CN112853010A - 一种绿色处理电炉钢渣的方法 - Google Patents

一种绿色处理电炉钢渣的方法 Download PDF

Info

Publication number
CN112853010A
CN112853010A CN202011639805.2A CN202011639805A CN112853010A CN 112853010 A CN112853010 A CN 112853010A CN 202011639805 A CN202011639805 A CN 202011639805A CN 112853010 A CN112853010 A CN 112853010A
Authority
CN
China
Prior art keywords
slag
stainless steel
electric furnace
steel slag
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011639805.2A
Other languages
English (en)
Other versions
CN112853010B (zh
Inventor
操龙虎
徐永斌
陈洪智
李伟坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wisdri Engineering and Research Incorporation Ltd
Original Assignee
Wisdri Engineering and Research Incorporation Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wisdri Engineering and Research Incorporation Ltd filed Critical Wisdri Engineering and Research Incorporation Ltd
Priority to CN202011639805.2A priority Critical patent/CN112853010B/zh
Publication of CN112853010A publication Critical patent/CN112853010A/zh
Application granted granted Critical
Publication of CN112853010B publication Critical patent/CN112853010B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/006Compounds containing, besides chromium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/026Methods of cooling or quenching molten slag using air, inert gases or removable conductive bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/08Treatment of slags originating from iron or steel processes with energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

本发明提供了一种绿色处理电炉钢渣的方法,包括如下步骤:1)电炉不锈钢渣出渣后,将熔融的电炉不锈钢渣装入渣灌,并保温维持电炉不锈钢渣熔融状态;2)将熔融的高炉渣倒入熔融的电炉不锈钢渣内,通过搅拌作用使熔融的电炉不锈钢渣与熔融的高炉渣均匀混合,得到混合渣;3)将混合渣缓慢冷却后进行热焖处理,得到处理后的尾渣,使铬富集于稳定的尖晶石相中,并实现尖晶石相的生长。该发明使熔融的高炉渣和熔融的电炉不锈钢渣混合,利用高炉渣中的SiO2和Al2O3来改质不锈钢渣,实现铬向稳定的尖晶石相富集,并经过缓冷处理后,实现铬富集相的生长,从而实现电炉渣的无害化,满足环境排放标准,也为铬的选矿分离创造了物理条件。

Description

一种绿色处理电炉钢渣的方法
技术领域
本发明属于冶金技术领域,具体涉及一种绿色处理电炉钢渣的方法。
背景技术
随着我国经济的快速发展,不锈钢产量不断升高,同时伴随大量不锈钢渣的产生,不锈钢渣中因含有复杂的含铬物相而与其他钢渣在理化性能上存在明显的差别。电炉冶炼不锈钢时,为了保证质量,必须吹氧脱碳。吹氧后,碳虽然能降低到规格要求,但熔池中的铬会不可避免地要大量氧化,致使不锈钢渣中含有大量的铬。不锈钢的冶炼主要采用EAF-AOD工艺,因此产生了电炉渣(EAF渣)和AOD渣,自然冷却的EAF渣呈黑色,颗粒较大,其中质量分数大于1%的元素有Ca、Mg、Si、Al、Fe、Cr、O等。而AOD渣中Cr含量一般低于0.5%,且产生量少,因此一般研究电炉不锈钢渣的无害化处置方法。铬是一种重金属元素,如果在钢渣不能稳定存在,就会以离子状态迁移于自然环境中,并被氧化为剧毒性的六价铬。由于不锈钢渣中铬的含量较低,直接回收铬的经济价值不足。因此,一般采用堆存或填埋的方式来进行处理,并没有效解决铬污染问题,同时也限制了电炉不锈钢渣的资源化利用。截止2019年,我国不锈钢产量超过3000万吨。按照每吨钢大约产生0.25吨渣来计算,目前每年的电炉不锈钢渣产量接近750万吨。
目前关于电炉钢渣方式的处理方式主要有如下几种:
(1)湿法还原:不锈钢渣在酸碱性溶液中进行溶解,使渣中的铬大部分都转移到水溶液中,然后添加合适的还原剂将六价铬还原为三价铬,并以沉淀的形式析出,最后通过煅烧得到含铬的产品。
(2)固化封存处理:是利用稳定化物质来固定有害物质,主要是通过形成稳定的晶格结构和化学键,将有害组分固定或包封在惰性固体基材中,从而降低危险废物的浸出风险,主要通过水泥固化。
(3)熔融还原:熔融还原法是利用还原剂(C、Si、Al)将不锈钢渣中的CrO或Cr2O3还原为金属铬,这样不仅可以回收有价金属,而且也降低了不锈钢渣中铬的危害。
(4)尖晶石稳定化:通过向熔融的电炉渣中加入改质剂,使的渣中的铬向稳定的尖晶石相富集,从而实现电炉不锈钢渣的无害化。
发明专利CN106517834A公开了一种利用熔融高炉渣高温无害化处理不锈钢渣的方法,是将不锈钢渣加入到熔融的高炉渣内,通电加热并搅拌,水淬得到玻璃态渣,而重金属Cr被固定于玻璃态炉渣中。但该方法处理不锈钢渣,并未全部实现炉渣玻璃化,仍有部分铬赋存于不稳定物相中,不仅能耗较高,而且依然存在铬污染风险。发明专利CN109796145A公开了一种降低电炉钢渣中铬污染风险的方法,是将熔融的不锈钢渣与改质剂均匀混合,并经过降温处理,实现铬向稳定的尖晶石相富集,但该改质剂为纯氧化物,增加了处理成本,不能实现以废治废的效果。发明专利CN111471871A公开了一种电炉不锈钢渣中铬资源回收的方法,主要通过添加SiO2和Al2O3,调整渣的碱度和Al2O3含量,使渣中含铬富集相生长,从而创造铬回收的基础条件,但上述两个添加改质剂的方法中由于加入的改质剂是冷料,且加入比例较高,因此导致高温电炉渣的温度骤降,不利于电炉渣中铬富集相的生长,因此需提出一种更为绿色经济的电炉不锈钢渣处理方法。
发明内容
本发明的目的是提供一种绿色处理电炉钢渣的方法,至少可以解决现有技术中存在的部分缺陷。
为实现上述目的,本发明采用如下技术方案:
一种绿色处理电炉钢渣的方法,包括如下步骤:
1)电炉不锈钢渣出渣后,将熔融的电炉不锈钢渣装入渣灌,并保温维持电炉不锈钢渣熔融状态;
2)将熔融的高炉渣倒入熔融的电炉不锈钢渣内,通过搅拌作用使熔融的电炉不锈钢渣与熔融的高炉渣均匀混合,得到混合渣;
3)将步骤2)的混合渣缓慢冷却后进行热焖处理,得到处理后的尾渣,使铬富集于稳定的尖晶石相中,并实现尖晶石相的生长。
进一步的,所述电炉不锈钢渣主要成分按质量百分比包括CaO 30~50wt%,SiO220~45wt%,Al2O3 0~10wt%,MgO 5~15wt%,Cr2O3 1~10wt%,FeO 0~5wt%。
进一步的,所述高炉渣主要成分按质量百分比包括CaO 32~49wt%,SiO2 32~41wt%,Al2O3 6~17wt%,MgO 2~13wt%。
进一步的,所述步骤2)中熔融的高炉渣质量为熔融的电炉不锈钢渣质量的20~100%。
进一步的,所述混合渣主要成分按质量百分比控制Al2O3 6~20wt%,MgO<12wt%,1.2<w(CaO)/w(SiO2)<1.4,Cr2O3 1~10wt%。
进一步的,所述步骤3)中混合渣缓慢冷却速度小于10℃/min,且其冷却至1200℃以下再进行热焖处理。
与现有技术相比,本发明的有益效果:
(1)本发明提供的这种绿色处理电炉钢渣的方法使熔融的高炉渣和熔融的电炉不锈钢渣混合,利用高炉渣中的SiO2和Al2O3来改质不锈钢渣,实现铬向稳定的尖晶石相富集,并经过缓冷处理后,实现铬富集相的生长,从而实现电炉渣的无害化,满足环境排放标准,也为铬的选矿分离创造了物理条件。
(2)本发明提供的这种绿色处理电炉钢渣的方法可使得经过高炉渣改质和缓冷处理后的电炉不锈钢渣中铬在稳定的尖晶石相中的富集度达到95%以上,尖晶石晶体尺寸大于50μm,且电炉不锈钢渣中的铬在标准浸出液中的溶出量小于0.05mg/L。
(3)本发明提供的这种绿色处理电炉钢渣的方法中利用熔融电炉不锈钢渣和熔融高炉渣的显热,不需要外加能耗和设备,能耗低,节约处理成本,而且熔融的高炉渣加入到电炉不锈钢渣中,不会使电炉不锈钢渣的温度骤降,有利于电炉不锈钢渣中铬富集相的生长。
以下将结合附图对本发明做进一步详细说明。
附图说明
图1是本发明绿色处理电炉钢渣方法的工艺流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1所示,本发明提供了一种绿色处理电炉钢渣的方法,包括如下步骤:
(1)电炉不锈钢渣出渣后,将熔融的电炉不锈钢渣装入渣灌,并保温维持电炉不锈钢渣熔融状态。其中,该电炉不锈钢渣主要成分按质量百分比包括CaO 30~50wt%,SiO220~45wt%,Al2O3 0~10wt%,MgO 5~15wt%,Cr2O3 1~10wt%,FeO 0~5wt%。
(2)将熔融的高炉渣倒入熔融的电炉不锈钢渣内,通过搅拌作用使熔融的电炉不锈钢渣与熔融的高炉渣均匀混合,得到混合渣。
具体的,高炉渣主要成分按质量百分比包括CaO 32~49wt%,SiO2 32~41wt%,Al2O3 6~17wt%,MgO 2~13wt%。该高炉渣质量为熔融的电炉不锈钢渣质量的20~100%,通过熔融的高炉渣的成分及添加量的优化,使得熔融的电炉不锈钢渣和高炉渣的混合渣主要成分按质量百分比控制在Al2O3 6~20wt%,MgO<12wt%,1.2<w(CaO)/w(SiO2)<1.4,Cr2O31~10wt%;其中,通过控制Al2O3含量在6~20wt%范围,以促进渣中铬向稳定的尖晶石相相富集,同时控制1.2<w(CaO)/w(SiO2)<1.4促进富铬尖晶石相的生长。
(3)将步骤(2)的混合渣缓慢冷却后进行热焖处理,得到处理后的尾渣,使铬富集于稳定的尖晶石相中,并实现尖晶石相的生长。其中,混合渣缓慢冷却速度小于10℃/min,并使其冷却至1200℃以下。
下面通过具体实施例说明本发明提供的这种绿色处理电炉钢渣的方法;以下实施例中采用质量守恒定律和最小二乘法的方法测定铬在尖晶石相中的富集度,采用HJ/T2009-2007固体废弃物浸出毒性浸出方法-水平振荡法测定不锈钢渣中铬的溶出量。
实施例1:
电炉产生的不锈钢渣正常出炉后,将高温的不锈钢渣装入渣罐,电炉不锈钢渣的主要成分为CaO 46.8%,SiO2 31.2%,MgO 10%,Al2O3 4%,FeO 3%,Cr2O3 5%。
将熔融高炉渣加入到电炉不锈钢渣渣罐中,高炉渣的主要成分为CaO 38.5wt%,SiO2 35.3wt%,Al2O3 14.8wt%,MgO 8.8wt%,P2O5 1.6wt%;采用搅拌桨将熔融的电炉不锈钢渣与高炉渣混合均匀形成熔融混合渣,其中高炉渣的质量为电炉不锈钢渣的30%,混合渣的主要成分为CaO 44.53wt%,SiO2 32.22wt%,Al2O3 6.97wt%,MgO 9.75wt%,Cr2O33.86wt%;然后将经过高炉渣改质后的混合渣以20h的缓冷时间冷却至1000℃以下,得到铬以尖晶石相为主要赋存状态的炉渣。
经检测,本实施例中铬在尖晶石相中的富集度达到98%以上,电炉不锈钢渣中铬的浸出浓度低于0.04mg/L,尖晶石平均晶体尺寸达到从10μm提升到30μm以上。
实施例2
电炉产生的不锈钢渣正常出炉后,将高温的不锈钢渣装入渣罐,电炉不锈钢渣的主要成分为CaO 47wt%,SiO2 33wt%,MgO 8wt%,Al2O3 5wt%,FeO 2wt%,Cr2O3 5wt%。
将熔融高炉渣加入到高温的不锈钢渣渣罐中,高炉渣的主要成分为CaO36.6wt%,SiO2 35.6wt%,Al2O3 17.2wt%,MgO 8.2wt%,P2O5 1.4wt%;采用搅拌桨将熔融的不锈钢渣与高炉渣混合均匀形成熔融混合渣,其中高炉渣的质量为电炉不锈钢渣的50%,混合后渣的主要成分为CaO 43.68wt%,SiO2 33.98wt%,Al2O3 9.10wt%,MgO8.09wt%,Cr2O3 3.34wt%;然后将经过高炉渣改质后的混合渣以24h的缓冷时间冷却至1000℃以下,得到铬以尖晶石相为主要赋存状态的炉渣。
经检测,本实施例中铬在尖晶石相中的富集度达到97%以上,电炉不锈钢渣中铬的浸出浓度低于0.06mg/L,尖晶石平均晶体尺寸从10μm提升到50μm以上。
实施例3
电炉产生的不锈钢渣正常出炉后,将高温的不锈钢渣装入渣罐,电炉不锈钢渣的主要成分为CaO 47wt%,SiO2 33wt%,MgO 8wt%,Al2O3 5wt%,FeO 2wt%,Cr2O3 5wt%。
将熔融高炉渣加入到电炉不锈钢渣渣罐中,高炉渣的主要成分为CaO 35.3wt%,SiO2 37.6wt%,Al2O3 17.8wt%,MgO 7.5wt%,P2O5 1.3wt%;采用搅拌桨将熔融的电炉不锈钢渣与高炉渣混合均匀形成熔融混合渣,其中高炉渣的质量为不锈钢渣的80%,混合后渣的主要成分为CaO 41.89wt%,SiO2 35.12wt%,Al2O3 10.71wt%,MgO 7.80wt%,Cr2O32.78wt%;然后将经过高炉渣改质后的混合渣以48h的缓冷时间降低混合渣冷却至1000℃以下,得到铬以尖晶石相为主要赋存状态的炉渣。
经检测,本实施例中铬在尖晶石相中的富集度达到95%以上,电炉不锈钢渣中铬的浸出浓度低于0.08mg/L,尖晶石平均晶体尺寸从10μm提升到80μm以上。
实施例4
电炉产生的不锈钢渣正常出炉后,将高温的不锈钢渣装入渣灌,电炉不锈钢渣的主要成为分CaO 52.7wt%,SiO2 26.3wt%,MgO 9wt%,Al2O3 4wt%,FeO 3wt%,Cr2O35wt%。
将熔融高炉渣加入到电炉不锈钢渣渣罐中,高炉渣的主要成分为CaO 35.3wt%,SiO2 37.6wt%,Al2O3 17.8wt%,MgO 7.5wt%,P2O5 1.3wt%;采用搅拌桨将熔融的电炉不锈钢渣与高炉渣混合均匀形成熔融混合渣,其中高炉渣的质量为不锈钢渣的60%,使电炉不锈钢渣的碱度从2.0降低到1.5左右,Al2O3含量提高到10%左右;然后将经过高炉渣改质后的混合渣以24h的缓冷时间冷却至1000℃以下,得到铬以尖晶石相为主要赋存状态的炉渣。
经检测,本实施例中铬在尖晶石相中的富集度从82%提升到99%以上,电炉不锈钢渣中铬的浸出浓度从0.62mg/L降低到0.02mg/L,尖晶石平均晶体尺寸达到20μm以上。
以上例举仅仅是对本发明的举例说明,并不构成对本发明的保护范围的限制,凡是与本发明相同或相似的设计均属于本发明的保护范围之内。

Claims (6)

1.一种绿色处理电炉钢渣的方法,其特征在于,包括如下步骤:
1)电炉不锈钢渣出渣后,将熔融的电炉不锈钢渣装入渣灌,并保温维持电炉不锈钢渣熔融状态;
2)将熔融的高炉渣倒入熔融的电炉不锈钢渣内,通过搅拌作用使熔融的电炉不锈钢渣与熔融的高炉渣均匀混合,得到混合渣;
3)将步骤2)的混合渣缓慢冷却后进行热焖处理,得到处理后的尾渣,使铬富集于稳定的尖晶石相中,并实现尖晶石相的生长。
2.如权利要求1所述的一种绿色处理电炉钢渣的方法,其特征在于:所述电炉不锈钢渣主要成分按质量百分比包括CaO 30~50wt%,SiO2 20~45wt%,Al2O3 0~10wt%,MgO 5~15wt%,Cr2O3 1~10wt%,FeO 0~5wt%。
3.如权利要求1所述的一种绿色处理电炉钢渣的方法,其特征在于:所述高炉渣主要成分按质量百分比包括CaO 32~49wt%,SiO2 32~41wt%,Al2O3 6~17wt%,MgO 2~13wt%。
4.如权利要求1所述的一种绿色处理电炉钢渣的方法,其特征在于:所述步骤2)中熔融的高炉渣质量为熔融的电炉不锈钢渣质量的20~100%。
5.如权利要求1所述的一种绿色处理电炉钢渣的方法,其特征在于:所述混合渣主要成分按质量百分比控制Al2O3 6~20wt%,MgO<12wt%,1.2<w(CaO)/w(SiO2)<1.4,Cr2O3 1~10wt%。
6.如权利要求1所述的一种绿色处理电炉钢渣的方法,其特征在于:所述步骤3)中混合渣缓慢冷却速度小于10℃/min,且其冷却至1200℃以下再进行热焖处理。
CN202011639805.2A 2020-12-31 2020-12-31 一种绿色处理电炉钢渣的方法 Active CN112853010B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011639805.2A CN112853010B (zh) 2020-12-31 2020-12-31 一种绿色处理电炉钢渣的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011639805.2A CN112853010B (zh) 2020-12-31 2020-12-31 一种绿色处理电炉钢渣的方法

Publications (2)

Publication Number Publication Date
CN112853010A true CN112853010A (zh) 2021-05-28
CN112853010B CN112853010B (zh) 2022-12-02

Family

ID=76000618

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011639805.2A Active CN112853010B (zh) 2020-12-31 2020-12-31 一种绿色处理电炉钢渣的方法

Country Status (1)

Country Link
CN (1) CN112853010B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106517834A (zh) * 2016-11-25 2017-03-22 江西理工大学 一种利用熔融高炉渣高温无害化处理不锈钢渣的方法
CN107475468A (zh) * 2017-08-22 2017-12-15 东北大学 一种调控不锈钢渣中尖晶石相生长行为的方法
CN111471871A (zh) * 2020-05-08 2020-07-31 中冶南方工程技术有限公司 一种电炉不锈钢渣中铬资源回收的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106517834A (zh) * 2016-11-25 2017-03-22 江西理工大学 一种利用熔融高炉渣高温无害化处理不锈钢渣的方法
CN107475468A (zh) * 2017-08-22 2017-12-15 东北大学 一种调控不锈钢渣中尖晶石相生长行为的方法
CN111471871A (zh) * 2020-05-08 2020-07-31 中冶南方工程技术有限公司 一种电炉不锈钢渣中铬资源回收的方法

Also Published As

Publication number Publication date
CN112853010B (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
CN102517472B (zh) 高钛低硅的钛硅铁合金及其制备方法
CN102154531B (zh) 一种用含钛高炉渣生产人造金红石的方法
CN102719574B (zh) 一种转炉钢渣安定性改质剂及其使用方法
CN111471871B (zh) 一种电炉不锈钢渣中铬资源回收的方法
CN101559953B (zh) 一种用高温液态硅锰合金废渣为原料制造铸石的方法
CN111889487A (zh) 多源固废协同处理的等离子体熔融固化重金属方法
CN111850193A (zh) 一种熔融钢渣出渣冷却过程在线调质装置及方法
US11746042B2 (en) Method for synergistically preparing Ferrosilicon alloy and glass-ceramics from photovoltaic waste slag and non-ferrous metal smelting iron slag
CN106521139A (zh) 一种低温还原分离含钛铁矿物制备高钛渣的方法
CN113174448A (zh) 一种提高不锈钢渣中铬稳定性的方法
CN106517834A (zh) 一种利用熔融高炉渣高温无害化处理不锈钢渣的方法
CN109796145A (zh) 一种降低电炉钢渣中铬污染风险的方法
CN110453064A (zh) 一种熔融铜渣改质提铁及其尾渣制备陶瓷的方法
CN112853010B (zh) 一种绿色处理电炉钢渣的方法
CN114574641B (zh) 一种冶炼中-低碳锰铁的方法
CN1831164A (zh) 一种低氧低氮高钛铁的制取方法
CN102586666A (zh) 短流程高强度铸铁专用净化剂及其制备工艺
CN115679097A (zh) 一种用转炉渣和精炼除尘灰资源化炼铁瓦斯灰的方法
CN212293627U (zh) 一种熔融钢渣出渣冷却过程在线调质装置
CN105039637A (zh) 一种含镁提钒冷却剂及其制备方法
CN109136560A (zh) 利用底吹炉处理热态铜渣生产铜基抑菌合金材料的方法
CN112125516B (zh) 一种用于含铁镍渣制作微晶玻璃的添加剂及方法
CN105039616B (zh) 堆存aod不锈钢渣和lf精炼渣的协同处理方法
CN110510882B (zh) 一种辉石基铸石及其制备方法
CN107227402A (zh) 一种水淬镍渣复配铜尾渣综合利用的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant