CN113061605B - Construction method and application of fucose transferase 8 (FUT 8) function-deficient cell strain - Google Patents

Construction method and application of fucose transferase 8 (FUT 8) function-deficient cell strain Download PDF

Info

Publication number
CN113061605B
CN113061605B CN202110228894.XA CN202110228894A CN113061605B CN 113061605 B CN113061605 B CN 113061605B CN 202110228894 A CN202110228894 A CN 202110228894A CN 113061605 B CN113061605 B CN 113061605B
Authority
CN
China
Prior art keywords
leu
cell strain
cell
glu
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110228894.XA
Other languages
Chinese (zh)
Other versions
CN113061605A (en
Inventor
袁燕秋
毛洋
王圣钧
王军舰
何羽骐
钟雨伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Publication of CN113061605A publication Critical patent/CN113061605A/en
Application granted granted Critical
Publication of CN113061605B publication Critical patent/CN113061605B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0681Cells of the genital tract; Non-germinal cells from gonads
    • C12N5/0682Cells of the female genital tract, e.g. endometrium; Non-germinal cells from ovaries, e.g. ovarian follicle cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01068Glycoprotein 6-alpha-L-fucosyltransferase (2.4.1.68), i.e. FUT8
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Reproductive Health (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The invention discloses a construction method and application of a fucose transferase 8 (FUT 8) function-deficient cell strain. The invention achieves the purpose that the constructed mature engineering cells lose the function of fucose transferase (FUT 8) by screening and selecting the active site of FUT8 and adopting a base editing technology under the conditions of not introducing exogenous protein and not destroying the integral structure of endogenous protein and by the minimum modification of the gene level, and the invention is changed from a host for normally producing antibody medicines containing fucose to a host for producing antibody medicines containing no fucose, thereby improving the yield and the quality of the produced antibody medicines.

Description

Construction method and application of fucose transferase 8 (FUT 8) function-deficient cell strain
Technical Field
The invention belongs to the field of molecular biology, and particularly relates to a construction method and application of a fucose transferase 8 (FUT 8) function-deficient cell strain.
Background
Therapeutic antibody drugs are a rapidly growing field of drug development in recent years. In addition to neutralizing the effect of the antigen, a considerable number of therapeutic antibody drugs, such as anti-tumor antibody drugs, kill target cells after binding them by antibody-dependent cell-mediated cytotoxicity (ADCC). Therefore, improving the ability of a therapeutic antibody drug to generate ADCC is important for improving the efficacy of an anti-tumor antibody drug.
The research shows that: the ADCC of the therapeutic antibody modified by fucose-deficient glycosylation is enhanced by several tens of times compared to a therapeutic antibody containing α 1, 6-linked core fucose. However, therapeutic antibodies produced by the engineered cells, which are not engineered, contain almost all fucose glycosylation modifications. Therefore, the development of engineered cells capable of producing fucose-deficient glycosylated antibodies has important application prospects for the development of therapeutic antibody drugs with enhanced ADCC.
At present, the strategies adopted in the prior art for producing fucose-deficient glycosylated antibodies are mainly as follows: inducing the engineered cell to synthesize a highly bisecting N-acetylglucosamine (bisecting GlcNAc), low fucose antibody molecule by overexpressing N-acetylglucosamine transferase III (GnTIII) in the engineered cell; or reducing or eliminating the expression of fucose transferase 8 (FUT 8) by the engineering cells through the knockout technology of Zinc Finger Nuclear, TALEN and other genes, thereby leading the engineering cells to lose the capability of synthesizing fucose-containing antibody molecules; or reducing the expression of fucose transferase (FUT 8) by RNA interference technology (RNAi), thereby making the engineered cell lose the ability to synthesize fucose-containing antibody molecules; or inhibiting the synthesis and transport pathway of fucose by similar molecular biological methods. However, a common problem with these approaches is: the introduction of a large amount of exogenous protein (such as GnTIII overexpression) or the reduction of endogenous protein expression (such as FUT8 knock-out) may cause unnecessary growth stress on the engineered cells that have already been constructed to be mature, thereby reducing the yield and quality of antibody-producing drugs.
Therefore, there is a need for a method for constructing a fucosyltransferase deficient cell line without introducing a foreign protein and without disrupting the expression of an endogenous protein, so as to improve ADCC of a therapeutic antibody drug and reduce the risk of low yield and quality of the antibody drug.
Disclosure of Invention
The invention aims to provide a targeting sequence for constructing a cell strain with fucose transferase 8 (FUT 8) function loss;
another objective of the invention is to provide a fucosyltransferase 8 functional deletion cell strain;
the present invention also provides a method for constructing the above-mentioned fucose transferase 8 deficient cell line;
another object of the present invention is to provide a sequencing primer for discriminating the cell line from a wild-type cell line;
the invention also aims to provide the application of the cell strain in preparing a medicament for expressing the antibody.
The technical scheme adopted by the invention is as follows:
in a first aspect of the present invention, there is provided:
a targeting sequence for constructing a cell strain with fucosyltransferase 8 function deletion is 5 'and is TGTCAGACGCACTGAAAAG-3' (SEQ ID NO. 1).
The cell strain is obtained by constructing plasmid and transfecting a base editor;
wherein the sequence of the constructed plasmid is shown as SEQ ID NO.3;
the base editor includes ABEmax adenine base editor, BE3 cytosine base editor.
The ABEmax adenine base editor was synthesized from the whole gene of Shanghai Biotechnology, inc. according to the sequence reported in the literature.
The BE3 cytosine base editor was synthesized from the whole gene of Shanghai Biotechnology Ltd based on the sequence reported in the literature.
In a second aspect of the present invention, there is provided:
a cell strain with fucose transferase 8 function deletion, the protein sequence expressed by the cell strain is shown in SEQ ID NO.2.
Based on a CRISPR targeting system, the active site of the fucose transferase 8 is selected, and the length of the selected sequence is 20bp.
In a third aspect of the present invention, there is provided:
the construction method of the fucose transferase 8 function-deficient cell strain comprises the following steps:
(1) Culturing the cell strain;
(2) Mixing and constructing plasmids and a base editor, and incubating to obtain a transfection reagent;
(3) Mixing the transfection reagent and the cultured cell strain, and incubating;
(4) Observing cells, judging the transfection condition, and obtaining a fucose transferase function-deficient cell strain after successful transfection;
wherein, the transfection condition is judged as follows:
and (4) observing the fluorescence of the cells, wherein if the fluorescence exists, the cells are successfully transfected.
Further, the construction method further comprises the following steps:
(5) Sorting monoclonal cells with fluorescence;
(6) Detecting and determining the fucose transferase 8 function-deficient cell strain.
Sorting may be accomplished using sorting methods conventional in the art, including flow cytometry sorting, among others.
Detection determination of fucosyltransferase 8 functionally deficient cell lines can be determined using detection methods routine in the art, including direct sequencing.
The specific operation of sequencing comprises: extracting the genome of the monoclonal cell, and sequencing and screening successfully edited engineering cells by using the following sequencing primer 5 'TCTGTTGATTC CAGGTTCCCA-3' (SEQ ID No. 4).
Furthermore, the sequence of the constructed plasmid is shown as SEQ ID NO.3;
the construction method of the plasmid comprises the following steps:
(1) Synthesizing a double-stranded DNA fragment with a restriction enzyme BbsI site;
(2) Carrying out enzyme digestion;
(3) Carrying out enzyme linkage to obtain a constructed plasmid;
wherein, the carrier plasmid comprises gRNA and fluorescent protein.
The gRNA has the characteristics of targeting the active site of the fucose transferase 8 and high-efficiency gene editing.
The fluorescent protein includes green fluorescent protein GFP. Of course, other fluorescent proteins in the cost field can be reasonably replaced according to actual needs.
Further, the reaction system of enzyme digestion in the step (2) is as follows:
vector plasmid ≤1μg
Restriction enzyme Bbs I 1μL
10×CutSmart Buffer 5μL
Water (W) Make up to 50 μ L;
the enzyme digestion in the step (2) is carried out under the conditions of overnight enzyme digestion at 37 ℃ and 20min at 65 ℃ to inactivate the enzyme.
After the enzyme inactivation, the purification treatment was performed by agarose gel (0.8%) electrophoresis.
Further, the reaction system of the enzyme linkage in the step (3) is:
plasmid after enzyme digestion in step (2) 100-500ng
Targeting sequences 1-2μg
10×T4DNALigaseBuffer 2μL
T4DNALigase 2 WeissU
Water (I) Make up to 20 μ L;
the enzyme was inactivated by incubating at 22 ℃ for 1 hour and at 70 ℃ for 5 min.
Further, the above base editor includes ABEmax adenine base editor, BE3 cytosine base editor.
The ABEmax adenine base editor was synthesized from the whole gene of Shanghai Biotechnology, inc. according to the sequence reported in the literature.
The BE3 cytosine base editor was synthesized from the whole gene of Shanghai Biotechnology Ltd based on the sequence reported in the literature.
In a fourth aspect of the present invention, there is provided:
a sequencing primer for identifying the cell strain and a wild cell strain, wherein the sequence of the sequencing primer is 5.
Further, the cell lines include CHO cells and HEK293 cells. Of course, other engineered cell lines in the art can be reasonably substituted according to actual needs.
In a fifth aspect of the present invention, there is provided:
the application of the cell strain in preparing a medicine for expressing the antibody.
The invention has the beneficial effects that:
the invention can successfully construct the fucose transferase 8 function-deficient cell strain and overcome a plurality of defects in the prior art. The fucose transferase 8 function-deficient cell strain of the invention can lead the constructed mature engineering cells to lose the fucose transferase 8 (FUT 8) function under the condition of not introducing exogenous protein and not destroying the integral structure of endogenous protein by the minimum change of the gene level, and the invention is changed from a host for normally producing antibody medicines containing fucose to a host for producing antibody medicines without fucose.
Drawings
FIG. 1 is a map of a vector plasmid (HP 180-dCas 9); wherein promoter represents promoter, enhancer represents enhancer, and gRNAscaffold represents gRNA skeleton;
FIG. 2 shows a map (A) and a sequence map (B) of a vector plasmid (HP 180-dCas 9) at the time of enzyme digestion; wherein promoter represents promoter, enhancer represents enhancer, and gRNAscaffold represents gRNA skeleton;
FIG. 3 is a sequence map of the constructed HP180-dCas9 plasmid of gRNA 1;
FIG. 4 is a sequence map of the constructed HP180-dCas9 plasmid of gRNA 2;
FIG. 5 is a sequence map of the constructed HP180-dCas9 plasmid of gRNA 3;
FIG. 6 is a sequence map of the constructed HP180-dCas9 plasmid of gRNA 4;
FIG. 7 shows the sequencing results of samples of gRNA1 group;
FIG. 8 shows the sequencing results of samples of the gRNA2 group;
FIG. 9 shows the sequencing results of samples of gRNA3 group;
FIG. 10 shows the sequencing results of samples of gRNA4 group;
FIG. 11 is a graph showing N-sugar chains of rituximab produced by wild-type CHO cells (WT) and CHO mutant cells (CHO-R365G).
Detailed Description
In order to make the objects, technical solutions and technical effects of the present invention more clear, the present invention will be described in further detail with reference to specific embodiments. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The test materials and reagents used are, unless otherwise specified, all consumables and reagents which are customary and commercially available.
EXAMPLE 1 selection of mutation sites
In the invention, the inventor researches and discovers that H363, R365, D368, K369, E373, Y382, D409, D453 and S469 are active sites of FUT8, but mutation of all the sites is not operable.
The requirement for screening for a suitable active site in the present invention is based on the following conditions:
1. since CRISPR technology relies on the localization of PAM (pro-spacer adjacent motif), this requires that the designed gRNA (guide RNA) must target sequences near PAM;
2. the base editing tool can only effectively realize the conversion of a specific base within an active window which is a fixed distance away from the PAM sequence in the gRNA targeted sequence;
3. due to the degeneracy of the codons, nonsense mutations may occur.
Based on the screening of the above three conditions, the inventors found three operable sites of R365, D368 and D453.
The FUT8 protein sequence is as follows:
MRAWTGSWRWIMLILFAWGTLLFYIGGHLVRDNDHPDHSSRELSKILAKLERLKQQN EDLRRMAESLRIPEGPIDQGTATGRVRVLEEQLVKAKEQIENYKKQARNDLGKDHEILRRRI ENGAKELWFFLQSELKKLKKLEGNELQRHADEILLDLGHHERSIMTDLYYLSQTDGAGEW REKEAKDLTELVQRRITYLQNPKDCSKARKLVCNINKGCGYGCQLHHVVYCFMIAYGTQR TLILESQNWRYATGGWETVFRPVSETCTDRSGLSTGHWSGEVKDKNVQVVELPIVDSLHPR PPYLPLAVPEDLADRLLRVHGDPAVWWVSQFVKYLIRPQPWLEREIEETTKKLGFKHPVIGV HVRRTDKVGTEAAFHPIEEYMVHVEEHFQLLERRMKVDKKRVYLATDDPSLLKEAKTKYS NYEFISDNSISWSAGLHNRYTENSLRGVILDIHFLSQADFLVCTFSSQVCRVAYEIMQTLHPD ASANFHSLDDIYYFGGQNAHNQIAVYPHQPRTKEEIPMEPGDIIGVAGNHWNGYSKGVNRK LGKTGLYPSYKVREKIETVKYPTYPEAEK(SEQ ID NO.5)。
wherein the first underlineMarkedRThe active site of R365, the second underlinedDThe third underlined, labeled D368 active siteDIs the D453 active site.
Wherein, the gene sequences near the active sites R365 and D368 of FUT8 in the genome are as follows:
5’-AATAACCAACATCTTTAAAAGGCTAGCTTGTCTTAAACTACAGGAAAAGTTCATA TGGATCTTTGTTTTCTTAGATGACTTTAAATTCTATGAACTGAAGTGGTAGTAACTTTACA GGGTAAAATGAAAGAAAAAAATTAATAAACTTTGGCATAAGAATGTTACAAGCATTATCT TTAAGCTTTGAATTCTGTTATGATTTTGGTCTCAAAAACCAAAAAACTTAAATCTGTTGAT TCCAGGTTCCCATATATTCTTGGATATGCCAATTACTTTTTCTGTAAGCAAGTGTTTCATAA AACTTTTACTTAACTTTCATATTGACCTGTACTATTCAACATTCAGCTATGTTAAAGTATTT GTGAAGTGTTTTGAAATGATTTTATATTTTCTAAGGTGAGAATAAATGAGAAAATGTTTTA ATATGTCTCCAGTGCCCCCATGACTAGGGATACTAATTGAGTACCAGTACATTATCAGTGT GCTCTCCACTTCTCCCCAGAGTCCATGTCAGACGCACTGACAAAGTGGGAACAGAAGC AGCCTTCCATCCCATTGAGGAATACATGGTACACGTTGAAGAACATTTTCAGCTTCTCGA ACGCAGAATGAAAGTGGATAAAAAAAGAGTGTATCTGGCCACTGATGACCCTTCTTTGT TAAAGGAGGCAAAGACAAAGTAAGTTAGACCAACAAGTGGTTCTGTATGGGATTATCTC TTAGTTGAAGAAAATCCTTAATTCTGGGAACTTGTGGTTCTTGTTGCTAACTAATAGGTT CCAAAATCAAAGACTACATGTGCAAATATTAATCTAATCAAGTCATACCTTACTAGCTGTA TCTGATGCAAATTAAGAAGTCTAAAATGAATTAGACTGCTGATTTGTGTAGCATCACTAG CAGTCATCATTCAACACAGTACCACACTTCTTAGTACCAAAATCTGTTTAACATACTAGA GTTTCCATAAATCAAATTTTGTAGCCTGGGGCTTAAGTAACAGAAGTTTATGTCTCACAG TTTTGATCTGGGATATT-3’(SEQ ID NO.6)。
the bold AGA and GAC are coding sequences corresponding to the active sites R365 and D368 respectively; wherein the underlined bases areAAndGrespectively, a single base target modified by base editing; targeting sequences designed for it are as follows:
target D368:
gRNA1:5’-CTTTGTCAGTGCGTCTGACA-3’(SEQ ID NO.7);
target R365:
gRNA2:5’-GTCAGACGCACTGACAAAGT-3’(SEQ ID NO.8);
gRNA3:5’-TGTCAGACGCACTGACAAAG-3’(SEQ ID NO.1)。
the gene sequence near the FUT8 active site D453 in the genome is as follows:
5’-GGTCATAATGATGTATGTGTTTAAGATAATATACCCATAATATATTTTTGTAAAACAT GGTTCTGCTACGTAGCCCAGGCCAGCCTTGGACCCGTAGTCCTCTTGTCTCAGCCAGCT GAATATTTGGACTATAGGAATGAATATCTCACCACACCTGGCATCAAGATATTCTGAAGTA GTTTCTTCTCCATTGTTGATTTGAGAGATGCTTCAACTACTCTATTAAATGTTATCAGGAG GGAGCTTTTGATTAAAGAAGTGGTCTCCCTTCTGTAGAATACTTAAGTTTAGTCATGTAC AAATCTCTTTTTTTCAGGTACTCCAATTATGAATTTATTAGTGATAACTCTATTTCTTGGTC AGCTGGACTACACAACCGATACACAGAAAATTCACTTCGGGGCGTGATCCTGGATATAC ACTTTCTCTCCCAGGCTGACTTCCTTGTGTGTACTTTTTCATCCCAGGTAAGTGGTAGCA CTTTTTAGTGGCCAGTACTCAGTGTTGTACTGTGCCAGGAAAATTATTTGTGAGTCTGTG TTTTTTGTGTTTGTTTGTTTGTTTGTTTGTTTGTTTTCATGACAGTGTTTCTCTGTGTAGCT TTGGAGCCTATCCTGGTACTGGCTCTGTAGACCAGGTTAGCCTTGAACTCGAAGAGATC AGCCTGCCTCTGCCTCCCGAGTGCTGGGATTAAAGGCGTGCACCACCAACGCCCAGCAT TAGTCTGTGTTTTTAGTGTTAGTATGATTCCAGTATAATTTCCTTAACTTAGTACTTGAA-3’ (SEQ ID NO.9)。
the thickened GAT is a coding sequence corresponding to the active site D453; wherein the bases are underlinedAA single base modified by base editing; targeting sequences were designed for this as follows:
target D453: gRNA4:5' GGATATATACACTTTCTCTCCC-
Example 2 construction of plasmids
1. The synthesis of the targeting sequence DNA fragment with the restriction endonuclease BbsI site is as follows:
for gRNA1:
forward direction: 5' CACCGCTTTGTCAGTGCGTCTGACA-
And (3) reversing: 5' AAACTGTCAGACGCACTGACAAAGC-
For gRNA2:
forward direction: 5' CACCGTCAGACGCACTGAAAGT-
And (3) reversing: 5 'AAACACTTTGTCAGTGCGTCTGAC-3' (SEQ ID NO. 14)
For gRNA3:
forward direction: 5 'CACCTGTCTCAGACGCAGTGAAAAG-3' (SEQ ID NO. 15)
And (3) reversing: 5 'AAACCTTTGTCAGTGCGTCTGACA-3' (SEQ ID NO. 16)
For gRNA4:
forward direction: 5 'CACCGGATACATCTTTTCTCTCTCCCC-3' (SEQ ID NO. 17)
And (3) reversing: 5 'AAACGGGAGAGAAAGTGTATATCC-containing 3' (SEQ ID NO. 18)
Oligonucleotide chains of the above sequences were synthesized, and the positive and negative strands of each set were mixed to a final concentration of 50. Mu.M, respectively. Denaturation at 94 ℃ for 5min, and annealing at 50 ℃ to obtain the double-stranded DNA fragment with the BbsI site.
2. The above fragments were loaded into a vector plasmid with small guide RNA (sgRNA) backbone, green fluorescent protein, GFP, as follows:
a) A vector plasmid (designated as HP180-dCas 9) having a BbsI cohesive end was prepared by digestion: the HP180-dCas9 plasmid map and the carried BbsI site are shown in a figure 1:
the reaction system is as follows:
TABLE 1 restriction reaction System of vector plasmid
Reagent Volume of
HP180-dCas9 plasmid ≤1μg
Restriction enzyme Bbs I 1μL(10Units)
CutSmart Buffer(10×) 5μL
Water (W) Make up to 50 μ L
The reagents were mixed well and cleaved overnight at 37 ℃ and then the enzyme was inactivated at 65 ℃ for 20min, and the resulting cleaved product was purified by agarose gel (0.8%) electrophoresis.
The map and sequence of the vector plasmid (HP 180-dCas 9) at the time of enzyme digestion are shown in FIG. 2.
b) Enzyme linking: the reaction system is as follows:
TABLE 2 reaction systems for the enzyme linkage
Reagent Volume of
Enzyme-digested HP180-dCas9 plasmid 100-500ng
Targeting sequences 1-2μg
T4DNALigaseBuffer(10×) 2μL
T4DNALigase 2WeissU
Water (W) Make up to 20. Mu.L
The reagents were mixed, homogenized, incubated at 22 ℃ for 1 hour, and the enzyme was inactivated at 70 ℃ for 5 min.
The sequence map of the constructed HP180-dCas9 plasmid of gRNA1 is shown in fig. 3;
the sequence map of the HP180-dCas9 plasmid of the gRNA2 obtained by construction is shown in fig. 4;
the sequence map of the constructed HP180-dCas9 plasmid of gRNA3 is shown in fig. 5;
the sequence map of the constructed HP180-dCas9 plasmid of gRNA4 is shown in fig. 6;
the sequence of the HP180-dCas9 plasmid (HP 180-dCas9-gRNA 1) for coding gRNA1 is shown as SEQ ID NO.19.
The sequence of the HP180-dCas9 plasmid (HP 180-dCas9-gRNA 2) for coding the gRNA2 is shown as SEQ ID NO.20.
The sequence of the HP180-dCas9 plasmid (HP 180-dCas9-gRNA 3) for coding gRNA3 is shown as SEQ ID NO.3.
The sequence of the HP180-dCas9 plasmid (HP 180-dCas9-gRNA 4) for coding gRNA4 is shown as SEQ ID NO.21.
EXAMPLE 3 transfection of CHO engineered cells
The HP180-dCas9 plasmid encoding gRNA (HP 180-dCas9-gRNA1, 2, 3, 4) was co-transfected with a base editor plasmid (ABEmax or BE 3) into CHO engineered cells as follows:
1. preparation of cells
At 37 ℃,5% CO 2 In a cell culture incubator with concentration, CHO cells were cultured in CHO Fusion medium (containing 2% Glutamax and 1% penicillin and streptomycin (P/S) double antibody), and after they had grown to a logarithmic growth phase, the cell density was counted and the number of cells was taken to be 2X 10 6 The cell fluid of (4) was centrifuged in a 15ml centrifuge tube at 100g for 5min, the supernatant was discarded, and the cells were then resuspended with 1.8ml Opti MEM medium (2% GlutaMax and 1% P/S double antibody contained).
2. Incubation of transfection reagents
After vortexing FectoPRO reagent (available from Polyplus Transfection Co.) for 5S, 2. Mu.L was added to a 1.5ml EP tube, and in addition, opti MEM medium (containing 2% GlutaMax and 1% P/S double antibody) was added to another 1.5ml EP tube, 0.5. Mu.g of HP180-dCas9-gRNA plasmid and 0.5. Mu.g of plasmid with base editor (gRNA 1 co-transfected with BE 3; gRNA2, 3, 4 co-transfected with ABEmax) were added to the tube containing Opti MEM medium, and mixed. The liquids in the two tubes were then mixed and incubated for 10min.
3. Mixing transfection reagent and cell sap
And pouring the cell sap into a culture dish, adding the incubated transfection reagent into the culture dish, and uniformly mixing.
4. Changing culture medium
After 24 hours, the transfection was successful if there was green fluorescence, as observed under a fluorescence microscope. The culture was carefully aspirated by pipette gun, discarded, and CHO Fusion medium (containing 2% Glutamax and 1% P/S double antibody) was added.
EXAMPLE 4 clonal cell lines
1. Floor board
Add 200 μ l PBS buffer to 36 wells of the peripheral edge of 96 well plate and 150 μ l medium to the middle 60 wells (50% CHO fusion +37% CHO clone +10% FBS +2% Glutamax +1% double antibody).
2. Preparation of cells
Counting and calculating the cell density of the transfected CHO cell fluid and wild type CHO cell fluid 3-5 days after confirming the successful transfection, and respectively taking the cell containing number of 2 multiplied by 10 6 The cell fluid was centrifuged at 100g for 5min in a flow centrifuge tube, the supernatant was discarded and resuspended in 4ml PBS.
3. Flow cytometer sorting
4. Culture of monoclonal
Placing 96 well plates at 37 5% CO 2 Culturing in a cell culture box with the concentration for 1-2 weeks to obtain wild type CHO cells and CHO mutant cells (CHO-R365G).
Example 5 sequencing validation
After the cells in example 4 were grown to an appropriate density, the genomes of the selected CHO monoclonal (CHO-R365G) and wild type CHO cells were extracted with the FlexiGene DNA kit (purchased from QIAgen, cat # 51206) respectively for sequencing. Since the positions of gRNAs 1, 2 and 3 are basically overlapped, a sequencing primer can be shared, and the sequence of the primer is as follows: 5 'TCTGTTGATTCCAGGTTCCCA-3' (SEQ ID NO. 4).
The sequencing results of the gRNA1 group samples are shown in FIG. 7;
and (4) conclusion: all sequencing samples of the gRNA1 group showed no base mutation as in fig. 7, indicating that gRNA1 is not an ideal targeting sequence.
Sequencing results of samples of the gRNA2 group are shown in FIG. 8;
and (4) conclusion: although the group of gRNA2 has base mutation, it is not located at the target site, and although the base mutation is located in the sequence coding for R365, it is nonsense mutation, and can not change the amino acid sequence of the site, indicating that gRNA2 is not an ideal target sequence.
Sequencing results of samples of the gRNA3 group are shown in FIG. 9;
and (4) conclusion: as can be seen from fig. 9, although gRNA3 has a single nucleotide shift compared to gRNA2, it can be accurately edited to the target site, and is a unimodal mutation, i.e., both alleles are mutated, which finally results in the mutation of FUT8 protein R365 site to glycine (SEQ ID No. 2), and FUT8 is functionally lost, indicating that gRNA3 is an ideal targeting sequence.
The post-mutation FUT8 amino acid sequence is as follows:
MRAWTGSWRWIMLILFAWGTLLFYIGGHLVRDNDHPDHSSRELSKILAKLERLKQQN EDLRRMAESLRIPEGPIDQGTATGRVRVLEEQLVKAKEQIENYKKQARNDLGKDHEILRRRI ENGAKELWFFLQSELKKLKKLEGNELQRHADEILLDLGHHERSIMTDLYYLSQTDGAGEW REKEAKDLTELVQRRITYLQNPKDCSKARKLVCNINKGCGYGCQLHHVVYCFMIAYGTQR TLILESQNWRYATGGWETVFRPVSETCTDRSGLSTGHWSGEVKDKNVQVVELPIVDSLHPR PPYLPLAVPEDLADRLLRVHGDPAVWWVSQFVKYLIRPQPWLEREIEETTKKLGFKHPVIGV HVGRTDKVGTEAAFHPIEEYMVHVEEHFQLLERRMKVDKKRVYLATDDPSLLKEAKTKYS NYEFISDNSISWSAGLHNRYTENSLRGVILDIHFLSQADFLVCTFSSQVCRVAYEIMQTLHPD ASANFHSLDDIYYFGGQNAHNQIAVYPHQPRTKEEIPMEPGDIIGVAGNHWNGYSKGVNRK LGKTGLYPSYKVREKIETVKYPTYPEAEK(SEQ ID NO.2)。
wherein, the bold and underlined G is used as the mutation generation of the R365 active site in the original sequence. Finally, the full-length sequence of the optimal HP180-dCas9-gRNA plasmid is shown as SEQ ID NO.3.
gRNA4 group sequencing primers were: 5 'GGGAGCTTTTTTGATTAAAGAAGTGGT-3' (SEQ ID NO. 22)
The sequencing results for the gRNA4 group are shown in fig. 10:
and (4) conclusion: only one target site mutation occurred in the gRNA4 group, but a bimodal mutation, i.e., only one allele mutation, and mutations occurred in non-target regions, indicating that gRNA4 was not an ideal targeting sequence.
Example 6 Fucosyltransferase 8 function-deficient cell line production feasibility verification experiment
This example uses the antibody drug Rituximab (Rituximab) as an example, and shows the feasibility of producing the fucosyltransferase 8-deficient cell strain in this example. Of course, those skilled in the art can prepare fucosyltransferase 8 deficient cell lines expressing other antibodies according to the protocol in this example.
1. Production expression of antibody drug Rituximab (Rituximab):
the medium of wild type CHO cells (CHO-WT) and the CHO mutant cells (CHO-R365G) selected in the above example was replaced with OptiMEM medium (2% GlutaMax and 1% P/S double antibody) and diluted to 1X 10 6 Individual cell/mL, at 37 ℃ C. And 5% CO 2 After 24h of culture in the incubator, expression plasmids encoding the antibody drug Rituximab (Rituximab) were extracted. An expression plasmid encoding an antibody drug Rituximab (Rituximab) is transfected by using a FectoPro transfection reagent, and the specific steps are as follows: adding 10 μ g of an expression plasmid encoding Rituximab and 20 μ l of FectoPro reagent to 2mLOptiMEM medium, mixing them uniformly, incubating for 10min, adding to 18mL of cell suspension culture, and then returning the cells to 37 deg.C and 5% CO 2 The incubator of (2) for cultivation. After 72 hours of cell culture, the cells were centrifuged at 2000g for 10min, and the cell supernatant was collected, and the expressed antibody was present in the cell supernatant.
2. Purification of Rituximab (Rituximab) for production of expressed antibody drug:
the expressed recombinant antibody was purified using Protein a affinity chromatography column as follows: the Protein A affinity chromatographic column is equilibrated by PBS Buffer solution, the cell supernatant collected in the step (1) is injected into the chromatographic column, 10ml of 1M NaCl solution is used for washing the chromatographic column, igG Elution Buffer (purchased from Thermo Fisher Scientific company) is used for eluting the Protein bound by the chromatographic column, a part of eluted products are taken to verify the expression and purification condition of the antibody by using SDS-PAGE and Coomassie brilliant blue staining methods, and the antibody after the purification is successful is stored and used for subsequent experiments.
3. Glycosylation modification analysis for production of expressed antibody drug Rituximab (Rituximab):
(1) Isolation and purification of N-sugar chain modified by antibody:
the IgG Elution buffer in the antibody eluate was replaced with 50mM TEAB buffer using an ultrafiltration tube with a molecular weight cut-off (MWCO) of 10kDa and the solution was concentrated to 100. Mu.L. 5 μ L of LPNGaseF glycosidase was added and the digestion was carried out overnight at 37 ℃. Subsequently, the reaction solution was passed through a C18 Solid Phase Extraction (SPE) cartridge, and the filtrate was collected to obtain a deproteinized N-sugar chain.
(2) Fluorescence labeling of N-sugar chains with procainamide:
the separated N-sugar chains were evaporated to dryness using a centrifugal concentration apparatus, and 20. Mu.L of a mixed solution of 0.4M procainamide and 1M sodium borocyanide was added, followed by incubation at 65 ℃ for 1 hour. After the reaction, the reaction solution was poured into NH equilibrated with 85% acetonitrile 2 After a cartridge of Solid Phase Extraction (SPE) was washed with 85% acetonitrile, the labeled N-sugar chain was eluted with 5% acetonitrile in 100mM ammonium acetate, and then the purified N-sugar chain was evaporated to dryness by a centrifugal concentration apparatus to obtain procainamide-labeled N-sugar chain.
(3) Analysis of the fluorescently labeled N-sugar chains using ultra high performance liquid chromatography (UPLC):
the purified fluorescently labeled N-sugar chains were redissolved with 20. Mu.L of deionized water. mu.L of the reconstituted N-sugar chain sample was mixed with 30. Mu.L of a mixed solution of dimethylformamide and acetonitrile (the volume ratio of dimethylformamide to acetonitrile was 1:
TABLE 3 Ultra Performance Liquid Chromatography (UPLC) analysis conditions
Figure BDA0002958073970000121
The results are shown in FIG. 11.
By comparing the spectra of the N-sugar chain of Rituximab prepared from wild-type CHO cells (WT) and CHO mutant cells (CHO-R365G), it was found that, when the wild-type CHO cells were subjected to base editing using gRNA3 to obtain CHO mutant cells (CHO-R365G) in which the R365 active site encoded by FUT8 gene was mutated, glycosylation modification of the antibody drug Rituximab (Rituximab) produced lacked a fucose (red triangle in the sugar chain in the figure) relative to wild-type CHO cells, thereby verifying that it lost the function of fucose transferase (FUT 8) and had the ability to produce an antibody drug without fucose.
The above embodiments are preferred embodiments of the present invention, but the present invention is not limited to the above embodiments, and any other changes, modifications, substitutions, combinations, and simplifications which do not depart from the spirit and principle of the present invention should be construed as equivalents thereof, and all such changes, modifications, substitutions, combinations, and simplifications are intended to be included in the scope of the present invention.
SEQUENCE LISTING
<110> Zhongshan university
<120> construction method and application of fucosyltransferase 8 (FUT 8) function-deficient cell strain
<130>
<160> 22
<170> PatentIn version 3.5
<210> 1
<211> 20
<212> DNA
<213> Artificial sequence
<400> 1
tgtcagacgc actgacaaag 20
<210> 2
<211> 575
<212> PRT
<213> Artificial sequence
<400> 2
Met Arg Ala Trp Thr Gly Ser Trp Arg Trp Ile Met Leu Ile Leu Phe
1 5 10 15
Ala Trp Gly Thr Leu Leu Phe Tyr Ile Gly Gly His Leu Val Arg Asp
20 25 30
Asn Asp His Pro Asp His Ser Ser Arg Glu Leu Ser Lys Ile Leu Ala
35 40 45
Lys Leu Glu Arg Leu Lys Gln Gln Asn Glu Asp Leu Arg Arg Met Ala
50 55 60
Glu Ser Leu Arg Ile Pro Glu Gly Pro Ile Asp Gln Gly Thr Ala Thr
65 70 75 80
Gly Arg Val Arg Val Leu Glu Glu Gln Leu Val Lys Ala Lys Glu Gln
85 90 95
Ile Glu Asn Tyr Lys Lys Gln Ala Arg Asn Asp Leu Gly Lys Asp His
100 105 110
Glu Ile Leu Arg Arg Arg Ile Glu Asn Gly Ala Lys Glu Leu Trp Phe
115 120 125
Phe Leu Gln Ser Glu Leu Lys Lys Leu Lys Lys Leu Glu Gly Asn Glu
130 135 140
Leu Gln Arg His Ala Asp Glu Ile Leu Leu Asp Leu Gly His His Glu
145 150 155 160
Arg Ser Ile Met Thr Asp Leu Tyr Tyr Leu Ser Gln Thr Asp Gly Ala
165 170 175
Gly Glu Trp Arg Glu Lys Glu Ala Lys Asp Leu Thr Glu Leu Val Gln
180 185 190
Arg Arg Ile Thr Tyr Leu Gln Asn Pro Lys Asp Cys Ser Lys Ala Arg
195 200 205
Lys Leu Val Cys Asn Ile Asn Lys Gly Cys Gly Tyr Gly Cys Gln Leu
210 215 220
His His Val Val Tyr Cys Phe Met Ile Ala Tyr Gly Thr Gln Arg Thr
225 230 235 240
Leu Ile Leu Glu Ser Gln Asn Trp Arg Tyr Ala Thr Gly Gly Trp Glu
245 250 255
Thr Val Phe Arg Pro Val Ser Glu Thr Cys Thr Asp Arg Ser Gly Leu
260 265 270
Ser Thr Gly His Trp Ser Gly Glu Val Lys Asp Lys Asn Val Gln Val
275 280 285
Val Glu Leu Pro Ile Val Asp Ser Leu His Pro Arg Pro Pro Tyr Leu
290 295 300
Pro Leu Ala Val Pro Glu Asp Leu Ala Asp Arg Leu Leu Arg Val His
305 310 315 320
Gly Asp Pro Ala Val Trp Trp Val Ser Gln Phe Val Lys Tyr Leu Ile
325 330 335
Arg Pro Gln Pro Trp Leu Glu Arg Glu Ile Glu Glu Thr Thr Lys Lys
340 345 350
Leu Gly Phe Lys His Pro Val Ile Gly Val His Val Gly Arg Thr Asp
355 360 365
Lys Val Gly Thr Glu Ala Ala Phe His Pro Ile Glu Glu Tyr Met Val
370 375 380
His Val Glu Glu His Phe Gln Leu Leu Glu Arg Arg Met Lys Val Asp
385 390 395 400
Lys Lys Arg Val Tyr Leu Ala Thr Asp Asp Pro Ser Leu Leu Lys Glu
405 410 415
Ala Lys Thr Lys Tyr Ser Asn Tyr Glu Phe Ile Ser Asp Asn Ser Ile
420 425 430
Ser Trp Ser Ala Gly Leu His Asn Arg Tyr Thr Glu Asn Ser Leu Arg
435 440 445
Gly Val Ile Leu Asp Ile His Phe Leu Ser Gln Ala Asp Phe Leu Val
450 455 460
Cys Thr Phe Ser Ser Gln Val Cys Arg Val Ala Tyr Glu Ile Met Gln
465 470 475 480
Thr Leu His Pro Asp Ala Ser Ala Asn Phe His Ser Leu Asp Asp Ile
485 490 495
Tyr Tyr Phe Gly Gly Gln Asn Ala His Asn Gln Ile Ala Val Tyr Pro
500 505 510
His Gln Pro Arg Thr Lys Glu Glu Ile Pro Met Glu Pro Gly Asp Ile
515 520 525
Ile Gly Val Ala Gly Asn His Trp Asn Gly Tyr Ser Lys Gly Val Asn
530 535 540
Arg Lys Leu Gly Lys Thr Gly Leu Tyr Pro Ser Tyr Lys Val Arg Glu
545 550 555 560
Lys Ile Glu Thr Val Lys Tyr Pro Thr Tyr Pro Glu Ala Glu Lys
565 570 575
<210> 3
<211> 4845
<212> DNA
<213> Artificial sequence
<400> 3
gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60
ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120
aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180
atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240
cgaaacacct gtcagacgca ctgacaaagg ttttagagct agaaatagca agttaaaata 300
aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt tgttttagag 360
ctagaaatag caagttaaaa taaggctagt ccgtttttag cgcgtgcgcc aattctgcag 420
acaaatggct ctagagccac catggcggcc gctagttatt aatagtaatc aattacgggg 480
tcattagttc atagcccata tatggagttc cgcgttacat aacttacggt aaatggcccg 540
cctggctgac cgcccaacga cccccgccca ttgacgtcaa taatgacgta tgttcccata 600
gtaacgccaa tagggacttt ccattgacgt caatgggtgg agtatttacg gtaaactgcc 660
cacttggcag tacatcaagt gtatcatatg ccaagtacgc cccctattga cgtcaatgac 720
ggtaaatggc ccgcctggca ttatgcccag tacatgacct tatgggactt tcctacttgg 780
cagtacatct acgtattagt catcgctatt accatggtga tgcggttttg gcagtacatc 840
aatgggcgtg gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc 900
aatgggagtt tgttttggca ccaaaatcaa cgggactttc caaaatgtcg taacaactcc 960
gccccattga cgcaaatggg cggtaggcgt gtacggtggg aggtctatat aagcagagct 1020
ggtttagtga accgtcagat ccgctagcat ggtgagcaag ggcgaggagc tgttcaccgg 1080
ggtggtgccc atcctggtcg agctggacgg cgacgtaaac ggccacaagt tcagcgtgtc 1140
cggcgagggc gagggcgatg ccacctacgg caagctgacc ctgaagttca tctgcaccac 1200
cggcaagctg cccgtgccct ggcccaccct cgtgaccacc ctgacctacg gcgtgcagtg 1260
cttcagccgc taccccgacc acatgaagca gcacgacttc ttcaagtccg ccatgcccga 1320
aggctacgtc caggagcgca ccatcttctt caaggacgac ggcaactaca agacccgcgc 1380
cgaggtgaag ttcgagggcg acaccctggt gaaccgcatc gagctgaagg gcatcgactt 1440
caaggaggac ggcaacatcc tggggcacaa gctggagtac aactacaaca gccacaacgt 1500
ctatatcatg gccgacaagc agaagaacgg catcaaggtg aacttcaaga tccgccacaa 1560
catcgaggac ggcagcgtgc agctcgccga ccactaccag cagaacaccc ccatcggcga 1620
cggccccgtg ctgctgcccg acaaccacta cctgagcacc cagtccgccc tgagcaaaga 1680
ccccaacgag aagcgcgatc acatggtcct gctggagttc gtgaccgccg ccgggatcac 1740
tctcggcatg gacgagctgt acaagtaagg atccgggatg cagaaattga tgatctatta 1800
aacaataaag atgtccacta aaatggaagt ttttcctgtc atactttgtt aagaagggtg 1860
agaacagagt acctacattt tgaatggaag gattggagct acgggggtgg gggtggggtg 1920
ggattagata aatgcctgct ctttactgaa ggctctttac tattgcttta tgataatgtt 1980
tcatagttgg atatcataat ttaaacaagc aaaaccaaat taagggccag ctcattcctc 2040
ccactcatga tctatagatc tatagatctc tcgtgggatc attgtttttc tcttgattcc 2100
cactttgtgg ttctaagtac tgtggtttcc aaatgtgtca gtttcatagc ctgaagaacg 2160
agatcagcag cctctgttcc acatacactt cattctcagt attgttttgc caagttctaa 2220
ttccatcaga agctggtcga cctgcagggg cgcctgatgc ggtattttct ccttacgcat 2280
ctgtgcggta tttcacaccg catacgtcaa agcaaccata gtacgcgccc tgtagcggcg 2340
cattaagcgc ggcgggtgtg gtggttacgc gcagcgtgac cgctacactt gccagcgccc 2400
tagcgcccgc tcctttcgct ttcttccctt cctttctcgc cacgttcgcc ggctttcccc 2460
gtcaagctct aaatcggggg ctccctttag ggttccgatt tagtgcttta cggcacctcg 2520
accccaaaaa acttgatttg ggtgatggtt cacgtagtgg gccatcgccc tgatagacgg 2580
tttttcgccc tttgacgttg gagtccacgt tctttaatag tggactcttg ttccaaactg 2640
gaacaacact caaccctatc tcgggctatt cttttgattt ataagggatt ttgccgattt 2700
cggcctattg gttaaaaaat gagctgattt aacaaaaatt taacgcgaat tttaacaaaa 2760
tattaacgtt tacaatttta tggtgcactc tcagtacaat ctgctctgat gccgcatagt 2820
taagccagcc ccgacacccg ccaacacccg ctgacgcgcc ctgacgggct tgtctgctcc 2880
cggcatccgc ttacagacaa gctgtgaccg tctccgggag ctgcatgtgt cagaggtttt 2940
caccgtcatc accgaaacgc gcgagacgaa agggcctcgt gatacgccta tttttatagg 3000
ttaatgtcat gataataatg gtttcttaga cgtcaggtgg cacttttcgg ggaaatgtgc 3060
gcggaacccc tatttgttta tttttctaaa tacattcaaa tatgtatccg ctcatgagac 3120
aataaccctg ataaatgctt caataatatt gaaaaaggaa gagtatgagt attcaacatt 3180
tccgtgtcgc ccttattccc ttttttgcgg cattttgcct tcctgttttt gctcacccag 3240
aaacgctggt gaaagtaaaa gatgctgaag atcagttggg tgcacgagtg ggttacatcg 3300
aactggatct caacagcggt aagatccttg agagttttcg ccccgaagaa cgttttccaa 3360
tgatgagcac ttttaaagtt ctgctatgtg gcgcggtatt atcccgtatt gacgccgggc 3420
aagagcaact cggtcgccgc atacactatt ctcagaatga cttggttgag tactcaccag 3480
tcacagaaaa gcatcttacg gatggcatga cagtaagaga attatgcagt gctgccataa 3540
ccatgagtga taacactgcg gccaacttac ttctgacaac gatcggagga ccgaaggagc 3600
taaccgcttt tttgcacaac atgggggatc atgtaactcg ccttgatcgt tgggaaccgg 3660
agctgaatga agccatacca aacgacgagc gtgacaccac gatgcctgta gcaatggcaa 3720
caacgttgcg caaactatta actggcgaac tacttactct agcttcccgg caacaattaa 3780
tagactggat ggaggcggat aaagttgcag gaccacttct gcgctcggcc cttccggctg 3840
gctggtttat tgctgataaa tctggagccg gtgagcgtgg aagccgcggt atcattgcag 3900
cactggggcc agatggtaag ccctcccgta tcgtagttat ctacacgacg gggagtcagg 3960
caactatgga tgaacgaaat agacagatcg ctgagatagg tgcctcactg attaagcatt 4020
ggtaactgtc agaccaagtt tactcatata tactttagat tgatttaaaa cttcattttt 4080
aatttaaaag gatctaggtg aagatccttt ttgataatct catgaccaaa atcccttaac 4140
gtgagttttc gttccactga gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag 4200
atcctttttt tctgcgcgta atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg 4260
tggtttgttt gccggatcaa gagctaccaa ctctttttcc gaaggtaact ggcttcagca 4320
gagcgcagat accaaatact gtccttctag tgtagccgta gttaggccac cacttcaaga 4380
actctgtagc accgcctaca tacctcgctc tgctaatcct gttaccagtg gctgctgcca 4440
gtggcgataa gtcgtgtctt accgggttgg actcaagacg atagttaccg gataaggcgc 4500
agcggtcggg ctgaacgggg ggttcgtgca cacagcccag cttggagcga acgacctaca 4560
ccgaactgag atacctacag cgtgagctat gagaaagcgc cacgcttccc gaagggagaa 4620
aggcggacag gtatccggta agcggcaggg tcggaacagg agagcgcacg agggagcttc 4680
cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc 4740
gtcgattttt gtgatgctcg tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg 4800
cctttttacg gttcctggcc ttttgctggc cttttgctca catgt 4845
<210> 4
<211> 21
<212> DNA
<213> Artificial sequence
<400> 4
tctgttgatt ccaggttccc a 21
<210> 5
<211> 575
<212> PRT
<213> Artificial sequence
<400> 5
Met Arg Ala Trp Thr Gly Ser Trp Arg Trp Ile Met Leu Ile Leu Phe
1 5 10 15
Ala Trp Gly Thr Leu Leu Phe Tyr Ile Gly Gly His Leu Val Arg Asp
20 25 30
Asn Asp His Pro Asp His Ser Ser Arg Glu Leu Ser Lys Ile Leu Ala
35 40 45
Lys Leu Glu Arg Leu Lys Gln Gln Asn Glu Asp Leu Arg Arg Met Ala
50 55 60
Glu Ser Leu Arg Ile Pro Glu Gly Pro Ile Asp Gln Gly Thr Ala Thr
65 70 75 80
Gly Arg Val Arg Val Leu Glu Glu Gln Leu Val Lys Ala Lys Glu Gln
85 90 95
Ile Glu Asn Tyr Lys Lys Gln Ala Arg Asn Asp Leu Gly Lys Asp His
100 105 110
Glu Ile Leu Arg Arg Arg Ile Glu Asn Gly Ala Lys Glu Leu Trp Phe
115 120 125
Phe Leu Gln Ser Glu Leu Lys Lys Leu Lys Lys Leu Glu Gly Asn Glu
130 135 140
Leu Gln Arg His Ala Asp Glu Ile Leu Leu Asp Leu Gly His His Glu
145 150 155 160
Arg Ser Ile Met Thr Asp Leu Tyr Tyr Leu Ser Gln Thr Asp Gly Ala
165 170 175
Gly Glu Trp Arg Glu Lys Glu Ala Lys Asp Leu Thr Glu Leu Val Gln
180 185 190
Arg Arg Ile Thr Tyr Leu Gln Asn Pro Lys Asp Cys Ser Lys Ala Arg
195 200 205
Lys Leu Val Cys Asn Ile Asn Lys Gly Cys Gly Tyr Gly Cys Gln Leu
210 215 220
His His Val Val Tyr Cys Phe Met Ile Ala Tyr Gly Thr Gln Arg Thr
225 230 235 240
Leu Ile Leu Glu Ser Gln Asn Trp Arg Tyr Ala Thr Gly Gly Trp Glu
245 250 255
Thr Val Phe Arg Pro Val Ser Glu Thr Cys Thr Asp Arg Ser Gly Leu
260 265 270
Ser Thr Gly His Trp Ser Gly Glu Val Lys Asp Lys Asn Val Gln Val
275 280 285
Val Glu Leu Pro Ile Val Asp Ser Leu His Pro Arg Pro Pro Tyr Leu
290 295 300
Pro Leu Ala Val Pro Glu Asp Leu Ala Asp Arg Leu Leu Arg Val His
305 310 315 320
Gly Asp Pro Ala Val Trp Trp Val Ser Gln Phe Val Lys Tyr Leu Ile
325 330 335
Arg Pro Gln Pro Trp Leu Glu Arg Glu Ile Glu Glu Thr Thr Lys Lys
340 345 350
Leu Gly Phe Lys His Pro Val Ile Gly Val His Val Arg Arg Thr Asp
355 360 365
Lys Val Gly Thr Glu Ala Ala Phe His Pro Ile Glu Glu Tyr Met Val
370 375 380
His Val Glu Glu His Phe Gln Leu Leu Glu Arg Arg Met Lys Val Asp
385 390 395 400
Lys Lys Arg Val Tyr Leu Ala Thr Asp Asp Pro Ser Leu Leu Lys Glu
405 410 415
Ala Lys Thr Lys Tyr Ser Asn Tyr Glu Phe Ile Ser Asp Asn Ser Ile
420 425 430
Ser Trp Ser Ala Gly Leu His Asn Arg Tyr Thr Glu Asn Ser Leu Arg
435 440 445
Gly Val Ile Leu Asp Ile His Phe Leu Ser Gln Ala Asp Phe Leu Val
450 455 460
Cys Thr Phe Ser Ser Gln Val Cys Arg Val Ala Tyr Glu Ile Met Gln
465 470 475 480
Thr Leu His Pro Asp Ala Ser Ala Asn Phe His Ser Leu Asp Asp Ile
485 490 495
Tyr Tyr Phe Gly Gly Gln Asn Ala His Asn Gln Ile Ala Val Tyr Pro
500 505 510
His Gln Pro Arg Thr Lys Glu Glu Ile Pro Met Glu Pro Gly Asp Ile
515 520 525
Ile Gly Val Ala Gly Asn His Trp Asn Gly Tyr Ser Lys Gly Val Asn
530 535 540
Arg Lys Leu Gly Lys Thr Gly Leu Tyr Pro Ser Tyr Lys Val Arg Glu
545 550 555 560
Lys Ile Glu Thr Val Lys Tyr Pro Thr Tyr Pro Glu Ala Glu Lys
565 570 575
<210> 6
<211> 1037
<212> DNA
<213> Artificial sequence
<400> 6
aataaccaac atctttaaaa ggctagcttg tcttaaacta caggaaaagt tcatatggat 60
ctttgttttc ttagatgact ttaaattcta tgaactgaag tggtagtaac tttacagggt 120
aaaatgaaag aaaaaaatta ataaactttg gcataagaat gttacaagca ttatctttaa 180
gctttgaatt ctgttatgat tttggtctca aaaaccaaaa aacttaaatc tgttgattcc 240
aggttcccat atattcttgg atatgccaat tactttttct gtaagcaagt gtttcataaa 300
acttttactt aactttcata ttgacctgta ctattcaaca ttcagctatg ttaaagtatt 360
tgtgaagtgt tttgaaatga ttttatattt tctaaggtga gaataaatga gaaaatgttt 420
taatatgtct ccagtgcccc catgactagg gatactaatt gagtaccagt acattatcag 480
tgtgctctcc acttctcccc agagtccatg tcagacgcac tgacaaagtg ggaacagaag 540
cagccttcca tcccattgag gaatacatgg tacacgttga agaacatttt cagcttctcg 600
aacgcagaat gaaagtggat aaaaaaagag tgtatctggc cactgatgac ccttctttgt 660
taaaggaggc aaagacaaag taagttagac caacaagtgg ttctgtatgg gattatctct 720
tagttgaaga aaatccttaa ttctgggaac ttgtggttct tgttgctaac taataggttc 780
caaaatcaaa gactacatgt gcaaatatta atctaatcaa gtcatacctt actagctgta 840
tctgatgcaa attaagaagt ctaaaatgaa ttagactgct gatttgtgta gcatcactag 900
cagtcatcat tcaacacagt accacacttc ttagtaccaa aatctgttta acatactaga 960
gtttccataa atcaaatttt gtagcctggg gcttaagtaa cagaagttta tgtctcacag 1020
ttttgatctg ggatatt 1037
<210> 7
<211> 20
<212> DNA
<213> Artificial sequence
<400> 7
ctttgtcagt gcgtctgaca 20
<210> 8
<211> 20
<212> DNA
<213> Artificial sequence
<400> 8
gtcagacgca ctgacaaagt 20
<210> 9
<211> 780
<212> DNA
<213> Artificial sequence
<400> 9
ggtcataatg atgtatgtgt ttaagataat atacccataa tatatttttg taaaacatgg 60
ttctgctacg tagcccaggc cagccttgga cccgtagtcc tcttgtctca gccagctgaa 120
tatttggact ataggaatga atatctcacc acacctggca tcaagatatt ctgaagtagt 180
ttcttctcca ttgttgattt gagagatgct tcaactactc tattaaatgt tatcaggagg 240
gagcttttga ttaaagaagt ggtctccctt ctgtagaata cttaagttta gtcatgtaca 300
aatctctttt tttcaggtac tccaattatg aatttattag tgataactct atttcttggt 360
cagctggact acacaaccga tacacagaaa attcacttcg gggcgtgatc ctggatatac 420
actttctctc ccaggctgac ttccttgtgt gtactttttc atcccaggta agtggtagca 480
ctttttagtg gccagtactc agtgttgtac tgtgccagga aaattatttg tgagtctgtg 540
ttttttgtgt ttgtttgttt gtttgtttgt ttgttttcat gacagtgttt ctctgtgtag 600
ctttggagcc tatcctggta ctggctctgt agaccaggtt agccttgaac tcgaagagat 660
cagcctgcct ctgcctcccg agtgctggga ttaaaggcgt gcaccaccaa cgcccagcat 720
tagtctgtgt ttttagtgtt agtatgattc cagtataatt tccttaactt agtacttgaa 780
<210> 10
<211> 20
<212> DNA
<213> Artificial sequence
<400> 10
ggatatacac tttctctccc 20
<210> 11
<211> 25
<212> DNA
<213> Artificial sequence
<400> 11
caccgctttg tcagtgcgtc tgaca 25
<210> 12
<211> 25
<212> DNA
<213> Artificial sequence
<400> 12
aaactgtcag acgcactgac aaagc 25
<210> 13
<211> 24
<212> DNA
<213> Artificial sequence
<400> 13
caccgtcaga cgcactgaca aagt 24
<210> 14
<211> 24
<212> DNA
<213> Artificial sequence
<400> 14
aaacactttg tcagtgcgtc tgac 24
<210> 15
<211> 24
<212> DNA
<213> Artificial sequence
<400> 15
cacctgtcag acgcactgac aaag 24
<210> 16
<211> 24
<212> DNA
<213> Artificial sequence
<400> 16
aaacctttgt cagtgcgtct gaca 24
<210> 17
<211> 24
<212> DNA
<213> Artificial sequence
<400> 17
caccggatat acactttctc tccc 24
<210> 18
<211> 24
<212> DNA
<213> Artificial sequence
<400> 18
aaacgggaga gaaagtgtat atcc 24
<210> 19
<211> 4845
<212> DNA
<213> Artificial sequence
<400> 19
gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60
ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120
aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180
atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240
cgaaacaccg ctttgtcagt gcgtctgaca gttttagagc tagaaatagc aagttaaaat 300
aaggctagtc cgttatcaac ttgaaaaagt ggcaccgagt cggtgctttt ttgttttaga 360
gctagaaata gcaagttaaa ataaggctag tccgttttta gcgcgtgcgc caattctgca 420
gacaaatggc tctagagcca ccatggcggc cgctagttat taatagtaat caattacggg 480
gtcattagtt catagcccat atatggagtt ccgcgttaca taacttacgg taaatggccc 540
gcctggctga ccgcccaacg acccccgccc attgacgtca ataatgacgt atgttcccat 600
agtaacgcca atagggactt tccattgacg tcaatgggtg gagtatttac ggtaaactgc 660
ccacttggca gtacatcaag tgtatcatat gccaagtacg ccccctattg acgtcaatga 720
cggtaaatgg cccgcctggc attatgccca gtacatgacc ttatgggact ttcctacttg 780
gcagtacatc tacgtattag tcatcgctat taccatggtg atgcggtttt ggcagtacat 840
caatgggcgt ggatagcggt ttgactcacg gggatttcca agtctccacc ccattgacgt 900
caatgggagt ttgttttggc accaaaatca acgggacttt ccaaaatgtc gtaacaactc 960
cgccccattg acgcaaatgg gcggtaggcg tgtacggtgg gaggtctata taagcagagc 1020
tggtttagtg aaccgtcaga tccgctagca tggtgagcaa gggcgaggag ctgttcaccg 1080
gggtggtgcc catcctggtc gagctggacg gcgacgtaaa cggccacaag ttcagcgtgt 1140
ccggcgaggg cgagggcgat gccacctacg gcaagctgac cctgaagttc atctgcacca 1200
ccggcaagct gcccgtgccc tggcccaccc tcgtgaccac cctgacctac ggcgtgcagt 1260
gcttcagccg ctaccccgac cacatgaagc agcacgactt cttcaagtcc gccatgcccg 1320
aaggctacgt ccaggagcgc accatcttct tcaaggacga cggcaactac aagacccgcg 1380
ccgaggtgaa gttcgagggc gacaccctgg tgaaccgcat cgagctgaag ggcatcgact 1440
tcaaggagga cggcaacatc ctggggcaca agctggagta caactacaac agccacaacg 1500
tctatatcat ggccgacaag cagaagaacg gcatcaaggt gaacttcaag atccgccaca 1560
acatcgagga cggcagcgtg cagctcgccg accactacca gcagaacacc cccatcggcg 1620
acggccccgt gctgctgccc gacaaccact acctgagcac ccagtccgcc ctgagcaaag 1680
accccaacga gaagcgcgat cacatggtcc tgctggagtt cgtgaccgcc gccgggatca 1740
ctctcggcat ggacgagctg tacaagtaag gatccgggat gcagaaattg atgatctatt 1800
aaacaataaa gatgtccact aaaatggaag tttttcctgt catactttgt taagaagggt 1860
gagaacagag tacctacatt ttgaatggaa ggattggagc tacgggggtg ggggtggggt 1920
gggattagat aaatgcctgc tctttactga aggctcttta ctattgcttt atgataatgt 1980
ttcatagttg gatatcataa tttaaacaag caaaaccaaa ttaagggcca gctcattcct 2040
cccactcatg atctatagat ctatagatct ctcgtgggat cattgttttt ctcttgattc 2100
ccactttgtg gttctaagta ctgtggtttc caaatgtgtc agtttcatag cctgaagaac 2160
gagatcagca gcctctgttc cacatacact tcattctcag tattgttttg ccaagttcta 2220
attccatcag aagctggtcg acctgcaggg gcgcctgatg cggtattttc tccttacgca 2280
tctgtgcggt atttcacacc gcatacgtca aagcaaccat agtacgcgcc ctgtagcggc 2340
gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga ccgctacact tgccagcgcc 2400
ctagcgcccg ctcctttcgc tttcttccct tcctttctcg ccacgttcgc cggctttccc 2460
cgtcaagctc taaatcgggg gctcccttta gggttccgat ttagtgcttt acggcacctc 2520
gaccccaaaa aacttgattt gggtgatggt tcacgtagtg ggccatcgcc ctgatagacg 2580
gtttttcgcc ctttgacgtt ggagtccacg ttctttaata gtggactctt gttccaaact 2640
ggaacaacac tcaaccctat ctcgggctat tcttttgatt tataagggat tttgccgatt 2700
tcggcctatt ggttaaaaaa tgagctgatt taacaaaaat ttaacgcgaa ttttaacaaa 2760
atattaacgt ttacaatttt atggtgcact ctcagtacaa tctgctctga tgccgcatag 2820
ttaagccagc cccgacaccc gccaacaccc gctgacgcgc cctgacgggc ttgtctgctc 2880
ccggcatccg cttacagaca agctgtgacc gtctccggga gctgcatgtg tcagaggttt 2940
tcaccgtcat caccgaaacg cgcgagacga aagggcctcg tgatacgcct atttttatag 3000
gttaatgtca tgataataat ggtttcttag acgtcaggtg gcacttttcg gggaaatgtg 3060
cgcggaaccc ctatttgttt atttttctaa atacattcaa atatgtatcc gctcatgaga 3120
caataaccct gataaatgct tcaataatat tgaaaaagga agagtatgag tattcaacat 3180
ttccgtgtcg cccttattcc cttttttgcg gcattttgcc ttcctgtttt tgctcaccca 3240
gaaacgctgg tgaaagtaaa agatgctgaa gatcagttgg gtgcacgagt gggttacatc 3300
gaactggatc tcaacagcgg taagatcctt gagagttttc gccccgaaga acgttttcca 3360
atgatgagca cttttaaagt tctgctatgt ggcgcggtat tatcccgtat tgacgccggg 3420
caagagcaac tcggtcgccg catacactat tctcagaatg acttggttga gtactcacca 3480
gtcacagaaa agcatcttac ggatggcatg acagtaagag aattatgcag tgctgccata 3540
accatgagtg ataacactgc ggccaactta cttctgacaa cgatcggagg accgaaggag 3600
ctaaccgctt ttttgcacaa catgggggat catgtaactc gccttgatcg ttgggaaccg 3660
gagctgaatg aagccatacc aaacgacgag cgtgacacca cgatgcctgt agcaatggca 3720
acaacgttgc gcaaactatt aactggcgaa ctacttactc tagcttcccg gcaacaatta 3780
atagactgga tggaggcgga taaagttgca ggaccacttc tgcgctcggc ccttccggct 3840
ggctggttta ttgctgataa atctggagcc ggtgagcgtg gaagccgcgg tatcattgca 3900
gcactggggc cagatggtaa gccctcccgt atcgtagtta tctacacgac ggggagtcag 3960
gcaactatgg atgaacgaaa tagacagatc gctgagatag gtgcctcact gattaagcat 4020
tggtaactgt cagaccaagt ttactcatat atactttaga ttgatttaaa acttcatttt 4080
taatttaaaa ggatctaggt gaagatcctt tttgataatc tcatgaccaa aatcccttaa 4140
cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 4200
gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg 4260
gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc 4320
agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag 4380
aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc 4440
agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 4500
cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 4560
accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 4620
aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt 4680
ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag 4740
cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg 4800
gcctttttac ggttcctggc cttttgctgg ccttttgctc acatg 4845
<210> 20
<211> 4845
<212> DNA
<213> Artificial sequence
<400> 20
gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60
ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120
aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180
atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240
cgaaacaccg tcagacgcac tgacaaagtg ttttagagct agaaatagca agttaaaata 300
aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt tgttttagag 360
ctagaaatag caagttaaaa taaggctagt ccgtttttag cgcgtgcgcc aattctgcag 420
acaaatggct ctagagccac catggcggcc gctagttatt aatagtaatc aattacgggg 480
tcattagttc atagcccata tatggagttc cgcgttacat aacttacggt aaatggcccg 540
cctggctgac cgcccaacga cccccgccca ttgacgtcaa taatgacgta tgttcccata 600
gtaacgccaa tagggacttt ccattgacgt caatgggtgg agtatttacg gtaaactgcc 660
cacttggcag tacatcaagt gtatcatatg ccaagtacgc cccctattga cgtcaatgac 720
ggtaaatggc ccgcctggca ttatgcccag tacatgacct tatgggactt tcctacttgg 780
cagtacatct acgtattagt catcgctatt accatggtga tgcggttttg gcagtacatc 840
aatgggcgtg gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc 900
aatgggagtt tgttttggca ccaaaatcaa cgggactttc caaaatgtcg taacaactcc 960
gccccattga cgcaaatggg cggtaggcgt gtacggtggg aggtctatat aagcagagct 1020
ggtttagtga accgtcagat ccgctagcat ggtgagcaag ggcgaggagc tgttcaccgg 1080
ggtggtgccc atcctggtcg agctggacgg cgacgtaaac ggccacaagt tcagcgtgtc 1140
cggcgagggc gagggcgatg ccacctacgg caagctgacc ctgaagttca tctgcaccac 1200
cggcaagctg cccgtgccct ggcccaccct cgtgaccacc ctgacctacg gcgtgcagtg 1260
cttcagccgc taccccgacc acatgaagca gcacgacttc ttcaagtccg ccatgcccga 1320
aggctacgtc caggagcgca ccatcttctt caaggacgac ggcaactaca agacccgcgc 1380
cgaggtgaag ttcgagggcg acaccctggt gaaccgcatc gagctgaagg gcatcgactt 1440
caaggaggac ggcaacatcc tggggcacaa gctggagtac aactacaaca gccacaacgt 1500
ctatatcatg gccgacaagc agaagaacgg catcaaggtg aacttcaaga tccgccacaa 1560
catcgaggac ggcagcgtgc agctcgccga ccactaccag cagaacaccc ccatcggcga 1620
cggccccgtg ctgctgcccg acaaccacta cctgagcacc cagtccgccc tgagcaaaga 1680
ccccaacgag aagcgcgatc acatggtcct gctggagttc gtgaccgccg ccgggatcac 1740
tctcggcatg gacgagctgt acaagtaagg atccgggatg cagaaattga tgatctatta 1800
aacaataaag atgtccacta aaatggaagt ttttcctgtc atactttgtt aagaagggtg 1860
agaacagagt acctacattt tgaatggaag gattggagct acgggggtgg gggtggggtg 1920
ggattagata aatgcctgct ctttactgaa ggctctttac tattgcttta tgataatgtt 1980
tcatagttgg atatcataat ttaaacaagc aaaaccaaat taagggccag ctcattcctc 2040
ccactcatga tctatagatc tatagatctc tcgtgggatc attgtttttc tcttgattcc 2100
cactttgtgg ttctaagtac tgtggtttcc aaatgtgtca gtttcatagc ctgaagaacg 2160
agatcagcag cctctgttcc acatacactt cattctcagt attgttttgc caagttctaa 2220
ttccatcaga agctggtcga cctgcagggg cgcctgatgc ggtattttct ccttacgcat 2280
ctgtgcggta tttcacaccg catacgtcaa agcaaccata gtacgcgccc tgtagcggcg 2340
cattaagcgc ggcgggtgtg gtggttacgc gcagcgtgac cgctacactt gccagcgccc 2400
tagcgcccgc tcctttcgct ttcttccctt cctttctcgc cacgttcgcc ggctttcccc 2460
gtcaagctct aaatcggggg ctccctttag ggttccgatt tagtgcttta cggcacctcg 2520
accccaaaaa acttgatttg ggtgatggtt cacgtagtgg gccatcgccc tgatagacgg 2580
tttttcgccc tttgacgttg gagtccacgt tctttaatag tggactcttg ttccaaactg 2640
gaacaacact caaccctatc tcgggctatt cttttgattt ataagggatt ttgccgattt 2700
cggcctattg gttaaaaaat gagctgattt aacaaaaatt taacgcgaat tttaacaaaa 2760
tattaacgtt tacaatttta tggtgcactc tcagtacaat ctgctctgat gccgcatagt 2820
taagccagcc ccgacacccg ccaacacccg ctgacgcgcc ctgacgggct tgtctgctcc 2880
cggcatccgc ttacagacaa gctgtgaccg tctccgggag ctgcatgtgt cagaggtttt 2940
caccgtcatc accgaaacgc gcgagacgaa agggcctcgt gatacgccta tttttatagg 3000
ttaatgtcat gataataatg gtttcttaga cgtcaggtgg cacttttcgg ggaaatgtgc 3060
gcggaacccc tatttgttta tttttctaaa tacattcaaa tatgtatccg ctcatgagac 3120
aataaccctg ataaatgctt caataatatt gaaaaaggaa gagtatgagt attcaacatt 3180
tccgtgtcgc ccttattccc ttttttgcgg cattttgcct tcctgttttt gctcacccag 3240
aaacgctggt gaaagtaaaa gatgctgaag atcagttggg tgcacgagtg ggttacatcg 3300
aactggatct caacagcggt aagatccttg agagttttcg ccccgaagaa cgttttccaa 3360
tgatgagcac ttttaaagtt ctgctatgtg gcgcggtatt atcccgtatt gacgccgggc 3420
aagagcaact cggtcgccgc atacactatt ctcagaatga cttggttgag tactcaccag 3480
tcacagaaaa gcatcttacg gatggcatga cagtaagaga attatgcagt gctgccataa 3540
ccatgagtga taacactgcg gccaacttac ttctgacaac gatcggagga ccgaaggagc 3600
taaccgcttt tttgcacaac atgggggatc atgtaactcg ccttgatcgt tgggaaccgg 3660
agctgaatga agccatacca aacgacgagc gtgacaccac gatgcctgta gcaatggcaa 3720
caacgttgcg caaactatta actggcgaac tacttactct agcttcccgg caacaattaa 3780
tagactggat ggaggcggat aaagttgcag gaccacttct gcgctcggcc cttccggctg 3840
gctggtttat tgctgataaa tctggagccg gtgagcgtgg aagccgcggt atcattgcag 3900
cactggggcc agatggtaag ccctcccgta tcgtagttat ctacacgacg gggagtcagg 3960
caactatgga tgaacgaaat agacagatcg ctgagatagg tgcctcactg attaagcatt 4020
ggtaactgtc agaccaagtt tactcatata tactttagat tgatttaaaa cttcattttt 4080
aatttaaaag gatctaggtg aagatccttt ttgataatct catgaccaaa atcccttaac 4140
gtgagttttc gttccactga gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag 4200
atcctttttt tctgcgcgta atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg 4260
tggtttgttt gccggatcaa gagctaccaa ctctttttcc gaaggtaact ggcttcagca 4320
gagcgcagat accaaatact gtccttctag tgtagccgta gttaggccac cacttcaaga 4380
actctgtagc accgcctaca tacctcgctc tgctaatcct gttaccagtg gctgctgcca 4440
gtggcgataa gtcgtgtctt accgggttgg actcaagacg atagttaccg gataaggcgc 4500
agcggtcggg ctgaacgggg ggttcgtgca cacagcccag cttggagcga acgacctaca 4560
ccgaactgag atacctacag cgtgagctat gagaaagcgc cacgcttccc gaagggagaa 4620
aggcggacag gtatccggta agcggcaggg tcggaacagg agagcgcacg agggagcttc 4680
cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc 4740
gtcgattttt gtgatgctcg tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg 4800
cctttttacg gttcctggcc ttttgctggc cttttgctca catgt 4845
<210> 21
<211> 4845
<212> DNA
<213> Artificial sequence
<400> 21
gagggcctat ttcccatgat tccttcatat ttgcatatac gatacaaggc tgttagagag 60
ataattggaa ttaatttgac tgtaaacaca aagatattag tacaaaatac gtgacgtaga 120
aagtaataat ttcttgggta gtttgcagtt ttaaaattat gttttaaaat ggactatcat 180
atgcttaccg taacttgaaa gtatttcgat ttcttggctt tatatatctt gtggaaagga 240
cgaaacaccg gatatacact ttctctcccg ttttagagct agaaatagca agttaaaata 300
aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt tgttttagag 360
ctagaaatag caagttaaaa taaggctagt ccgtttttag cgcgtgcgcc aattctgcag 420
acaaatggct ctagagccac catggcggcc gctagttatt aatagtaatc aattacgggg 480
tcattagttc atagcccata tatggagttc cgcgttacat aacttacggt aaatggcccg 540
cctggctgac cgcccaacga cccccgccca ttgacgtcaa taatgacgta tgttcccata 600
gtaacgccaa tagggacttt ccattgacgt caatgggtgg agtatttacg gtaaactgcc 660
cacttggcag tacatcaagt gtatcatatg ccaagtacgc cccctattga cgtcaatgac 720
ggtaaatggc ccgcctggca ttatgcccag tacatgacct tatgggactt tcctacttgg 780
cagtacatct acgtattagt catcgctatt accatggtga tgcggttttg gcagtacatc 840
aatgggcgtg gatagcggtt tgactcacgg ggatttccaa gtctccaccc cattgacgtc 900
aatgggagtt tgttttggca ccaaaatcaa cgggactttc caaaatgtcg taacaactcc 960
gccccattga cgcaaatggg cggtaggcgt gtacggtggg aggtctatat aagcagagct 1020
ggtttagtga accgtcagat ccgctagcat ggtgagcaag ggcgaggagc tgttcaccgg 1080
ggtggtgccc atcctggtcg agctggacgg cgacgtaaac ggccacaagt tcagcgtgtc 1140
cggcgagggc gagggcgatg ccacctacgg caagctgacc ctgaagttca tctgcaccac 1200
cggcaagctg cccgtgccct ggcccaccct cgtgaccacc ctgacctacg gcgtgcagtg 1260
cttcagccgc taccccgacc acatgaagca gcacgacttc ttcaagtccg ccatgcccga 1320
aggctacgtc caggagcgca ccatcttctt caaggacgac ggcaactaca agacccgcgc 1380
cgaggtgaag ttcgagggcg acaccctggt gaaccgcatc gagctgaagg gcatcgactt 1440
caaggaggac ggcaacatcc tggggcacaa gctggagtac aactacaaca gccacaacgt 1500
ctatatcatg gccgacaagc agaagaacgg catcaaggtg aacttcaaga tccgccacaa 1560
catcgaggac ggcagcgtgc agctcgccga ccactaccag cagaacaccc ccatcggcga 1620
cggccccgtg ctgctgcccg acaaccacta cctgagcacc cagtccgccc tgagcaaaga 1680
ccccaacgag aagcgcgatc acatggtcct gctggagttc gtgaccgccg ccgggatcac 1740
tctcggcatg gacgagctgt acaagtaagg atccgggatg cagaaattga tgatctatta 1800
aacaataaag atgtccacta aaatggaagt ttttcctgtc atactttgtt aagaagggtg 1860
agaacagagt acctacattt tgaatggaag gattggagct acgggggtgg gggtggggtg 1920
ggattagata aatgcctgct ctttactgaa ggctctttac tattgcttta tgataatgtt 1980
tcatagttgg atatcataat ttaaacaagc aaaaccaaat taagggccag ctcattcctc 2040
ccactcatga tctatagatc tatagatctc tcgtgggatc attgtttttc tcttgattcc 2100
cactttgtgg ttctaagtac tgtggtttcc aaatgtgtca gtttcatagc ctgaagaacg 2160
agatcagcag cctctgttcc acatacactt cattctcagt attgttttgc caagttctaa 2220
ttccatcaga agctggtcga cctgcagggg cgcctgatgc ggtattttct ccttacgcat 2280
ctgtgcggta tttcacaccg catacgtcaa agcaaccata gtacgcgccc tgtagcggcg 2340
cattaagcgc ggcgggtgtg gtggttacgc gcagcgtgac cgctacactt gccagcgccc 2400
tagcgcccgc tcctttcgct ttcttccctt cctttctcgc cacgttcgcc ggctttcccc 2460
gtcaagctct aaatcggggg ctccctttag ggttccgatt tagtgcttta cggcacctcg 2520
accccaaaaa acttgatttg ggtgatggtt cacgtagtgg gccatcgccc tgatagacgg 2580
tttttcgccc tttgacgttg gagtccacgt tctttaatag tggactcttg ttccaaactg 2640
gaacaacact caaccctatc tcgggctatt cttttgattt ataagggatt ttgccgattt 2700
cggcctattg gttaaaaaat gagctgattt aacaaaaatt taacgcgaat tttaacaaaa 2760
tattaacgtt tacaatttta tggtgcactc tcagtacaat ctgctctgat gccgcatagt 2820
taagccagcc ccgacacccg ccaacacccg ctgacgcgcc ctgacgggct tgtctgctcc 2880
cggcatccgc ttacagacaa gctgtgaccg tctccgggag ctgcatgtgt cagaggtttt 2940
caccgtcatc accgaaacgc gcgagacgaa agggcctcgt gatacgccta tttttatagg 3000
ttaatgtcat gataataatg gtttcttaga cgtcaggtgg cacttttcgg ggaaatgtgc 3060
gcggaacccc tatttgttta tttttctaaa tacattcaaa tatgtatccg ctcatgagac 3120
aataaccctg ataaatgctt caataatatt gaaaaaggaa gagtatgagt attcaacatt 3180
tccgtgtcgc ccttattccc ttttttgcgg cattttgcct tcctgttttt gctcacccag 3240
aaacgctggt gaaagtaaaa gatgctgaag atcagttggg tgcacgagtg ggttacatcg 3300
aactggatct caacagcggt aagatccttg agagttttcg ccccgaagaa cgttttccaa 3360
tgatgagcac ttttaaagtt ctgctatgtg gcgcggtatt atcccgtatt gacgccgggc 3420
aagagcaact cggtcgccgc atacactatt ctcagaatga cttggttgag tactcaccag 3480
tcacagaaaa gcatcttacg gatggcatga cagtaagaga attatgcagt gctgccataa 3540
ccatgagtga taacactgcg gccaacttac ttctgacaac gatcggagga ccgaaggagc 3600
taaccgcttt tttgcacaac atgggggatc atgtaactcg ccttgatcgt tgggaaccgg 3660
agctgaatga agccatacca aacgacgagc gtgacaccac gatgcctgta gcaatggcaa 3720
caacgttgcg caaactatta actggcgaac tacttactct agcttcccgg caacaattaa 3780
tagactggat ggaggcggat aaagttgcag gaccacttct gcgctcggcc cttccggctg 3840
gctggtttat tgctgataaa tctggagccg gtgagcgtgg aagccgcggt atcattgcag 3900
cactggggcc agatggtaag ccctcccgta tcgtagttat ctacacgacg gggagtcagg 3960
caactatgga tgaacgaaat agacagatcg ctgagatagg tgcctcactg attaagcatt 4020
ggtaactgtc agaccaagtt tactcatata tactttagat tgatttaaaa cttcattttt 4080
aatttaaaag gatctaggtg aagatccttt ttgataatct catgaccaaa atcccttaac 4140
gtgagttttc gttccactga gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag 4200
atcctttttt tctgcgcgta atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg 4260
tggtttgttt gccggatcaa gagctaccaa ctctttttcc gaaggtaact ggcttcagca 4320
gagcgcagat accaaatact gtccttctag tgtagccgta gttaggccac cacttcaaga 4380
actctgtagc accgcctaca tacctcgctc tgctaatcct gttaccagtg gctgctgcca 4440
gtggcgataa gtcgtgtctt accgggttgg actcaagacg atagttaccg gataaggcgc 4500
agcggtcggg ctgaacgggg ggttcgtgca cacagcccag cttggagcga acgacctaca 4560
ccgaactgag atacctacag cgtgagctat gagaaagcgc cacgcttccc gaagggagaa 4620
aggcggacag gtatccggta agcggcaggg tcggaacagg agagcgcacg agggagcttc 4680
cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc 4740
gtcgattttt gtgatgctcg tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg 4800
cctttttacg gttcctggcc ttttgctggc cttttgctca catgt 4845
<210> 22
<211> 25
<212> DNA
<213> Artificial sequence
<400> 22
gggagctttt gattaaagaa gtggt 25

Claims (6)

1. A fucosyltransferase 8 functional deletion cell strain is characterized in that the protein sequence of the fucosyltransferase 8 expressed by the cell strain is shown as SEQ ID NO.2; the construction method of the fucose transferase 8 functional deletion cell strain comprises the following steps:
(1) Culturing the cell strain;
(2) Mixing and constructing plasmids and a base editor, and incubating to obtain a transfection reagent;
(3) Mixing the transfection reagent and the cultured cell strain, and incubating;
(4) Observing cells, judging the transfection condition, and obtaining a fucose transferase function-deficient cell strain after successful transfection;
(5) Sorting monoclonal cells with fluorescence;
(6) Sequencing and detecting to determine a fucose transferase 8 function-deficient cell strain;
wherein, the transfection condition is judged as follows: observing cell fluorescence, wherein if the cell fluorescence exists, the cell transfection is successful;
the plasmid comprises a targeting sequence and a fluorescent protein for constructing a cell strain with the function of fucosyltransferase 8 loss, wherein the sequence of the targeting sequence is 5; the base editor is an adenine base editor;
the cell strain is an engineering cell for producing an antibody drug without fucose.
2. The cell strain of claim 1, wherein the sequence of the constructed plasmid is as set forth in SEQ ID No.3.
3. The cell strain of claim 1, wherein the base editor comprises the ABEmax adenine base editor.
4. The cell strain according to claim 1, wherein the sequenced primer sequence is 5-.
5. The cell line of claim 1, wherein the cell line comprises CHO cells, HEK293 cells.
6. Use of a cell line according to any one of claims 1 to 5 for the preparation of an antibody medicament.
CN202110228894.XA 2020-07-13 2021-03-02 Construction method and application of fucose transferase 8 (FUT 8) function-deficient cell strain Active CN113061605B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010668901 2020-07-13
CN2020106689013 2020-07-13

Publications (2)

Publication Number Publication Date
CN113061605A CN113061605A (en) 2021-07-02
CN113061605B true CN113061605B (en) 2022-11-29

Family

ID=76559241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110228894.XA Active CN113061605B (en) 2020-07-13 2021-03-02 Construction method and application of fucose transferase 8 (FUT 8) function-deficient cell strain

Country Status (1)

Country Link
CN (1) CN113061605B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106399360A (en) * 2015-07-27 2017-02-15 上海药明生物技术有限公司 FUT8 gene knockout method based on CRISPR technology
CN107034234A (en) * 2017-05-19 2017-08-11 四川丰讯科技发展有限公司 A kind of kit for being used to knock out two kinds of genes of FUT8 and DHFR in Chinese hamster ovary celI
WO2019235895A1 (en) * 2018-06-07 2019-12-12 한국생명공학연구원 Transgenic mouse for aglycosylated antibody production and use of aglycosylated antibody produced therefrom

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060083B2 (en) * 2013-07-19 2021-07-13 Larix Bioscience Llc Methods and compositions for producing double allele knock outs
DK3218490T3 (en) * 2014-11-15 2019-02-18 Zumutor Biologics Inc DNA BINDING DOMAIN OF CRISPR SYSTEM FOR PRODUCING NON-FUCOSYLED AND PARTICULAR FUCOSYLED PROTEINS
CN106167525B (en) * 2016-04-01 2019-03-19 北京康明百奥新药研发有限公司 Screen the methods and applications of ultralow fucose cell line
CN106543286A (en) * 2016-12-07 2017-03-29 上海邦耀生物科技有限公司 One kind goes fucose Anti-HER 2 and its application
CN106701823A (en) * 2017-01-18 2017-05-24 上海交通大学 Establishment and application of CHO cell line for producing fucose-free monoclonal antibody

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106399360A (en) * 2015-07-27 2017-02-15 上海药明生物技术有限公司 FUT8 gene knockout method based on CRISPR technology
CN107034234A (en) * 2017-05-19 2017-08-11 四川丰讯科技发展有限公司 A kind of kit for being used to knock out two kinds of genes of FUT8 and DHFR in Chinese hamster ovary celI
WO2019235895A1 (en) * 2018-06-07 2019-12-12 한국생명공학연구원 Transgenic mouse for aglycosylated antibody production and use of aglycosylated antibody produced therefrom

Also Published As

Publication number Publication date
CN113061605A (en) 2021-07-02

Similar Documents

Publication Publication Date Title
KR102191739B1 (en) Modified foot-and-mouth disease virus 3C protease, composition and method thereof
AU2020289750B2 (en) Engineered meganucleases with recognition sequences found in the human T cell receptor alpha constant region gene
AU2021200863A1 (en) Genetically-modified cells comprising a modified human t cell receptor alpha constant region gene
KR101872541B1 (en) Biosynthetic proline/alanine random coil polypeptides and their uses
KR102093570B1 (en) Engineered nucleic acid targeting nucleic acid
KR102264290B1 (en) Method and compositions for cellular immunotherapy
CN112813037A (en) Recombinant mutant adeno-associated virus capable of efficiently infecting primary microglia and related biological material thereof
CN110951741A (en) Bacillus subtilis polygene editing and expression regulation system based on CRISPR Cpf1
KR20200116084A (en) Fermentation process
KR102277529B1 (en) Modified picornavirus 3C protease and method thereof
CN110564775A (en) Method for improving genome site-specific modification efficiency
CN113061605B (en) Construction method and application of fucose transferase 8 (FUT 8) function-deficient cell strain
CN110499336B (en) Method for improving genome site-directed modification efficiency by using small molecule compound
KR20220167380A (en) How to make and use a vaccine against coronavirus
CN110218737A (en) A kind of recombinant vector improving yeast cell surface display Fab fragment antigen binding ability using endoplasmic reticulum retention signal peptide
US20220403003A1 (en) Minimal arrestin domain containing protein 1(arrdc1) constructs
CN110295181B (en) Method for identifying antibiotic species by using bioluminescence report system
CN107090473A (en) Antibacterial peptide PR39 and PG1 coexpression vector and turn PR39 and PG1 DNA murine preparation methods
KR102625766B1 (en) Recombinant microorganism comprising polynucleotide encoding target product binding protein fused to export signal sequence, composition comprising the same and method of producing target product using the same
CN110241129B (en) Luminous report system and application thereof in antibiotic discovery and screening
CN110286118B (en) Method for judging antibiotic action mechanism by using bioluminescence report system
CN109136228A (en) Application of the long-chain non-coding RNA-NKILA in bone tissue injury repair
CN111518221B (en) Recombinant IL-15 fusion protein and application thereof
CN112370525A (en) Oral recombinant yeast strain for leptin immunoregulation
KR101864581B1 (en) Lentiviral expression vector containing bidirectional promoters and uses thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant