactam antibiotics in sensitive strains of Strepto coccus pneumoniae in 30% of treated children to death or permanent, irreversible brain damage remains. The bacts Rien are lysed by β-lactam antibiotics and frewer end cell components cause a swelling of the Brain. The swelling of the brain then leads to a dangerous one high intercranial pressure, causing irreversible damage triggers (19).

Aufgrund der steigenden Antibiotikaresistenz und der einge­ schränkten Wirkung des Polysaccharid-Vakzins, besteht ein großes Interesse am Auffinden eines Pneumokokken-Proteins, das als Trä­ ger für die Kapselpolysaccharide fungieren kann oder das auf­ grund seiner eigenen starken Immunogenität und des ubiquitären Vorkommens bei Streptococcus pneumoniae Isolaten all präventiver Impfstoff Verwendung finden kann.Due to the increasing resistance to antibiotics and the limited effect of the polysaccharide vaccine, there is a big one Interest in finding a pneumococcal protein that is known as Trä can act for the capsule polysaccharides or that due to its own strong immunogenicity and ubiquitous Occurrence of Streptococcus pneumoniae isolates all preventive Vaccine can be used.

Die zur Zeit als Vakzin-Kandidaten in Frage kommenden Proteine sind das Autolysin (20), die Neuraminidase (21), das pneumo­ coccal surface adhesin A (PsaA) (22), das pneumococcal surface protein A (PspA) (23) sowie das Pneumolysin (24).The proteins currently considered as vaccine candidates are the autolysin (20), the neuraminidase (21), the pneumo coccal surface adhesin A (PsaA) (22), the pneumococcal surface protein A (PspA) (23) and pneumolysin (24).

Pneumolysin ist ein intrazelluläres Protein und gehört zu der Familie der Thiol-aktivierten Toxine (25). Dieses cytoplasmati­ sche 53 kDa große Protein wird freigesetzt, wenn die Pneumokoc­ ken unter dem Einfluß des Autolysins spontan lysieren. In hohen Konzentrationen bilden sich auf Säugetierzellen Oligomere des Pneumolysins und verursachen durch einen Anstieg der transmem­ branen Poren eine Zellyse. In geringeren Konzentrationen stimu­ liert Pneumolysin die Produktion von inflammatorischen Cytokinen (26), zerstört in vitro Monolayer der Epithelzellen des oberen respiratorischen Trakts (27) und vermindert die bakterizide Ak­ tivität und Wanderung der Neutrophilen (28). Des weiteren akti­ viert Pneumolysin bei Abwesenheit von anti-Toxin Antikörpern den klassischen Komplementweg (29).Pneumolysin is an intracellular protein and belongs to that Family of thiol-activated toxins (25). This cytoplasmati 53 kDa protein is released when the pneumococ lyse spontaneously under the influence of autolysin. In high Concentrations form on oligomers of mammalian cells Pneumolysins and cause an increase in transmem branen pores a cell lysis. In lower concentrations stimu Pneumolysin reduces the production of inflammatory cytokines (26), destroys in vitro monolayer of the upper epithelial cells respiratory tract (27) and reduces the bactericidal Ak  activity and migration of neutrophils (28). Furthermore acti fourth pneumolysin in the absence of anti-toxin antibodies classic complement path (29).

Das pneumoccocal surface protein A (PspA) ist ein Oberflächen­ protein mit struktureller und antigenetischer Variabilität zwi­ schen den verschiedenen Pneumokokken-Stämmen, dessen Funktion bisher nicht aufgeklärt ist. PspA kommt in den meisten klini­ schen Isolaten vor (30) und ist auch wichtig für die Entwicklung der vollen Virulenz der Pneumokokken (31, 32).The pneumoccocal surface protein A (PspA) is a surface protein with structural and antigenetic variability between the different pneumococcal strains, their function has not yet been clarified. PspA comes in most clinics isolates (30) and is also important for development full pneumococcal virulence (31, 32).

Weitere bekannte Virulenzfaktoren sind eine IgA1-Protease (33), deren Gen kloniert und charakterisiert wurde (34, 35), ein Inhi­ bitor der Elastase (36) und Peptidpermeasen, die homolog zu Permeasen von anderen Streptokokken, die ebenfalls den Naso­ pharynx besiedeln, sind. Von besonderem Interesse sind dabei die Permeasen, bei denen der Verlust der Funktion eine verminderte Adhärenz der Pneumokokken an eukaryotische Zellen zur Folge hat (37). Der Nachweis für eine direkte Beteiligung dieser Permea­ sen, von denen die AmiA-Permease und das PlpA (permease-like protein A) zur Familie der Protein-abhängigen Permeasen gehören, die für den Transport von kleinen Peptiden verantwortlich sind (38, 39) an der Adhärenz an eukaryotische Zellen konnte bisher aber nicht erbracht werden. Als ein weiterer potentieller Regu­ lator der Pneumokokken-Adhärenz wird die Pyruvatoxidase, SpxB, angesehen, die die Konzentration des Acetylphosphats beeinflußt (40).Other known virulence factors are an IgA1 protease ( 33 ) whose gene has been cloned and characterized (34, 35), an inhibitor of elastase (36) and peptide permeases that are homologous to permeases from other streptococci that also colonize the nasopharynx, are. Of particular interest are the permeases, in which the loss of function results in reduced adherence of the pneumococci to eukaryotic cells (37). Evidence of direct involvement of these permeas, of which the AmiA permease and the PlpA (permease-like protein A) belong to the family of protein-dependent permeases that are responsible for the transport of small peptides (38, 39) however, adherence to eukaryotic cells has not yet been achieved. Another potential regulator of pneumococcal adherence is pyruvate oxidase, SpxB, which affects the concentration of acetyl phosphate (40).

Gemäß einer Ausführungsform der Erfindung wird ein Oberflächenprotein von Streptococcus pneunomiae (SpsA-Protein) vorgesehen, das dadurch gekennzeichnet ist, daß es an sekretorisches IgA (sIgA) bindet.According to one embodiment of the invention, a Streptococcus pneunomiae surface protein (SpsA protein) provided, which is characterized in that it secretory IgA (sIgA) binds.

Das erfindungsgemäße Oberflächenprotein kann gekennzeichnet sein durch 523 Aminosäuren gemäß Fig. 2 (Positionen 1 bis 523). The surface protein according to the invention can be characterized by 523 amino acids according to FIG. 2 (positions 1 to 523).

Gemäß einer weiteren Ausführungsform wird ein C-terminal deletierter Abkömmling des Oberflächenproteins gemäß der Erfindung vorgesehen, der gekennzeichnet ist durch 324 Aminosäuren gemäß Fig. 2 (Positionen 1 bis 324) und
Repeats 1 bis 6 (Positionen 325 bis 444) oder
Repeats 1 bis 7 (Positionen 325 bis 464) oder
Repeats 1 bis 8 (Positionen 325 bis 484 oder bis 485).
According to a further embodiment, a C-terminally deleted derivative of the surface protein according to the invention is provided, which is characterized by 324 amino acids according to FIG. 2 (positions 1 to 324) and
Repeats 1 to 6 (positions 325 to 444) or
Repeats 1 to 7 (positions 325 to 464) or
Repeats 1 to 8 (positions 325 to 484 or to 485).

Gemäß einer weiteren Ausführungsform wird ein N-terminal deletierter Abkömmling des Oberflächenproteins gemäß der Erfindung vorgesehen, der dadurch gekennzeichnet ist, daß er
According to a further embodiment, an N-terminally deleted derivative of the surface protein according to the invention is provided, which is characterized in that it

  • (i) im Bereich der Positionen 1 bis 159 gemäß Fig. 2 um 1 bis maximal 159 Aminosäuren deletiert ist,(i) in the region of positions 1 to 159 according to FIG. 2 has been deleted by 1 to a maximum of 159 amino acids,
  • (ii) nicht jedoch im Bereich der Positionen 160 bis 523 dele­ tiert ist.(ii) but not in the range of items 160 to 523 dele is.

Gemäß einer weiteren Ausführungsform wird ein N-terminal und C- terminal deletierter Abkömmling des Oberflächenproteins gemäß der Erfindung vorgesehen, der dadurch gekennzeichnet ist, daß er
According to a further embodiment, an N-terminal and C-terminal deleted derivative of the surface protein according to the invention is provided, which is characterized in that it

  • (i) im Bereich der Positionen 1 bis 159 gemäß Fig. 2 um 1 bis maximal 159 Aminosäuren deletiert ist,(i) in the region of positions 1 to 159 according to FIG. 2 has been deleted by 1 to a maximum of 159 amino acids,
  • (ii) nicht jedoch im Bereich der Positionen 160 bis 324 dele­ tiert ist und(ii) is not, however, deleted in the range of items 160 to 324 and
  • (iii) Repeats 1 bis 8 (Positionen 325 bis 484 oder bis 485) oder Repeats 1 bis 7 (Positionen 325 bis 464) oder Repeats 1 bis 6 (Positionen 325 bis 444) aufweist.(iii) repeats 1 to 8 (positions 325 to 484 or to 485) or Repeats 1 to 7 (positions 325 to 464) or Repeats 1 to 6 (positions 325 to 444).

Gemäß einer weiteren Ausführungsform wird ferner ein Expressionssystem zur Expression eines Oberflächenproteins oder eines Abkömmlings gemäß der Erfindung vorgesehen, umfassend eine DNA-Sequenz, die das Oberflächenprotein oder den Abkömmling kodiert.According to a further embodiment, a Expression system for expressing a surface protein or  of a descendant according to the invention, comprising a DNA sequence that is the surface protein or the descendant encoded.

Gemäß einer weiteren Ausführungsform wird schließlich eine Vaccine zur Bekämpfung von Erkrankungen durch Streptococcus pneunomiae vorgesehen, herstellbar mit Hilfe eines Oberflächenproteins oder eines Abkömmlings gemäß der Erfindung.According to a further embodiment, a Vaccine to fight diseases caused by Streptococcus pneunomiae provided, producible with the help of a Surface protein or a derivative according to the invention.

Nachstehend wird die Erfindung anhand von Figuren, experimenteller Ergebnisse und Beispielenäher erläutert. Es zeigen:The invention is explained below with reference to figures, experimental results and examples explained in more detail. It demonstrate:

Fig. 1 Western blot Analyse von Streptococcus pneumoniae ATCC 33400 [Serotyp 1] (Spur 1), NCTC 10319 [Serotyp 47, R36A] (Spur 2), ATCC 11733 [Serotyp 2, R36A] (Spur 3) und ATCC 12213 [Serotyp 1, I-192R) (Spur 4) mit sekretorischem Immunglobulin A. Zur Detektion der Bindung wurde ein peroxidase markierter anti-human IgA Antikörper eingesetzt. Fig. 1 Western blot analysis of Streptococcus pneumoniae ATCC 33400 [serotype 1] (lane 1), NCTC 10319 [serotype 47, R36A] (lane 2), ATCC 11733 [serotype 2, R36A] (lane 3) and ATCC 12213 [serotype 1, I-192R) (lane 4) with secretory immunoglobulin A. A peroxidase-labeled anti-human IgA antibody was used to detect the binding.

Fig. 2 Nukleinsäuresequenz des Gens spsA und die Aminosäure­ sequenz des Proteins SpsA (Streptococcus pneumoniae secretory IgA binding protein) von Streptococcus pneumoniae ATCC 33400 Serotyp 1. RBS: Ribosomale Bindungsstelle; Leader: Signalsequenz von SpsA (Aminosäure 1-37); mature Protein: SpsA nach der Pro­ zessierung; Repeats: 9 jeweils 20 Aminosäuren lange, sich wie­ derholende Sequenzen. Fig. 2 nucleic acid sequence of the gene SPSA and the amino acid sequence of the protein SpsA (Streptococcus pneumoniae secretory IgA binding protein) of Streptococcus pneumoniae ATCC 33400 serotype 1. RBS: ribosome binding site; Leader: signal sequence of SpsA (amino acid 1-37); mature protein: SpsA after processing; Repeats: 9 each 20 amino acids long, like repeating sequences.

Fig. 3 Western blot Analyse mit sIgA nach Klonierung von spsA und spsA-Fragmenten in den Expressionsvektor pQE (Pharmacia) und Überexpression der Proteine in Escherichia coli M15 [pREP4). Spur 1: SpsA (AS1-523; pQSHA12); Spur 2: N-Terminus von SpsA (AS1-324; pQSHA14); Spur 3: verkürzter N-Terminus von SpsA (AS1- 159; pSHA3); Spur 4: Repeats von SpsA (AS325-523; pQSHA30). Fig. 3 Western blot analysis with sIgA after cloning of SPSA and the SPSA fragments into the expression vector pQE (Pharmacia) and overexpression of the proteins in Escherichia coli M15 [pREP4). Lane 1: SpsA (AS1-523; pQSHA12); Lane 2: N-terminus of SpsA (AS1-324; pQSHA14); Lane 3: truncated N-terminus of SpsA (AS1-159; pSHA3); Lane 4: Repeats from SpsA (AS325-523; pQSHA30).

Fig. 4 Southern blot Analyse von Streptococcus pneumoniae ATCC 33400 [Serotyp 1] (Spur 1) und Streptococcus pneumoniae ATCC 11733 [Serotyp 2, R36A) (Spur 2) mit einer 32Phosphor radioaktiv markierten DNA-Sonden von spsA (A), von einem 5'-spsA Fragment [nt1-nt476] (B) und pspA (C). nt: Nukleotid. Fig. 4 Southern blot analysis of Streptococcus pneumoniae ATCC 33400 [serotype 1] (lane 1) and Streptococcus pneumoniae ATCC 11733 [serotype 2, R36A) (lane 2) with a 32 phosphorus radioactively labeled DNA probe from spsA (A), from a 5'-spsA fragment [nt1-nt476] (B) and pspA (C). nt: nucleotide.

ErgebnisseResults

In Bindungsstudien mit radioaktiv markiertem humanem sekretori­ schen Immunglobulin A (sIgA) und in Western-blots mit humanem sIgA konnte nachgewiesen werden, daß Streptococcus pneumoniae sekretorisches IgA bindet. Auf die Fähigkeit sIgA zu binden, wurden sowohl klinische Isolate als auch Stämme aus den Type Culture Collections (ATCC bzw. NCTC) der häufigsten Serotypen klinischer Isolate getestet. Von den untersuchten Pneumokokken- Stämmen konnten im Western-blot 73% sIgA binden (Fig. 1). Des weiteren konnte in Bindungsstudien gezeigt werden, nach Verdau der Pneumokokken-Proteine mit Protease, daß die Bindung von se­ kretorischem IgA durch ein Protein von Streptococcus pneumoniae erfolgt.In binding studies with radioactively labeled human secretory immunoglobulin A (sIgA) and in Western blots with human sIgA, it was demonstrated that Streptococcus pneumoniae binds secretory IgA. Both clinical isolates and strains from the Type Culture Collections (ATCC or NCTC) of the most common serotypes of clinical isolates were tested for the ability to bind sIgA. Of the pneumococcal strains examined, 73% could bind sIgA in the Western blot ( FIG. 1). Furthermore, after digestion of the pneumococcal proteins with protease, it could be shown in binding studies that the binding of secret IgA is carried out by a protein from Streptococcus pneumoniae.

Die Detektion des Gens, das für das sIgA-Bindungsprotein ko­ diert, erfolgte durch Screening einer LambdaZAP-Expressionsbank von Streptococcus pneumoniae ATCC 33400 (Serotyp 1) mit sekreto­ rischem IgA. Der ausgewählte positive Klon, pSHA1, hat ein 5085 bp großes Insert von Streptococcus pneumoniae ATCC 33400 im Pha­ gemid pBK-CMV. Durch die Konstruktion von Deletionsklonen von pSHA1 konnte das für das sIgA-Bindungsprotein kodierende Gen im Subklon pSHA2 nachgewiesen werden. Der Subklon pSHA2 zeigte im Gegensatz zu den beiden anderen Subklonen pSHA3 und pSHA4 eine Bindung des sekretorischen IgA im Western-blot. Die Sequenzie­ rung und anschließende Analyse der Sequenz des 2204 großen In­ serts zeigte ein offenes Leseraster von Nukleotid 282 bis 1853 in pSHA2 (Fig. 2). Dieses 1572 bp große Leseraster kodiert für ein 523 Aminosäuren großes sIgA-Bindungsprotein von Pneumokokken des Serotyps 1. Das Molekulargewicht des SpsA (Btreptococcus pneumoniae secretory IgA binding-protein) genannten Proteins be­ trägt 59151 Da (Fig. 2).The detection of the gene coding for the sIgA binding protein was carried out by screening a LambdaZAP expression bank of Streptococcus pneumoniae ATCC 33400 (serotype 1) with secretory IgA. The selected positive clone, pSHA1, has a 5085 bp insert of Streptococcus pneumoniae ATCC 33400 in the pha gemid pBK-CMV. By constructing deletion clones of pSHA1, the gene coding for the sIgA binding protein could be detected in the subclone pSHA2. In contrast to the two other subclones pSHA3 and pSHA4, the subclone pSHA2 showed a binding of the secretory IgA in the Western blot. The sequencing and subsequent analysis of the sequence of the 2204 large insert showed an open reading frame from nucleotide 282 to 1853 in pSHA2 ( FIG. 2). This 1572 bp reading frame codes for a 523 amino acid sIgA binding protein of pneumococci of serotype 1. The molecular weight of the protein called SpsA (Btreptococcus pneumoniae secretory IgA binding protein) is 59151 Da ( FIG. 2).

Der Vergleich der Nukleotidsäuresequenz von spsA mit den in der EMBL-Datenbank gespeicherten Sequenzen zeigte eine 78,8%-ige Identität zum pspA von Streptococcus pneumoniae. Auf Pro­ teinebene wurde eine 64,1%-ige Identität zum PspA nachgewiesen. Die Identität beschränkt sich dabei vor allem auf den C-Terminus der beiden Proteine. Der C-Terminus des PspA besteht aus zehn Repeats, die jeweils 20 Aminosäuren lang sind (41). Die Identi­ tät zum C-Terminus von SpsA, der aus neun Repeats besteht, be­ trägt 92,5%.The comparison of the nucleotide sequence of spsA with that in the EMBL database stored sequences showed a 78.8% Identity to the pspA of Streptococcus pneumoniae. On pro At the level, a 64.1% identity to the PspA was demonstrated. The identity is primarily limited to the C-terminus of the two proteins. The C-terminus of the PspA consists of ten Repeats, each 20 amino acids long (41). The ident to the C-terminus of SpsA, which consists of nine repeats, be carries 92.5%.

Die Repeats von PspA sind an der Anheftung des Proteins an der Pneumokokken-Zellwand beteiligt. Dieser Mechanismus erfordert eine Cholin vermittelte Interaktion zwischen der membranassozi­ ierten Lipoteichonsäure und der Repeatregion von PspsA (42). Zur Anheftung an die Zellwand müssen mindestens sechs der 20 Amino­ säuren langen Repeats exprimiert werden, ansonsten kommt es zu einer Sekretion des PspA (42, 43).The repeats of PspA are attached to the protein on the Pneumococcal cell wall involved. This mechanism requires a choline mediated interaction between the membrane associ ized lipoteichoic acid and the repeat region of PspsA (42). For Attachment to the cell wall must be at least six of the 20 amino acids long repeats are expressed, otherwise it happens secretion of PspA (42, 43).

Da der C-Terminus von SpsA, d. h. die Region der Repeats von SpsA, zu 92,5% identisch mit den Repeats von PspA ist, kann eine Beteiligung der SpsA-Repeats an der Anheftung an die Zell­ wand der Pneumokokken angenommen werden. Dieser Mechanismus der Anheftung von SpsA wird unterstützt durch die Tatsache, daß eine Computeranalyse der Sekundärstruktur von SpsA keine helikale transmembranöse Struktur detektierte, die für eine Verankerung des Proteins in der gram-positiven Zellwand notwendig wäre.Since the C-terminus of SpsA, i.e. H. the region of the repeats of SpsA, which is 92.5% identical to the repeats of PspA, can participation of the SpsA repeats in the attachment to the cells wall of the pneumococcus. This mechanism of SpsA attachment is supported by the fact that a Computer analysis of the secondary structure of SpsA no helical transmembrane structure detected for anchoring of the protein in the gram-positive cell wall would be necessary.

Des weiteren deuteten frühere Ergebnisse darauf hin, daß das 3'- Ende von pspA eine konservierte Sequenz ist, die homolog zu an­ deren Sequenzen bei Streptococcus pneumoniae ist. Diese homolo­ gen Sequenzen könnten für Proteine kodieren, die einen ähnlichen Anheftungsmechanismus an die Zellwand haben wie das pneumococcal surface protein A (PspA) (44).Furthermore, previous results indicated that the 3'- End of pspA is a conserved sequence that is homologous to  whose sequences is in Streptococcus pneumoniae. This homolo gene sequences could code for proteins that have a similar Attachment mechanisms to the cell wall have like the pneumococcal surface protein A (PspA) (44).

Die Identität im N-Terminus der beiden Proteine SpsA und PspA beträgt nur von 34,5%. Die Signalsequenz (Leader) von SpsA ist 37 Aminosäuren lang und zeigt eine 75,7%-ige Identität zur Si­ gnalsequenz des IgA-Rezeptors von Streptococcus agalactiae (45, 46)
Zur Aufklärung der Bindungsdomaine wurden i) spsA (pQSH12), ii) der N-Terminus (pQSH14) und iii) die Nukleinsäuresequenz, die für die neun Repeats von SpsA kodiert (pQSH30), in den Expres­ sionsvektor pQE30 kloniert und die sIgA-Bindung im Western-blot untersucht. Die Analyse im Western-blot zeigte eine Bindung des sekretorischen IgA im N-Terminus von SpsA. Zusätzlich konnte die Bindungsdomaine von SpsA durch einen weiteren Subklon von pSHA1, der nur die Aminosäuren 1 bis 159 des N-Terminus von SpsA expri­ miert (pSHA3) und sIgA nicht bindet, auf die Aminosäuren 160 bis 324 eingeengt werden (Fig. 3).
The identity in the N-terminus of the two proteins SpsA and PspA is only 34.5%. The signal sequence (leader) of SpsA is 37 amino acids long and shows a 75.7% identity to the signal sequence of the IgA receptor from Streptococcus agalactiae (45, 46)
To clarify the binding domain, i) spsA (pQSH12), ii) the N-terminus (pQSH14) and iii) the nucleic acid sequence which codes for the nine repeats of SpsA (pQSH30) were cloned into the expression vector pQE30 and the sIgA binding examined in a Western blot. Western blot analysis showed binding of the secretory IgA in the N-terminus of SpsA. In addition, the binding domain of SpsA could be restricted to amino acids 160 to 324 by a further subclone of pSHA1, which only expresses amino acids 1 to 159 of the N-terminus of SpsA (pSHA3) and does not bind sIgA ( FIG. 3).

Durch Southern-blot Analyse von Streptococcus pneumoniae ATCC 33400 (Serotyp1) und S. pneumoniae ATCC 11733 (Serotyp 2, R36A) konnte mit einer pspA-, spsA und einer 5'-spsA spezifischen DNA- Sonde nachgewiesen werden, daß spsA nicht identisch mit pspA ist (Fig. 4).Southern blot analysis of Streptococcus pneumoniae ATCC 33400 (serotype 1) and S. pneumoniae ATCC 11733 (serotype 2, R36A) with a pspA, spsA and a 5'-spsA specific DNA probe showed that spsA is not identical to pspA is ( Fig. 4).

Mit diesen Untersuchungen konnte nachgewiesen werden, daß die C- terminale Sequenz von spsA eine der beschriebenen konservierten Sequenzen ist, die zu pspA homolog sind und bei Streptococcus pneumoniae an der Anheftung der Proteine an die Zellwand betei­ ligt ist. These investigations have shown that the C- terminal sequence of spsA one of the conserved described Is sequences that are homologous to pspA and in Streptococcus pneumoniae on the attachment of the proteins to the cell wall is.  

SpsA kodiert daher für ein neues Oberflächenprotein von Strepto­ coccus pneumoniae, dessen biologische Funktion die Bindung von sekretorischem Immunglobulin A im N-Terminus von SpsA ist.SpsA therefore codes for a new surface protein from Strepto coccus pneumoniae, whose biological function is the binding of secretory immunoglobulin A in the N-terminus of SpsA.

Das sekretorische IgA, das aus einem IgA-J-IgA-SC (SC: sekreto­ rische Komponente) Komplex besteht, ist das wichtigste Immuno­ globulin im humanen respiratorischen und gastrointestinalen Trakt. Die Vorstufe des sekretorischen IgA, ein IgA-Dimer ver­ bunden durch die 15,6 kDa große J-Kette, wird in B-Lymphozyten synthetisiert und bindet an einen auf der basolateralen Oberflä­ che der Epithelzellen lokalisierten poly-Immunglobulin Rezeptor. Dieser poly-Ig-Rezeptor vermittelt die Transzytose durch die Zellen (47). Dabei wird der c-terminale Teil des Rezeptors abge­ trennt und zur sekretorischen Komponente des (IgA)2-J-Ketten Komplex. Nach Transport an die apikale Membran der Zellen, fu­ sioniert der Komplex mit der Membran und wird als sekretorisches IgA freigesetzt (48). Die sekretorische Komponente, die durch eine Disulfidbrücke kovalent an den Komplex gebunden ist, schützt das synthetisierte sIgA in externen Flüssigkeiten vor Denaturierung und Proteolyse.The secretory IgA, which consists of an IgA-J-IgA-SC (SC: secretory component) complex, is the most important immunoglobulin in the human respiratory and gastrointestinal tract. The precursor of the secretory IgA, an IgA dimer linked by the 15.6 kDa J chain, is synthesized in B lymphocytes and binds to a poly-immunoglobulin receptor located on the basolateral surface of the epithelial cells. This poly-Ig receptor mediates transcytosis through the cells (47). The c-terminal part of the receptor is separated and becomes the secretory component of the (IgA) 2 -J chain complex. After transport to the apical membrane of the cells, the complex fuses with the membrane and is released as secretory IgA (48). The secretory component, which is covalently bound to the complex by a disulfide bridge, protects the synthesized sIgA in external liquids from denaturation and proteolysis.

Untersuchungen zur Adhärenz der Pneumokokken an humane Epithel­ zellen zeigten eine Adhärenz von größer als 100 Pneumokokken pro Epithelzelle für Stämme, die in den Bindungsstudien sIgA gebun­ den hatten, aber nur eine Adhärenz von ≦ 2 Pneumokokken für in Bindungsstudien negativ getestete Stämme.Studies on the adherence of pneumococci to human epithelium cells showed an adherence of more than 100 pneumococci per Epithelial cell for strains that sIgA bound in the binding studies had, but only an adherence of ≦ 2 pneumococci for in Binding studies negative strains tested.

Diese Ergebnisse weisen darauf hin, daß das SpsA an der Adhärenz der Pneumokokken an die Epithelzellen und an der Invasion in die Epithelzellen beteiligt ist.These results indicate that the SpsA is adherent the pneumococcal to the epithelial cells and to the invasion into the Epithelial cells is involved.

Das sekretorische IgA-Bindungsprotein, SpsA, von Streptococcus pneumoniae ist damit ein aussichtsreicher neuer Kandidat für die Impfstoffentwicklung. The Streptococcus secretory IgA binding protein, SpsA pneumoniae is therefore a promising new candidate for the Vaccine development.  

Beispiel 1example 1

Dieses Beispiel beschreibt die sekretorische IgA-Bindung von Streptococcus pneumoniae Stämmen im Western-blot.This example describes the secretory IgA binding of Streptococcus pneumoniae strains in Western blot.

Die Proteine der Streptococcus pneumoniae Lysate (OD600 von 1,0 eingestellt und nach Aufnahme der Bakterien in 100 µl Aufschluß­ lösung (20% Glycerin, 3% SDS, 3% β-Mercaptoethanol, 0,05% Bromphenolblau) 10 Minuten bei 94°C gekocht) wurden im SDS-PAGE aufgetrennt und anschließend auf eine Nitrozellulosemembran transferriert. Nach Absättigung mit 10%-iger Magermilch in 0,1 M PBS wurden die Filter mit sekretischem IgA [1 µg/ml] (Sigma, München, Germany) in 0,1 M PBS für 1 Stunde bei Raumtemperatur unter Schütteln inkubiert. Nach dreimaligem Waschen mit 0,1 M PBS wurden die Filter 1 Stunde mit einem Goat-Anti Human IgA- HRP-Konjugat Antikörper (ICN, Eschwege, Germany) inkubiert. Die Farbentwicklung erfolgte nach dreimaligem Waschen mit 1 mg 4- Chloro-1-Naphthol und 0,1% H2O2 pro 1 ml PBS.The proteins of the Streptococcus pneumoniae lysate (OD 600 set at 1.0 and after absorption of the bacteria in 100 µl digestion solution (20% glycerol, 3% SDS, 3% β-mercaptoethanol, 0.05% bromophenol blue) for 10 minutes at 94 ° C cooked) were separated in the SDS-PAGE and then transferred to a nitrocellulose membrane. After saturation with 10% skim milk in 0.1 M PBS, the filters were incubated with secretive IgA [1 μg / ml] (Sigma, Munich, Germany) in 0.1 M PBS for 1 hour at room temperature with shaking. After washing three times with 0.1 M PBS, the filters were incubated for 1 hour with a Goat-Anti Human IgA-HRP conjugate antibody (ICN, Eschwege, Germany). The color developed after washing three times with 1 mg of 4-chloro-1-naphthol and 0.1% H 2 O 2 per 1 ml of PBS.

Beispiel 2Example 2

Dieses Beispiel beschreibt die Bindung von 125Jod-markiertem se­ kretorischem IgA von Streptococcus pneumoniae Stämmen.This example describes the binding of 125 iodine-labeled Se cretory IgA from Streptococcus pneumoniae strains.

100 ng sIgA in 1 ml 0,05 M Phosphatpuffer pH 7,5 wurden nach Zugabe von 20 ug Chloramin T mit 350 µCi 125Jod inkubiert und die Reaktion nach 5 Minuten durch Zugabe von 20 -g Na-Metabisul­ fit gestoppt. Die markierten Proteine wurden von den nicht mar­ kierten Proteinen mit einer PD10-Säule (Pharmacia, Freiburg, Germany) abgetrennt und bei -20 °C eingefroren. 250 µl einer Pneumokokkensuspension (Transmission 10% bei 600 nm) in PBST (PBS mit 0,05% Tween 20) wurden mit 0,023 µCi 125Jod-markiertem sIgA 45 Minuten inkubiert und die Reaktion mit 1 ml PBST abge­ stoppt. Die Messung der sIgA-Bindung an die Streptococcus pneu­ moniae Stämme erfolgte durch Messung der Aktivität der Bakterien im Gamma-Counter (Packard, Dreieich, Germany). 100 ng sIgA in 1 ml 0.05 M phosphate buffer pH 7.5 were added after the addition of 20 μg chloramine T with 350 μCi 125 iodine and the reaction was stopped after 5 minutes by adding 20 μg Na-Metabisul fit. The labeled proteins were separated from the unmarked proteins with a PD10 column (Pharmacia, Freiburg, Germany) and frozen at -20 ° C. 250 μl of a pneumococcal suspension (transmission 10% at 600 nm) in PBST (PBS with 0.05% Tween 20) were incubated with 0.023 μCi 125 iodine-labeled sIgA for 45 minutes and the reaction was stopped with 1 ml PBST. The sIgA binding to the Streptococcus pneu moniae strains was measured by measuring the activity of the bacteria in the gamma counter (Packard, Dreieich, Germany).

Beispiel 3Example 3

Dieses Beispiel beschreibt die Klonierung der chromosomalen DNA von Streptococcus pneumoniae ATCC 33400 in den Vektor Lambda ZAP Express™ und das Screening der Genbank nach einem Streptococcus pneumoniae secretory IgA binding protein (SpsA).This example describes the cloning of the chromosomal DNA from Streptococcus pneumoniae ATCC 33400 into the vector Lambda ZAP Express ™ and screening of the gene bank for a streptococcus pneumoniae secretory IgA binding protein (SpsA).

Die chromosomale DNA von Streptococcus pneumoniae ATCC 33400 wurde isoliert, mit Sau3A partiell verdaut und in einem Natrium­ chloridgradienten, der durch Einfrieren und Auftauen einer 20%­ igen Natriumchloridlösung gebildet wurde, nach Größe der DNA- Fragmente fraktioniert. Die Ligation der 2,0 kb bis 6,0 kb großen DNA-Fragmente der chromosomalen DNA in den BamHI-ge­ schnittenen Lambda ZAP Express™ und die in vitro Verpackung er­ folgte mit einem komerziellen Kit nach Angaben des Herstellers (Stratagene, Heidelberg, Germany). Die Phagengenbank wurde ohne weitere Amplifikation ausplattiert und die rekombinanten Plaques auf die Expression eines sekretorischen IgA-Bindungsprotein un­ tersucht. Der Transfer der Proteine erfolgte auf Nitrozellulose­ filter, und nach Absättigung mit 10%-iger Magermilch in 0,1 M PBS wurde mit sekretorischem IgA [1 µg/ml] (Sigma, München, Germany) in 0,1 M PBS für 1 Stunde bei Raumtemperatur unter Schütteln inkubiert. Nach dreimaligem Waschen mit 0,1 M PBS wur­ den die Filter 1 Stunde mit einem Goat-Anti Human IgA-HRP-Konju­ gat Antikörper inkubiert. Die Farbentwicklung erfolgte nach dreimaligem Waschen mit 1 mg 4-Chloro-1-Naphthol und 0,1% H2O2 in 1 ml PBS. Positive Plaques wurden isoliert und nach Amplifi­ kation die in vivo Excision des pBK-CMV Phagmids mit Hilfe des Exassist He1ferphagen und XLOLR System nach den Angaben des Her­ stellers (Stratagene, Heidelberg, Germany) durchgeführt. The chromosomal DNA of Streptococcus pneumoniae ATCC 33400 was isolated, partially digested with Sau3A and fractionated according to the size of the DNA fragments in a sodium chloride gradient which was formed by freezing and thawing a 20% sodium chloride solution. The ligation of the 2.0 kb to 6.0 kb DNA fragments of the chromosomal DNA in the BamHI-cut Lambda ZAP Express ™ and the in vitro packaging was carried out using a commercial kit according to the manufacturer (Stratagene, Heidelberg, Germany ). The phage library was plated out without further amplification and the recombinant plaques were examined for the expression of a secretory IgA binding protein. The proteins were transferred to nitrocellulose filters, and after saturation with 10% skim milk in 0.1 M PBS, secretory IgA [1 μg / ml] (Sigma, Munich, Germany) in 0.1 M PBS for 1 hour incubated at room temperature with shaking. After washing three times with 0.1 M PBS, the filters were incubated for 1 hour with a Goat-Anti Human IgA-HRP conjugate antibody. The color developed after washing three times with 1 mg of 4-chloro-1-naphthol and 0.1% H 2 O 2 in 1 ml of PBS. Positive plaques were isolated and, after amplification, the in vivo excision of the pBK-CMV phagmid was carried out using the exassist He1ferphagen and XLOLR system according to the manufacturer's instructions (Stratagene, Heidelberg, Germany).

Beispiel 4Example 4

Dieses Beispiel beschreibt die DNA-Sequenzierung und die Ablei­ tung der Aminosäuresequenz. Die Sequenzierung des 5,085 kb In­ serts von Streptococcus pneumoniae ATCC 33400 im Phagemid pBK- CMV, pSHAI genannt, erfolgte durch das ABI PRISM™ Dye Termina­ tor Cycle Sequencing nach Angaben des Herstellers (Perkin-Elmer, Germany) mit den Vektorprimern T3X (5'-AATTAACCCTCACTAAAGGG-3') und T7X (5'-TAATACGACTCACTATCGGG-3') sowie den von der erhalte­ nen Sequenz abgeleiteten Primern (siehe Tabelle). Die Transla­ tion der Nukleinsäuresequenz in die Aminosäuresequenz erfolgte mit Hilfe des Programms GeneWorks, Version 2.45 (Intelligene­ tics, Montain View, CA).This example describes DNA sequencing and derivation tion of the amino acid sequence. The sequencing of the 5.085 kb In serts of Streptococcus pneumoniae ATCC 33400 in phagemid pBK- CMV, called pSHAI, was done by the ABI PRISM ™ Dye Termina Tor cycle sequencing according to the manufacturer (Perkin-Elmer, Germany) with the vector primers T3X (5'-AATTAACCCTCACTAAAGGG-3 ') and T7X (5'-TAATACGACTCACTATCGGG-3 ') as well as that received a sequence derived primers (see table). The Transla tion of the nucleic acid sequence into the amino acid sequence with the help of the program GeneWorks, version 2.45 (intelligent tics, Montain View, CA).

Tabelle 1Table 1

Beispiel 5Example 5

Dieses Beispiel beschreibt die Konstruktion der Subklone von pSHA1 und deren Charakterisierung im Western-blot. Subklon pSHA2 (nt1-nt2203 von pSHA1) wurde durch Deletion eines 2882 bp großen EcoRI-Fragments erhalten und Subklon pSHA3 (nt1- nt757) durch Deletion eines 4328 bp großen HindIII-Fragments von pSHA1. Ein weiterer Subklon, genannt pSHA4 (nt2952-nt5085 von pSHA1), wurde durch Deletion eines 2133 bp großen SacI-Fragments erhalten.This example describes the construction of the subclones of pSHA1 and its characterization in the Western blot. Subclone pSHA2 (nt1-nt2203 from pSHA1) was deleted by deleting one 2882 bp EcoRI fragment obtained and subclone pSHA3 (nt1-  nt757) by deletion of a 4328 bp HindIII fragment from pSHA1. Another subclone called pSHA4 (nt2952-nt5085 from pSHA1), was obtained by deleting a 2133 bp SacI fragment receive.

Die Charakterisierung der Klone erfolgte nach Auftrennung der Proteine des Zellysats [OD600 von 1,0 eingestellt und nach Auf­ nahme der Bakterien in 100 µl Aufschlußlösung (20% Glycerin, 3 % SDS, 3% β-Mercaptoethanol, 0,05% Bromphenolblau) 10 Minuten bei 94°C gekocht] der rekombinanten E.coli Zellen im SDS-PAGE und Transfer der Proteine auf eine Nitrozellulosemembran im Western-blot mit sekretorischem IgA. Nach Absättigung mit 10%­ iger Magermilch in 0,1 M PBS wurden die Filter mit sekretori­ schem 1gA [1 µg/ml] (Sigma, München, Germany) in 0,1 M PBS für 1 Stunde bei Raumtemperatur unter Schütteln inkubiert. Nach drei­ maligem Waschen mit 0,1 M PBS wurden die Filter 1 Stunde mit einem Goat-Anti Human IgA-MRP-Konjugat Antikörper inkubiert. Die Farbentwicklung erfolgte nach dreimaligem Waschen mit 1 mg 4- Chloro-1-Naphthol und 0,1% H2O2 pro 1 ml PBS.The clones were characterized after separation of the proteins of the cell lysate [OD 600 set to 1.0 and after absorption of the bacteria in 100 μl digestion solution (20% glycerol, 3% SDS, 3% β-mercaptoethanol, 0.05% bromophenol blue) Boiled for 10 minutes at 94 ° C.] of the recombinant E. coli cells in SDS-PAGE and transfer of the proteins to a nitrocellulose membrane in a Western blot with secretory IgA. After saturation with 10% skim milk in 0.1 M PBS, the filters were incubated with secretory 1 gA [1 µg / ml] (Sigma, Munich, Germany) in 0.1 M PBS for 1 hour at room temperature with shaking. After washing three times with 0.1 M PBS, the filters were incubated for 1 hour with a Goat-Anti Human IgA-MRP conjugate antibody. The color developed after washing three times with 1 mg of 4-chloro-1-naphthol and 0.1% H 2 O 2 per 1 ml of PBS.

Beispiel 6Example 6

Dieses Beispiel beschreibt die PCR-Amplifikation und Klonierung von spsA, des 5'-Bereichs von spsA (nt1-nt972) und des 3'-Be­ reichs (nt973-nt1572) von spsA in den Expressionsvektor pQE30 (Pharmacia).This example describes PCR amplification and cloning of spsA, the 5 'region of spsA (nt1-nt972) and the 3'-Be reichs (nt973-nt1572) from spsA into the expression vector pQE30 (Pharmacia).

Die PCR Primer für spsA und der spsA-Fragmente wurden abgeleitet von der in pSHA1 erhaltenen spsA-Sequenz von Streptococcus pneu­ moniae ATCC 33400 Serotyp 1. Der 5'-Primer SH22 (5'-GCGCGCG CGCGGATCCTTGTTTGCATCAAAAAGCGAAAG-3') ist 39 bp lang und beginnt mit einem veränderten Startkodon des spsA-Gens (TTG statt ATG). Der 5'-Primer für die Repeats, SH24 (5'-GCGCGCGGGCGGATCCACAGGCT GGAAACAAGAAAAC-3'), beginnt mit der Anfangssequenz des ersten Repeats bei Nukleotid 973 des spsA-Gens. Der 3'-Primer von spsASH23 (CTCAGCTAATTAAGCTTGTTTAGTTTACCCATTCACCATTGGC-3'), be­ ginnt mit dem Stopkodon und der 3'-Primer des N-Terminus, SH25 (5'- CTCAGCTAATTAAGCTTTTTTGGAGTAGATGGTTGTGCTGG-3'), beginnt bei Nukleotid 972 des spsA-Gens. Die Primer SH22-SH23 wurden zur Konstruktion von pQSH12, die Primer SH22-SH25 zur Konstruktion von pQSH14 und die Primer SH24-SH23 zur Konstruktion von pQSH30 genutzt. Die 5'-Primer enthielten zur Klonierung eine BamHI Re­ striktionsschnittstelle, die 3'-Primer eine HindIII Restrik­ tionsschnittstelle.The PCR primers for spsA and the spsA fragments were derived from the Streptococcus pneu spsA sequence obtained in pSHA1 moniae ATCC 33400 serotype 1. The 5'-primer SH22 (5'-GCGCGCG CGCGGATCCTTGTTTGCATCAAAAAGCGAAAG-3 ') is 39 bp long and begins with a modified start codon of the spsA gene (TTG instead of ATG). The 5 'primer for the repeats, SH24 (5'-GCGCGCGGGCGGATCCACAGGCT GGAAACAAGAAAAC-3 '), begins with the initial sequence of the first Repeats at nucleotide 973 of the spsA gene. The 3 'primer from  spsASH23 (CTCAGCTAATTAAGCTTGTTTAGTTTACCCATTCACCATTGGC-3 '), be starts with the stop codon and the 3 'primer of the N-terminus, SH25 (5'- CTCAGCTAATTAAGCTTTTTTGGAGTAGATGGTTGTGCTGG-3 ') starts at Nucleotide 972 of the spsA gene. The primers SH22-SH23 were used Construction of pQSH12, the primers SH22-SH25 for construction of pQSH14 and the primers SH24-SH23 for the construction of pQSH30 utilized. The 5 'primers contained a BamHI Re for cloning restriction interface, the 3 'primer is a HindIII restriction tion interface.

Die Amplifikation der genomischen Pneumokokken-DNA mit den 5'- und 3'-Primern (20 pmol jeweils) erfolgte in einem Thermocycler (MWG-Biotech, Ebersberg, Germany) in einem 100 µl Volumen mit 2,5 Units der Goldstar Taq-Polymerase nach den Angaben des Her­ stellers (Eurogentec, Seraing, Belgien) und 50 ng chromosomaler DNA. Die Proben wurden bei 94°C zwei Minuten denaturiert und die Amplifikation erfolgte in 35 Zyklen bestehend aus 1 Minute Denaturierung der DNA bei 94°C, 1 Minute Annealing des Primers bei 55°C und 2 Minuten Extension bei 72°C.The amplification of the genomic pneumococcal DNA with the 5'- and 3 'primers (20 pmol each) were carried out in a thermal cycler (MWG-Biotech, Ebersberg, Germany) in a 100 µl volume 2.5 units of the Goldstar Taq polymerase according to the manufacturer stellers (Eurogentec, Seraing, Belgium) and 50ng chromosomal DNA. The samples were denatured at 94 ° C for two minutes and the amplification was carried out in 35 cycles consisting of 1 minute Denaturation of the DNA at 94 ° C, 1 minute annealing of the primer at 55 ° C and 2 minutes extension at 72 ° C.

Die Primer SH22 bis SH23 konnten auch für die Amplifikation und Klonierung der spsA-Gene von Streptococcus pneumoniae Serotyp 2 (R36A smooth, ATCC 11733 und D39, NCTC 7466) und Serotyp 47 (R36A rough, NCTC 10319) verwendet werden.The primers SH22 to SH23 could also be used for amplification and Cloning of the Streptococcus pneumoniae serotype 2 spsA genes (R36A smooth, ATCC 11733 and D39, NCTC 7466) and serotype 47 (R36A rough, NCTC 10319) can be used.

Die Primer SH22 bis SH25 konnten auch für die Amplifikation und Klonierung des 5'-Bereichs von Streptococcus pneumoniae Serotyp 47 (R36A rough, NCTC 10319) verwendet werden.The primers SH22 to SH25 could also be used for amplification and Cloning of the 5 'region of Streptococcus pneumoniae serotype 47 (R36A rough, NCTC 10319) can be used.

Beispiel 7Example 7

Dieses Beispiel beschreibt die Untersuchung der Adhärenz von Streptococcus pneumoniae Stämmen an humane Epithelzellen. This example describes the study of the adherence of Streptococcus pneumoniae strains on human epithelial cells.  

Konfluente HEp-2 Larynxkarzinom Zellen oder A549 alveolare Lun­ genzellen (2×105), die in DMEM/5% fetales Kälberserum (FCS) wuchsen, wurden nach Waschen der Zellen mit DMEM/1mM HEPES mit 107 Pneumokokken in DMEM/1 mM HEPES für 1 Stunde bei 37°C infi­ ziert. Anschließend wurden die Zellen dreimal mit PBS gewaschen und mit Methanol fixiert (-20°C, 30 Minuten). Die extrazellulä­ ren Pneumokokken wurden zur mikroskopischen Auszählung mit Giemsa nach den Angaben des Herstellers (Sigma Diagnostic, Mün­ chen, Germany) angefärbt. Die Anzahl der adhärenten Pneumokokken wurde durch Auszählen von mindestens 100 Epithelzellen bestimmt.
1 Sternberg, G. M. A fatal form of septicaemia in the rabbit, produced by the subcutaneous injection of human saliva. National Board of Health Bulletin 1881; 2: 781-783
2 Austrian, R. Some aspects of the pneumococcal carrier state. J. Antimicrob. Chemother. 1986; 18 (suppl.A) : 35-45
3 Gray, B. A., G. M. Converse III, and H. C. Dillon, Jr. 1979. Serotypes of Streptococcus pneumonmiaecausing disease. J. Infect. Dis. 140: 979-983
4 Dagan, R., M. Isaachson, R. Lang, J. Karpuch, C. Block, and J. Amir from the Israeli Pediatric Bacteremia and eningitis Group. 1994. Epidemiology of pediatric meningitis caused by Haemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis in Israel: a 3-year nationwide study. J. Infect. Dis. 169: 912-916
5 Musher, D. M. 1992. infections caused by Streptococcus pneumoniae: clinical spectrum, pathogenesis, immunity, and treatment. Clin. Infect. Dis. 14: 801-809
6 Centers for Disease Control, 1984 [update: pneumococcal polysaccharide O vaccine usage-United states. Morbid. Mortal. Weekly Rep. 33: 273-276];
7 Filice, G. A., L. L. Van Etta, C. P. Darby, and D. W. Fra­ ser. 1986. Bacteremia in Charlston County, South Carolina. Am. J. Epidem. 123: 128-136]
8 Gillespe, S. H. 1989. Aspects of pneumococcal infection including bacterial virulence, host response and vaccination. J. Med. Microbiol. 28: 237-248
9 Henrichsen, J. 1995. Six newly recognized types of Strepto­ coccus pneumoniae. J. Clin. Microbiol. 33: 2759-2762
10 Fine, D. P. 1975 Pneumococcal type associated variability in alternate complement pathway activation. Infect. Immun. 12: 772-778
11 Chudwin, D. S., Artrip, S. G., Korenblit, A., Schiffman, G., and Rao, S. 1985 Correlation of serum opsonins with in vitro phagocytosis of Streptococcus pneumoniae. Infect. Immun. 50: 213-217;
12 Silvenoinen-Kasinen, S., and Koskela, M. 1986. Optimal con­ ditions for the opsonophagocytosis test with Streptococcus pneu­ moniae serotypes 3, 6A, 7F and 19F and human granulocytes. Acta Pathol. Microbiol. Scand. Sect. C 94: 105-111
13 Stryker, L. Variations in the pneumococcus induced by growth in immune serum. J. Exp. Med 1916; 24: 49-68
14 Griffith, F. The significance of pneumococcal types. J. Hyg 1928; 27: 113-159
15 Avery, O. T., MacLeod, C. M., McCarthy, M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med. 79: 137-158
16 Knecht J. C., Schiffmann, G., Austrian, R. Some biological properties of Pneumococcus type 37 and the chemistry of its cap­ sular polysaccharide. J. Exp. Med. 1970; 132: 475-487
17 Stein, K. E. 1992. Thymus-independent and thymus-dependent responses to polysaccharide antigens. J. Infect. Dis. 165 (Suppl. 1): 549-552
18 Appelbaum, P. C. 1992. Clin. Infect. Dis. 15: S. 77
19 Tuomanen, E. 1993. Breaching the blood-brain barrier. Sci. Ami. 268 (2): 80-84
20 Lock, R. A., Hansman, D., and Paton, J. C. 1992 Comparative efficacy of autolysin and pneumolysin as immunogens protecting mice against infection by Streptococcus pneumoniae. Microb. Pa­ thog. 12: 137-143
21 Lock, R. A., Paton, J. C., and Hansman, D., 1988 Compara­ tive efficacy of pneumococcal neuraminidase and pneumolysin as immunogens protective against Streptococcus pneumoniae. Microb. Pathog. 5: 461-467
22 Sampson, J. S., O'Connor, S. P., Stinson, A. R., Tharpe, J. A., and Russell, H. 1994. Cloning and nucleotide sequence analy­ sis of psaA, the Streptococcus pneumoniae gene encoding a 37- kilodalton protein homologius to previously reported Streptococ­ cus sp. adhesins. Infect. Immun. 62: 319-324
23 Tart, R. C., McDaniel, L. S., Ralph, B. A., and Briles, D. E. 1996. Truncated Streptococcus pneumoniae pspA molecules elicit cross-protective immunity against pneumococcal challenge in mice. J. Infect. Dis. 173: 380-386
24 Alexander, J. E., bock, R. A., Peeters, C. C. A. M., Pool­ man, J. T., Andrew, P. W., Mitchell, T. J., Hansman, D., and Paton, J. C. 1994. Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus pneumoniae. Infect. Immun. 62: 5683- 5688
25 Boulnois, G. J. 1992. Pneumococcal proteins and the patho­ genesis of disease caused by Streptococcus pneumoniae. J. Gen. Microbiol. 138: 249-259
26 Houldsworth, S., Andrew, P. W., and Mitchell, T. J. 1994. Pneumolysin stimulates production of tumor necrosis factor alpha and interleukin-1β by human mononuklear phagocytes. Infect. Immun. 62: 1501-1503
27 Feldman, C., Mitchell, T. J., Andrew, P. W., Boulnois, G. J., Read, R. C., Todd, H. C., Cole, P. J., and Wilson, R. 1990. The effect of Streptococcus pneumoniae pneumolysin on human respiratory epithelium in vitro. Micob. Pathog. 9: 275-284
28 Paton, J. C., and Ferrante, A. 1983. Inhibition of human polymorphonuclear leukocyte respiratory burst, bactericidal activity, and migration by pneumolysin. Infect. Immun. 41: 1212- 1216
29 Paon, J. C., Andrew, P. W., Bounois, G. J., and Mitchell, T. J. 1993. Molecular analysis of the pathogenicity of Strepto­ coccus pneumoniae: the role of pneumococcal proteins. Annu. Rev. Microbiol. 47: 89-115
30 Crain, M. J., Waltman II, W. D., Turner, J. S., Yother, J. Talkington, D. F., McDaniel, L. S., Gray, B. M., and Briles, D. E. 1990. Pneumococcal surface protein A (PspA) is serologically highly variable and is expressed by all clinically important capsular serotypes of Streptococcus pneumoniae. Infect. Immun. 58: 3293-3299
31 Briles, D. E., Yother, J., and McDaniel, L. S. 1988. Role of pneumococcal surface protein A in the virulence of Strepto­ coccus pneumoniae. Rev. Infect. Dis. 10 (Suppl. 4): 797-805
32 McDaniel, IJ. S, Yother, J., Vijayakumar, M., McGarry, L., Guild, W. R., and Briles, D. E: 1987. Use of insertional activa­ tion to facilitate studies of biological properties of pneumo­ coccal surface protein A (PspA). J. Exp. Med. 165: 381-394
33 Male, C. J. Immunglobulin A1 protease production by Haemo­ philus influenzae und Streptococcus pneumoniae. Infect. Immun. 1979; 26: 254-261
34 Wani, J. H., Gilbert, J. V., Plaut, A. G., and Weiser, J. N. 1996. Identfication, cloning, and sequencing of the Immunoglobulin Al protease gene of Streptococcus pneumoniae. Infect. Immun. 64 (10): 3967-3974
35 Poulsen, K., Reinholdt, J., and Kilian, M. Characterization of the Streptococcus pneumoniae Immunglobulin A1 protease gene (iga) and ist translation product. Infect. Immun. 64 (10): 3957- 3966
36 Vered, M., Schutzbank, T., Janof f, A. Inhibitors of human neutrophil elastase in extracts of Streptococcus pneumoniae. Am. Rev. Respir. Dis 1984; 130: 1118-1124
37 Cundell, C. R., Pearce, B. J., Young, A., Tuomanen, E. I., Masure, H. R. Protein dependent peptide permeases from Strepto­ coccus pneumoniae medite cytoadherence to type II lung cells and to human endothelial cells [abstract no. B107). J. Cell Biochem. Suppl. 1994; 18A: 45
38 Lacks, S. A. Purification and properties of the complemen­ tary endonucleases DpnI and DpnII. Methods Enzymol. 1980; 65: 138-146
39 Pearce, B. J., Naughton, A. M., Masure, H. R. Peptide per­ meases modulate transformation in Streptococcus pneumoniae. Mol. Microbiol. 1994; 12: 881-892
40 Masure, H. R., Campbell, E. A., Cundell, D. R., Pearce, B. J., Sandros, J., Spellerberg, B. A. 1995. New genetic strategy for the analysis of virulence and transformation in Streptococ­ cus pneumoniae. Dev. Biol. Stand. 85: 251-260
41 Yother, J., Briles, D. E. 1992. Structural and evolutionary relationships of PspA, a surface protein of Streptococcus pneu­ moniae, as revealeds by sequence analysis. J. Bacteriol. 174: 601-609
42 Yother, J., and White, J. M. . 1994. Novel surface attach­ ment mechanism of the Streptococcus pneumoniae Protein PspA. J. Bacteriol. 176: 2976-2985
43 Yother, J., Handsome, G. I., and Briles, D. E. 1992. Trun­ cated forms of PspA that are secreted from Streptococcus pneumo­ niae and their use in functional studies and cloning of the pspA gene. J. Bacteriol. 174: 610-618;
44 McDaniel, b. S., Sheffield, J. S., Swiatlo, E., Yother, J., Crain, M. C., and Briles, D. E. 1992. Molecular localization of variable and conserved region of pspA and identification of additional pspA homologous sequences in Streptococcus pneumo­ niae. Micro. Pathog. 13: 261-269
45 Jerlström, P. G., Chhatwal, G. S., Timmis, K. N. 1991. The IgA-binding B antigen of the c protein complex of group B strep­ tococci: sequence determination of its gene and detection of two binding regions. Mol. Microbiol. 5: 843-849
46 Heden, b., Frithz, E. bindhal, G. 1991. Molecular characte­ rization of an 1gA receptor from group B streptococci: Sequence of the gene, identification of a proline-rich region with unique structure and isolation of N-terminal fragments with IgA-binding capacity. Eur. J. Immun. 21: 1481-1490
47 Solary, R., and Krähenbühl, J. P. 1985. Immunol. Today, 17- 20
48 Brown, W. R., Isobe, Y., Nakane, P. K. 1976. Studies on translocation of immunoglobulins across intestinal epithilium. II. Immunelectron-microscopic localization of immunoglobulins and secretory component in human intestinal mucosa. Gastro­ enterology 71: 985-995
Confluent HEp-2 laryngeal carcinoma cells or A549 alveolar lung cells (2 × 10 5 ), which grew in DMEM / 5% fetal calf serum (FCS), were washed with DMEM / 1mM HEPES with 10 7 pneumococci in DMEM / 1mM after washing the cells HEPES infected for 1 hour at 37 ° C. The cells were then washed three times with PBS and fixed with methanol (-20 ° C., 30 minutes). The extracellular pneumococci were stained for microscopic counting with Giemsa according to the manufacturer's instructions (Sigma Diagnostic, Munich, Germany). The number of adherent pneumococci was determined by counting at least 100 epithelial cells.
1 Sternberg, GM A fatal form of septicaemia in the rabbit, produced by the subcutaneous injection of human saliva. National Board of Health Bulletin 1881; 2: 781-783
2 Austrian, R. Some aspects of the pneumococcal carrier state. J. Antimicrob. Chemother. 1986; 18 (suppl.A): 35-45
3 Gray, BA, GM Converse III, and HC Dillon, Jr. 1979. Serotypes of Streptococcus pneumonmiaecausing disease. J. Infect. Dis. 140: 979-983
4 Dagan, R., M. Isaachson, R. Lang, J. Karpuch, C. Block, and J. Amir from the Israeli Pediatric Bacteremia and eningitis Group. 1994. Epidemiology of pediatric meningitis caused by Haemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis in Israel: a 3-year nationwide study. J. Infect. Dis. 169: 912-916
5 Musher, DM 1992. infections caused by Streptococcus pneumoniae: clinical spectrum, pathogenesis, immunity, and treatment. Clin. Infect. Dis. 14: 801-809
6 Centers for Disease Control, 1984 [update: pneumococcal polysaccharide O vaccine usage-United states. Morbid. Mortal. Weekly Rep. 33: 273-276];
7 Filice, GA, LL Van Etta, CP Darby, and DW Fra ser. 1986. Bacteremia in Charlston County, South Carolina. At the. J. Epidem. 123: 128-136]
8 Gillespe, SH 1989. Aspects of pneumococcal infection including bacterial virulence, host response and vaccination. J. Med. Microbiol. 28: 237-248
9 Henrichsen, J. 1995. Six newly recognized types of Strepto coccus pneumoniae. J. Clin. Microbiol. 33: 2759-2762
10 Fine, DP 1975 Pneumococcal type associated variability in alternate complement pathway activation. Infect. Immune. 12: 772-778
11 Chudwin, DS, Artrip, SG, Korenblit, A., Schiffman, G., and Rao, S. 1985 Correlation of serum opsonins with in vitro phagocytosis of Streptococcus pneumoniae. Infect. Immune. 50: 213-217;
12 Silvenoinen-Kasinen, S., and Koskela, M. 1986. Optimal conditions for the opsonophagocytosis test with Streptococcus pneu moniae serotypes 3, 6A, 7F and 19F and human granulocytes. Acta Pathol. Microbiol. Scand. Sect. C 94: 105-111
13 Stryker, L. Variations in the pneumococcus induced by growth in immune serum. J. Exp. Med 1916; 24: 49-68
14 Griffith, F. The significance of pneumococcal types. J. Hyg 1928; 27: 113-159
15 Avery, OT, MacLeod, CM, McCarthy, M. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med. 79: 137-158
16 Knecht JC, Schiffmann, G., Austrian, R. Some biological properties of Pneumococcus type 37 and the chemistry of its capsular polysaccharide. J. Exp. Med. 1970; 132: 475-487
17 Stein, KE 1992. Thymus-independent and thymus-dependent responses to polysaccharide antigens. J. Infect. Dis. 165 (Suppl. 1): 549-552
18 Appelbaum, PC 1992. Clin. Infect. Dis. 15: p. 77
19 Tuomanen, E. 1993. Breaching the blood-brain barrier. Sci. Ami. 268 (2): 80-84
20 Lock, RA, Hansman, D., and Paton, JC 1992 Comparative efficacy of autolysin and pneumolysin as immunogens protecting mice against infection by Streptococcus pneumoniae. Microb. Pa thog. 12: 137-143
21 Lock, RA, Paton, JC, and Hansman, D., 1988 Compara tive efficacy of pneumococcal neuraminidase and pneumolysin as immunogens protective against Streptococcus pneumoniae. Microb. Pathog. 5: 461-467
22 Sampson, JS, O'Connor, SP, Stinson, AR, Tharpe, JA, and Russell, H. 1994. Cloning and nucleotide sequence analyze sis of psaA, the Streptococcus pneumoniae gene encoding a 37-kilodalton protein homologius to previously reported Streptococ cus sp. adhesins. Infect. Immune. 62: 319-324
23 Tart, RC, McDaniel, LS, Ralph, BA, and Briles, DE 1996. Truncated Streptococcus pneumoniae pspA molecules elicit cross-protective immunity against pneumococcal challenge in mice. J. Infect. Dis. 173: 380-386
24 Alexander, JE, bock, RA, Peeters, CCAM, Pool man, JT, Andrew, PW, Mitchell, TJ, Hansman, D., and Paton, JC 1994. Immunization of mice with pneumolysin toxoid confers a significant degree of protection against at least nine serotypes of Streptococcus pneumoniae. Infect. Immune. 62: 5683-5688
25 Boulnois, GJ 1992. Pneumococcal proteins and the patho genesis of disease caused by Streptococcus pneumoniae. J. Gen. Microbiol. 138: 249-259
26 Houldsworth, S., Andrew, PW, and Mitchell, TJ 1994. Pneumolysin stimulates production of tumor necrosis factor alpha and interleukin-1β by human mononuclear phagocytes. Infect. Immune. 62: 1501-1503
27 Feldman, C., Mitchell, TJ, Andrew, PW, Boulnois, GJ, Read, RC, Todd, HC, Cole, PJ, and Wilson, R. 1990. The effect of Streptococcus pneumoniae pneumolysin on human respiratory epithelium in vitro. Micob. Pathog. 9: 275-284
28 Paton, JC, and Ferrante, A. 1983. Inhibition of human polymorphonuclear leukocyte respiratory burst, bactericidal activity, and migration by pneumolysin. Infect. Immune. 41: 1212-1216
29 Paon, JC, Andrew, PW, Bounois, GJ, and Mitchell, TJ 1993. Molecular analysis of the pathogenicity of Strepto coccus pneumoniae: the role of pneumococcal proteins. Annu. Rev. Microbiol. 47: 89-115
30 Crain, MJ, Waltman II, WD, Turner, JS, Yother, J. Talkington, DF, McDaniel, LS, Gray, BM, and Briles, DE 1990. Pneumococcal surface protein A (PspA) is serologically highly variable and is expressed by all clinically important capsular serotypes of Streptococcus pneumoniae. Infect. Immune. 58: 3293-3299
31 Briles, DE, Yother, J., and McDaniel, LS 1988. Role of pneumococcal surface protein A in the virulence of Strepto coccus pneumoniae. Rev. Infect. Dis. 10 (Suppl. 4): 797-805
32 McDaniel, IJ. S, Yother, J., Vijayakumar, M., McGarry, L., Guild, WR, and Briles, D. E: 1987. Use of insertional activation to facilitate studies of biological properties of pneumo coccal surface protein A (PspA) . J. Exp. Med. 165: 381-394
33 times, CJ immunoglobulin A1 protease production by Haemo philus influenzae and Streptococcus pneumoniae. Infect. Immune. 1979; 26: 254-261
34 Wani, JH, Gilbert, JV, Plaut, AG, and Weiser, JN 1996. Identfication, cloning, and sequencing of the Immunoglobulin Al protease gene of Streptococcus pneumoniae. Infect. Immune. 64 (10): 3967-3974
35 Poulsen, K., Reinholdt, J., and Kilian, M. Characterization of the Streptococcus pneumoniae Immunoglobulin A1 protease gene (iga) and is translation product. Infect. Immune. 64 (10): 3957- 3966
36 Vered, M., Schutzbank, T., Janof f, A. Inhibitors of human neutrophil elastase in extracts of Streptococcus pneumoniae. At the. Rev. Respir. Dis 1984; 130: 1118-1124
37 Cundell, CR, Pearce, BJ, Young, A., Tuomanen, EI, Masure, HR Protein dependent peptide permeases from Strepto coccus pneumoniae medite cytoadherence to type II lung cells and to human endothelial cells [abstract no. B107). J. Cell Biochem. Suppl. 1994; 18A: 45
38 Lacks, SA Purification and properties of the complemen tary endonucleases DpnI and DpnII. Methods Enzymol. 1980; 65: 138-146
39 Pearce, BJ, Naughton, AM, Masure, HR Peptides per meases modulate transformation in Streptococcus pneumoniae. Mol. Microbiol. 1994; 12: 881-892
40 Masure, HR, Campbell, EA, Cundell, DR, Pearce, BJ, Sandros, J., Spellerberg, BA 1995. New genetic strategy for the analysis of virulence and transformation in Streptococ cus pneumoniae. Dev. Biol. Stand. 85: 251-260
41 Yother, J., Briles, DE 1992. Structural and evolutionary relationships of PspA, a surface protein of Streptococcus pneu moniae, as revealeds by sequence analysis. J. Bacteriol. 174: 601-609
42 Yother, J., and White, JM. 1994. Novel surface attach ment mechanism of the Streptococcus pneumoniae Protein PspA. J. Bacteriol. 176: 2976-2985
43 Yother, J., Handsome, GI, and Briles, DE 1992. Trun cated forms of PspA that are secreted from Streptococcus pneumo niae and their use in functional studies and cloning of the pspA gene. J. Bacteriol. 174: 610-618;
44 McDaniel, b. S., Sheffield, JS, Swiatlo, E., Yother, J., Crain, MC, and Briles, DE 1992. Molecular localization of variable and conserved region of pspA and identification of additional pspA homologous sequences in Streptococcus pneumo niae. Micro. Pathog. 13: 261-269
45 Jerlström, PG, Chhatwal, GS, Timmis, KN 1991. The IgA-binding B antigen of the c protein complex of group B strep tococci: sequence determination of its gene and detection of two binding regions. Mol. Microbiol. 5: 843-849
46 Heden, b., Frithz, E. bindhal, G. 1991. Molecular characte rization of an 1gA receptor from group B streptococci: Sequence of the gene, identification of a proline-rich region with unique structure and isolation of N-terminal fragments with IgA binding capacity. Eur. J. Immun. 21: 1481-1490
47 Solary, R., and Krähenbühl, JP 1985. Immunol. Today, 17-20
48 Brown, WR, Isobe, Y., Nakane, PK 1976. Studies on translocation of immunoglobulins across intestinal epithilium. II. Immunelectron-microscopic localization of immunoglobulins and secretory component in human intestinal mucosa. Gastro Enterology 71: 985-995

Claims (7)

1. Oberflächenprotein von Streptococcus pneunomiae (SpsA- Protein), dadurch gekennzeichnet, daß es an sekretorisches IgA (sIgA) bindet.1. Surface protein of Streptococcus pneunomiae (SpsA protein), characterized in that it binds to secretory IgA (sIgA). 2. Oberflächenprotein nach Anspruch 1, gekennzeichnet durch 523 Aminosäuren gemäß Fig. 2 (Positionen 1 bis 523).2. Surface protein according to claim 1, characterized by 523 amino acids according to FIG. 2 (positions 1 to 523). 3. C-terminal deletierter Abkömmling des Oberflächenproteins ge­ mäß Anspruch 1 oder 2, gekennzeichnet durch 324 Aminosäuren ge­ mäß Fig. 2 (Positionen 1 bis 324) und
Repeats 1 bis 6 (Positionen 325 bis 444) oder
Repeats 1 bis 7 (Positionen 325 bis 464) oder
Repeats 1 bis 8 (Positionen 325 bis 484 oder bis 485).
3. C-terminally deleted derivative of the surface protein according to claim 1 or 2, characterized by 324 amino acids according to FIG. 2 (positions 1 to 324) and
Repeats 1 to 6 (positions 325 to 444) or
Repeats 1 to 7 (positions 325 to 464) or
Repeats 1 to 8 (positions 325 to 484 or to 485).
4. N-terminal deletierter Abkömmling des Oberflächenproteins ge­ mäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß er
  • (i) im Bereich der Positionen 1 bis 159 gemäß Fig. 2 um 1 bis maximal 159 Aminosäuren deletiert ist,
  • (ii) nicht jedoch im Bereich der Positionen 160 bis 523 dele­ tiert ist.
4. N-terminally deleted derivative of the surface protein according to claim 1 or 2, characterized in that it
  • (i) in the region of positions 1 to 159 according to FIG. 2 has been deleted by 1 to a maximum of 159 amino acids,
  • (ii) is not, however, deleted in the range of items 160 to 523.
5. N-terminal und C-terminal deletierter Abkömmling des Oberflä­ chenproteins gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß er
  • (i) im Bereich der Positionen 1 bis 159 gemäß Fig. 2 um 1 bis maximal 159 Aminosäuren deletiert ist,
  • (ii) nicht jedoch im Bereich der Positionen 160 bis 324 dele­ tiert ist und
  • (iii) Repeats 1 bis 8 (Positionen 325 bis 484 oder bis 485) oder
    Repeats 1 bis 7 (Positionen 325 bis 464) oder
    Repeats 1 bis 6 (Positionen 325 bis 444) aufweist.
5. N-terminal and C-terminal deleted derivative of the surface protein according to claim 1 or 2, characterized in that it
  • (i) in the region of positions 1 to 159 according to FIG. 2 has been deleted by 1 to a maximum of 159 amino acids,
  • (ii) is not, however, deleted in the range of items 160 to 324 and
  • (iii) repeats 1 to 8 (positions 325 to 484 or to 485) or
    Repeats 1 to 7 (positions 325 to 464) or
    Repeats 1 to 6 (positions 325 to 444).
6. Expressionssystem zur Expression eines Oberflächenproteins oder eines Abkömmlings gemäß einem der vorhergehenden Ansprüche, umfassend eine DNA-Sequenz, die das Oberflächenprotein oder den Abkömmling kodiert.6. Expression system for expressing a surface protein or a descendant according to one of the preceding claims, comprising a DNA sequence that the surface protein or the Descendant encoded. 7. Vaccine zur Bekämpfung von Erkrankungen durch Streptococcus pneunomiae, herstellbar mit Hilfe eines Oberflächenproteins oder eines Abkömmlings gemäß einem der Ansprüche 1 bis 5.7. Vaccine to fight diseases caused by Streptococcus pneunomiae, producible with the help of a surface protein or of a derivative according to one of claims 1 to 5.
DE19708537A 1997-03-03 1997-03-03 New surface protein (SpsA protein) from Streptococcus pneumoniae etc. Withdrawn DE19708537A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE19708537A DE19708537A1 (en) 1997-03-03 1997-03-03 New surface protein (SpsA protein) from Streptococcus pneumoniae etc.
JP53813798A JP2001524073A (en) 1997-03-03 1998-03-02 Novel S. pneumoniae surface protein (SpsA-protein), deleted derivative, expression system for the protein and vaccine comprising the protein
PCT/EP1998/001149 WO1998039450A2 (en) 1997-03-03 1998-03-02 SURFACE PROTEIN (SPsA PROTEIN) OF STREPTOCOCCUS PNEUMONIAE, DELETED DERIVATIVES, EXPRESSION SYSTEM FOR SAID PROTEINS AND VACCINE SYSTEM WITH SAID PROTEINS
EP98916880A EP0991762A2 (en) 1997-03-03 1998-03-02 SURFACE PROTEIN (SPsA PROTEIN) OF STREPTOCOCCUS PNEUMONIAE, DELETED DERIVATIVES, EXPRESSION SYSTEM FOR SAID PROTEINS AND VACCINE SYSTEM WITH SAID PROTEINS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19708537A DE19708537A1 (en) 1997-03-03 1997-03-03 New surface protein (SpsA protein) from Streptococcus pneumoniae etc.

Publications (1)

Publication Number Publication Date
DE19708537A1 true DE19708537A1 (en) 1998-09-10

Family

ID=7822047

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19708537A Withdrawn DE19708537A1 (en) 1997-03-03 1997-03-03 New surface protein (SpsA protein) from Streptococcus pneumoniae etc.

Country Status (4)

Country Link
EP (1) EP0991762A2 (en)
JP (1) JP2001524073A (en)
DE (1) DE19708537A1 (en)
WO (1) WO1998039450A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029434A2 (en) * 1998-11-19 2000-05-25 St. Jude Children's Research Hospital PNEUMOCOCCAL CHOLINE BINDING PROTEINS, CbpG AND CbpD, DIAGNOSTIC AND THERAPEUTIC USES THEREOF
US7790412B2 (en) 1997-07-02 2010-09-07 sanofi pasteur limited/sanofi pasteur limitée Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5928895A (en) * 1996-09-24 1999-07-27 Smithkline Beecham Corporation IgA Fc binding protein
KR20060126844A (en) 1998-04-07 2006-12-08 메디뮨 인코포레이티드 Derivatives of pneumococcal choline binding proteins for vaccines
WO2002008426A2 (en) * 2000-07-20 2002-01-31 Hansa Medical Ab Fh-binding protein of streptococcus pneumoniae
GB0022742D0 (en) 2000-09-15 2000-11-01 Smithkline Beecham Biolog Vaccine
TWI457133B (en) 2005-12-13 2014-10-21 Glaxosmithkline Biolog Sa Novel composition
GB0607088D0 (en) 2006-04-07 2006-05-17 Glaxosmithkline Biolog Sa Vaccine
AR058707A1 (en) 2005-12-22 2008-02-20 Glaxosmithkline Biolog Sa VACCINE, PROCEDURE TO MANUFACTURE AND USE
EA200901578A1 (en) 2007-06-26 2010-08-30 Глаксосмитклайн Байолоджикалс С.А. VACCINE CONTAINING CONJUGATES OF CAPSULAR POLYSACCHARIDES STREPTOCOCCUS PNEUMONIAE
WO2009127676A1 (en) 2008-04-16 2009-10-22 Glaxosmithkline Biologicals S.A. Vaccine
GB201003924D0 (en) 2010-03-09 2010-04-21 Glaxosmithkline Biolog Sa Immunogenic composition
AR086405A1 (en) 2011-05-17 2013-12-11 Glaxosmithkline Biolog Sa STREPTOCOCCUS PNEUMONIAE VACCINE
US9815886B2 (en) 2014-10-28 2017-11-14 Adma Biologics, Inc. Compositions and methods for the treatment of immunodeficiency
GB201518684D0 (en) 2015-10-21 2015-12-02 Glaxosmithkline Biolog Sa Vaccine
US10259865B2 (en) 2017-03-15 2019-04-16 Adma Biologics, Inc. Anti-pneumococcal hyperimmune globulin for the treatment and prevention of pneumococcal infection

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996039113A2 (en) * 1995-06-02 1996-12-12 Uab Research Foundation Oral administration of pneumococcal antigens
CA2253252A1 (en) * 1996-05-01 1997-11-06 The Rockefeller University Choline binding proteins for anti-pneumococcal vaccines
DE69737125T3 (en) * 1996-10-31 2015-02-26 Human Genome Sciences, Inc. Streptococcus pneumoniae antigens and vaccines
AU5355398A (en) * 1996-11-12 1998-06-03 Regents Of The University Of Minnesota C3 binding protein of (streptococcus pneumoniae)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875437B2 (en) 1997-07-02 2011-01-25 Sanofi Pasteur Limited/Sanofi Pasteur Limitee Nucleic acid and amino acid sequences relating to streptococcus pneumoniae for diagnostics and therapeutics
US7893230B2 (en) 1997-07-02 2011-02-22 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7790412B2 (en) 1997-07-02 2010-09-07 sanofi pasteur limited/sanofi pasteur limitée Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7834166B2 (en) 1997-07-02 2010-11-16 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7867501B2 (en) 1997-07-02 2011-01-11 Sanofi Pasteur Limited/Sanofi Pasteur Limitee Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7875438B2 (en) 1997-07-02 2011-01-25 Sanofi Pasteur Limited/Sanofi Pasteur Limitee Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US8609107B2 (en) 1997-07-02 2013-12-17 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US7875439B2 (en) 1997-07-02 2011-01-25 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US8298788B2 (en) 1997-07-02 2012-10-30 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US8003775B2 (en) 1997-07-02 2011-08-23 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US8288519B2 (en) 1997-07-02 2012-10-16 Sanofi Pasteur Limited Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US8293884B2 (en) 1997-07-02 2012-10-23 sanofi pasteur limited/sanofi pasteur limitée Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
US8293249B2 (en) 1997-07-02 2012-10-23 Sanofi Pasteur Limited/Sanofi Pasteur Limitee Nucleic acid and amino acid sequences relating to Streptococcus pneumoniae for diagnostics and therapeutics
WO2000029434A2 (en) * 1998-11-19 2000-05-25 St. Jude Children's Research Hospital PNEUMOCOCCAL CHOLINE BINDING PROTEINS, CbpG AND CbpD, DIAGNOSTIC AND THERAPEUTIC USES THEREOF
WO2000029434A3 (en) * 1998-11-19 2001-03-01 St Jude Childrens Res Hospital PNEUMOCOCCAL CHOLINE BINDING PROTEINS, CbpG AND CbpD, DIAGNOSTIC AND THERAPEUTIC USES THEREOF

Also Published As

Publication number Publication date
JP2001524073A (en) 2001-11-27
WO1998039450A3 (en) 1998-11-05
WO1998039450A2 (en) 1998-09-11
EP0991762A2 (en) 2000-04-12

Similar Documents

Publication Publication Date Title
BRILES et al. PspA and PspC: their potential for use as pneumococcal vaccines
DE19708537A1 (en) New surface protein (SpsA protein) from Streptococcus pneumoniae etc.
Hammerschmidt et al. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component
US7820789B2 (en) Mutant pneumolysin proteins
Briles et al. PspA, a protection-eliciting pneumococcal protein: immunogenicity of isolated native PspA in mice
Tai Streptococcus pneumoniae protein vaccine candidates: properties, activities and animal studies
DE69735715T2 (en) Choline-binding protein used as a pneumococcal vaccine
DE69934299T2 (en) GROUP B-STREPTOCOCCUS ANTIGENE
PATON et al. Molecular analysis of putative pneumococcal virulence proteins
DE60027890T2 (en) STREPTOCOCCUS PNEUMONIAE PROTEINS AND VACCINES
Mitchell et al. Molecular analysis of virulence factors of Streptococcus pneumoniae
EP0866133A2 (en) A group b streptococcus vaccine
JPH0710774A (en) Vaccine for sprepto coccus switzerland infection
US20040265933A1 (en) Proteins
CH672072A5 (en)
AU776735B2 (en) Genes and proteins, and their use
Fontana et al. Characterization of preparations enriched for Streptococcus mutans fimbriae: salivary immunoglobulin A antibodies in caries-free and caries-active subjects
DE69928925T2 (en) ANTIGENIC POLYPEPTIDES FROM NEISSERIA MENINGITIDIS, POLYNUCLEOTIDES CODED THEREFOR AND CORRESPONDING PROTECTIVE ANTIBODIES
DE69733067T2 (en) TREATMENT AND DETERMINATION OF GRAM-POSITIVE COCKIN INFECTIONS
DE69918446T2 (en) POLYNUCLEOTIDE AND POLYPEPTIDE BASB033 FROM NEISSERIA MENINGITIDIS AND ITS USES
Davies et al. Cytotoxic activity of Mannheimia haemolytica strains in relation to diversity of the leukotoxin structural gene lktA
DE69935213T2 (en) BASB019 PROTEINS AND GENES FROM MORAXELLA CATARRHALIS, ANTIGENE, ANTIBODIES, AND USES
DE69925866T2 (en) AUSSEMBRBRANPROTEINE, HER GENE, AND ITS USE
US20030104000A1 (en) Genes and proteins, and their use
JP2001504335A (en) Lactoferrin-binding protein of Streptococcus uberis

Legal Events

Date Code Title Description
8130 Withdrawal