DE102008021766A1 - Optimal dose distribution producing method for tumor irradiation, involves directly estimating adjustment of plate structure of irradiation apparatus using optimization process e.g. direct Monte Carlo optimization - Google Patents

Optimal dose distribution producing method for tumor irradiation, involves directly estimating adjustment of plate structure of irradiation apparatus using optimization process e.g. direct Monte Carlo optimization Download PDF

Info

Publication number
DE102008021766A1
DE102008021766A1 DE200810021766 DE102008021766A DE102008021766A1 DE 102008021766 A1 DE102008021766 A1 DE 102008021766A1 DE 200810021766 DE200810021766 DE 200810021766 DE 102008021766 A DE102008021766 A DE 102008021766A DE 102008021766 A1 DE102008021766 A1 DE 102008021766A1
Authority
DE
Germany
Prior art keywords
optimization
plate structure
irradiation
dose distribution
monte carlo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE200810021766
Other languages
German (de)
Inventor
Marco Alt
Ludwig Bogner
Christof Latscha
Ingo Morgenstern
Mark Rickhey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bogner Ludwig Prof Dr
Original Assignee
Bogner Ludwig Prof Dr
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bogner Ludwig Prof Dr filed Critical Bogner Ludwig Prof Dr
Priority to DE200810021766 priority Critical patent/DE102008021766A1/en
Publication of DE102008021766A1 publication Critical patent/DE102008021766A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1031Treatment planning systems using a specific method of dose optimization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1031Treatment planning systems using a specific method of dose optimization
    • A61N2005/1034Monte Carlo type methods; particle tracking

Abstract

The method involves directly estimating an adjustment of a plate structure of an irradiation apparatus using an optimization process e.g. simulated annealing, genetic process and direct Monte Carlo optimization. A cost function for optimization of the plate structure is adapted to a requirement of a treating physician. Basic changes in the optimization process are given by small changes in the plate structure, such that the plate structure is directly optimized. A transition probability for the basic changes in the optimization process is estimated using the cost function.

Description

Die Bestrahlung von Tumoren bedarf wegen der hohen applizierten Dosen einer möglichst genauen Dosisberechnung mit einem geeigneten rechnergestützten Planungssystem. Die zumeist angewendeten, kommerziell verfügbaren Verfahren verwenden „by-trial-and-error”-Methoden, die einen erfahrenen und speziell ausgebildeten Medizinphysiker voraussetzen. Dies gilt auch für eine neuere Entwicklung mit automatischer Optimierung der Dosisverteilung, der sog. intensitätsmodulierten Radiotherapie (IMRT).The Radiation of tumors is required because of the high dose applied one possible accurate dose calculation with a suitable computer-aided planning system. The most widely used commercially available methods use "by-trial-and-error" methods that require a require experienced and specially trained medical physicists. This also applies to a recent development with automatic optimization of dose distribution, the so-called intensity-modulated Radiotherapy (IMRT).

Wir haben ein IMRT-Verfahren der 2. Generation entwickelt, das viele Nachteile vermeidet, die sog. direkte Monte-Carlo-Optimierung (DMCO). Im Gegensatz zu konventionellen Systemen werden keine Zwischenschritte durchgeführt, sondern die wesentlichen Parameter des Bestrahlungsgerätes (einige Tausend) werden direkt optimiert. Dies vermeidet die Verschlechterung des Ergebnisses konventioneller Systeme bei der Strahlenanwendung gegenüber dem Planergebnis. Die Optimierung unseres Systems erfolgt mit dem genauesten der bekannten Optimierungsalgorithmen, dem sog. „Simulated Annealing”. Dieser Code ist in der Lage, selbst bei kompliziertesten Fällen das beste Optimum zu finden.We have developed a 2nd generation IMRT process that has many Avoid disadvantages, the so-called direct Monte Carlo optimization (DMCO). Unlike conventional systems, there are no intermediate steps carried out, but the essential parameters of the irradiation device (some Thousand) are optimized directly. This avoids the deterioration the result of conventional systems in radiation application compared to the Ergebnis. The optimization of our system is done with the most accurate the known optimization algorithms, the so-called "simulated annealing". This Code is capable of doing that even in the most complicated cases to find the best optimum.

Ein besonderer Vorzug von DMCO ist der eingesetzte Dosisberechnungsalgorithmus. Auch dazu wird eine Methode herangezogen, die als die genaueste bekannt ist, das Monte-Carlo-Verfahren (MC). Das Verfahren wird üblicherweise wegen seiner langen Rechenzeiten nur in Sonderfällen eingesetzt. Wir konnten eine Methode entwickeln, die nach einmaliger Vorberechnung mit MC-Genauigkeit in kurzer Zeit eine Dosisberechnung mit variablen Bestrahlungsfeldern durchführen kann. Ein weiterer Vorteil von DMCO ist die Flexibilität gegenüber der stürmischen Flut von Neuentwicklungen von Bestrahlungsgeräten. Die Randbedingungen des Gerätes können direkt in die Optimierung eingegeben werden.One The particular advantage of DMCO is the dose calculation algorithm used. Again, a method is used which is the most accurate is known, the Monte Carlo method (MC). The procedure usually becomes because of its long computing time used only in special cases. We could develop a method that after one-time pre-calculation with MC accuracy in a short time a dose calculation with variable irradiation fields carry out can. Another advantage of DMCO is the flexibility over the stormy one Flood of new developments of radiation equipment. The boundary conditions of equipment can be entered directly into the optimization.

Zusammenfassend können die Vorzüge von DMCO wie folgt beschrieben werden.

  • – höchste Präzision bei der Dosisberechnung
  • – höchste Präzision bei der Optimierung
  • – höchste Präzision bei der Anpassung an neue Bestrahlungsgeräte
In summary, the benefits of DMCO can be described as follows.
  • - highest precision in the dose calculation
  • - highest precision in the optimization
  • - Highest precision in the adaptation to new radiation equipment

Mit DMCO kann eine wesentliche Verbesserung der Qualität von Bestrahlungsplänen erzielt werden. Dies erhöht potentiell die komplikationsfreie Tumorheilung.With DMCO can achieve a significant improvement in the quality of treatment plans become. This increases potentially the complication-free tumor healing.

Das Verfahren arbeitet folgendermaßen:
Die in der Bestrahlungsapparatur vorgegebene Lamellenstruktur und die tatsächlich möglichen Veränderungen werden in Optimierungsverfahren simuliert. Im „Simulated Annealing”-Verfahren wird der „elementary move”, d. h. der elementare Einzelschritt durch eine random gewählte Veränderung der Lamellenanordnung erzeugt. Die entsprechenden Übergangswahrscheinlichkeiten zu der neuen Lamellenstellung werden berechnet. Der Move bzw. Einzelschritt wird gegebenenfalls angenommen. Zur Berechnung der Übergangswahrscheinlichkeit wird als Kostenfunktion die vereinbarte Dosisverteilung herangezogen. Diese wird direkt durch die in der Forschung bekannten inversen Monte-Carlo-Methoden berechnet. Die Dosisverteilung wird durch die von den behandelnden Ärzten angegebene Evaluations-Methode in die Kostenfunktion umgewandelt. Die Kostenfunktion wird von den behandelnden Ärzten durch Festlegung der Dosis-Randbedingungen vorgegeben. Andere analoge Vorgehensweisen sind gegebenenfalls möglich. Normalerweise wird eine möglichst homogene Dosisverteilung innerhalb des Tumors bei möglichst weitgehender Schonung der Risikoorgane verlangt. Das neue Verfahren trägt genau dieser Problemstellung und möglichen Modifikationen Rechnung. Gerade diese Flexibilität erhöht die Erfolgsaussichten der so berechneten Dosisverteilung aufgrund der Lamellenbestrahlung beträchtlich.
The procedure works as follows:
The lamellar structure specified in the irradiation apparatus and the actually possible changes are simulated in optimization methods. In the "simulated annealing" method, the "elementary move", ie the elementary single step is generated by a randomly selected change of the lamellar arrangement. The corresponding transition probabilities to the new slat position are calculated. The move or single step is accepted if necessary. To calculate the transition probability, the agreed dose distribution is used as the cost function. This is calculated directly by the inverse Monte Carlo methods known in research. The dose distribution is converted into the cost function by the evaluation method indicated by the treating physicians. The cost function is specified by the treating physicians by determining the dose boundary conditions. Other analogous approaches may be possible. Normally a homogeneous dose distribution within the tumor is required, as far as possible to protect the organs at risk. The new method takes exactly this problem and possible modifications into account. It is this flexibility that considerably increases the chances of success of the dose distribution thus calculated due to the lamella irradiation.

Claims (6)

Verfahren zur Erstellung einer optimalen Dosisverteilung zur Tumor-Bestrahlung derart, dass die Lamelleneinstellung der Bestrahlungsapparatur mit Hilfe eines Optimierungsverfahrens wie z. B. Simulated Annealing, genetische Verfahren und bekannte physikalische Optimierungsverfahren direkt berechnet wird.Method for creating an optimal dose distribution for tumor irradiation such that the lamellae setting of the irradiation apparatus with the help of an optimization method such. Eg simulated annealing, genetic methods and known physical optimization methods is calculated directly. Verfahren nach 1. derart, dass die Kostenfunktion zur Optimierung nach 1. den tatsächlichen Bedürfnissen der behandelnden Ärzte angepasst wird.Method according to 1 such that the cost function for optimization after 1. the actual needs the attending physicians is adjusted. Verfahren nach 1. und 2. derart, dass die Lamellenanordnung direkt optimiert wird, d. h. die elementare Veränderung in den Optimierungsverfahren ist durch die geringfügige lokale Veränderung der Lamellenanordnung gegeben.Method according to 1 and 2 such that the lamellar arrangement is optimized directly, d. H. the elementary change in the optimization process is through the slight local change given the lamellar arrangement. Verfahren nach 1. bis 3. derart, dass die Übergangswahrscheinlichkeiten für die elementare Veränderung nach 3. mit Hilfe der nach 2. bestimmten Kostenfunktion berechnet wird.Method according to 1. to 3. such that the transition probabilities for the elementary change calculated according to 3. with the help of the 2. cost function determined becomes. Verfahren nach 1. bis 4. derart, dass auch Winkeleinsteillungen in der Bestrahlungsapparatur in der Optimierung herangezogen werden.Method according to 1. to 4. such that also Winkeleinsteillungen be used in the irradiation apparatus in the optimization. Verfahren nach 1. bis 5. derart, dass die Dosisverteilung in der Optimierung durch die in der Forschung bekannten inversen Monte-Carlo-Methoden berechnet wird.Method according to 1. to 5. such that the dose distribution in the optimization by the inverse Monte Carlo methods known in the research is calculated.
DE200810021766 2008-04-30 2008-04-30 Optimal dose distribution producing method for tumor irradiation, involves directly estimating adjustment of plate structure of irradiation apparatus using optimization process e.g. direct Monte Carlo optimization Withdrawn DE102008021766A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE200810021766 DE102008021766A1 (en) 2008-04-30 2008-04-30 Optimal dose distribution producing method for tumor irradiation, involves directly estimating adjustment of plate structure of irradiation apparatus using optimization process e.g. direct Monte Carlo optimization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200810021766 DE102008021766A1 (en) 2008-04-30 2008-04-30 Optimal dose distribution producing method for tumor irradiation, involves directly estimating adjustment of plate structure of irradiation apparatus using optimization process e.g. direct Monte Carlo optimization

Publications (1)

Publication Number Publication Date
DE102008021766A1 true DE102008021766A1 (en) 2009-11-05

Family

ID=41130935

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200810021766 Withdrawn DE102008021766A1 (en) 2008-04-30 2008-04-30 Optimal dose distribution producing method for tumor irradiation, involves directly estimating adjustment of plate structure of irradiation apparatus using optimization process e.g. direct Monte Carlo optimization

Country Status (1)

Country Link
DE (1) DE102008021766A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012002855A1 (en) 2012-02-13 2013-12-05 Ingo Morgenstern Method for using excess amounts of electricity for operating huge computer systems, involves proposing and calculating physical simulations of quantum chromodynamics and high-temperature superconductivity
CN106902480A (en) * 2017-03-07 2017-06-30 西安体医疗科技有限公司 A kind of parallel Quantum annealing target spot distribution calculation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012002855A1 (en) 2012-02-13 2013-12-05 Ingo Morgenstern Method for using excess amounts of electricity for operating huge computer systems, involves proposing and calculating physical simulations of quantum chromodynamics and high-temperature superconductivity
CN106902480A (en) * 2017-03-07 2017-06-30 西安体医疗科技有限公司 A kind of parallel Quantum annealing target spot distribution calculation method
CN106902480B (en) * 2017-03-07 2019-12-03 西安一体医疗科技有限公司 A kind of parallel Quantum annealing target spot distribution calculation method

Similar Documents

Publication Publication Date Title
EP3103519B1 (en) A method, a computer program product and a computer system for radiotherapy optimization
EP2158939B1 (en) Method and device for selecting an irradiation plan and irradiation assembly
Stathakis et al. Treatment planning and delivery of IMRT using 6 and 18 MV photon beams without flattening filter
CN103656877B (en) Radiation therapy planning device
CN103394167A (en) BED (biological effective dose)-based prediction method for complications caused by tumor radiotherapy
CN105031820A (en) Intensity modulated radiation therapy reverse optimization method and device
US20180111005A1 (en) Method of selecting beam geometries
WO2014009076A1 (en) Method and device for determining an irradiation plan for a particle irradiation unit
EP2292298A1 (en) Method for determining an irradiation plan, irradiation planning device and irradiation assembly
Cabrera et al. Multi-objective optimisation of positively homogeneous functions and an application in radiation therapy
DE102008021766A1 (en) Optimal dose distribution producing method for tumor irradiation, involves directly estimating adjustment of plate structure of irradiation apparatus using optimization process e.g. direct Monte Carlo optimization
CN107998519A (en) A kind of molecular dynamics re-optimization algorithm for IMRT
DE102011007148A1 (en) Method for radiation planning and radiation planning device
CN102136041B (en) Treatment plan system
Richter et al. Influence of a transverse magnetic field on the dose deposited by a 6 MV linear accelerator: A Monte Carlo study
CN105477789A (en) Dynamic intensity-modulated radiotherapy method based on quadratic programming model suppressing total beam-out time
CN109248385B (en) Radiation therapy plan optimization system based on Monte Carlo tree search
Wang et al. Feasibility of using nonflat photon beams for whole‐breast irradiation with breath hold
Zhang et al. The aperture shape optimization based on fuzzy enhancement
Nouranian et al. Automatic prostate brachytherapy preplanning using joint sparse analysis
Flynn Loss of radiobiological effect of imaging dose in image guided radiotherapy due to prolonged imaging‐to‐treatment times
EP2814572B1 (en) Method and device for determining an irradiation plan for a particle irradiation unit
DE102012200297B3 (en) Method for determining four dimensional-plan for carrying out intensity modulated therapeutic irradiation of target volume moving in irregular periods, involves moving radiation source of radiation therapy device around target volume
Furmanová et al. Using multiple planning scans to predict organ shape variability during RT for prostate cancer
Mnejja et al. Dose Distribution Prediction for Optimal Treamtment of Modern External Beam Radiation Therapy for Nasopharyngeal Carcinoma

Legal Events

Date Code Title Description
8122 Nonbinding interest in granting licenses declared
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20111101