CN109943584B - Recombinant vector and recombinant yeast strain for producing sabinene, and construction method and application thereof - Google Patents

Recombinant vector and recombinant yeast strain for producing sabinene, and construction method and application thereof Download PDF

Info

Publication number
CN109943584B
CN109943584B CN201910236928.2A CN201910236928A CN109943584B CN 109943584 B CN109943584 B CN 109943584B CN 201910236928 A CN201910236928 A CN 201910236928A CN 109943584 B CN109943584 B CN 109943584B
Authority
CN
China
Prior art keywords
erg20
sabinene
promoter
terminator
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910236928.2A
Other languages
Chinese (zh)
Other versions
CN109943584A (en
Inventor
元英进
陈天华
姚明东
王颖
肖文海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910236928.2A priority Critical patent/CN109943584B/en
Publication of CN109943584A publication Critical patent/CN109943584A/en
Application granted granted Critical
Publication of CN109943584B publication Critical patent/CN109943584B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to the technical field of genetic engineering, and discloses a recombinant vector and a recombinant yeast strain for producing sabinene, as well as a construction method and application thereof. The recombinant plasmid of the invention comprises the sequence ERG20 of ERG20 encoding the double mutation of F96W and N127WwwAnd a sabinene synthase coding sequence derived from Salvia pomifera and/or Citrus jamshiri. The invention selects the proper sequence ERG20 of the double mutated ERG20wwAnd the exogenous sabinene synthase gene is matched and combined to construct a recombinant vector capable of producing sabinene and the recombinant vector is transformed into a yeast strain, so that the capability of the strain for producing sabinene can be obviously improved, and the yield of the sabinene produced by the strain can be further improved by continuously optimizing and transforming on the basis.

Description

Recombinant vector and recombinant yeast strain for producing sabinene, and construction method and application thereof
Technical Field
The invention relates to the technical field of genetic engineering, in particular to a recombinant vector and a recombinant yeast strain for producing sabinene, and a construction method and application thereof.
Background
Sabinene (Sabinene, 1-isopropyl-4-methylenebicyclo [3.1.0 ]]Hexane, C10H16Molecular weight 136.23) is a naturally occurring bicyclic unsaturated monoterpene. Sabinene has long been used as perfume additive and fine chemical, and has excellent anti-inflammatory and antifungal activity applied in pharmaceutical industry. Researchers are currently developing it as a biofuel: the sabinene has a chemical structure more compact than that of common hydrocarbon, so that it has very high density and combustion heat, and can be used as an important component of jet aircraft mixed fuel.
At present, the main source of sabinene is extracted from plants, but the content of sabinene extracted from the plants is very low, so that the industrial requirement is difficult to meet, and a large amount of natural resources are consumed. Therefore, microbial synthesis is considered to be the most promising production method with low cost, high yield and product safety. In the research of microbial synthesis of sabinene, the hosts used were mainly Escherichia coli and Saccharomyces cerevisiae. In 2014, Chinese scientists Ximo et al constructed a heterologous pathway for producing sabinene in Escherichia coli: firstly, escherichia coli has a natural MEP pathway and can provide a rich precursor substance GPP for the synthesis of sabinene. In addition, the natural gene IspA (encoding farnesyl diphosphate synthase) in E.coli was overexpressed to increase the content of GPP; the mevalonate pathway present in s.cerevisiae was introduced to further enrich the precursor material. Finally, screening and over-expressing GPP synthetase, introducing sabinene synthase to obtain high-yield sabinene Escherichia coli strain, wherein the shake flask fermentation can reach 82.18mg/L, and the fermentation tank yield can reach 2.65 g/L; in 2017, the strain obtains the Escherichia coli with the shake flask fermentation yield of 150mg/L by a substrate MVA feeding mode. In 2017, Bowie et al designed an in vitro synthesis system of monoterpene, which introduced 27 enzymes for converting glucose into monoterpene and synthesized terpene using two cofactors NAD (P) H and ATP, finally synthesized 15.9g/L of sabinene.
The saccharomyces cerevisiae, as a well-known safe mode microorganism, has clear genetic background and simple gene operation, can be used for large-scale fermentation production, has stronger protein expression and a post-translational modification system and a complete endomembrane system, and is more suitable for the expression of the P450 protein. Compared with Escherichia coli, it has high content of vitamins and proteins, and can be used as edible medicinal and feed yeast; compared with in vitro synthesis, the method has the advantages of simple system, low cost and high stability of enzyme in the system. Therefore, it is very important to realize the high yield of sabinene in saccharomyces cerevisiae. However, few reports have been published up to now on the synthesis of sabinene using Saccharomyces cerevisiae.
Disclosure of Invention
In view of the above, the present invention aims to provide a recombinant vector and a recombinant yeast strain for producing sabinene, and a construction method and application thereof, so that the ability of the strain to produce sabinene can be significantly improved by transforming the recombinant vector into the yeast strain.
In order to achieve the above purpose, the invention provides the following technical scheme:
a recombinant vector for the production of sabinene comprising the sequence ERG20 encoding the F96W and N127W double mutant ERG20wwAnd a sabinene synthase coding sequence derived from Salvia pomifera and/or Citrus jamshiri.
Aiming at the existing sabinene-producing recombinant yeast strain, the invention selects a suitable sequence ERG20 of ERG20 with double mutationwwAnd the exogenous sabinene synthase gene is matched and combined to construct a recombinant vector capable of producing sabinene, and the recombinant vector is transformed into a yeast strain, so that the capability of the strain for producing sabinene can be obviously improved.
Preferably, the ERG20wwAnd a sabinene synthase encoding sequence is inserted into the recombinant vector according to any one or more of the following forms of gene modules:
(1) terminator-ERG 20ww-bidirectional promoter-sabinene synthase coding sequence-terminator;
(2) terminator-sabinene synthase coding sequence-bidirectional promoter-ERG 20ww-a terminator;
(3) promoter-ERG 20ww-terminator-promoter-sabinene synthase coding sequence-terminator;
(4) promoter-sabinene synthase coding sequence-terminator-promoter-ERG 20ww-a terminator;
(5) promoter-ERG 20ww-sabinene synthase coding sequence-terminator;
(6) promoter-sabinene synthase coding sequence-ERG 20ww-a terminator;
(7) terminator-ERG 20ww-sabinene synthase coding sequence-reverse promoter;
(8) terminator-sabinene synthase coding sequence-ERG 20ww-a reverse promoter;
(9) terminator-bidirectional promoter-ERG 20wwAnd a terminator, a fusion protein coding sequence of sabinene synthase;
(10) terminator-ERG 20wwAnd a fusion protein coding sequence of sabinene synthase-bidirectional promoter-terminator;
(11) promoter-ERG 20wwAnd sabinene synthaseThe fusion protein coding sequence of (1) -terminator;
(12) terminator-ERG 20wwAnd a fusion protein coding sequence of sabinene synthase, a reverse promoter;
wherein, the bidirectional promoter is preferably GAL1& GAL10 promoter; the terminator is preferably selected from the ADH1t terminator and the TDH2t terminator, and in general, the plurality of terminators and promoters in each gene module are different from each other.
In a particular embodiment of the invention, the invention employs ADH1t-ERG20ww-GAL1&A gene module in the form of GAL 10-sabinene synthase coding sequence-TDH 2 t; the YGG415 plasmid is taken as a basic plasmid of the recombinant vector, the map of the YGG415 plasmid is shown in figure 1, and the whole gene sequence of the plasmid is shown in SEQ ID NO: 1;
the invention selects 7 sabinene synthases from different sources, prepares different recombinant vectors under the same condition, and the sources comprise Salvia pomifera, Salvia officinalis, Picea silchensis, Thuja plicata, Murraya koeniii, Citrus jambhiri and Litsea cubeba which are abbreviated as SpSabS1, SoSabS1, PsSabS1, TpSABS1, MkSabS1, CjSabS1 and LcSabS1 in sequence; the result of detecting sabinene by shaking flask fermentation of the recombinant yeast strains transformed with different recombinant vectors and the blank yeast strains shows that the strains transformed with the recombinant vectors containing SpSabS1 and CjSabS1 can produce sabinene, and the other strains do not produce sabinene, which shows that the recombinant vector can obviously improve the sabinene production capacity of the strains.
In addition, the invention compares the coding sequences of different truncated sabinene synthases, the truncation modes are a truncated sabinene synthase coding sequence with 1-43 bit amino acid residue at the N end of the sabinene synthase removed, a truncated sabinene synthase coding sequence with 1-34 bit amino acid residue at the N end of the sabinene synthase removed, a truncated sabinene synthase coding sequence with 1-52 bit amino acid residue at the N end of the sabinene synthase removed, and a truncated sabinene synthase coding sequence with 423-449 bit amino acid residue removed, different recombinant vectors are prepared by each truncated sabinene synthase coding sequence under the same other conditions, recombinant yeast strains for transforming different recombinant vectors and recombinant yeast strains containing complete sabinene synthase coding sequences are converted to detect sabinene by shake flask fermentation, and the result shows that compared with the recombinant yeast strains containing complete sabinene synthase coding sequences, the yield of sabinene in the transformed recombinant yeast strain containing the coding sequence of truncated sabinene synthase with the amino acid residue at position 1-34 of N-terminal of complete sabinene synthase removed is increased by 5 times, and the rest truncation modes have no sabinene output.
According to the technical effects, the sabinene synthase coding sequence of the present invention may be either a complete sabinene synthase coding sequence or a truncated sabinene synthase coding sequence in which 1-34 amino acid residues from the N-terminus of the sabinene synthase are removed.
Preferably, the ERG20wwThe fusion protein of the sabinene synthase is subjected to forward fusion or reverse fusion by a rigid linker or a flexible linker; wherein the rigid linker amino acid sequence is GGGGS, and the flexible linker amino acid sequence is PAP; the forward fusion is ERG20ww-rigid/flexible linker coding sequence-sabinene synthase coding sequence, said reverse fusion being sabinene synthase coding sequence-rigid/flexible linker coding sequence-ERG 20ww
Preferably, the recombinant vector of the invention can additionally express 1 part or more than 2 parts of ERG20wwI.e., the recombinant vector further comprises 1 or more than 2 copies of additional ERG20ww. For simplicity, the 1 or more than 2 copies of additional ERG20wwThe insertion position is between the promoter and the terminator in the 12 gene modules, and the insertion mode is realized by designing the same enzyme cutting site. More specifically, the 1 or more than 2 copies of the additional ERG20wwInserted between the promoter and the terminator in the aforementioned gene module of (9) or (10).
According to the sabinene production effect of the recombinant vector transformed into a yeast strain, the invention provides an application of the recombinant vector in preparation of a recombinant yeast strain for producing sabinene; preferably, the yeast strain is preferably a saccharomyces cerevisiae strain, more preferably a saccharomyces cerevisiae strain of the cen.pk series or a saccharomyces cerevisiae strain of the BY series.
According to the application of the recombinant vector, the invention also correspondingly provides a recombinant yeast strain for producing sabinene, which is transformed with the yeast strain of the recombinant vector. On this basis, the promoter of the endogenous ERG20 of the yeast strain can be replaced by a weak promoter, which means a weak promoter relative to the original promoter of the endogenous ERG20 of the yeast strain. In a specific embodiment of the invention, the weak promoter is the HXT1p promoter.
Further improvements to the recombinant yeast strain also include transformation with a vector expressing a heterologous efflux protein. Wherein the heterologous efflux protein is from the ascomycete Grosmania clavigera and/or an efflux protein from Yarrowia lipolytica; in a specific embodiment of the invention, the vector for expressing the heterologous efflux protein is based on PRS424, and is embedded with a promoter-efflux protein coding sequence-terminator gene module; more specifically, the promoter-efflux protein coding sequence-terminator gene module is GAL 7-efflux protein coding sequence-GPDt; in a specific embodiment of the invention, the coding sequence of the efflux protein of the pathogenic bacterium Grosmania clavigera from pine is shown as SEQ ID NO. 2, and is abbreviated as SC-GcABCG 1; the coding sequence of the efflux protein from Yarrowia lipolytica is shown in SEQ ID NO 3 or 4, and is abbreviated as SC-YL-ABC2 and SC-YL-ABC 3;
meanwhile, based on the result of a sabinene shake flask fermentation test of the recombinant vector, the invention also provides an application of the recombinant yeast strain in sabinene production. The specific method for producing sabinene comprises the following steps:
step 1, inoculating the recombinant yeast strain into a culture medium for activation to prepare a seed solution;
and 2, inoculating the seed solution into a culture medium, adding isopropyl myristate to perform two-phase culture, and collecting an upper organic phase of the culture medium after culture to separate sabinene.
Wherein the medium contains 40g/L glucose, 6.7g/LYNB, 2g/Ldrop-out leucine-depleted amino acid mixture (SC-leu medium).
In a specific embodiment of the present invention, the step 1 is:
inoculating a single colony of the recombinant yeast strain into 3mL of SC-leu culture medium, and culturing at 30 ℃ and 220rpm for 24h to obtain a primary seed solution; transferring the primary seeds to 5mL of SC-leu culture medium at an initial OD600 of 0.2, and culturing at 30 ℃ and 220rpm for 12-18 h to obtain secondary seed liquid;
in a specific embodiment of the present invention, the step 2 is:
the secondary seed liquid was transferred to 50mL of SC-leu medium at an initial OD600 of 0.1, and two-phase culture was carried out by adding 20% isopropyl myristate (220rpm, 30 ℃ c., 96 hours).
In addition, the invention also provides a construction method of the recombinant vector, firstly constructing an expression cassette containing a promoter and a terminator, designing enzyme cutting sites at two ends of the expression cassette and between the promoter and the terminator, and inoculating the expression cassette into the vector by enzyme cutting the enzyme cutting sites at two ends of the expression cassette and the vector with the same enzyme cutting site;
respectively at ERG20wwDesigning the same enzyme cutting site as that between the promoter and terminator at both ends of the coding sequence of sabinene synthase, or constructing ERG20wwAnd the coding sequence of a fusion protein of sabinene synthase, in ERG20wwAnd designing enzyme cutting sites which are the same as the enzyme cutting sites between the promoter and the terminator at two ends of the sabinene synthase coding sequence, and inoculating the enzyme cutting sites into an expression box in an enzyme cutting mode so as to connect the enzyme cutting sites into a vector to obtain the recombinant vector.
Preferably, a first enzyme cutting site-terminator-second enzyme cutting site-bidirectional promoter-third enzyme cutting site-terminator-first enzyme cutting site, first enzyme cutting site-promoter-second enzyme cutting site-terminator-promoter-third enzyme cutting site-terminator-first enzyme cutting site, first enzyme cutting site-promoter-second enzyme cutting site-third enzyme cutting site-terminator-first enzyme cutting site or first enzyme cutting site-terminator-second enzyme cutting site-third enzyme cutting site-reverse promoter-first enzyme cutting site expression cassette is constructed;
the expression cassette is accessed into the vector through enzyme digestion of two ends of the expression cassette and a first enzyme digestion site in the vector;
at ERG20wwDesigning second enzyme cutting site at both ends, designing third enzyme cutting site at both ends of sabinene synthase coding sequence, or designing the second enzyme cutting site at both ends of ERG20wwDesigning third enzyme cutting sites at two ends, designing second enzyme cutting sites at two ends of the sabinene synthase coding sequence, and inoculating the second enzyme cutting sites into an expression box in an enzyme cutting mode so as to connect the second enzyme cutting sites into a vector to obtain the recombinant vector.
Any suitable enzyme cutting site can be selected from the first to the third enzyme cutting sites, and the first enzyme cutting site is determined according to a vector to be accessed; in a specific embodiment of the present invention, the second enzyme cutting site and the third enzyme cutting site are both selected from a BsmBI enzyme cutting site and a BsaI enzyme cutting site, and the second enzyme cutting site or the third enzyme cutting site is in a back-to-back mode, that is, two second enzyme cutting sites or two third enzyme cutting sites are directly connected in a back-to-back manner, and a schematic diagram can be shown in fig. 2 by taking the BsmBI enzyme cutting site and the BsaI enzyme cutting site as an example. FIG. 2 shows that the recognition sequences of two BsmBI restriction sites or BsaI restriction sites are connected back to back, because the recognition sequences and the cleavage sequences of the two BsmBI restriction sites and BsaI restriction sites are not the same sequence, they are all cleaved with a base after the recognition sequences, so that the cleaved nick sequences can be designed artificially, the nicks designed by the present invention are catt and taaa, and the foreign gene (such as ERG 20) is accessedwwAnd sabinene synthase coding sequence) can be artificially designed into BsmBI or BsaI enzyme cutting sites at the front end and the rear end of the exogenous gene, the cut is designed into aatg and ttta, and the cut is complementarily matched with the cut on the expression cassette and connected to the expression cassette.
With ADH1t-ERG20ww-GAL1&GAL 10-sabinene synthase coding sequence-TDH 2t gene module and YGG415 plasmid are used as examples to illustrate the construction process of the recombinant vector of the present invention:
GAL1& GAL10 promoter, ADH1t and TDH2t terminator were amplified from BY4741 s.cerevisiae genomic DNA, and two back-to-back BsmBI cleavage sites and two back-to-back BsaI cleavage sites were designed. Assembling PCR products by OE-PCR according to a required sequence to obtain an expression cassette of NotI enzyme cutting sites, ADH1t, back-to-back BsmBI enzyme cutting sites, GAL1& GAL10, back-to-back BsaI enzyme cutting sites, TDH2t-NotI enzyme cutting sites, a NotI enzyme cutting expression cassette and YGG415 plasmid, and inoculating the expression cassette into a vector;
then at ERG20wwBsmBI enzyme cutting sites are designed at both ends (BsaI enzyme cutting sites can also be designed, as long as the artificially designed cuts of BsaI and BsmBI are consistent, the expression cassette is cut by BsmBI enzyme, ERG20wwBsaI enzyme digestion can also be used for accessing the expression cassette, so that all gene sequences needing to be introduced can be uniformly designed into BsaI enzyme digestion sites more conveniently), BsaI enzyme digestion sites are designed at two ends of a sabinene synthase coding sequence, and the BsaI enzyme digestion sites are connected to ADH1 t-back BsaI enzyme digestion sites-GAL 1 through BsmBI enzyme digestion and BsaI enzyme digestion&GAL 10-back-to-back BsaI cleavage site-TDH 2t expression cassette, thereby completing the construction of the recombinant vector.
Preferably, the construction method further comprises the step of inoculating 1 or more than 2 copies of additional ERG20 into the recombinant vectorwwMore preferably, 1 or more than 2 copies of additional ERG20 are ligated into the expression cassettewwThe specific construction mode can be realized by constructing the same enzyme cutting site.
The construction method of the recombinant yeast strain for producing the sabinene directly transforms the recombinant vector into the yeast strain to obtain the recombinant yeast strain.
Preferably, the process of constructing the recombinant strain further comprises:
constructing a gene module of upstream homologous sequence-weak promoter-yeast strain endogenous ERG20 original promoter and downstream homologous sequence of yeast strain endogenous ERG20 original promoter, or constructing a gene module of upstream homologous sequence-weak promoter-yeast strain endogenous ERG20 original promoter and downstream homologous sequence-yeast strain endogenous ERG 20-yeast strain endogenous ERG 20;
the gene module replaces the original promoter of the yeast strain ERG20 to be a weak promoter by utilizing a yeast homologous recombination mechanism.
Preferably, the process of constructing the recombinant strain further comprises:
respectively designing homologous sequences at two ends of a promoter, a coding sequence of the heterologous efflux protein and a terminator, then transforming the homologous sequences and the vector after enzyme digestion into the yeast strain, and carrying out homologous recombination to obtain a vector for expressing the heterologous efflux protein; wherein, two adjacent gene elements have a homologous region.
As can be seen from the above technical scheme, the invention selects the proper sequence ERG20 of the ERG20 with double mutationwwAnd the exogenous sabinene synthase gene is matched and combined to construct a recombinant vector capable of producing sabinene and the recombinant vector is transformed into a yeast strain, so that the capability of the strain for producing sabinene can be obviously improved, and the yield of the sabinene produced by the strain can be further improved by continuously optimizing and transforming on the basis.
Drawings
FIG. 1 shows a map of YGG415 plasmid;
FIG. 2 is a schematic diagram showing a BsmBI cleavage site back-to-back mode and a BsaI cleavage site back-to-back mode; a is BsmBI enzyme cutting site, B is BsaI enzyme cutting site; the arrow points to the position of the cut, and the shadow position is a back-to-back identification sequence;
FIG. 3 is a schematic representation of a recombinant vector according to the present invention;
FIG. 4 is a schematic representation of a recombinant vector according to the present invention;
FIG. 5 is a schematic diagram showing replacement of the original promoter of endogenous ERG20 of the strain with a weak promoter;
FIG. 6 shows the shake flask fermentation yields of recombinant Saccharomyces cerevisiae expressing sabinene synthase from different sources; the abscissa indicates the name of each strain and the corresponding abbreviation in the table below;
FIG. 7 shows the shake flask fermentation yields of recombinant Saccharomyces cerevisiae expressing different truncated SpSabS1 sabinene synthases; the abscissa indicates the name of each strain and the corresponding abbreviation in the table below;
FIG. 8 is a map of the YGG416 plasmid;
FIG. 9 shows expression of ERG20wwAnd sabinene synthase fusion protein and expression of one more ERG20wwThe shake flask fermentation yield of the recombinant saccharomyces cerevisiae; the abscissa represents the name of each strain;
FIG. 10 shows shake flask fermentation yields of recombinant Saccharomyces cerevisiae expressing different heterologous efflux proteins; the abscissa indicates the name of each strain and the corresponding abbreviation in the table below;
FIG. 11 shows shake flask fermentation yield of recombinant Saccharomyces cerevisiae with down-regulated expression of endogenous ERG 20;
FIG. 12 shows the shake flask fermentation yield of recombinant Saccharomyces cerevisiae with a combination of different advantageous transformation strategies according to the present invention.
Detailed Description
The invention discloses a recombinant vector and a recombinant yeast strain for producing sabinene, and a construction method and application thereof. It is expressly intended that all such similar substitutes and modifications which would be obvious to one skilled in the art are deemed to be included in the invention. The recombinant vectors, strains, and methods of construction and use of the present invention have been described in terms of preferred embodiments, and it will be apparent to those of ordinary skill in the art that variations or appropriate modifications and combinations of the recombinant vectors, strains, and methods of construction and use described herein can be made to implement and use the techniques of the present invention without departing from the spirit, scope, and spirit of the invention.
The sequences appearing in the invention are optimized by a saccharomyces cerevisiae codon and the common restriction enzyme cutting sites are properly avoided;
the ADH1t sequence is shown in SEQ ID NO. 5;
ERG20wwthe sequence is shown as SEQ ID NO. 6;
GAL1& GAL10 is shown as SEQ ID NO. 7;
the sequence of TDH2t is shown in SEQ ID NO. 8;
the coding sequence of the Salvia pomifera sabinene synthase is shown as SEQ ID NO. 9;
the coding sequence of the Salvia officinalis sabinene synthase is shown as SEQ ID NO. 10;
the coding sequence of the Picea sidetchensis sabinene synthase is shown as SEQ ID NO. 11;
the coding sequence of the Thuja plicata sabinene synthase is shown in SEQ ID NO 12;
the Murraya koenigii sabinene synthase coding sequence is shown in SEQ ID NO 13;
the coding sequence of the Citrus jamshiri sabinene synthase is shown as SEQ ID NO. 14;
the Litsea cubeba sabinene synthase coding sequence is shown in SEQ ID NO. 15;
the HXT1p sequence is shown in SEQ ID NO: 16;
GAL7 is shown in SEQ ID NO 17;
the sequence of GPDt is shown in SEQ ID NO 18;
the sequence of GPM1t is shown in SEQ ID NO. 19;
the sequence of the BsmBI enzyme cutting site is shown as SEQ ID NO. 20;
the back-to-back BsaI restriction enzyme site sequence is shown as SEQ ID NO: 21;
the above gene element sequences can be connected in sequence according to the gene module or expression cassette of the invention, namely the sequences of the corresponding gene modules or expression cassettes.
The invention is further illustrated by the following examples.
Example 1: construction of the recombinant vector of the present invention
1. Construction of expression cassettes and ligation vector procedures
GAL1& GAL10 promoter, ADH1t and TDH2t terminator were amplified from BY4741 s.cerevisiae genomic DNA, and two back-to-back BsmBI cleavage sites and two back-to-back BsaI cleavage sites were designed. Assembling PCR products by OE-PCR according to a required sequence to obtain an expression cassette of NotI enzyme cutting sites, ADH1t, back-to-back BsmBI enzyme cutting sites, GAL1& GAL10, back-to-back BsaI enzyme cutting sites, TDH2t-NotI enzyme cutting sites, a NotI enzyme cutting expression cassette and YGG415 plasmid, and inoculating the expression cassette into a vector;
2. introduction of foreign Gene
(1)ERG20wwAnd sabinene synthase coding sequence into expression box separately
At ERG20wwBsmBI enzyme sites are designed at both ends, BsaI enzyme sites are designed at both ends of the sabinene synthase coding sequence, and the BsmBI enzyme sites and the BsaI enzyme sites are connected to ADH1 t-back-to-back BsmBI enzyme sites-GAL 1&GAL 10-Back-to-Back BsaI restriction enzyme site-TDH 2t expression cassette, thereby completing the construction of recombinant vector and obtaining the recombinant vector YGG415-ADH1t-ERG20ww-GAL1&10-sabinene synthase coding sequence-TDH 2 t; display deviceFIG. 3 is intended;
(2)ERG20wwintroduction of coding sequence of sabinene synthase fusion protein into expression box
ERG20wwAnd sabinene synthase coding sequence, adopting coding sequence of rigid linker GGGGS or coding sequence of flexible linker PAP to make forward or reverse fusion connection, designing BsaI enzyme cutting site at two ends of fusion protein sequence, utilizing BsaI enzyme cutting to connect ADH1 t-back BsmBI enzyme cutting site-GAL 1&GAL 10-Back-to-Back BsaI restriction enzyme site-TDH 2t expression cassette, thereby completing the construction of recombinant vector and obtaining the recombinant vector YGG415-ADH1t-GAL1&10-ERG20wwAnd the coding sequence of the juniperylene synthase fusion protein-TDH 2 t; the schematic view is shown in FIG. 4;
(3) one more ERG20wwIs constructed by
On the basis of (2), at ERG20wwBsmBI enzyme cutting sites are designed at both ends, and are connected to ADH1 t-back BsmBI enzyme cutting sites-GAL 1 through BsmBI enzyme cutting&GAL10-ERG20wwAnd the coding sequence of the sabinene synthase fusion protein-TDH 2t expression cassette, thereby completing the construction of the recombinant vector and obtaining the recombinant vector YGG415-ADH1t-ERG20ww-GAL1&10-ERG20wwAnd the coding sequence of the juniperylene synthase fusion protein-TDH 2 t;
wherein the sabinene synthase coding sequence is a sabinene synthase coding sequence derived from Salvia pomifera and/or Citrus jamshiri; or a truncated sabinene synthase coding sequence in which the N-stretch coding sequence of amino acid residues 1 to 43 is removed from the sabinene synthase coding sequence derived from Salvia pomifera and/or Citrus jamshiri.
Example 2: construction of the recombinant Saccharomyces cerevisiae Strain of the invention
1. Chassis strains
The chassis strain is selected as YJGZ1, which is based on a commercial model strain CEN. PK2-1C, and overexpresses precursor genes IDI1 and tHMGR1 while knocking out GAL80, namely, the supply of precursor GPP is increased, so that substrates required by sabinene synthesis are provided more. The specific modification method comprises the following steps:
amplification of P from BY4741 genomic DNAGAL1,10Promoter, TADH1And TTDH2Terminator and HIS3 marker and the top and bottom 400bp homology arms of Gal80 p. The PCR products were assembled by OE-PCR in the desired order, obtained as Gal80up-TADH1-PGAL1,10-TTDH2-His-Gal80down expression cassette. The expression cassette was then cut with NotI-HF and inserted into the same site of pRS415K to generate plasmid pJGZ3, which was at TADH1And PGAL1,10With two back-to-back BsmBI sites, P betweenGAL1,10And TTDH2There are two back-to-back BsaI sites in between. The IDI1 amplified from BY4741 genomic DNA was digested with BsmBI and ligated into pJGZ3 at the same cleavage site to produce pJGZ 4. Cleavage of fragment Gal80up-T from pJGZ4 by NotI-HFADH1-IDI1-PGAL1,10-TTDH2His-Gal80down and inserted into a reconstituted pEASY-Blunt vector not containing the kanamycin resistance gene and the BsaI site to generate plasmid pJGZ 5. Subsequently, tHMGR amplified from BY4741 genomic DNA was inserted into pJGZ5 through BsaI restriction sites to obtain pJGZ 6. Finally, the NotI-HF cleaved integration fragment from pJGZ6 Gal80up-TADH1-IDI1-PGAL1,10-tHMGR-TTDH2His-Gal80down was transformed into CEN. PK2-1C to give YJGZ 1.
The YJGZ1 selected in the embodiment is a strain obtained in earlier systematic scientific research work, and is directly adopted for convenience, but is not necessarily used, and in subsequent comparison strains, the strain is also adopted as a blank strain for comparison, and sabinene cannot be generated.
2. Transforming the recombinant vector
The recombinant vector is transferred into YJGZ1 by a lithium acetate conversion method, an SC-LEU solid plate (6.7 g/L of synthetic yeast nitrogen source YNB, 20g/L of glucose, 2g/L of leucine-deficient mixed amino acid powder and 2% of agar powder) is adopted for screening after conversion, the obtained transformant is subjected to streak purification culture, yeast plasmid is extracted for PCR verification, and the correctly verified recombinant strain is stored to be the recombinant saccharomyces cerevisiae.
3. Expression of heterologous efflux protein genes
And (3) transforming a recombinant vector capable of expressing the efflux protein on the basis of the recombinant saccharomyces cerevisiae in the step (2). The construction method of the recombinant vector capable of expressing the efflux protein comprises the following steps:
first, the vector PRS424 was double-digested with Not I and BamH I s. Then, designing primers to divide an expression cassette GPM1t-GAL7-GPDt (obtained by earlier stage system scientific research of the invention and directly adopted for convenience) into GPM1t-GAL7 and GPD for PCR, respectively designing homologous sequences with efflux genes SC-GcABCG1, SC-YL-ABC2 and SC-YL-ABC3, enabling homologous regions of 20-40 bp to be reserved between two adjacent gene elements, splicing a vector PRS424 by using yeast homologous recombination, then transforming the homologous regions into yeast strains, screening an SC-LEU-TRP (synthetic yeast nitrogen source YNB 6.7g/L, glucose 20g/L, mixed amino acid powder of tryptophan deficiency and leucine 2g/L and agar powder of 2%) solid plate according to a screening label carried by the PRS424, extracting yeast plasmid for PCR verification after scribing and pure culture of obtained transformants, obtaining the recombinant saccharomyces cerevisiae.
4. Down-regulating expression of endogenous ERG20 of YJGZ1
On the basis of the recombinant saccharomyces cerevisiae obtained in 2 or 3, primers are designed, the whole genome DNA of the yeast YJGZ1 is used as a template to amplify a fragment HXT1p and an endogenous ERG20 (which can also be obtained by other amplification methods), a URA3 nutritional label loxP-URA3-loxP fragment is selected, a homologous region of 20-40 bp is arranged between two adjacent fragments, then the fragment loxP-URA3-loxP-HXT1p-ERG20 is obtained by overlapping extension PCR to replace ERG20p-ERG20 on the YJGZ genome, a schematic diagram is shown in figure 5, the transformed yeast is subjected to streak purification culture by using an SC-URA solid plate (synthetic yeast nitrogen source YNB 6.7g/L, glucose 20g/L, uracil-lacking mixed amino acid powder 2g/L, 2% agar powder) to obtain transformants, the transformants are subjected to PCR verification, and the nutritional label URA3 can be recovered by a 5-fluoorotic acid plate, obtaining the recombinant saccharomyces cerevisiae.
Example 3: shake flask fermentation test of different recombinant Saccharomyces cerevisiae strains
(1) Sabinene synthase coding sequence from different sources
According to "(1) ERG20 in example 1wwAnd hinokeneThe method for respectively introducing enzyme coding sequences into expression cassettes "is used for constructing recombinant vectors, the sabinene synthase coding sequences are respectively derived from Salvia pomifera, Salvia officinalis, Picea aspergilli, Thuja plicata, Murraya koenigii, Citrus jamhiri and Litsea cubeba and are abbreviated as SpSabS1, SoSabS1, PsSabS1, TpSabs1, MkSabS1, CjSabS1 and LcSabS1 in sequence, 7 recombinant vectors are transformed into the same YJGZ1 strain, and a blank control strain YJGZ1 is arranged, and the method comprises the following steps:
SyBE_Sc04100001:YGG415-ADH1t-ERG20ww-GAL1&10-SpSabS1-TDH2t;
SyBE_Sc04100002:YGG415-ADH1t-ERG20ww-GAL1&10-SoSabS1-TDH2t;
SyBE_Sc04100003:YGG415-ADH1t-ERG20ww-GAL1&10-PsSabS1-TDH2t;
SyBE_Sc04100004:YGG415-ADH1t-ERG20ww-GAL1&10-TpSabS1-TDH2t;
SyBE_Sc04100005:YGG415-ADH1t-ERG20ww-GAL1&10-MkSabS1-TDH2t
SyBE_Sc04100006:YGG415-ADH1t-ERG20ww-GAL1&10-CjSabS1-TDH2t;
SyBE_Sc04100007:YGG415-ADH1t-ERG20ww-GAL1&10-LcSabS1-TDH2t;
shake flask fermentations were performed for SyBE _ Sc04100001-SyBE _ Sc04100007 and the blank control strain for the Chassis strain YJGZ 1.
Seed culture medium: 40g/L glucose; 6.7 g/LYNB; 2g/Ldrop-out of leucine.
Fermentation medium: 40g/L glucose; 6.7 g/LYNB; 2g/Ldrop-out of leucine.
A single colony of the strain is inoculated into 3mL of SC-leu culture medium and cultured for 24h at 30 ℃ and 220 rpm. The primary seeds were transferred to 5mL SC-leu medium at initial OD600 ═ 0.2, and cultured at 30 ℃ and 220rpm for 12-18 h. The secondary seeds were transferred to 50mL of SC-leu medium at initial OD600 ═ 0.1, and two-phase culture was carried out by adding 20% isopropyl myristate at the same time (220rpm, 30 ℃ c., 96 h).
Sabinene quantification method: fermentation end1mL of the organic phase on the upper layer of the fermentation medium is spotted, and anhydrous sodium sulfate is added to stand in a four-degree refrigerator for dewatering for 4-5 hours. After removal of water the organic phase was filtered using a 2 μm organic filter. Then using gas chromatography to determine: the boiling point of sabinene is 164 deg.C at 760mmHg, so the detector temperature is set at 260 deg.C, the sample inlet is 250 deg.C, and the column temperature is 250 deg.C. The chromatographic condition is DB-5 silica gel capillary chromatographic column, and the sample injection amount is 1 mu L; keeping the initial temperature of the column temperature at 50 ℃ for 4 min; then at 5 ℃ min-1Heating to 100 deg.C, and maintaining for 1 min; finally at 25 ℃ min-1Heating to 250 deg.C, and maintaining for 5 min;
the results are shown in fig. 6, no sabinene chromatographic peak was detected in the blank control strain YJGZ1, chromatographic peaks at 12.098min were detected in the strains SyBE _ Sc04100001 and SyBE _ Sc04100006 at the same peak-off time as the standards, and no sabinene chromatographic peak was detected in the remaining strains, demonstrating that the strains SyBE _ Sc04100001 and SyBE _ Sc0410000 achieved sabinene synthesis with a yield of 0.519mg/L for SyBE _ Sc04100001 higher than for the strain SyBE _ Sc 04100006. Therefore, the coding sequences of the SbS1 and CjSabS1 derived sabinene synthase can obviously improve the sabinene synthesis capability of the strain, and the SpSbS1 source is the best.
(2) Sabinene synthase coding sequences in different truncation modes
Based on the SpSbS 1-derived sabinene synthase coding sequence, the following four truncation operations were performed to obtain different truncated sabinene synthase coding sequences:
t1SpSabS 1: a truncated sabinene synthase coding sequence with the 1-43 amino acid residue from the N-terminus of sabinene synthase removed;
t2SpSabS 1: a truncated sabinene synthase coding sequence with 1-34 amino acid residues from the N-terminus of sabinene synthase removed;
t3SpSabS 1: a truncated sabinene synthase coding sequence with the 1-52 amino acid residue from the N-terminal of the sabinene synthase removed;
t4SpSabS 1: truncated sabinene synthase coding sequence with the amino acid residue at position 423 and 499 of sabinene synthase removed;
each of the truncated sabinene synthase-encoding sequences described above was individually prepared according to "(1) ERG20 in example 1wwAnd the sabinene synthase coding sequence was introduced into the expression cassette "to obtain 4 different recombinant vectors, which were transferred to YJGZ1Strains SyBE _ Sc04100008, SyBE _ Sc04100009, SyBE _ Sc04100010 and SyBE _ Sc04100011 were obtained in sequence, and then shake flask fermentation experiments were performed together with the previously obtained SyBE _ Sc 04100001;
the result is shown in figure 7, the recombined brewing strain SyBE _ Sc04100009 obtained by the truncation mode of only 1-34 amino acids improves the yield of sabinene by nearly five times, and the yield of the sabinene reaches 2.57mg/L, which is 4.95 times of the yield of the control strain SyBE _ Sc 04100001. Strains SyBE _ Sc04100008, SyBE _ Sc04100010 and SyBE _ Sc04100011 obtained by the other three truncation modes have no sabinene synthesis.
(3)ERG20wwFusion expression of sabinene synthase coding sequence and multiple expression of one ERG20ww
ERG20ww and t2SpSabS1 are respectively subjected to forward and reverse fusion by coding sequences of flexible linker (GGGGS, shown in SEQ ID NO: 22) and rigid linker (PAPAP, shown in SEQ ID NO: 23), different recombinant vectors are constructed and transferred into YJGZ1 by referring to a method of introducing the coding sequences of ERG20ww and sabinene synthase fusion protein into an expression cassette in example 1 (2), the transformed yeast is screened by adopting an SC-LEU solid plate, and after the obtained transformant is subjected to streak purification culture, yeast plasmids are extracted for PCR verification, and glycerol bacteria are stored for the forward fusion flexible linker connecting strain, the reverse fusion flexible linker connecting strain, the forward fusion rigid linker connecting strain and the reverse fusion rigid linker connecting strain which are verified to be correct and are sequentially named as SyBE _ Sc04100012, SyBE _ 041Sc 00013, SyBE _ 041Sc 00014 and SyBE _ Sc 00015;
reference example 1 "(3) expressing one more ERG20wwThe method of the construction process of (1) is constructed by expressing one ERG20 on the basis of SyBE _ Sc04100012, SyBE _ Sc04100013, SyBE _ Sc04100014 and SyBE _ Sc04100015wwThe recombinant strains of (1) are sequentially named as SyBE _ Sc04100016, SyBE _ Sc04100017, SyBE _ Sc04100018 and SyBE _ Sc 04100019;
to exclude the expression of more ERG20wwThe copy number difference is brought, a positive control strain is constructed, namely, the strain SyBE _ Sc04100009 is used as an original strain, and one more ERG20 is expressedwwConstructed on the vector YGG416 (plasmid map is shown in FIG. 8, the whole gene sequence is shown in SEQ ID NO:24It is similar to YGG 415), the specific construction method: the constructed YGG415-ADH1t-ERG20 was digested simultaneously with SalI and BamHIww-GAL1&10-TDH2t (obtained during construction of recombinant vector in example 1) to obtain fragment ADH1t-ERG20ww-GAL1&10-TDH2t ligated into vector YGG416 digested with SalI and BamI to obtain YGG416-ADH1t-ERG20ww-GAL1&10-TDH2t, then transforming into a strain SyBE _ Sc04100009, screening by using an SC-LEU-URA solid plate, carrying out streak purification culture on the obtained transformant, extracting yeast plasmid for PCR verification, and storing a glycerol strain named SyBE _ Sc04100020 for a recombinant strain with correct verification.
The above SyBE _ Sc04100009, SyBE _ Sc04100012-SyBE _ Sc04100020 were subjected to shake flask fermentation experiments, and the results in FIG. 9 show that the control strain SyBE _ Sc04100009 produces 2.23 mg/L. For flexible linker (GGGGS), the yield of the forward fusion strain SyBE _ Sc04100012 is 1.94mg/L, and the yield of the reverse fusion strain SyBE _ Sc04100013 is 2.56mg/L, so that the reverse fusion effect is better than that of the forward fusion, and one part of ERG20 is added in more than the reverse fusionwwThe effect of (5) was even better, i.e., the yield of the strain SyBE _ Sc04100017 was 3.18 mg/L. The reason is presumed to be that the N-terminal of t2SpSabS1 is positively charged and attracts another copy of ERG20 which is negatively chargedwwThus, the precursor can be fully utilized to accelerate the reaction. And ERG20wwPositive fusion of/tSpSabS 1 would expose a negative charge, with another copy of ERG20wwThe charges are the same.
For the rigid linker (PAPAP), the forward fusion strain SyBE _ Sc04100014 produced 0.146mg/L and the reverse fusion strain SyBE _ Sc04100015 produced 2.17mg/L, with lower yields compared to the control strain SyBE _ Sc04100009, but one copy of ERG20 for more expressionwwThe yield of the strains SyBE _ Sc041000018 and SyBE _ Sc041000019 is 4.39mg/L and 3.31mg/L respectively. This indicates that the effect of fusion is not very apparent for the use of a rigid linker (PAPAP), in contrast to expressing one more portion of ERG20wwHas the effect of increasing yield.
Meanwhile, compared with SyBE _ Sc04100009 and SyBE _ Sc04100020, the yield of the SyBE _ Sc04100020 is 2.33mg/L, which is not much different from that of the control strain by 2.23mg/L, and the ERG20 with more expressed parts is excludedwwResulting in copy number differences.
Example 4: effect of heterologous efflux Gene expression
Constructing recombinant yeast strains expressing three different heterologous efflux proteins by taking a strain SyBE _ Sc04100009 as a starting strain and referring to the method in the step 3 of expressing heterologous efflux protein genes in the example 2, sequentially naming the recombinant yeast strains as SyBE _ Sc04100021(SC-GcABCG1), SyBE _ Sc04100022(SC-YL-ABC2) and SyBE _ Sc04100023(SC-YL-ABC3), and performing a shake flask fermentation test, wherein the results are shown in a figure 9;
FIG. 10 shows that the control strain SyBE _ Sc04100009 produced 2.23mg/L, the strain SyBE _ Sc04100021 produced 4.57mg/L, the strain SyBE _ Sc04100022 produced 3.70mg/L, and the strain SyBE _ Sc04100023 produced 2.54 mg/L. Compared with SC-YL-ABC2, SC-YL-ABC3 and SC-GcABCG1, SC-GcABCG1 achieves a good efflux effect, and the yield of sabinene is improved by about one time.
Example 5: effect of Down-regulating expression of endogenous ERG20
Referring to the method in example 2 '4, for down-regulating the expression of endogenous ERG20 of YJGZ 1', a recombinant Saccharomyces cerevisiae strain SyBE _ Sc041000025 is constructed and subjected to a shake flask fermentation test, and the recombinant vector YGG415-ADH1t-ERG20ww-GAL1&10-t2SpSabS1-TDH2t is transformed in the SyBE _ Sc 041000025;
FIG. 11 shows that the control strain SyBE _ Sc04100009 (transformed with the recombinant vector YGG415-ADH1t-ERG20ww-GAL1&10-t2SpSabS1-TDH2t) produced 2.03mg/L and the strain SyBE _ Sc04100025 produced 4.19mg/L, indicating that down-regulation of endogenous ERG20 can effectively reduce GPP conversion to FPP and reduce downstream branch metabolism, so that more GPP is used to synthesize sabinene.
Example 6: dominantly integrated recombinant saccharomyces cerevisiae strains
The dominant transformation strategies in examples 1 and 2 were integrated and recombinant s.cerevisiae was constructed in the combinatorial manner in table 1, still using YJGZ1 as the chassis strain.
TABLE 1
Figure BDA0002008460130000161
The constructed SyBE _ Sc04100026-SyBE _ Sc04100029 strain is subjected to a shake flask fermentation test, and the result is shown in FIG. 12, and the yield of the strain SyBE _ Sc04100029 is the highest and reaches 17.57mg/L after fermentation for 96 hours.
The foregoing is only a preferred embodiment of the present invention, and it should be noted that, for those skilled in the art, various modifications and decorations can be made without departing from the principle of the present invention, and these modifications and decorations should also be regarded as the protection scope of the present invention.
Sequence listing
<110> Tianjin university
<120> recombinant vector and recombinant yeast strain for producing sabinene, and construction method and application thereof
<130> MP1900919
<160> 24
<170> SIPOSequenceListing 1.0
<210> 1
<211> 6929
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
ttattatcat gacattaacc tataaaaata ggcgtatcac gaggcccttt gtcacagctt 60
gtctgtaagc ggatgccggg agcagacaag cccgtcaggg cgcgtcagcg ggtgttggcg 120
ggtgtcgggg ctggcttaac tatgcggcat cagagcagat tgtactgaga gtgcaccata 180
tcgactacgt cgtaaggccg tttctgacag agtaaaattc ttgagggaac tttcaccatt 240
atgggaaatg gttcaagaag gtattgactt aaactccatc aaatggtcag gtcattgagt 300
gttttttatt tgttgtattt tttttttttt agagaaaatc ctccaatatc aaattaggaa 360
tcgtagtttc atgattttct gttacaccta actttttgtg tggtgccctc ctccttgtca 420
atattaatgt taaagtgcaa ttctttttcc ttatcacgtt gagccattag tatcaatttg 480
cttacctgta ttcctttact atcctccttt ttctccttct tgataaatgt atgtagattg 540
cgtatatagt ttcgtctacc ctatgaacat attccatttt gtaatttcgt gtcgtttcta 600
ttatgaattt catttataaa gtttatgtac aaatatcata aaaaaagaga atctttttaa 660
gcaaggattt tcttaacttc ttcggcgaca gcatcaccga cttcggtggt actgttggaa 720
ccacctaaat caccagttct gatacctgca tccaaaacct ttttaactgc atcttcaatg 780
gccttacctt cttcaggcaa gttcaatgac aatttcaaca tcattgcagc agacaagata 840
gtggcgatag ggtcaacctt attctttggc aaatctggag cagaaccgtg gcatggttcg 900
tacaaaccaa atgcggtgtt cttgtctggc aaagaggcca aggacgcaga tggcaacaaa 960
cccaaggaac ctgggataac ggaggcttca tcggagatga tatcaccaaa catgttgctg 1020
gtgattataa taccatttag gtgggttggg ttcttaacta ggatcatggc ggcagaatca 1080
atcaattgat gttgaacctt caatgtaggg aattcgttct tgatggtttc ctccacagtt 1140
tttctccata atcttgaaga ggccaaaaca ttagctttat ccaaggacca aataggcaat 1200
ggtggctcat gttgtagggc catgaaagcg gccattcttg tgattctttg cacttctgga 1260
acggtgtatt gttcactatc ccaagcgaca ccatcaccat cgtcttcctt tctcttacca 1320
aagtaaatac ctcccactaa ttctctgaca acaacgaagt cagtaccttt agcaaattgt 1380
ggcttgattg gagataagtc taaaagagag tcggatgcaa agttacatgg tcttaagttg 1440
gcgtacaatt gaagttcttt acggattttt agtaaacctt gttcaggtct aacactaccg 1500
gtaccccatt taggaccacc cacagcacct aacaaaacgg catcaacctt cttggaggct 1560
tccagcgcct catctggaag tgggacacct gtagcatcga tagcagcacc accaattaaa 1620
tgattttcga aatcgaactt gacattggaa cgaacatcag aaatagcttt aagaacctta 1680
atggcttcgg ctgtgatttc ttgaccaacg tggtcacctg gcaaaacgac gatcttctta 1740
ggggcagaca taggggcaga cattagaatg gtatatcctt gaaatatata tatatattgc 1800
tgaaatgtaa aaggtaagaa aagttagaaa gtaagacgat tgctaaccac ctattggaaa 1860
aaacaatagg tccttaaata atattgtcaa cttcaagtat tgtgatgcaa gcatttagtc 1920
atgaacgctt ctctattcta tatgaaaagc cggttccggc ctctcacctt tcctttttct 1980
cccaattttt cagttgaaaa aggtatatgc gtcaggcgac ctctgaaatt aacaaaaaat 2040
ttccagtcat cgaatttgat tctgtgcgat agcgcccctg tgtgttctcg ttatgttgag 2100
gaaaaaaata atggttgcta agagattcga actcttgcat cttacgatac ctgagtattc 2160
ccacagttaa ctgcggtcaa gatatttctt gaatcaggcg ccttagaccg ctcggccaaa 2220
caaccaatta cttgttgaga aatagagtat aattatccta taaatataac gtttttgaac 2280
acacatgaac aaggaagtac aggacaattg attttgaaga gaatgtggat tttgatgtaa 2340
ttgttgggat tccattttta ataaggcaat aatattaggt atgtggatat actagaagtt 2400
ctcctcgacc gtcgatatgc ggtgtgaaat accgcacaga tgcgtaagga gaaaataccg 2460
catcaggaaa ttgtaaacgt taatattttg ttaaaattcg cgttaaattt ttgttaaatc 2520
agctcatttt ttaaccaata ggccgaaatc ggcaaaatcc cttataaatc aaaagaatag 2580
accgagatag ggttgagtgt tgttccagtt tggaacaaga gtccactatt aaagaacgtg 2640
gactccaacg tcaaagggcg aaaaaccgtc tatcagggcg atggcccact acgtgaacca 2700
tcaccctaat caagtttttt ggggtcgagg tgccgtaaag cactaaatcg gaaccctaaa 2760
gggagccccc gatttagagc ttgacgggga aagccggcga acgtggcgag aaaggaaggg 2820
aagaaagcga aaggagcggg cgctagggcg ctggcaagtg tagcggtcac gctgcgcgta 2880
accaccacac ccgccgcgct taatgcgccg ctacagggcg cgtcgcgcca ttcgccattc 2940
aggctgcgca actgttggga agggcgatcg gtgcgggcct cttcgctatt acgccagctg 3000
gcgaaagggg gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca 3060
cgacgttgta aaacgacggc cagtgagcgc gcgtaatacg actcactata gggcgaattg 3120
ggtaccgggc cccccctcga ggtcgacggt atcgataagc ttgatatcga attcctgcag 3180
cccccagtag agaccgcctg gctctagtag cgatctacac tagcactatc agcgttatta 3240
agcaccggtg gagtgacgac cttcagcacg ttcgtactgt tcaacgatgg tgtagtcttc 3300
gttgtgggag gtgatgtcca gtttgatgtc ggttttgtaa gcacccggca gctgaaccgg 3360
ttttttagcc atgtaggtgg ttttaacttc agcgtcgtag tgaccaccgt ctttcagttt 3420
cagacgcatt ttgatttcac ctttcagagc accgtcttcc gggtacatac gttcggtgga 3480
agcttcccaa cccatggttt ttttctgcat aaccggaccg tcggacggga agttggtacc 3540
acgcagttta actttgtaga tgaactcacc gtcttgcagg gaggagtcct gggtaacggt 3600
aacaacacca ccgtcttcga agttcataac acgttcccat ttgaaacctt ccgggaagga 3660
cagtttcagg tagtccggga tgtcagccgg gtgtttaacg taagctttgg aaccgtactg 3720
gaactgcggg gacaggatgt cccaagcgaa cggcagcgga ccacctttgg taactttcag 3780
tttagcggtc tgggtacctt cgtacggacg accttcacct tcaccttcga tttcgaactc 3840
gtgaccgtta acggaacctt ccatacgaac tttgaaacgc atgaactctt tgataacgtc 3900
ttcggaggaa gccatctagt atttctcctc tttctctagt atgtgtgaaa ttgttatccg 3960
ctcacaattc cacacaacat acgagccgga agcataaagt gtaaagcctg gggtgcctaa 4020
tgagtgagct aactcacatt aattgcgttg cgctcactgc ccgctttcca gtcgggaaac 4080
ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg ggagaggcgg tttgcgtatt 4140
gggtctcatt ttggggatcc actagttcta gagcggccgc caccgcggtg gagctccagc 4200
ttttgttccc tttagtgagg gttaattgcg cgcttggcgt aatcatggtc atagctgttt 4260
cctgtgtgaa attgttatcc gctcacaatt ccacacaaca taggagccgg aagcataaag 4320
tgtaaagcct ggggtgccta atgagtgagg taactcacat taattgcgtt gcgctcactg 4380
cccgctttcc agtcgggaaa cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg 4440
gggagaggcg gtttgcgtat tgggcgctct tccgcttcct cgctcactga ctcgctgcgc 4500
tcggtcgttc ggctgcggcg agcggtatca gctcactcaa aggcggtaat acggttatcc 4560
acagaatcag gggataacgc aggaaagaac atgtgagcaa aaggccagca aaaggccagg 4620
aaccgtaaaa aggccgcgtt gctggcgttt ttccataggc tccgcccccc tgacgagcat 4680
cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga caggactata aagataccag 4740
gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc cgaccctgcc gcttaccgga 4800
tacctgtccg cctttctccc ttcgggaagc gtggcgcttt ctcatagctc acgctgtagg 4860
tatctcagtt cggtgtaggt cgttcgctcc aagctgggct gtgtgcacga accccccgtt 4920
cagcccgacc gctgcgcctt atccggtaac tatcgtcttg agtccaaccc ggtaagacac 4980
gacttatcgc cactggcagc agccactggt aacaggatta gcagagcgag gtatgtaggc 5040
ggtgctacag agttcttgaa gtggtggcct aactacggct acactagaag gacagtattt 5100
ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa gagttggtag ctcttgatcc 5160
ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt gcaagcagca gattacgcgc 5220
agaaaaaaag gatctcaaga agatcctttg atcttttcta cggggtctga cgctcagtgg 5280
aacgaaaact cacgttaagg gattttggtc atgagattat caaaaaggat cttcacctag 5340
atccttttaa attaaaaatg aagttttaaa tcaatctaaa gtatatatga gtaaacttgg 5400
tctgacagtt accaatgctt aatcagtgag gcacctatct cagcgatctg tctatttcgt 5460
tcatccatag ttgcctgact ccccgtcgtg tagataacta cgatacggga gggcttacca 5520
tctggcccca gtgctgcaat gataccgcga gatccacgct caccggctcc agatttatca 5580
gcaataaacc agccagccgg aagggccgag cgcagaagtg gtcctgcaac tttatccgcc 5640
tccatccagt ctattaattg ttgccgggaa gctagagtaa gtagttcgcc agttaatagt 5700
ttgcgcaacg ttgttgccat tgctacaggc atcgtggtgt cacgctcgtc gtttggtatg 5760
gcttcattca gctccggttc ccaacgatca aggcgagtta catgatcccc catgttgtgc 5820
aaaaaagcgg ttagctcctt cggtcctccg atcgttgtca gaagtaagtt ggccgcagtg 5880
ttatcactca tggttatggc agcactgcat aattctctta ctgtcatgcc atccgtaaga 5940
tgcttttctg tgactggtga gtactcaacc aagtcattct gagaatagtg tatgcggcga 6000
ccgagttgct cttgcccggc gtcaatacgg gataataccg cgccacatag cagaacttta 6060
aaagtgctca tcattggaaa acgttcttcg gggcgaaaac tctcaaggat cttaccgctg 6120
ttgagatcca gttcgatgta acccactcgt gcacccaact gatcttcagc atcttttact 6180
ttcaccagcg tttctgggtg agcaaaaaca ggaaggcaaa atgccgcaaa aaagggaata 6240
agggcgacac ggaaatgttg aatactcata ctcttccttt ttcaatatta ttgaagcatt 6300
tatcagggtt attgtctcat gagcggatac atatttgaat gtatttagaa aaataaacaa 6360
ataggggttc cgcgcacatt tccccgaaaa gtgccacctg ggtccttttc atcacgtgct 6420
ataaaaataa ttataattta aattttttaa tataaatata taaattaaaa atagaaagta 6480
aaaaaagaaa ttaaagaaaa aatagttttt gttttccgaa gatgtaaaag actctagggg 6540
gatcgccaac aaatactacc ttttatcttg ctcttcctgc tctcaggtat taatgccgaa 6600
ttgtttcatc ttgtctgtgt agaagaccac acacgaaaat cctgtgattt tacattttac 6660
ttatcgttaa tcgaatgtat atctatttaa tctgcttttc ttgtctaata aatatatatg 6720
taaagtacgc tttttgttga aattttttaa acctttgttt attttttttt cttcattccg 6780
taactcttct accttcttta tttactttct aaaatccaaa tacaaaacat aaaaataaat 6840
aaacacagag taaattccca aattattcca tcattaaaag atacgaggcg cgtgtaagtt 6900
acaggcaagc gatccgtcct aagaaacca 6929
<210> 2
<211> 4380
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
atggaaacag actcaaaaag tgtagaaagt ggtgaaactg ctgctatgcc aggtcaacaa 60
caaatctcat caaatgccca aggtttaatt catgcttact caatggaatt ggttagatca 120
tcttctagag caacaggtgg tggtggtgct ccaggtagaa atccattcac tggtacatct 180
aatgatccag cattagatcc acattctaaa gcttttgatg ctagaagatg ggctcaagct 240
gttttacatt caacaggtga aggtccagat cattgtccaa gaccaacagc tggtgttgct 300
tacagaaatt tgagagttca tggttacggt tctccaacag attatcaaaa agatgttttt 360
aatgttttgt tacaagcacc attagaagca gctcaatatt ttatgtcttc aagaagaggt 420
agagaagttc caattttgag agatggtttt gatggtttag ttagatcagg tgaaatgtta 480
ttagttttgg gtagaccagg ttcaggtgtt actacattgt taaaaacagt tgcaggtgaa 540
actaatggtt tgcaagttga tgcagaagct tttatttctt accaaggtat tccaatgcaa 600
gcaattcaaa agagattcag aggtgaagtt gtttaccaag ctgaaactga tgttcatttt 660
ccacaattga cagttggtca aactttgtta tttgctgcaa aagcaagaac accacaaatg 720
aggccagatg gtgttactag agcacaatac gctaaacata ttagagatgt tgttatggca 780
gtttttggta tttctcatac agttaataca agagttggtt cagatttggt tagaggtgtt 840
tcaggtggtg aaagaaaaag agtttctatt gctgaagttg ctttatctgg ttcagctttg 900
caatgttggg ataattctac aagaggtttg gattctgctt cagctttatc ttttgctaat 960
acattaagat tatcaactga attggcaggt actacagctt tggttgctat gtatcaagct 1020
tcagaagctg cttacgaaac ttttggtaaa gtttgtttat tgtacgaagg tagacaaatt 1080
ttctttggtc cagctaatga agcaaaagca tttttcgttg atatgggtta tgaatgtcca 1140
gatagacaaa caacagctga tttcttgact tctttaacta atccaggtga aagagttgtt 1200
agaccaggtt ttgaaaatag agttccaaga acaccagatg attttgttgc ttactggaaa 1260
gcatcagcta ctagagcttc tttattgcaa gatattgctg aatttgatca agaacatcca 1320
atggatggta caccaattga agcaatggca acagttagaa aagctcatca agcaccattg 1380
acaccaaata agtcaccatt cactttatca tttccacaac aagttgcttt atgtatgact 1440
agaggttacg aaagaacaat gggtgacaaa acatttttca ttgttactgt tggtggtaat 1500
ttggttattt cattggtttt aggttcagtt ttctatcaat tgtcaccaga tgcttcatct 1560
attacttcaa gatgtatttt attgtttttc gctattttgt ttaatgcatt atcttcttca 1620
ttagaaattt tatcattgta tgctcaaaga ccaattgttg aaaaacatgc tagatatgca 1680
ttgtacacac catctgctga agcagtttct tctgcatttt gtgaattgcc atctaaaatt 1740
ttctctgcaa ttgcttttaa tattccatta tactttatgg cagatttgag acatggtgca 1800
ggtcatttct ttttcttttt attgtttgct tttacttgta ctttgacaat gtcttttatt 1860
ttgagaacaa ttggtcaagc atctagaact gttcaagaag ctttgacacc agctgctgtt 1920
tttattattt ctttggttat ttatactggt tttgttattc cagttaaatc aatgcaaggt 1980
tggatgagat ggattaatta cttgaatcca attgcttacg cttatgaatc attattagtt 2040
aatgaattgt caggtagaaa ttttccatgt gcatcttttg ttccagcata cccaaatttg 2100
tcttcatctg aacatacatg ttctacagca ggtgcagctc caggtgcaga ttttgttgtt 2160
ggtgacacta ttttgaattc atcatatgaa tactaccatg cacataaatg gagaaatttg 2220
ggtattttaa ttggtttctt gattgcattt ttctttgctt atttggttgc atctgaatac 2280
attacagctg aacaatctaa aggtgaagtt ttagttttta gaagaggtca taaagaatca 2340
gctgttgttg aaagaaaaac tgctacatct gatgattcag atggtgaaaa aggtcatcaa 2400
actgaacaaa aagatatttg tcattggaga aatgtttgtt atgatattac aattaaaggt 2460
caaggtagaa gattgttaga tcatgttgat ggttgggtta aaccaggtac attgacatgt 2520
ttaatgggtg tttctggtgc aggtaaaaca actttgttag atgttttggc taatagagtt 2580
actatgggtg ttgttacagg tgacatgtta gttaatggtt caccaagaga ttcttcattt 2640
caaagaaaaa ctggttatgt tcaacaacaa gatgttcatt tggaaacatc tactgttaga 2700
gaagctttga gattttctgc acaattgaga caaccaacta cagtttctac tcaagataaa 2760
tacatttttg ttgaagaagt tattgaatta ttggaaatgg atgaatatgc agatgcaatt 2820
gttggtgttc caggtactgg tttaaatgtt gaacaaagaa aaagattgac tattggtgtt 2880
gaattagctg caaaaccaga tttgttattg tttttggatg aaccaacatc aggtttagat 2940
tcacaaacag catggtcagt tgctgcattg attagaaaat tgtctgctag aggtcaagct 3000
gttttgtgta caattcatca accatctgca ttattgtacc aacaatttga tagaatttta 3060
ttgttggcag ctggtggtag aactgtttat tttggtgaca ttggtccaaa tgcagaaact 3120
attatttctt actttgaaag aaatggtgct gaaccatgtg gtcaagatga aaatccagct 3180
gaatggatgt tatcagttat tggtgcaggt ccaggtggtg ttgctaaaca agattgggtt 3240
tctatttgga gaaattcaga tgaatactct gctgttcaag ctgaattaga taatttggct 3300
aaaagaaaag atactatggc ttcatctggt gctacagatg cagctgctgt tactacatat 3360
gctactccat ttttctttca attgtatatg tgttctaaaa gagtttttga acaatactgg 3420
agaacaccat cttacattta tgcaaaaatg attttatgtt ttgcagtttc attgtttatt 3480
ggtttgtctt ttagaaaagc tccattgtct gaacaaggtt tgcaaaatca aatgttttct 3540
atttttatgt tattggttat ttttgcattt ttggcttatc aaactatgcc acattttatt 3600
agacaaagag aattgtatga aattagagaa agagcttcaa gaacatactc atggtatgtt 3660
tttatgttgg caaatattat tgttgaattg ccatggaata ctattgcatc attattggtt 3720
ttcttgccat tttattatat tgttggtatg aatcataatg ctgaagcaac tcattcagtt 3780
tctgaaagag gtggtttgat gtttttgtta gtttgggttt tcttagtttt tgaatctact 3840
tttactgata tggttgttgc tggttctcca actgctgaat tgggtgcaac aatggctttg 3900
ttattatttg cttttacttt aattttctgt ggtgttatgg ttggtaaaga tcaattgcca 3960
ggtttttgga tttttatgta tagagtttct ccattgactt atttggttgg tggtttgttg 4020
gctactggtg ttggtcatca tgaagttaca tgtactgcta gagaattgtt atcatttcaa 4080
ccagttggta atcaaacatg tttagaatat atgactccat atatgaaatt agcaggtggt 4140
aaagttatta atccaaatgc tgttgcacca gcatcatgtg aattttgtac attagcaaat 4200
acagatgctt tcttggcttc tattaatgtt tcatatgatc aaagatggag agattttggt 4260
ttgatgtggg catatgttgt ttttaatgtt tttggtgctt tgtttatgta ttggttggtt 4320
agagccccaa agggtgactt aaaggcaaga ttgttcaaat tagtaggtaa aactgcttaa 4380
<210> 3
<211> 4410
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
atggaacaaa ctccaccaga ttacacaggt ttagataaga acatcgatgc agaagttaga 60
tcaattgctg aatcaatgta ccaaacaaga agagaaggtg ttaacgattc agatactgat 120
gaagaattgc aaagaactaa cacaatccaa ccaaatttga acgttaaccc atttttggat 180
acatctgatc cacaattaga tccattgtct aaggaattca attcaagaaa gtggatcaag 240
actatcttgg gtttgaaggc tagattcggt aactcaagat caatctcagc aggtgtttct 300
tttaaaaatt tgtcagcttt cggttatggt ggtggtaacg attaccaaaa gacttttact 360
aactcagtta tggctattgg tccaatgatt aagaaagttt tgggtggtaa taagggttct 420
gaagttcaaa ttttaagaca tttcgatggt ttggttagag ctggtgaaac atgtgttgtt 480
ttaggtagac caggttctgg ttgtactaca tttttgaagt cagttgcatg tgaaacttac 540
ggtttccatt tgggtgaaaa atctgaatgg aattaccaag gtgttccaag agatgttatg 600
caaaagaatg caagaggtga aatcgtttac aacgctgaag ttgatgttca ttttccacat 660
ttgactgttg gtgacacatt gttatttgct gcattagcta gaacaccaca aaatagattg 720
gaaggtgttt caagagaaca acatgcaact catgttagag atgtttctat ggctatgtta 780
ggtttgactc atacaatgga tacaaaggtt ggtaacgatt tcgttagagg tgtttcaggt 840
ggtgaaagaa aaagagtttc tattgcagaa tcagttgttt gtggtgctcc attacaatgt 900
tgggataatt ctacaagagg tttggatgct gcaaatgcta ctgaattcat tagatcattg 960
agattgtcag cagaaatgac tgatgcttct atgtttgttt cattgtacca agcatctcaa 1020
gaagcttacg atatgttcga taaggtttgt gttttgtacg aaggtagaca aatatatttt 1080
ggtaaaacta cagaagctaa gcaatttttc ttggatttgg gtttcgattg tgcagataga 1140
caaactactg gtgacttttt gacttcattg acaaacccaa tcgaaagaat catcagacca 1200
ggttgggaat ctagagttcc aagaactcca gatgatttcg aaaagtgttg gttggaatct 1260
gaagctagac aattgttatt gcaagatatc gatgaattca ataacgaatt cgttttaggt 1320
ggtccagcat tggataactt catgggtttg agaaaggatg ctcaagcaaa acatactaga 1380
gttcaatctc catacacaat ctcatggcca atgcaaacta gattatgttt gtggagaggt 1440
ttcttgagaa ttaaaggtga catgtctact gatatcgcaa cagttttcgg taacttcgtt 1500
atggctttgg ttttgtcttc aatgttctac aacatgccac aaactacaga atctttcttt 1560
tctagaggtg cattattgtt tttcgctatc ttgattaatg ctttcgcatc tatcttggaa 1620
attttatcat tgtacgaaca aagaccaatc gttgataagc aaaacagata cgcaatgtac 1680
catccagctg ctgatgcttt ggctgcaatc atcactacat tcccaactaa gacattaact 1740
ttggtttcag ttaatttgac tatctatttc atgacaaatt tgagaagaga agttggtcca 1800
tttttcattt tctttttgtt ttctttattg tgtacaatgg ctatgtcaat gatttttaga 1860
actatcggtt ctgttacaaa gactttggaa caagctttgg caccagcttc tatcatcatc 1920
ttggctttgg ttatatatac tggtttttct ttaccaattt catacatgca tggttgggca 1980
agatggatta attggttgaa tccagttgca tatggttttg aagctgttat ggttaacgaa 2040
ttcagaaaca gagaatacga atgttctatg ttcgttccat caggtggtgc ttacgaaaat 2100
gtttctttgg attacagatc atgtgctgct gttggtgcag aaccaggttt gagattcgtt 2160
aacggtgacg cttttattaa ccaatcttac gaatactaca acgcacattt gtggagaaac 2220
atgggtattt tgtttggttt tattattttc tttggtgcat tctatttgtt cgctgttgaa 2280
tacatccaag gtgctaagtc aaagggtgaa gttttggttt ttagaaagga acatattaag 2340
aaacaaagaa aggaaaagaa tggtgacatc gaatctggtg ttacaatggc tggtgaaaaa 2400
ggtactcaag aatctgaatc ttcaaacaca tcaattaatt tgcaagcaca aagaggtatc 2460
tatcaatgga aggatgtttg ttacgatatc aaggttaagg atggtgaaag aagattattg 2520
gatcatgttg atggtttcgt taaaccaggt acattaactg ctttgatggg tgcatcaggt 2580
gctggtaaaa ctacattgtt ggatgttttg gcagatagaa aatctactgg tgttgttaca 2640
ggtgaaatgt tggttaatgg tgaacataga gatggttcat tccaaagaaa gactggttac 2700
gttcaacaac aagatttgca tacagcaact gctacagtta gagaatcttt ggaattttca 2760
gctttattga gacaaccatc ttcaatccca gaatctgaaa agttggcata cgttgatgaa 2820
gttattagaa ttttggaaat ggaaacatac gcagatgctg ttgttggtgt tccaggtgaa 2880
ggtttaaacg ttgaacaaag aaagagatta actattggtg ttgaattggc tgcaaagcca 2940
gaattgttgt tgtttttgga tgaaccaaca tctggtttgg attcacaaac tgcttggtct 3000
atcgttaagt tgttgaagaa attagctgca aatggtcaag caattttgtg tacaatccat 3060
caaccatcag ctatcttgtt ccaagaattc gatagattgt tatttttggc ttctggtggt 3120
agaacagttt attacggtga cattggtcca caatcttcaa tcttgactga atacttcgaa 3180
agaaatggtg cagatccatg tccaaaacaa ggtaatccag ctgaatggat gttggaagtt 3240
attggtgctg caccaggttc aactgcaaaa agagattggc cagttgtttg ggctgaatct 3300
ccagaaagag ctgcaaaaag agaagaattg gatgaaatgg ctagaactgt tgaaagagtt 3360
caaacaaaca ctacagaaag agattcaaca ggttattctg attcagatca atttgctgtt 3420
ggttggtgga ctcaattcaa aattgtttct aaaagacaat ttcaagcatt gtggagaaca 3480
ccatcttact tatggtcaaa agttttcttg tgtgctgcat ctgcaatttt cattggtttt 3540
tctttcttta aggctccaaa cgatatgcaa ggtttacaaa ataagatgtt ctctttcttt 3600
atgttatttt tgattttcaa tacagttgtt gaacaaatca tcccacaatt cgataagatg 3660
agagaattgt acgaagctag agaaagatca tcaaagactt actcttggca agtttttatg 3720
ggttcaaaca tggtcgttga attgatctgg caatttttca tgggtgttat tgttttcttt 3780
tgtttttact acccagttgg tttccaatgg actgctgaat ataatgattc agttcatgaa 3840
agaggtggtt tgtttttctt gtacgtctta ttgttgtttt tatacaattc tacatttgca 3900
catatgttga tcgctggtat cgataataag gatactgctg cacaaattgg tactttgttg 3960
tttacattga tgttgttgtt ttgtggtgtt ttggctacaa aagaacaaat gccaggtttt 4020
tgggttttta tgtacagagt ttctccatta acttacttcg ttggtggtat gatggcaact 4080
ggtatgggta gagctccagt tacttgttca ccacatgaat tggttagatt tccagctgtt 4140
cctggtaaat cttgtggtga atacatggat ggttttattt ctgcattagg tgactcagct 4200
ggttatttgg tttcttcatc tgctgatatg tgtgaatact gtccaatgaa gtcatctgat 4260
caattcttgg attctgttga tatctcatac actcaaagat ggagaaactg gggtatttta 4320
tgggcttacc cattgtttaa tatcttcgct gcattcgcat tgtactattt ctttagagtt 4380
ccaaagaaat ctaaagcaca aaaagcttaa 4410
<210> 4
<211> 4458
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 4
atgactgatc cagttccaat tacacaagat ccaactatct attcttcaca acaagatgct 60
gaaatcagat cattggcaga atctatccat tcacaacatt ctaacaactc aaacaactct 120
acagaattga ctaatccata cgttgatact tcagatccag aattagatcc atggtctggt 180
caattcaatt caagaaagtg gtctagaact atcttgggtt taaaaagaag atacggtaca 240
tcaaaggaaa tcactgctgg tgtttctttt aaaaatttgg gtgcttacgg ttacggtggt 300
ggtgctgatt accaaaagac tgttgctaat gcagttttgg gtttagaagg tgttgttaga 360
acattgttcc atttggaaaa gaaagaagat aaggttcaaa ttttgtctga ttttaatggt 420
gttttatggc caggtgaaac ttgtgttgtt ttgggtagac caggttcagg ttgtactaca 480
ttgttgaagt ctatcgcttg tgaaacatac ggtttccaat tggataagga aactgaatgg 540
aactaccaag gtattccaag aaagatcatg caaaagactt gtagaggtga aatcgtttac 600
aacgctgaag ttgatgttca ttttccacat ttgacagttg gtgacacttt gatgtttgca 660
tctttagcta gaacaccaca aaatagattt gatggtgtta ctagagaaca atacgctaaa 720
catacaagag atgttactat ggcatcattg ggtttatctc atacattgga tactaaggtt 780
ggtaacgatt ttgttagagg tgtttctggt ggtgaaagaa agagagtttc aatcgctgaa 840
tctatcgttt gtggttcacc attgcaatgt tgggataatt ctactagagg tttagatgct 900
gcaactgcaa cagaattttt gagatggtta agacattcag cagaattgac aggtgcttca 960
atgtttgttt ctttgtacca agcatctcaa gaagcttacg aattgttcga taaggttact 1020
gttttgtacg aaggtcaaca aatatatttt ggtccaggtg aacaagctaa gcaatacttc 1080
gaagaaatgg gtttcgaatg tccacataga caaactactg gtgacttttt gacatcaatt 1140
acttctccag cagaaagaat tgttgctcca ggttttgaag gtaaaacacc aagaactgca 1200
tcagaatttg ctgaaagatg gagacaatct caagcttacg caaatttgca agaagaaatc 1260
gaaagattca atactgaatt tccagttggt ggtaacagag ttgctgatat catggaattg 1320
aagcaagaaa agcaatcaga tcatatcaaa gtttcttcac catacactat ctctatccca 1380
atgcaggtta agttgtgttt gacaagaggt ttccaaagat tgagaggtga cttgtcaatg 1440
gctttgacta cagttttggg taacttcgtt gttgcattga tcttgtcttc aatgttctac 1500
aacatgccag aagatacttc ttctttcttt tctagaggtg cattgttgtt tttcgctatg 1560
ttgatgaatg caatgtcttc agttttggaa atcatcgttt tgtacgaatt aagaccaatc 1620
gttgaaaagc atcaaagata cgctatgtac catccattct gtgaagcttt ggcatcaatc 1680
atctgtgatt tcccaacaaa gttcttgact atgttatgtg ttaatgttac attgtacttc 1740
atgtctaatt tgagaagaga agctggtcca tttttcattt tctttttgtt tactttgttg 1800
tgtgttttgg caatgtctat gatttttaga acaatcgctg ctgttactaa gacattgcaa 1860
caagctttag caccagctgc tgttattatc ttggctttga tcatctatac aggttttact 1920
ttgccaattt cttacatgag aggttgggca agatggatca actacatcga tccaatcgct 1980
tacggttttg aagcagttat ggttaacgaa ttcagaaaca gagaattccc atgtgctttg 2040
tttattccac aacaatcaac ttacgatcaa ttaggttctc cataccaagg ttgtatggca 2100
gttggtgcta aaccaggtga aagattcgtt aacggtgaca gatatttgga aatggctttt 2160
gattactctc aagcacattt gtggagaaat ttgggtatta tgtttggttt tattttgttt 2220
ttcgctttta catatttgac tgctgttgaa ttcattcaat ctgctaagtc taagggtgaa 2280
gttttggttt tcttgagatc atctttgaag cagagaaaga aaagagctca tttgatggat 2340
gttgaagcta atgcagaaaa agttggtgct gcacaagata gagaaatttt ggttcaacaa 2400
gaagaaggtc aacaagaaga aacatcttca tgtactccat ctgattcaac tccaaaggat 2460
atcttccaat ggaaggatgt ttgttacgat atcaaggtta aaggtggtga aaagagattg 2520
ttggataacg ttgatggttg ggttaaacca ggtactttga cagctttaat gggttgttct 2580
ggtgcaggta aaactacatt gttggatgtt ttggcagata gaaaagctac aggtgttatt 2640
actggtgaca tgagagttaa tggtcaaaag agagatgctt cattccaaag aaagactggt 2700
tacgttcaac aacaagattt gcatactgca acatctactg ttagagaagc tttagaattt 2760
tcagcattgt taagacaacc atctaatgtt ccaaaagcag aaaagattgc ttacgttgat 2820
gaagttattg atatcttgga aatgcaagct tacgcagatg ctgttgttgg tgttccaggt 2880
gaaggtttaa acgttgaaca aagaaagaga ttgactatcg gtgttgaatt agctgcaaag 2940
ccagaattgt tgttgttttt ggatgaacca acatcaggtt tagattctca aactgcttgg 3000
tcaatcatct gtttgttgaa gaaattggct aacagaggtc aagcaatctt atgtacaatc 3060
catcaaccat ctgctatctt gttccaagaa ttcgatagat tattgtttat gacattaggt 3120
ggtaaaactg tttactacgg tgacattggt gcaaactctt cagctttgat taattacttc 3180
gaatctaaag gtgctgatcc atgtccagaa gaagcaaatc cagctgaatg gatgttagct 3240
gcaattggtg ctgcaccagg ttcaattgct aaacatgatt gggcagttgt ttggaatgaa 3300
tctgaagaaa gagctagaga aagagatttg ttggataaaa tggcagaaga attggctgca 3360
caatcaacac atgatgaaaa gaatgaattg gttacttcta agtcagttgg ttcttcacaa 3420
acatcttcat cttcatactc tgctaagtct caatacgcaa catctcaagc tactcaattg 3480
tactacttaa caaagagatt gtggacttat tactggagat caccaagata catctggtct 3540
aagttgttga tgtcaatcgc atctgctttg tttattggtt tttcatacta caaggcttct 3600
caagatatcc aaggtttaca aaaccaaatg tttgctttct ttatgttgtt tttaatcttc 3660
gttatcatca tggttcaaat tttgccacat ttcgttgctc aaagagaatt gtacgaagca 3720
agagaaagat catcaatggc ttactcatgg caagctttta tgggttctaa catcttggtt 3780
gaattaccat ggcaaacttt ggttgctgtt ttggttttct tttgtttcta ctacccaatc 3840
ggtttgcaaa acaatgctac aggtcatttg ggtgaaagag gtgctttgtt tttcttgttg 3900
ttgtggtcat tctatgttta caattctact tttgctcata tgatgggtgc tgcattcgaa 3960
aataaggaaa acgctgcaac aatcggttat ttgttgttcg ctttgtgttt gattttctgt 4020
ggtgttttgg caactaagga agatatgcca catttctgga tttttatgta cagagtttct 4080
ccattgacat acttaatctc aggtttgttg tctgctggtg ttggtgaaac aagagttgaa 4140
tgtactgata acgaattggt tttgtttaaa ccaatgaacg gtactaactg tggtaaatac 4200
atgcatcctt ttatggaagg tttgggtcat acagatatgc caatgggtta tttggttgat 4260
ccatcagcta ctgatatgtg tggttactgt ccaatctcta acacaaacgg ttatttggat 4320
caaatcgatg ttaagtactc acaaagatgg agaaactacg gtattttatt cgcataccca 4380
gcttttaatg tttttatggc attcgctttc tattacattt ttagagttcc aaagaaatct 4440
agaaaacaaa aagcttaa 4458
<210> 5
<211> 327
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 5
catgccggta gaggtgtggt caataagagc gacctcatgc tatacctgag aaagcaacct 60
gacctacagg aaagagttac tcaagaataa gaattttcgt tttaaaacct aagagtcact 120
ttaaaatttg tatacactta ttttttttat aacttattta ataataaaaa tcataaatca 180
taagaaattc gcttatttag aagtgtcaac aacgtatcta ccaacgattt gacccttttc 240
catcttttcg taaatttctg gcaaggtaga caagccgaca accttgattg gagacttgac 300
caaacctctg gcgaagaagt ccaaagc 327
<210> 6
<211> 1059
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 6
atggcttcag aaaaagaaat taggagagag agattcttga acgttttccc taaattagta 60
gaggaattga acgcatcgct tttggcttac ggtatgccta aggaagcatg tgactggtat 120
gcccactcat tgaactacaa cactccaggc ggtaagctaa atagaggttt gtccgttgtg 180
gacacgtatg ctattctctc caacaagacc gttgaacaat tggggcaaga agaatacgaa 240
aaggttgcca ttctaggttg gtgcattgag ttgttgcagg cttactggtt ggtcgccgat 300
gatatgatgg acaagtccat taccagaaga ggccaaccat gttggtacaa ggttcctgaa 360
gttggggaaa ttgccatctg ggacgcattc atgttagagg ctgctatcta caagcttttg 420
aaatctcact tcagaaacga aaaatactac atagatatca ccgaattgtt ccatgaggtc 480
accttccaaa ccgaattggg ccaattgatg gacttaatca ctgcacctga agacaaagtc 540
gacttgagta agttctccct aaagaagcac tccttcatag ttactttcaa gactgcttac 600
tattctttct acttgcctgt cgcattggcc atgtacgttg ccggtatcac ggatgaaaag 660
gatttgaaac aagccagaga tgtcttgatt ccattgggtg aatacttcca aattcaagat 720
gactacttag actgcttcgg taccccagaa cagatcggta agatcggtac agatatccaa 780
gataacaaat gttcttgggt aatcaacaag gcattggaac ttgcttccgc agaacaaaga 840
aagactttag acgaaaatta cggtaagaag gactcagtcg cagaagccaa atgcaaaaag 900
attttcaatg acttgaaaat tgaacagcta taccacgaat atgaagagtc tattgccaag 960
gatttgaagg ccaaaatttc tcaggtcgat gagtctcgtg gcttcaaagc tgatgtctta 1020
actgcgttct tgaacaaagt ttacaagaga agcaaataa 1059
<210> 7
<211> 667
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
ttatattgaa ttttcaaaaa ttcttacttt ttttttggat ggacgcaaag aagtttaata 60
atcatattac atggcaatac caccatatac atatccatat ctaatcttac ttatatgttg 120
tggaaatgta aagagcccca ttatcttagc ctaaaaaaac cttctctttg gaactttcag 180
taatacgctt aactgctcat tgctatattg aagtacggat tagaagccgc cgagcgggcg 240
acagccctcc gacggaagac tctcctccgt gcgtcctggt cttcaccggt cgcgttcctg 300
aaacgcagat gtgcctcgcg ccgcactgct ccgaacaata aagattctac aatactagct 360
tttatggtta tgaagaggaa aaattggcag taacctggcc ccacaaacct tcaaatcaac 420
gaatcaaatt aacaaccata ggataataat gcgattagtt ttttagcctt atttctgggg 480
taattaatca gcgaagcgat gatttttgat ctattaacag atatataaat gcaaaagctg 540
cataaccact ttaactaata ctttcaacat tttcggtttg tattacttct tattcaaatg 600
tcataaaagt atcaacaaaa aattgttaat atacctctat actttaacgt caaggagaaa 660
aaactat 667
<210> 8
<211> 400
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
atttaactcc ttaagttact ttaatgattt agtttttatt attaataatt catgctcatg 60
acatctcata tacacgttta taaaacttaa atagattgaa aatgtattaa agattcctca 120
gggattcgat ttttttggaa gtttttgttt ttttttcctt gagatgctgt agtatttggg 180
aacaattata caatcgaaag atatatgctt acattcgacc gttttagccg tgatcattat 240
cctatagtaa cataacctga agcataactg acactactat catcaatact tgtcacatga 300
gaactctgtg aataattagg ccactgaaat ttgatgcctg aaggaccggc atcacggatt 360
ttcgataaag cacttagtat cacactaatt ggcttttcgc 400
<210> 9
<211> 1746
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
atgcccttga actctttgca taacttggag aggaaaccat ctaaagcttg gtctacttct 60
tgtactgctc cagctgctag attgcaagct tctttctctt tgcaacagga ggaaccaaga 120
caaattagaa ggtccggtga ctatcaacca tctttgtggg actttaacta cattcagtcc 180
ttgaacactc catacaaaga gcagagatac gttaataggc aggctgagtt gattatgcaa 240
gtcaggatgt tgttgaaggt taagatggag gctattcaac agttggagtt gattgatgac 300
ttgcagtatt tgggcttgtc ttactttttc ccagacgaga tcaagcagat tttgtcctct 360
attcacaatg agcacaggta cttccataac aacgacttgt acttgactgc tttgggtttt 420
aggattttga ggcagcatgg ttttaatgtc tctgaagacg tcttcgattg tttcaagact 480
gagaagtgct ctgatttcaa cgctaatttg gcccaggata ctaaaggtat gttgcaattg 540
tacgaggctt ctttcttgtt gagagaaggt gaggatactt tggaattggc tagaaggttc 600
tctactagat ctttgagaga gaagttggat gaagacggtg atgagattga tgaagacttg 660
tcttcttgga ttaggcattc tttggacttg ccattgcatt ggagaattca aggtttggaa 720
gctagatggt tcttggatgc ttatgctaga aggccagata tgaacccatt gattttcaag 780
ttggccaagt tgaacttcaa cattgtccag gctacttatc aggaggaatt gaaggatgtt 840
tctaggtggt ggaattcttc ttgcttggct gaaaagttgc catttgttcg cgataggatt 900
gttgagtgtt tcttctgggc tattggtgct tttgaaccac atcagtactc ttaccagaga 960
aagatggccg ctattattat taccttcgtc accattattg acgacgttta cgacgtctat 1020
ggtactttgg aggagttgga attgttcact gacatgatta gaaggtggga caacatttct 1080
atttcccagt tgccatatta catgcaggtt tgctacttgg ctttgtataa ctttgtctct 1140
gaaagggctt acgacatttt gaaagaccag cacttcaact ctattccata cttgcagaga 1200
tcttgggttt ctttggttga gggttacttg aaagaagctt actggtacta caatggttac 1260
aagccatctt tggaggagta tttgaacaac gctaagatct ctatctctgc ccccactatt 1320
atttctcagt tgtacttcac tttggccaac tctactgacg agactgtcat tgaatctttg 1380
tacgagtacc acaacatttt gtacttgtct ggcactattt tgagattggc tgacgatttg 1440
ggtacttctc aacatgaatt ggagagaggt gatgttccaa aagctattca gtgctacatg 1500
aaggatacta acgcctctga aagagaagct gttgaacacg tcaaattctt gattcgcgag 1560
acttggaaag agatgaacac tgtcactact gcttctgatt gcccatttac tgatgacttg 1620
gttgctgttg ctactaattt ggctagagct gcccagttta tttacttgga cggtgatggt 1680
catggtgttc aacactctga aattcatcag caaatgggcg gtttgttgtt tcaaccatac 1740
gtctaa 1746
<210> 10
<211> 1773
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
atgtcttcaa tctcaattaa tatcgctatg ccattgaact ctttgcataa cttcgaaaga 60
aagccatcaa aggcttggtc aacttcttgt acagcaccag ctgcaagatt gagagcttct 120
tcatctttac aacaagaaaa gccacatcaa atcagaagat caggtgacta tcaaccatct 180
ttgtgggatt tcaactacat ccaatctttg aacacaccat acaaggaaca aagacatttc 240
aacagacaag cagaattgat catgcaagtt agaatgttgt tgaaagttaa gatggaagct 300
atccaacaat tggaattgat cgatgatttg caatatttgg gtttatctta tttctttcaa 360
gatgaaatta aacaaatttt atcatctatc cataatgaac caagatattt tcataataat 420
gatttgtact tcacagcatt gggttttaga attttaagac aacatggttt taatgtttct 480
gaagatgttt tcgattgttt caagatcgaa aagtgttcag atttcaacgc taatttggca 540
caagatacta agggcatgtt gcaattgtac gaagcatcat ttttgttgag agaaggtgaa 600
gatacattgg aattggctag aagattttca actagatcat tgagagaaaa gttcgatgaa 660
ggtggtgacg aaatcgatga agatttgtca tcttggatta gacattcttt ggatttgcca 720
ttgcattgga gagttcaagg tttggaagct agatggtttt tagatgctta tgcaagaaga 780
ccagatatga acccattgat ttttaagttg gcaaagttga acttcaacat tgttcaagct 840
acttaccaag aagaattgaa ggatatctct agatggtgga actcatcttg tttagcagaa 900
aagttgccat tcgttagaga tagaatcgtt gaatgtttct tttgggctat tgctgcattt 960
gaaccacatc aatactcata ccaaagaaag atggctgctg ttattatcac ttttattaca 1020
atcatcgatg atgtttacga tgtttacggt actatcgaag aattggaatt gttgacagat 1080
atgatcagaa gatgggataa taagtcaatc tctcaattgc catactacat gcaagtttgt 1140
tatttggcat tgtacaactt tgtttctgaa agagcttacg atatcttgaa ggatcaacat 1200
ttcaattcaa ttccatactt acaaagatca tgggtttctt tggttgaagg ttatttgaag 1260
gaagcttact ggtactacaa cggttacaag ccatctttag aagaatactt gaacaacgct 1320
aaaatttcaa tctctgcacc aactatcatc tcacaattgt acttcacatt ggcaaactca 1380
atcgatgaaa ctgctatcga atctttgtac caataccata acatcttgta cttgtctggt 1440
acaattttaa gattggcaga tgatttgggt acttcacaac atgaattaga aagaggtgac 1500
gttccaaagg ctatccaatg ttacatgaac gatacaaatg cttctgaaag agaagcagtt 1560
gaacatgtta agttcttgat cagagaagca tggaaagaaa tgaatacagt tactacagct 1620
tcagattgtc cttttactga tgatttggtt gctgctgctg ctaatttggc tagagctgca 1680
caattcatat atttggatgg tgacggtcat ggtgttcaac attctgaaat ccatcaacaa 1740
atgggtggtt tgttatttca accatacgtt taa 1773
<210> 11
<211> 1884
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
atgtcagtta tttctatcgt tccattggct tctaactcat gtttgtacaa gtctttgatg 60
tcttcaactc atgaattgaa agctttatgt agaccaattg caacattggg catgtgtaga 120
cgtggtaaat cagttatggc ttctatgtca acttctttaa ctacagcagt ttctgatgat 180
ggtgttcaaa gaagaatcgg tcatcatcat tcaaatttgt gggatgataa cttcatccaa 240
tctttgtctt caccatacgg tgcttcttca tatgctgaat ctgctaagaa attgattggt 300
gaagttaagg aaatttttaa ttcattgtct atggctgctg gtggtttgat gtcaccagtt 360
gatgatttgt tacaacattt gtctatggtt gataacgttg aaagattagg tatcgataga 420
cattttcaaa ctgaaattaa agtttcattg gattacgttt actcatactg gtctgaaaaa 480
ggtattggtt ctggtagaga tatcgtttgt actgatttga acactacagc tttgggtttt 540
agaattttga gattacatgg ttacacagtt tttccagatg ttttcgaaca tttcaaggat 600
caaatgggta gaatcgcttg ttctgcaaat catacagaaa gacaaatttc ttcaatcttg 660
aatttgttta gagcttcatt gatcgcattc ccaggtgaaa aagttatgga agaagctgaa 720
attttctctg caacttattt gaaggaagct ttacaaacaa ttccagtttc ttcattgtca 780
caagaaatgc aatacgtttt ggattacaga tggcattcta atttgccaag attagaaact 840
agaacataca tcgatatctt gggtgaaact acaattaatc aaatgcaaga tgttaatatt 900
caaaaattgt tagaattggc aaagttggaa ttcaatatct tccattcaat tcaacaaaat 960
gaattaaaat gtatttctag atggtggaaa gaatcaggtt ctccagaatt gacttttatt 1020
agacatagac atatcgaatt ctacacattg gcttctggta tcgatatgga accaaaacat 1080
tcagctttta gattgtcttt cgttaagatg tgtcatttga ttactgtttt agatgatatc 1140
tatgatactt ttggtacaat ggatgaattg agattgttta cttcagctgt taagagatgg 1200
gatagatcag aaatcgaatg tttgccagaa tacatgaagg gtgtttacat catcttgtat 1260
gaaactgtta atgaaatggc tagagaagca agaaagtcac aaggtagaga tacattgaac 1320
tacgctagat tggcattgga agaatacatc ggtgcttatt tgaaggaagc agaatggatc 1380
tctatgggtt acttaccaac tttcgaagaa tacttcaaga acggtaaagt ttcttcaggt 1440
catagaatcg ctactttaca accaatcttg acattggata tcccattccc acatcatatc 1500
ttgcaagaaa tcgatttccc atcaaagttt aatgaattgg catgttctat cttgagatta 1560
agaggtgaca caagatgtta ccaagctgat agagatagag gtgaaaaagc atcatgtatc 1620
tcttgttaca tgaaggataa tccaggttct actgaagaag atgctttgaa ccatatcaac 1680
ggtatgatcg aagatacaat taaacaattg aactgggaat tgttaagacc agataacaac 1740
gttccaatct cttctaagaa acattcattc gatatctcta gagcattcca tcatttgtat 1800
agatacagag atggttacac tgtttcttca aacgaaacta aaaatttggt tgttagaact 1860
gttttggaac cattaccaat gtaa 1884
<210> 12
<211> 1815
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
atggctttgt tttctgcatc aacatctgtt ttgtcttcat gtttgaaatc tccaccaaac 60
catcatgtta agttgtttaa taagaattca caatctttgt ctagaagaag attgaaccct 120
tttatttcta aggcttcaac tacaactgtt gaaacaccaa ctagaagaac aggtaatcat 180
catccaaatt tgtgggatga tggtttgatt ggtactattc aagaacaacc atatgatgat 240
tcacattgta tggaaagagc tgaaagattg atcggtgaaa ttaaagatat gttcaacgaa 300
tctggtaaat tctgtggtga aaacgctttc gaaagattgg ttatggttga taaggttcaa 360
agattagcaa tcgatagaca tttccaaaac gaaatcgctc aagcattgga ttacgtttac 420
agatactggt ctgattgttc aagagatttg aattctgctg cattgggttt aagaattttg 480
agattaaaca gatacccagt ttcttcagat gttttgagac atttcaaggg taacgatggt 540
caattcttgt gtccatctgc tcaatcagaa gaagaaaaga ttggttctat cttgaatttg 600
tacagagctt cattaatcgc attcccagaa gaaaacatca tggatgaagc taaggcattc 660
gctacaactt atttgaacca agttttgcaa aacaacaata tttcttctca tttgtcaaaa 720
gaaattaaat acaatttgga atatggttgg catacaaatt tgccaagagt tgaagctaga 780
aactacatgg atatctatgg tgaaaataga tcatggactg aaatgggtgg taacatgcaa 840
attttgaatt tggcaaagtt ggattttaat attatgcaat ctgttcatag attggaattg 900
gaatcaatct tgaagtggtg gaaggattct aatttggata aggttgattt cgctagacat 960
agacatgttg aatactttgc attagcttgt gcatactgta tcgatgctaa gtactacgca 1020
tacagaagag attttgcaaa attatgtgct ttggcaacaa tcgttgatga tatctatgat 1080
acatatggta ctatcgaaga aattaaattg tttaatgaag ctgttaagat gtgggattct 1140
tcattaccaa actcattgcc agaaaacatc aagatcgctt acaaggcatt ccatatggct 1200
gttaacgaat ctgctgaagc tgctaagaaa actcaaggta gagatatttt gccatacgct 1260
agaaaggttt gggaacatta tttgatcggt ttgactaagg aagctgaatg gttagcaaac 1320
ggttacatcc catctttaga agaatatttg gaaaacggtg ctccatcttc aggttacaga 1380
gttactatgt tacaaccaac attgacttta gatgcattgt tgccagataa catcttgttg 1440
gaaatggatt acccatctag attcaatgaa ttgttgtgtt tgtctttaag attgaaaggt 1500
gacacaagaa cttttaaagc tgaagcaaat agaggtgaat tggtttctgg tatctcatgt 1560
tacatcaagg atcatccagg ttcttcagaa gaagaagctt tggattattt gaaagatttg 1620
ttgcaaaaga gattgaagga attggatcaa gaatacttaa agccaaacaa cgttccagca 1680
atctcaaagg atcatgctta caacatcgca agatcatacc aattgttata taaagaaaga 1740
gatggtttta caaactctaa taaggatatc aaagatttgg ttactcaaat tttgttggaa 1800
ccaattccat tataa 1815
<210> 13
<211> 1809
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
atggcattaa atttgttatc ttcattgcca gctacttgta acttcacaag attgtcattg 60
ccattgtctt caaacgttaa cggtttagtt ccaccaatta ctagagttca atatagaatg 120
gctgcatcaa ctacaacttc tactattaaa ccagcagatc aaacaatcat cagaagatca 180
gctgattaca gaccaacaat ctggtctttc gattacttgc aatcattgga ttctaagtac 240
aagggtgaat cttacgctag acaattggaa aagttgaagg aacaagttaa ggcaatgtta 300
caacaagatt acaaggctgt tgatttggac ccattgcatc aattggaatt gatcgataat 360
ttgcatagat taggtgtttc ataccatttc aaggatgaaa ttaaaagaac tttggatggt 420
atctataata agaacacaaa taagtctttg tacgctgctg ctttgaagtt tagaattttg 480
agacaacatg gttacgatat cccagttaag gaaacttttt caagattcat tgatgataaa 540
ggttctttta aatcttcatc tcatggtgac gattgtagag gcatgttagc tttgtatgaa 600
gcagcttact tgttagttga agaagaatca actattttta gagattcaat ctcttttaca 660
actacatatt tgaaggaatg ggttggtaaa catgattcta ataagcatgg tgacgaatac 720
ttgtgtacat tggttaacca tgctttggaa ttgccattgc attggagaat gagaagattg 780
gaagcaagat ggttcatcga tgtttacgaa tctggtccag atatgaaccc aatcttgttg 840
gaattggcaa agttggattt caacatcgtt caagctgttc atcaagaaga tttgaaatac 900
gtttcaagat ggtggaagaa aactggtttg ggtgaaaagt tgacattttc tagagataga 960
gttgttgaaa atttcttgtg gactgttggt gacatcttcg aaccacaatt cggttattgt 1020
agaagaatgt cagctatggt taactctttg ttgactacaa tcgatgatat ctatgatgtt 1080
tacggtactt tggatgaatt ggaattgttt actgatgcag ttgatagatg ggatgcaact 1140
gctacagaac aattgccata ctacatgaag ttgtgtttcc atgttttgta caacttcgtt 1200
aacgaaatgg cattcgatgc tttgagagat caagaagttg gtatgatcat cccatacttc 1260
aagaaaactt gggcagattt gtgtaaagct tactttgcag aagctaaatg gtacaactca 1320
ggttacatcc caactttcca agaatacatg gaaaacgcat ggatctctat cacagctcca 1380
ttgatgttga tccatgcata cgcttttact gcaaatccaa tcacaaagga agctttggaa 1440
ttcttacaag attctccaaa catcatcaga ttttcatcta tgattgttag attggctgat 1500
gatttgggta cttcatctga tgaattgaaa agaggtgacg ttccaaagtc aatccaatgt 1560
tacatgcatg aaacaggtat ttctgaagat gaagcaagag aacatatcag aaatttgatc 1620
gctgaatcat ggatcaagtt gaactctgca agattcggta acccacatta tttgtctgat 1680
gtttttattg gtatcgctat gaacatggca agagttgctc aatgtatcta tcaatttggt 1740
gacggtcatg gtgacgaaga aaacactaag gatagagttg ttacattgtt tttcgatcca 1800
attccataa 1809
<210> 14
<211> 1809
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
atggcattga atttgttgtc ttcaatccca gctgcatgta acttcactag attgtctttg 60
ccattgtctt caaaggttaa cggttttgtt ccaccaatta caagagttca ataccatgtt 120
gctgcatcaa ctacaccaat taaaccagtt gatcaaacta tcatcagaag atcagctgat 180
tatggtccaa caatctggtc attcgattac atccaatctt tggattcaaa gtacaagggt 240
gaatcttacg caagacaatc agaaaagttg aaggaacaag tttctgctat gttgcaacaa 300
gatgataaag ttgttgattt ggacccattg catcaattgg aattgatcga taatttgcat 360
agattaggtg tttcttacca tttcgaagat gaaattaaaa gaactttaga tagaattcat 420
aataagaata ctaataagtc attgtacgct acagcattga agtttagaat tttgagacaa 480
catggttaca acactccagt taaggaaaca ttttctagat tcatggatga aaagggtatt 540
tttaagttgt cttcacattc agatgattgt aaaggcatgt tagctttgta tgaagctgca 600
tacttgttgg ttgaagaaga atcttcaatt tttagagatg ctacttcttt tactacagca 660
tatttgaagg aatgggttat taaacatgat aacatcaagc atgatgatga acatttgtgt 720
acattggtta accatgcatt ggaattgcca ttgcattgga gaatgccaag attggaagct 780
agatggttta ttgatgttta cgaaaatggt ccagatatgt ctccaatttt gttggaattg 840
gctaaggttg atttcaacat cgttcaagca gttcatcaag aaaatttgaa gtacgcttca 900
agatggtgga agaaaactgg tttgggtgaa aatttgaact tcgttagaga tagaattgtt 960
gaaaatttct tgtggacagt tggtgaaaag ttcgaaccac aattcggtta cttcagaaga 1020
atgtctacta tggttattgc tttgatcaca gcagttgatg atgtttacga tgtttacggt 1080
actttggatg aattggaaat ttttacagat gctgttgaaa gatgggatgc tactgctgtt 1140
gaacaattgc cacattacat gaagttgtgt tttcatgcat tgagaaattc tattaatgaa 1200
atgacttttg atgctttgag agatcaaggt gttgatatcg ttatctcata tttgacaaaa 1260
gcttgggcag atatctgtaa ggcttactta gttgaagcaa agtggtacaa ctctggttac 1320
atcccatcat tgcaagaata catggaaaac gcttggatct ctatcggttc aactgttatt 1380
ttggttcatg cttacacttt tacagcaaac ccaatcacaa aggaaggttt agaattcgtt 1440
aaggattacc caaacatcat cagatggtct tcagttattt tgagattcgc agatgatttg 1500
ggtacttctt cagatgaatt gaaaagaggt gacgttcata agtctatcca atgttacatg 1560
catgaagctg gtgtttcaga aggtgaagca agagaacata tcaacgattt gatcgctcaa 1620
acatggatga agatgaacag agatagattc ggtaacccac attttgtttc tgatgttttc 1680
gttggtatcg ctatgaattt ggcaagaatg tcacaatgta tgtatcaatt tggtgacggt 1740
catggttgtg gtgctcaaga aatcacaaag gcaagagttt tgtctttgtt tattgatcca 1800
attgcttaa 1809
<210> 15
<211> 1743
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
atggcattgc aattgttgac tccatctttt tcattccaac attctccatc accacataga 60
ttgactacat tgagatacac tcatcataca atcagatgta cagcttctgc accatcttat 120
tcagatttgg ttggtagaag atcagctaac tacaagccat ctaagtggga ttcaaacttc 180
gttgaaactt tggaatctga ttataagaaa gaaaatcatg aaatgtacat tgaaaaattg 240
atgggtgacg ttaagcattt gatgaagaaa gttgttaacc caatcgaaaa gatggaattg 300
gttgatacaa tccaaagatt gggtttaggt tatttgttta ataaggaaat taaagaagtt 360
ttgaacacta ttgctacatc aaaggcaact tttaaaacta agaaagattt gcatgctgtt 420
gcattgcaat tcagattgtt aagacaacat ggttatgaag tttctccaga tgcattccat 480
aagtttaaag atgaaaaagg tggttttaaa gaatctttgt gtatggatat caagggcatg 540
ttgtcattgt acgaagcttc tcatttgtca tttcaaggtg aagttgtttt agatgaagca 600
agagaattca cttcaacaca tttgaaggct atcgagggta acatcgatcc agttttgttg 660
aagaaagtta gacattcttt ggaaatgcca ttacattgga gaatgttgag attagaagct 720
agatggtaca tcgaaactta cgatgaagaa gatagaaaga atccatcttt ggctgaattg 780
gcaaagcatg atttcaactc agttcaaaca atctatcaaa gatcattgaa gagaatgtca 840
agatggtgga gagatttggg tttaggtgaa agattggaat tttctagaga tagattagtt 900
gaatgtttct tttggactac aggtgttatt ttcgatccac aattcgaaag atgtagaggt 960
gttttgacta aggttaacca attagtttct acaattgatg atgtttatga tgtttacggt 1020
tcattggaag aattggaatt gtttactgat gcagttgata gatgggatat tagagctatg 1080
gaacaattgc cagaatacat gaaaatttgt tatttggcat tgtacaacac tacaaacgat 1140
atcgcttacg aagcattgaa ggaagaaggt ttagatgtta tcccatattt gaagaaagtt 1200
tggactgatt tgtgtaagtc ttacatcgtt gaagcaagat ggtattcaaa tggttacaag 1260
ccaactttgg aagaatattt ggaaaacgct tggacatcta ttgctggtcc agttgcatta 1320
ggtcatgctt acttctcatt cggtcaaaag atgccattcg aagctttgaa ctactctaac 1380
acttcttcat taattaaatg gtcttcaatg atttttagat tgtgtgatga tttggcaaca 1440
tcttcagatg aagttgctag aggtgacgtt ccaaagtcta tccaatgtta catgtacgaa 1500
gcaggtgttt ctgaatcagt tgctagagat catatcaagt atttgatcga tgaagcatgg 1560
aagaaaatga acgaatgttt ggttccatca actccatttt tgcaaccatt gattaatgct 1620
ggttttaatt tggctagaat ggcacattgt atgtacgaac atggtgacgg tcatggtttt 1680
tctaacgaat tggataagaa aagagttttg ttgttgttgg ctgaaccttt taagtttatg 1740
taa 1743
<210> 16
<211> 1123
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
tgcaggtctc atctggaata taattccccc ctcctgaagc aaatttttcc tttgagccgg 60
aatttttgat attccgagtt ctttttttcc attcgcggag gttattccat tcctaaacga 120
gtggccacaa tgaaacttca attcatatcg accgactatt tttctccgaa ccaaaaaaat 180
agcagggcga gattggagct gcggaaaaaa gaggaaaaaa ttttttcgta gttttcttgt 240
gcaaattagg gtgtaaggtt tctagggctt attggttcaa gcagaagaga caacaattgt 300
aggtcctaaa ttcaaggcgg atgtaaggag tattggtttc gaaagttttt ccgaagcggc 360
atggcaggga ctacttgcgc atgcgctcgg attatcttca tttttgcttg caaaaacgta 420
gaatcatggt aaattacatg aagaattctc tttttttttt tttttttttt ttttttacct 480
ctaaagagtg ttgaccaact gaaaaaaccc ttcttcaaga gagttaaact aagactaacc 540
atcataactt ccaaggaatt aatcgatatc ttgcactcct gatttttctt caaagagaca 600
gcgcaaagga ttatgacact gttgcattga gtcaaaagtt tttccgaagt gacccagtgc 660
tctttttttt tttccgtgaa ggactgacaa atatgcgcac aagatccaat acgtaatgga 720
aattcggaaa aactaggaag aaatgctgca gggcattgcc gtgccgatct tttgtctttc 780
agatatatga gaaaaagaat attcatcaag tgctgataga agaataccac tcatatgacg 840
tgggcagaag acagcaaacg taaacatgag ctgctgcgac atttgatggc ttttatccga 900
caagccagga aactccacca ttatctaatg tagcaaaata tttcttaaca cccgaagttg 960
cgtgtccccc tcacgttttt aatcatttga attagtatat tgaaattata tataaaggca 1020
acaatgtccc cataatcaat tccatctggg gtctcatgtt ctttccccac cttaaaatct 1080
ataaagatat cataatcgtc aactagttga tatacgtaaa atc 1123
<210> 17
<211> 725
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
tttgccagct tactatcctt cttgaaaata tgcactctat atcttttagt tcttaattgc 60
aacacataga tttgctgtat aacgaatttt atgctatttt ttaaatttgg agttcagtga 120
taaaagtgtc acagcgaatt tcctcacatg tagggaccga attgtttaca agttctctgt 180
accaccatgg agacatcaaa aattgaaaat ctatggaaag atatggacgg tagcaacaag 240
aatatagcac gagccgcgga gttcatttcg ttacttttga tatcactcac aactattgcg 300
aagcgcttca gtgaaaaaat cataaggaaa agttgtaaat attattggta gtattcgttt 360
ggtaaagtag agggggtaat ttttcccctt tattttgttc atacattctt aaattgcttt 420
gcctctcctt ttggaaagct atacttcgga gcactgttga gcgaaggctc attagatata 480
ttttctgtca ttttccttaa cccaaaaata agggaaaggg tccaaaaagc gctcggacaa 540
ctgttgaccg tgatccgaag gactggctat acagtgttca caaaatagcc aagctgaaaa 600
taatgtgtag ctatgttcag ttagtttggc tagcaaagat ataaaagcag gtcggaaata 660
tttatgggca ttattatgca gagcatcaac atgataaaaa aaaacagttg aatattccct 720
caaaa 725
<210> 18
<211> 500
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
gtgaatttac tttaaatctt gcatttaaat aaattttctt tttatagctt tatgacttag 60
tttcaattta tatactattt taatgacatt ttcgattcat tgattgaaag ctttgtgttt 120
tttcttgatg cgctattgca ttgttcttgt ctttttcgcc acatgtaata tctgtagtag 180
atacctgata cattgtggat gctgagtgaa attttagtta ataatggagg cgctcttaat 240
aattttgggg atattggctt ttttttttaa agtttacaaa tgaatttttt ccgccaggat 300
aacgattctg aagttactct tagcgttcct atcggtacag ccatcaaatc atgcctataa 360
atcatgccta tatttgcgtg cagtcagtat catctacatg aaaaaaactc ccgcaatttc 420
ttatagaata cgttgaaaat taaatgtacg cgccaagata agataacata tatctagatg 480
cagtaatata cacagattcc 500
<210> 19
<211> 400
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
gtctgaagaa tgaatgattt gatgatttct ttttccctcc atttttctta ctgaatatat 60
caatgatata gacttgtata gtttattatt tcaaattaag tagctatata tagtcaagat 120
aacgtttgtt tgacacgatt acattattcg tcgacatctt ttttcagcct gtcgtggtag 180
caatttgagg agtattatta attgaatagg ttcattttgc gctcgcataa acagttttcg 240
tcagggacag tatgttggaa tgagtggtaa ttaatggtga catgacatgt tatagcaata 300
accttgatgt ttacatcgta gtttaatgta caccccgcga attcgttcaa gtaggagtgc 360
accaattgca aagggaaaag ctgaatgggc agttcgaata 400
<210> 20
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
tttaggagac gcgtctccca tt 22
<210> 21
<211> 22
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
aatgggagac cggtctccta aa 22
<210> 22
<211> 5
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 22
Gly Gly Gly Gly Ser
1 5
<210> 23
<211> 5
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 23
Pro Ala Pro Ala Pro
1 5
<210> 24
<211> 5806
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
ttattatcat gacattaacc tataaaaata ggcgtatcac gaggcccttt gtcacagctt 60
gtctgtaagc ggatgccggg agcagacaag cccgtcaggg cgcgtcagcg ggtgttggcg 120
ggtgtcgggg ctggcttaac tatgcggcat cagagcagat tgtactgaga gtgcaccata 180
ccacagcttt tcaattcaat tcatcatttt ttttttattc ttttttttga tttcggtttc 240
tttgaaattt ttttgattcg gtaatctccg aacagaagga agaacgaagg aaggagcaca 300
gacttagatt ggtatatata cgcatatgta gtgttgaaga aacatgaaat tgcccagtat 360
tcttaaccca actgcacaga acaaaaacct gcaggaaacg aagataaatc atgtcgaaag 420
ctacatataa ggaacgtgct gctactcatc ctagtcctgt tgctgccaag ctatttaata 480
tcatgcacga aaagcaaaca aacttgtgtg cttcattgga tgttcgtacc accaaggaat 540
tactggagtt agttgaagca ttaggtccca aaatttgttt actaaaaaca catgtggata 600
tcttgactga tttttccatg gagggcacag ttaagccgct aaaggcatta tccgccaagt 660
acaatttttt actcttcgaa gacagaaaat ttgctgacat tggtaataca gtcaaattgc 720
agtactctgc gggtgtatac agaatagcag aatgggcaga cattacgaat gcacacggtg 780
tggtgggccc aggtattgtt agcggtttga agcaggcggc agaagaagta acaaaggaac 840
ctagaggcct tttgatgtta gcagaattgt catgcaaggg ctccctatct actggagaat 900
atactaaggg tactgttgac attgcgaaga gcgacaaaga ttttgttatc ggctttattg 960
ctcaaagaga catgggtgga agagatgaag gttacgattg gttgattatg acacccggtg 1020
tgggtttaga tgacaaggga gatgcattgg gtcaacagta tagaaccgtg gatgatgtgg 1080
tgtctacagg atctgacatt attattgttg gaagaggact atttgcaaag ggaagggatg 1140
ctaaggtaga gggtgaacgt tacagaaaag caggctggga agcatatttg agaagatgcg 1200
gccagcaaaa ctaaaaaact gtattataag taaatgcatg tatactaaac tcacaaatta 1260
gagcttcaat ttaattatat cagttattac cctatgcggt gtgaaatacc gcacagatgc 1320
gtaaggagaa aataccgcat caggaaattg taaacgttaa tattttgtta aaattcgcgt 1380
taaatttttg ttaaatcagc tcatttttta accaataggc cgaaatcggc aaaatccctt 1440
ataaatcaaa agaatagacc gagatagggt tgagtgttgt tccagtttgg aacaagagtc 1500
cactattaaa gaacgtggac tccaacgtca aagggcgaaa aaccgtctat cagggcgatg 1560
gcccactacg tgaaccatca ccctaatcaa gttttttggg gtcgaggtgc cgtaaagcac 1620
taaatcggaa ccctaaaggg agcccccgat ttagagcttg acggggaaag ccggcgaacg 1680
tggcgagaaa ggaagggaag aaagcgaaag gagcgggcgc tagggcgctg gcaagtgtag 1740
cggtcacgct gcgcgtaacc accacacccg ccgcgcttaa tgcgccgcta cagggcgcgt 1800
cgcgccattc gccattcagg ctgcgcaact gttgggaagg gcgatcggtg cgggcctctt 1860
cgctattacg ccagctggcg aaagggggat gtgctgcaag gcgattaagt tgggtaacgc 1920
cagggttttc ccagtcacga cgttgtaaaa cgacggccag tgagcgcgcg taatacgact 1980
cactataggg cgaattgggt accgggcccc ccctcgaggt cgacggtatc gataagcttg 2040
atatcgaatt cctgcagccc ccagtagaga ccgcctggct ctagtagcga tctacactag 2100
cactatcagc gttattaagc accggtggag tgacgacctt cagcacgttc gtactgttca 2160
acgatggtgt agtcttcgtt gtgggaggtg atgtccagtt tgatgtcggt tttgtaagca 2220
cccggcagct gaaccggttt tttagccatg taggtggttt taacttcagc gtcgtagtga 2280
ccaccgtctt tcagtttcag acgcattttg atttcacctt tcagagcacc gtcttccggg 2340
tacatacgtt cggtggaagc ttcccaaccc atggtttttt tctgcataac cggaccgtcg 2400
gacgggaagt tggtaccacg cagtttaact ttgtagatga actcaccgtc ttgcagggag 2460
gagtcctggg taacggtaac aacaccaccg tcttcgaagt tcataacacg ttcccatttg 2520
aaaccttccg ggaaggacag tttcaggtag tccgggatgt cagccgggtg tttaacgtaa 2580
gctttggaac cgtactggaa ctgcggggac aggatgtccc aagcgaacgg cagcggacca 2640
cctttggtaa ctttcagttt agcggtctgg gtaccttcgt acggacgacc ttcaccttca 2700
ccttcgattt cgaactcgtg accgttaacg gaaccttcca tacgaacttt gaaacgcatg 2760
aactctttga taacgtcttc ggaggaagcc atctagtatt tctcctcttt ctctagtatg 2820
tgtgaaattg ttatccgctc acaattccac acaacatacg agccggaagc ataaagtgta 2880
aagcctgggg tgcctaatga gtgagctaac tcacattaat tgcgttgcgc tcactgcccg 2940
ctttccagtc gggaaacctg tcgtgccagc tgcattaatg aatcggccaa cgcgcgggga 3000
gaggcggttt gcgtattggg tctcattttg gggatccact agttctagag cggccgccac 3060
cgcggtggag ctccagcttt tgttcccttt agtgagggtt aattgcgcgc ttggcgtaat 3120
catggtcata gctgtttcct gtgtgaaatt gttatccgct cacaattcca cacaacatag 3180
gagccggaag cataaagtgt aaagcctggg gtgcctaatg agtgaggtaa ctcacattaa 3240
ttgcgttgcg ctcactgccc gctttccagt cgggaaacct gtcgtgccag ctgcattaat 3300
gaatcggcca acgcgcgggg agaggcggtt tgcgtattgg gcgctcttcc gcttcctcgc 3360
tcactgactc gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct cactcaaagg 3420
cggtaatacg gttatccaca gaatcagggg ataacgcagg aaagaacatg tgagcaaaag 3480
gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc 3540
gcccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag 3600
gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttccga 3660
ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc 3720
atagctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg 3780
tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat cgtcttgagt 3840
ccaacccggt aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca 3900
gagcgaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaac tacggctaca 3960
ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc ggaaaaagag 4020
ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggtttt tttgtttgca 4080
agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc ttttctacgg 4140
ggtctgacgc tcagtggaac gaaaactcac gttaagggat tttggtcatg agattatcaa 4200
aaaggatctt cacctagatc cttttaaatt aaaaatgaag ttttaaatca atctaaagta 4260
tatatgagta aacttggtct gacagttacc aatgcttaat cagtgaggca cctatctcag 4320
cgatctgtct atttcgttca tccatagttg cctgactccc cgtcgtgtag ataactacga 4380
tacgggaggg cttaccatct ggccccagtg ctgcaatgat accgcgagat ccacgctcac 4440
cggctccaga tttatcagca ataaaccagc cagccggaag ggccgagcgc agaagtggtc 4500
ctgcaacttt atccgcctcc atccagtcta ttaattgttg ccgggaagct agagtaagta 4560
gttcgccagt taatagtttg cgcaacgttg ttgccattgc tacaggcatc gtggtgtcac 4620
gctcgtcgtt tggtatggct tcattcagct ccggttccca acgatcaagg cgagttacat 4680
gatcccccat gttgtgcaaa aaagcggtta gctccttcgg tcctccgatc gttgtcagaa 4740
gtaagttggc cgcagtgtta tcactcatgg ttatggcagc actgcataat tctcttactg 4800
tcatgccatc cgtaagatgc ttttctgtga ctggtgagta ctcaaccaag tcattctgag 4860
aatagtgtat gcggcgaccg agttgctctt gcccggcgtc aatacgggat aataccgcgc 4920
cacatagcag aactttaaaa gtgctcatca ttggaaaacg ttcttcgggg cgaaaactct 4980
caaggatctt accgctgttg agatccagtt cgatgtaacc cactcgtgca cccaactgat 5040
cttcagcatc ttttactttc accagcgttt ctgggtgagc aaaaacagga aggcaaaatg 5100
ccgcaaaaaa gggaataagg gcgacacgga aatgttgaat actcatactc ttcctttttc 5160
aatattattg aagcatttat cagggttatt gtctcatgag cggatacata tttgaatgta 5220
tttagaaaaa taaacaaata ggggttccgc gcacatttcc ccgaaaagtg ccacctgggt 5280
ccttttcatc acgtgctata aaaataatta taatttaaat tttttaatat aaatatataa 5340
attaaaaata gaaagtaaaa aaagaaatta aagaaaaaat agtttttgtt ttccgaagat 5400
gtaaaagact ctagggggat cgccaacaaa tactaccttt tatcttgctc ttcctgctct 5460
caggtattaa tgccgaattg tttcatcttg tctgtgtaga agaccacaca cgaaaatcct 5520
gtgattttac attttactta tcgttaatcg aatgtatatc tatttaatct gcttttcttg 5580
tctaataaat atatatgtaa agtacgcttt ttgttgaaat tttttaaacc tttgtttatt 5640
tttttttctt cattccgtaa ctcttctacc ttctttattt actttctaaa atccaaatac 5700
aaaacataaa aataaataaa cacagagtaa attcccaaat tattccatca ttaaaagata 5760
cgaggcgcgt gtaagttaca ggcaagcgat ccgtcctaag aaacca 5806

Claims (9)

1. A recombinant Saccharomyces cerevisiae strain for the production of sabinene, transformed with a recombinant vector comprising a sequence encoding ERG20 double mutated at F96W and N127W and a vector expressing a heterologous efflux proteinERG20 ww And is derived fromSalvia pomiferaAnd removing 1-34 amino acid residues from the N-terminal of the sabinene synthase,Salvia pomiferathe coding sequence of the sabinene synthase is shown in SEQ ID NO 9;
the heterologous efflux protein coding sequence is shown as SEQ ID NO. 2.
2. The recombinant saccharomyces cerevisiae strain of claim 1, wherein the recombinant vector comprises any one or more of the following forms of gene modules:
(1) terminator-ERG20 ww -bidirectional promoter-sabinene synthase coding sequence-terminator;
(2) terminator-sabinene synthase coding sequence-bidirectional promoter- ERG20 ww -a terminator;
(3) promoter- ERG20 ww -terminator-promoter-sabinene synthase coding sequence-terminator;
(4) promoter-sabinene synthase coding sequence-terminator-promoter-ERG20 ww -a terminator;
(5) promoter- ERG20 ww -sabinene synthase coding sequence-terminator;
(6) promoter-sabinene synthase coding sequence- ERG20 ww -a terminator;
(7) terminator- ERG20 ww -sabinene synthase coding sequence-reverse promoter;
(8) terminator-sabinene synthase coding sequence-ERG20 ww -a reverse promoter;
(9) terminator-bidirectional promoter-ERG 20wwAnd a terminator, a fusion protein coding sequence of sabinene synthase;
(10) terminator-ERG 20wwAnd a fusion protein coding sequence of sabinene synthase-bidirectional promoter-terminator;
(11) promoter-ERG 20wwAnd a terminator, a fusion protein coding sequence of sabinene synthase;
(12) terminator-ERG 20wwAnd a fusion protein coding sequence of sabinene synthase, a reverse promoter.
3. The recombinant strain of Saccharomyces cerevisiae according to any one of claims 1-2, wherein the recombinant vector further comprises 1 or more copies of additionalERG20 ww
4. The recombinant Saccharomyces cerevisiae strain of claim 1, wherein the yeast strain is endogenous to the strainERG20Is a weak promoter, which is endogenous to the yeast strainERG20The original promoter of (a) is a weak promoter.
5. Use of the recombinant strain of saccharomyces cerevisiae according to any one of claims 1-4 for the production of sabinene.
6. The method for constructing a recombinant saccharomyces cerevisiae strain for the production of sabinene according to claim 1, wherein the recombinant vector according to claim 1 and a vector expressing a heterologous efflux protein are transformed into a yeast strain to obtain the recombinant yeast strain.
7. The building method according to claim 6, further comprising:
construction of Yeast Strain endogenesisERG20Upstream homologous sequence of original promoter-Weak promoter-Yeast Strain endogenesisERG20Gene modules of homologous sequences downstream of the original promoter, or constructing yeast strains endogenouslyERG20Upstream homologous sequence of original promoter-Weak promoter-Yeast Strain endogenesisERG20Endogenous to the yeast strainERG20A gene module of a downstream homologous sequence;
replacing the endogenous yeast strain with the gene module by using a yeast homologous recombination mechanismERG20The original promoter is a weak promoter.
8. The construction method according to claim 6 or 7, further comprising:
respectively designing homologous sequences at two ends of a promoter, a coding sequence of the heterologous efflux protein and a terminator, then transforming the homologous sequences and the vector after enzyme digestion into the yeast strain, and carrying out homologous recombination to obtain a vector for expressing the heterologous efflux protein; wherein, two adjacent gene elements have homologous regions and can be connected by homologous recombination.
9. A method of producing sabinene, comprising:
step 1, inoculating the recombinant saccharomyces cerevisiae strain of any one of claims 1-4 into a culture medium for activation, and preparing a seed solution;
and 2, inoculating the seed solution into a culture medium, adding isopropyl myristate to perform two-phase culture, and collecting an upper organic phase of the culture medium after culture to separate sabinene.
CN201910236928.2A 2019-03-27 2019-03-27 Recombinant vector and recombinant yeast strain for producing sabinene, and construction method and application thereof Active CN109943584B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910236928.2A CN109943584B (en) 2019-03-27 2019-03-27 Recombinant vector and recombinant yeast strain for producing sabinene, and construction method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910236928.2A CN109943584B (en) 2019-03-27 2019-03-27 Recombinant vector and recombinant yeast strain for producing sabinene, and construction method and application thereof

Publications (2)

Publication Number Publication Date
CN109943584A CN109943584A (en) 2019-06-28
CN109943584B true CN109943584B (en) 2020-12-29

Family

ID=67010864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910236928.2A Active CN109943584B (en) 2019-03-27 2019-03-27 Recombinant vector and recombinant yeast strain for producing sabinene, and construction method and application thereof

Country Status (1)

Country Link
CN (1) CN109943584B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187786A (en) * 2020-02-03 2020-05-22 天津大学 Recombinant vector and application thereof in preparation of bicarboxin

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101495641A (en) * 2006-05-26 2009-07-29 阿迈瑞斯生物技术公司 Apparatus for making bio-organic compounds
CN107002062A (en) * 2014-10-22 2017-08-01 淡马锡生命科学研究院有限公司 Terpene synthase from Yilan fruticosa mutation (Cananga odorata var. fruticosa)
CN104372017B (en) * 2014-11-05 2017-06-30 中国科学院青岛生物能源与过程研究所 A kind of method and application for improving genetic engineering bacterium isoprene and its derivative yield
WO2017075538A1 (en) * 2015-10-29 2017-05-04 Amyris, Inc. Compositions and methods for production of myrcene
CN108893482B (en) * 2018-06-22 2021-11-05 中国医学科学院药用植物研究所 Salvia miltiorrhiza terpene synthase gene SmTPS8, cloning primer, expression vector, catalytic product and application thereof

Also Published As

Publication number Publication date
CN109943584A (en) 2019-06-28

Similar Documents

Publication Publication Date Title
CN112501269B (en) Method for rapidly identifying high-affinity TCR antigen cross-reactivity
US6391586B1 (en) Nucleic acid molecules encoding a secreted neural adhesion protein
CN109735480B (en) Recombinant bacillus subtilis for synthesizing lactyl-N-neotetraose and construction method and application thereof
CN109943584B (en) Recombinant vector and recombinant yeast strain for producing sabinene, and construction method and application thereof
CN111378785A (en) Pseudo virus standard substance for nucleic acid diagnosis of novel coronavirus 2019-nCov and application thereof
CN109825465A (en) Recombined bacillus subtilis and its construction method and application based on the balance UDP- sugar supply synthesis new tetrose of lactoyl-N-
CN107475297B (en) Recombinant fowlpox virus transfer vector for expressing duck type 2 adenovirus fiber2 gene and construction method and application thereof
CN114058621B (en) Exosome secreted by lncRNA gene modified cells and application thereof
CN109810958B (en) Saffron-derived CCD2 mutant, coding sequence and application thereof, and recombinant yeast strain for producing crocetin
CN115044614B (en) Modified vector of AAV-8 serotype for gene targeting and expression, construction method and application thereof
CN104946669B (en) The full-length infectious clone of japanese encephalitis virus of stable Carrying Green Fluorescent Protein gene and preparation method and application
CN111149730B (en) Method for rapidly cultivating homozygous individuals of pluripotent stem cell fluorescence-labeled zebra fish
CN106749678A (en) HER2 CAR recombined lentivirus vectors and its construction method and application
KR20150120171A (en) Expression cassette and vector with genes related Alzheimer&#39;s disease and transgenic cell line made from it
CN113754783B (en) Application of recombinant RLK in plant immune regulation
CN100591771C (en) Hypoxia response elements gene treating plasmid and its constructing method
CN111110707A (en) Application of recombinant oncolytic virus in preparation of medicine for treating digestive tract tumor
WO1993008291A1 (en) A novel ribonuclease and its inhibitor
CN113880957A (en) Streptolysin O fusion protein
CN111394384B (en) Biosensor for detecting S-adenosylmethionine and preparation method thereof
KR20180050237A (en) A vector for expressing hEGF or PTD-hEGF and microalgae transformed with the same
KR20230169221A (en) Non-viral homology-mediated end joining
KR20160129568A (en) Transgenic zebrafish expressing a liver-specific hIL-6 gene and method for producing thereof
KR101767456B1 (en) Transgenic zebrafish expressing a liver-specific hIL-6 gene and method for producing thereof
CN107058359A (en) A kind of high-throughput screening method of anti respiratory syncytial virus medicine and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant