CN108395473B - Plant carotenoid synthesis related protein and coding gene and application thereof - Google Patents

Plant carotenoid synthesis related protein and coding gene and application thereof Download PDF

Info

Publication number
CN108395473B
CN108395473B CN201810148402.4A CN201810148402A CN108395473B CN 108395473 B CN108395473 B CN 108395473B CN 201810148402 A CN201810148402 A CN 201810148402A CN 108395473 B CN108395473 B CN 108395473B
Authority
CN
China
Prior art keywords
plant
gene
sequence
protein
mutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810148402.4A
Other languages
Chinese (zh)
Other versions
CN108395473A (en
Inventor
林浩
王作以
孟颖颖
牛丽芳
刘欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biotechnology Research Institute of CAAS
Original Assignee
Biotechnology Research Institute of CAAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biotechnology Research Institute of CAAS filed Critical Biotechnology Research Institute of CAAS
Priority to CN201810148402.4A priority Critical patent/CN108395473B/en
Publication of CN108395473A publication Critical patent/CN108395473A/en
Application granted granted Critical
Publication of CN108395473B publication Critical patent/CN108395473B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a plant carotenoid synthesis related protein, and a coding gene and application thereof. The invention provides a protein which is (a1) or (a 2): (a1) a protein consisting of an amino acid sequence shown in a sequence 2 in a sequence table; (a2) and (b) the protein which is obtained by substituting and/or deleting and/or adding one or more amino acid residues in the amino acid sequence shown in the sequence 2 in the sequence table, has the same function as the protein derived from the sequence 2. The inventor of the invention clones WF1 gene from medicago truncatula, successfully constructs a plant complementary vector, adopts an agrobacterium-mediated leaf disc method to transform the medicago truncatula white flower mutant, and compared with a control, the medicago truncatula flower with the transferred WF1 gene is yellow. The content disclosed by the invention can lay a foundation for researching the regulation and control of carotenoid synthesis in plants by the gene.

Description

Plant carotenoid synthesis related protein and coding gene and application thereof
Technical Field
The invention relates to a plant carotenoid synthesis related protein, and a coding gene and application thereof.
Background
Leguminous (Leguminosae) plants are about 700 species 18000, which are the third major family next to the family of Compositae and Orchidaceae, are widely distributed all over the world, are important sources of human food and oil as well as pasture, green manure, medicinal materials, wood and the like, and have important economic, ecological and biological values. However, the research of functional genomics of leguminous plants is limited due to the factors that most leguminous crops have large genomes, and genetic transformation systems are not mature. The medicago truncatula (medicago truncatula) is an annual herbaceous plant and grazing pasture, and is an ideal model plant for leguminous plant genetics and genomics research due to the characteristics of short growth cycle, small ploidy, small genome, self-pollination, nitrogen fixation and the like.
Carotenoids are a generic name of a class of C40 terpenoids and derivatives thereof, are basic components of all photosynthetic organisms, are widely present in animals, plants, algae, bacteria and fungi, but cannot be synthesized by the animals themselves and can only be taken in from the outside. The carotenoid is a precursor of vitamin A which is necessary for human bodies, plays the functions of resisting oxidation, eliminating free radicals and the like in vivo, and is related to yellow to red colors and the like in flowers and fruits of plants. Carotenoids which are recognized at present are classified into hydrocarbon carotenoids according to different structures, and are orange and red; alcohol carotene, yellow; carotenes, both ketones and acids, are red in color.
Disclosure of Invention
The invention aims to provide a plant carotenoid synthesis related protein, and a coding gene and application thereof.
The invention provides a protein (named as WF1 protein) obtained from medicago truncatula, which is (a1) or (a 2):
(a1) a protein consisting of an amino acid sequence shown in a sequence 2 in a sequence table;
(a2) and (b) the protein which is obtained by substituting and/or deleting and/or adding one or more amino acid residues in the amino acid sequence shown in the sequence 2 in the sequence table, has the same function as the protein derived from the sequence 2.
In order to facilitate purification and detection of WF1 protein of (a1), a tag as shown in Table 1 may be attached to the amino terminus or the carboxyl terminus of a protein consisting of the amino acid sequence shown in SEQ ID No. 1 of the sequence Listing.
TABLE 1 sequences of tags
Label (R) Residue of Sequence of
Poly--Arg 5-6 (typically 5) RRRRR
Poly-His 2-10 (generally 6) HHHHHH
FLAG 8 DYKDDDDK
Strep-tag II 8 WSHPQFEK
c-myc 10 EQKLISEEDL
The WF1 protein of (a2) above may be synthesized artificially, or may be obtained by synthesizing the encoding gene and then performing biological expression. The gene encoding WF1 protein of (a2) above can be obtained by deleting one or several codons of amino acid residues from the DNA sequence shown in sequence No. 1 of the sequence Listing, and/or by carrying out missense mutation of one or several base pairs, and/or by attaching a coding sequence of the tag shown in Table 1 to the 5 'end and/or 3' end thereof.
The gene encoding the WF1 protein (WF1 gene) also falls within the scope of the present invention.
The gene is a DNA molecule as described in any one of (b1) to (b4) below:
(b1) the coding region is a DNA molecule shown as a sequence 1 in a sequence table;
(b2) a DNA molecule shown in a sequence 5 of a sequence table;
(b3) a DNA molecule which hybridizes under stringent conditions to the DNA sequence defined in (b1) or (b2) and which encodes the protein of claim 1;
(b4) a DNA molecule derived from medicago truncatula and having more than 90% homology with the DNA sequence defined in (b1) or (b2) or (b3) and encoding the protein of claim 1.
The stringent conditions can be hybridization and washing with 0.1 XSSPE (or 0.1 XSSC), 0.1% SDS solution at 65 ℃ in DNA or RNA hybridization experiments.
The recombinant expression vector, the expression cassette, the transgenic cell line or the recombinant strain containing the WF1 gene belong to the protection scope of the invention.
The recombinant expression vector can be specifically a recombinant plasmid obtained by inserting a DNA fragment shown in a sequence 3 in a sequence table into a KpnI enzyme cutting site of a pCAMBIA2300 plasmid and inserting a DNA fragment shown in a sequence 4 in the sequence table into a PstI enzyme cutting site.
The recombinant expression vector can be specifically an expression vector containing a double-stranded DNA molecule shown in a sequence 5 of a sequence table.
The invention also protects the application of the WF1 protein or the WF1 gene in regulating and controlling the carotenoid content of plants.
The present invention also provides a method of breeding a transgenic plant (method 1), comprising the steps of: inhibiting expression of WF1 gene in the target plant to obtain the transgenic plant with reduced carotenoid content.
The invention also provides a method (method 2) for reducing the carotenoid content of a plant, which comprises the following steps: inhibiting the activity and/or expression of WF1 protein in the target plant to obtain the transgenic plant with reduced carotenoid content.
The present invention also provides a method (method 3) for breeding a transgenic plant, comprising the steps of: the WF1 gene is introduced into a target plant to obtain a transgenic plant with improved carotenoid content.
In the method, the WF1 gene may be introduced into a target plant by a recombinant expression vector. The recombinant expression vector can be transformed into plant cells or tissues by conventional biological methods such as Ti plasmid, Ri plasmid, plant virus vector, direct DNA transformation, microinjection, conductance, Agrobacterium mediation and the like.
The recombinant expression vector can be specifically a recombinant plasmid obtained by inserting a DNA fragment shown in a sequence 3 in a sequence table into a KpnI enzyme cutting site of a pCAMBIA2300 plasmid and inserting a DNA fragment shown in a sequence 4 in the sequence table into a PstI enzyme cutting site.
The recombinant expression vector can be specifically an expression vector containing a double-stranded DNA molecule shown in a sequence 5 of a sequence table.
The invention also provides a method for increasing the carotenoid content of a plant (method 4), which comprises the following steps: improving the activity and/or expression level of WF1 protein in the target plant to obtain the transgenic plant with improved carotenoid content.
The invention also protects the application of the WF1 protein or the WF1 gene or the method of any one of the above in plant breeding.
The aim of such breeding is to develop plants with high carotenoids (method 3 or method 4) or low carotenoids (method 1 or method 2).
Any of the above target plants is a dicotyledonous plant or a monocotyledonous plant. The dicotyledonous plant is a plant of the order Rosales, and the plant of the order Rosales is a plant of the family Leguminosae. The Leguminosae plant is Medicago plant. The Medicago plant is Medicago truncatula. In the method 1 or the method 2, the target plant can be medicago truncatula R108. In method 3 or method 4, The plant of interest may be more specifically wf1 mutant (The Nobel Foundation, accession number: NF 4496).
Any of the above carotenes may specifically be lutein.
Any of the above plants is a dicotyledonous plant or a monocotyledonous plant. The dicotyledonous plant is a plant of the order Rosales, and the plant of the order Rosales is a plant of the family Leguminosae. The Leguminosae plant is Medicago plant. The Medicago plant is Medicago truncatula, more specifically Medicago truncatula R108.
The inventor of the invention clones WF1 gene from medicago truncatula, successfully constructs a plant complementary vector, adopts an agrobacterium-mediated leaf disc method to transform the medicago truncatula white flower mutant, and compared with a control, the medicago truncatula flower with the transferred WF1 gene is yellow. The content disclosed by the invention can lay a foundation for researching the regulation and control of carotenoid synthesis in plants by the gene.
Drawings
FIG. 1 is a set of phenotypes of Medicago truncatula R108 wild type flowers and Medicago truncatula wf1 white flower mutants.
FIG. 2 shows the determination of carotenoid content and components in R108 flower and wf1 flower.
FIG. 3 is an analysis of the linkage between WF1 and white flower phenotype.
FIG. 4 shows the flower color phenotype analysis of wf1 mutant complementation transgenic plant and the molecule detection of wf1 mutant complementation transgenic plant.
FIG. 5 is the expression analysis of genes related to carotenoid synthesis of wf1 mutant complementation transgenic plants.
Detailed Description
The following examples are given to facilitate a better understanding of the invention, but do not limit the invention. The experimental procedures in the following examples are conventional unless otherwise specified. The test materials used in the following examples were purchased from a conventional biochemical reagent store unless otherwise specified. The quantitative tests in the following examples, all set up three replicates and the results averaged.
Medicago truncatula R108 (wild type): the Nobel Foundation.
wf1 mutant: the Nobel Foundation, No.: NF 4496.
wf1-2 mutant: the Nobel Foundation, No.: NF 10625.
wf1-3 mutant: the Nobel Foundation, No.: NF 10301.
pCAMBIA2300 plasmid: wuhanzhongliyuan biotechnology, Inc., Cat number: p0283.
Agrobacterium AGL 1: biomed, cat no: BC 302-01.
YEP solid medium: 10g of peptone, 10g of yeast extract, 5g of sodium chloride, 10g of agar powder and distilled water to a constant volume of 1L.
YEP liquid medium: 10g of peptone, 10g of yeast extract, 5g of sodium chloride and distilled water to a constant volume of 1L.
Callus induction liquid medium (PH 5.8): 100mL of macroelement mother liquor, 1mL of microelement mother liquor, 1mL of organic element mother liquor, 140mg of iron salt mother liquor, 100mg of inositol, 30g of sucrose, 4mg of auxin, 0.5mg of cytokinin, 200mg of cephalosporins, 250mg of timentin and 2mg of glufosinate, and the volume is up to 1L.
Callus induction solid medium (PH 5.8): 100mL of macroelement mother liquor, 1mL of microelement mother liquor, 1mL of organic element mother liquor, 140mg of iron salt mother liquor, 100mg of inositol, 30g of sucrose, 4mg of auxin, 0.5mg of cytokinin, 200mg of cephalosporins, 250mg of timentin, 2mg of glufosinate and 3.2g of Phytagel, and the volume is up to 1L.
Differentiation medium (PH 5.8): 100mL of macroelement mother liquor, 1mL of microelement mother liquor, 1mL of organic element mother liquor, 140mg of iron salt mother liquor, 100mg of inositol, 20g of cane sugar, 200mg of cephalosporin, 250mg of timentin, 2mg of glufosinate-ammonium and 3.2g of Phytagel, and the volume is up to 1L.
Rooting medium (PH 5.8): murashige & Skoog basic Medium with Vitamins 2.215g/L (company: Phytotechnology Laboratories, cat. No.: 16B0519138A)
Mother liquor of iron salt: 37.3mg of disodium ethylene diamine tetraacetate and 27.8mg of ferrous sulfate heptahydrate.
Macroelement mother liquor: magnesium sulfate heptahydrate 1.85g, potassium nitrate 28.3g, ammonium sulfate 4.63g, calcium chloride dihydrate 1.66g, potassium dihydrogen phosphate 4g, distilled water to constant volume of 1L.
And (3) a microelement mother solution: 1g of manganese sulfate monohydrate, 500mg of boric acid, 100mg of zinc sulfate heptahydrate, 100mg of potassium iodide, 10mg of sodium molybdate dihydrate, 20mg of copper sulfate pentahydrate and 10mg of cobalt chloride hexahydrate, and distilled water is added to a constant volume of 1L.
Organic element mother liquor: 500mg of nicotinic acid, 500mg of thiamine hydrochloride, 500mg of pyridoxine hydrochloride and distilled water to a constant volume of 1L.
Example 1 discovery of WF1 and gene encoding WF1
Mutant acquisition and phenotypic analysis
An extremely abnormal mutant with a flower color changed from yellow of a wild type to white is obtained by screening Medicago truncatula Tnt1 and inserting the mutant into a mutant library, and is named white flower1(wf 1).
Observations of floral phenotypes of the wf1 mutant and Medicago truncatula R108 (wild type) are shown in FIG. 1. In fig. 1, a: wild type R108 floral face; b: wild type R108 flag petal; c: wild-type R108 flower fused petals and keel petals; d: wild-type R108 flower stamen; e: wf1 floral face; f: wf1 flag petals; g: wf1 flower fused petals and keel petals; h: wf1 flower a two-body stamen. The flower front, the flag flower and the petal-fused syngnathic petal of the wild type R108 are all yellow; wf1 flower front, flag, flower fused petal and keel petal are all white.
Second, measurement of anthocyanidin component
And (3) the plant to be detected: medicago truncatula R108 (wild type) and wf1 mutant.
Analyzing pigment components in the plant flowers to be detected, and the steps are as follows:
1. cleaning the mortar and the medicine spoon, pouring a proper amount of absolute ethyl alcohol, igniting and burning, cooling at room temperature for 1h, and freezing with liquid nitrogen for 2-3 times before putting the sample.
2. Taking about 20mg (about 8-9 leaves, removing petioles, sepals and stamens) of completely opened plant petals to be detected in consistent growth state, accurately weighing, and rapidly freezing in liquid nitrogen.
3. After completing step 2, the petals are ground in the mortar treated in step 1, 100 μ l of 6% (w/v) KOH methanol solution is added after grinding is finished, vortex for 10s and mix evenly, and then the mixture is heated for 1h at 60 ℃ in the dark.
4. After completion of step 3, 100. mu.l Tris-HCl buffer (50mM, pH7.5, containing 1M NaCl) was added, inverted 8-10 times, mixed well and left on ice for 10 min.
5. After completion of step 4, 400. mu.L of chloroform was added, mixed by inversion, and then placed on ice for 10 min.
6. After completion of step 5, the supernatant was centrifuged at 3000g for 5min at 4 ℃ and the supernatant was removed.
7. Extracting the residual liquid on the upper layer again according to the steps 5 and 6, mixing the lower layer liquid obtained 2 times, drying by nitrogen, dissolving by 100 mu L ethyl acetate, and detecting the pigment component by HPLC.
And (3) standard substance: lutein Lutein (carotenure, NO. 0133);
a chromatographic column: YMC 5. mu. m C30The columns (250X 4.6mm) are connected in series with 20X 4.6mmC30A column;
sample introduction amount: 10 mu L of the solution;
flow rate: 1.0 mL/min-1
Column temperature: 25 ℃;
detection wavelength: 450 nm;
mobile phase: a: methanol; b: water/methanol (1/4 vol, 0.2% ammonium acetate); c: tert-methyl butyl ether
Gradient elution: 95% A, 5% B isocratically for 12 minutes, 80% A, 5% B, 15% C for 12 minutes, followed by 30% A, 5% B, 65% C for 30 minutes.
The results are shown in FIG. 2. The results show that the main pigment in the alfalfa R108 (wild type) flower of the Tribulus terrestris is Lutein (Lutein), and the content of Lutein in the flower of the wf1 mutant is far lower than that of the wild type.
Thirdly, confirmation of the linkage relationship between WF1 and white flower phenotype and acquisition of encoding gene WF1
1. According to the flanking sequence of Tnt1 retrotransposon Insertion sites provided by the Medicago truncatula mutant database (https:// media at. noble. org/mutant /), corresponding primers WF1-Insertion-6-F and WF1-Insertion-6-R are designed to be combined with the primer of Tnt1 (LTR6 or LTR31), respectively, and Tnt1 Insertion sites which are co-separated with the phenotype of WF1 mutant are screened to primarily lock the target gene.
LRT31-F(5’-3’):CTCCTCTCGGGGTCGTGGTT
LTR6-R(5’-3’):GCTACCAACCAAACCAAGTCAA
WF1-Insertion-6-F(5’-3’):GGTGTTGCATGGACAGAA
WF1-Insertion-6-R(5’-3’):GCCCATGCCTAGTTGTTA
2. Extracting total RNA of yellow flowers completely opened by medicago truncatula R108 (wild type), carrying out reverse transcription to obtain cDNA serving as a template, and amplifying WF1-F/WF1-R by adopting a primer to obtain a PCR amplification product. Sequencing to obtain a coding region sequence of the target gene, wherein the coding region sequence is represented by a sequence 1 in a sequence table, and the coding region sequence is represented by a sequence 2 in the sequence table. The protein shown in the sequence 2 of the sequence table is named as WF1 and consists of 230 amino acid residues. The gene encoding WF1 was designated as WF1 gene.
3. Further, the Zygophylli alfalfa Tnt1 retrotransposon insertion mutant library was screened reversely, and two other WF1Tnt1 insertion mutants WF1-2 and WF1-3 were obtained. The alfalfa R108 (wild type), wf1 mutant, wf1-2 and wf1-3 mutants were subsequently analyzed for genomic and transcriptional levels and for the phenotype of fully open flowers in depth.
4. Extracting genome DNA of medicago truncatula R108 (wild type) and three mutants as templates, designing primers according to Tnt1 retrotransposon insertion site sequences provided by medicago truncatula mutant databases (https:// media ago-mutant. noble. org/mutant /), analyzing the insertion of Tnt1 retrotransposon in wf1-1, wf1-2 and wf1-3 respectively, and showing that Tnt1 in wf1-1 and wf1-2 is inserted into the second exon and the third exon respectively, which causes the flower color to change from yellow of wild type to white, and Tnt1 in wf1-3 mutant is inserted into 3' region of genome thereof, which causes the flower color to change from yellow of wild type to light yellow (FIG. 3A). The expression quantity of WF1 gene in the three mutants is further analyzed on the transcription level, total RNA of wild type R108 and the three mutants is respectively extracted, cDNA formed by reverse transcription is used as a template, a primer pair consisting of WF1 CDS amplification primers WF1-F/WF1-R is used for amplifying WF1 gene, a primer pair consisting of primer MtActin-F/MtActin-R is used for amplifying reference gene MtActin in the medicago truncatula, and RT-PCR is carried out, the result of amplification products shows that the target segment of WF1 gene in WF1-1 is smaller than that of the wild type, the sequencing result of the segment shows that the second exon is deleted, 130bp base deletion of WF1 gene is caused, and the gene generates frame shift mutation to cause functional deletion (figure 3B). By sequencing, the WF1 gene was misspliced in the WF1-1 mutant (FIG. C). Total RNAs of a wild type R108 and three mutants are respectively extracted, cDNA formed by reverse transcription is used as a template, a primer pair consisting of WF1 specific primers qWF1-F/qWF1-R is used for amplifying a WF1 gene, a primer pair consisting of primers qMtActin-F/qMtActin-R is used for amplifying a reference gene MtActin in the medicago truncatula, and Real-time PCR is carried out, so that the expression water average of the WF1 gene in the three mutants is obviously lower than that of the wild type (figure 3D), and the fact that the color of the medicago truncatula is changed from yellow to white due to deletion of the WF1 gene is further verified, and the fact that WF1 plays an important role in the regulation of the color of the medicago truncatula. FIG. 3E: wild type R108 floral face; FIG. 3F: wf1 floral face; FIG. 3G: wf1-2 flower front; FIG. 3H: wf1-3 flower front. The flower front of wild type R108 is yellow; the front faces of the wf1 flowers and the front faces of the wf1-2 flowers are white, and the front faces of the wf1-3 flowers are light yellow.
WF1-F(5’-3’):CAAAAAAGCAGGCTTCATGGGTGGTGTTGCATGGAC
WF1-R(5’-3’):CAAGAAAGCTGGGTCCTAAGAAAAACCATTATATAGATCC
MtActin-F:TCTTACTCTCAAGTACCCCATTGAGC
MtActin-R:GTGGGAGTGCATAACCCTCATAGATT
Example 2 functional verification of WF1 Gene
To further verify the role of WF1 in regulation of carotenoid synthesis, functional verification was performed by performing WF1 genome complementation experiments in WF1 mutants.
First, construction of complementary expression vector
Inserting a DNA fragment shown in a sequence 3 in a sequence table into a KpnI enzyme cutting site of the pCAMBIA2300 plasmid, and inserting a DNA fragment shown in a sequence 4 in the sequence table into a PstI enzyme cutting site to obtain a recombinant plasmid pWF1 pro: : WF1gDNA-1.5KASC (verified by sequencing).
The sequence 3 of the sequence table is an upstream 3K promoter segment of WF1 gene and a gDNA segment of WF1 gene, and the sequence 4 of the sequence table is a downstream 1.5K termination region segment of WF1 gene. The sequence 5 in the sequence table is a complete sequence of an upstream 3K promoter segment of WF1 gene, a gDNA segment of WF1 gene, a vector intermediate segment and a downstream 1.5K termination region segment of WF1 gene.
Second, obtaining complementary mutant plants
1. The recombinant plasmid pWF1pro prepared in step one: : WF1gDNA-1.5KASC transforms Agrobacterium AGL1 to obtain recombinant AGL1/pWF1 pro: : WF1gDNA-1.5 KASC.
2. And (3) carrying out reaction on the recombinant bacterium AGL1/pWF1pro obtained in the step 1: : WF1gDNA-1.5KASC was inoculated on YEP solid medium containing 50mg/mL rifampicin antibiotic and 50mg/mL kanamycin antibiotic, cultured at 28 ℃ until a single colony grew, picked up into YEP liquid medium, and cultured overnight at 28 ℃ with shaking at 200 rpm.
3. After completing step 2, inoculating 500 μ L of bacterial solution into 5mLYEP liquid culture medium, adding 5 μ L of 100mg/mL acetosyringone, performing shake culture at 28 deg.C and 200rpm to OD600nmThe bacterial solution was centrifuged at 3800rpm for 15min at 0.8 to collect the bacterial cells.
4. Suspending the thallus obtained in step 3 with SH3a liquid culture medium containing 100mg/L acetosyringone, and adjusting OD600nmAnd (5) obtaining the staining solution when the concentration is 0.2.
5. Taking the first compound leaf of the wf1 mutant growing for about 4 weeks, washing the first compound leaf with 75% ethanol for about 10s, then disinfecting the first compound leaf with 5% sodium hypochlorite for 5min, washing the first compound leaf with sterile water for at least 5 times on a super clean bench, cutting the leaf, then placing the cut leaf into the staining solution obtained in the step (4), and infecting the cut leaf for 15 min.
6. After completion of step 5, the infected leaves were transferred to SH3a solid medium and cultured for four weeks until white embryogenic callus appeared (medium was changed once in two weeks).
7. After completion of step 6, the white embryogenic callus was transferred to differentiation medium and cultured for four weeks until a green embryoid body was differentiated (medium was changed once for two weeks).
8. And (4) after the step 7 is completed, transferring the green embryoid to a rooting culture medium, replacing the culture medium once in two weeks, and transferring the green embryoid to vermiculite after rooting and leaf growing until the green embryoid is grown into seedlings to obtain T0 generation complementary mutant plants.
T1 generation is obtained by T0 generation selfing, and T2 generation is obtained by T1 generation selfing.
9. The pCAMBIA2300 plasmid was used instead of the recombinant plasmid pWF1 pro: : WF1gDNA-1.5KASC, was manipulated according to steps 1-8 to obtain a transgenic empty vector plant (pCAMBIA2300-GFP-HA/WF 1).
Third, phenotype of complementary mutant plants
And (3) the plant to be detected: medicago truncatula R108 (wild type), WF1 mutant, complementary mutant plant (generation F2) (pWF 1: WF1gDNA-GFP-HA/WF1), and empty vector-transferred plant (pCAMBIA2300-GFP-HA/WF 1).
Observing the completely opened flower phenotype of the plant to be detected. The results are shown in FIGS. 4A to 4D. The results show that the flower color of the complementary mutant plants changes from white of the wf1 mutant to yellow similar to the wild type. The flower color of the control vector plant was the same white as the wf1 mutant. The flower color of the transferred empty carrier plant is still white, and the influence of the carrier on the flower color is eliminated.
Fourth, analysis of expression quantity of carotenoid synthetic gene of complementary mutant plant
And (3) the plant to be detected: medicago truncatula R108 (wild type), WF1 mutant, empty vector transformed plant (generation F2) (pCAMBIA2300/WF1-7), complementary mutant plant (generation F2) (pWF 1: WF1gDNA-GFP-HA/WF 1-1).
1. And extracting the total RNA of the flower completely opened by the plant to be detected, and inverting the total RNA into cDNA.
2. And (2) detecting the expression of carotenoid synthesis related genes in wild type R108, wf1 mutant, wf1-2 and wf1-3 mutant flowers by using cDNA obtained in the step (1) as a template and utilizing qRT-PCR, wherein the detected genes and detection primers thereof are as follows (MtActin is an internal reference gene):
qMtActin-F(5’-3’):TCAATGTGCCTGCCATGTATGT
qMtActin-R(5’-3’):ACTCACACCGTCACCAGAATCC
qMtWF1-F(5’-3’):CTAGAAGCTGATCAAGATAGGTCAC
qMtWF1-R(5’-3’):CTTGGCTCCTTCTCTTCACTG
qMtPSY-F(5’-3’):ATGACTCCTGAAAGGCGAAG
qMtPSY-R(5’-3’):TGATTCCCACCTATCCATTGC
qMtPDS-F(5’-3’):TTCTACCTTTCGTGCTTCTCC
qMtPDS-R(5’-3’):TTTCCACCTAGAACGTCTCTTG
qMtZDS-F(5’-3’):CCTCCCGTTTTACTAAGACTCG
qMtZDS-R(5’-3’):CTCGATAATGTTCAGGCTCCG
qMtCRTISO-F(5’-3’):CTCTCCCTTTCTAACCACACC
qMtCRTISO-R(5’-3’):TTTCACCGCCACCCTTTT
qMtLYCE-F(5’-3’):AGCATGTTTGGAAGGATACCG
qMtLYCE-R(5’-3’):GAGCCAAGATATGAGACACCTG
qMtLYCB-F(5’-3’):TGTGGATCTTGTCGTTGTCG
qMtLYCB-R(5’-3’):CCTCAAATTCATCCACCCAAAC
qMtECH-F(5’-3’):GGCTGTTCAAATTGGTGCTG
qMtECH-R(5’-3’):TCCACAGCTCCATTACCTTTC
qMtBCHa-F(5’-3’):TTTGCTCTATCAGTGGGTGC
qMtBCHa-R(5’-3’):CACAAGGAAGCATGCCAAAG
qMtBCHb-F(5’-3’):TCACTTACCTAGTTGCAGCTG
qMtBCHb-R(5’-3’):GCCAAACATTTCAGACCAAGG
qMtVDE-F(5’-3’):ACCAGAGCCTTCCATTGTG
qMtVDE-R(5’-3’):CCTTCTCCAAATCCTTCTCCAC
qMtZEP-F(5’-3’):AGTGGTCTTGGATAATGGTCAG
qMtZEP-R(5’-3’):CCCGAGTATGTAGCTTCTGTTG
qMtNXS-F(5’-3’):ACCAAACTTCTCTTTACTGTTCTGT
qMtNXS-R(5’-3’):AGATTGAAGGAGAAATGATTGTGTG
3 strains were tested per strain.
The detection results are shown in FIG. 5 (in the detection result of each gene, the R108 and WF1 mutants of Tribulus terrestris, pCAMBIA2300/WF1-1 and pWF 1: WF1gDNA-GFP-HA/WF 1-1 are arranged from left to right in sequence). The expression level of the carotenoid synthesis related gene in the flower of the WF1 mutant complementary transgenic plant is increased relative to that of the WF1 mutant, the expression level is obviously higher than that of the carotenoid synthesis related gene in the wild type R108, the detection result of a contrast carrier plant is the same as that of the WF1 mutant, and the WF1 gene is proved to be capable of effectively improving the expression of the carotenoid synthesis related gene, so that the yield of the carotenoid is improved.
<110> institute of biotechnology of Chinese academy of agricultural sciences
<120> plant carotenoid synthesis related protein, and coding gene and application thereof
<160>5
<210>1
<211>690
<212>DNA
<213> Medicago truncatula (Medicago truncatula)
<400>1
atgggtggtg ttgcatggac agaagaagaa gatcacttgc ttaagaaatg catacaacaa 60
tatggtgaag gaaagtggca tagggttcca ctattggctg gtctaaacag atgcagaaag 120
agttgtaggc taagatggtt gaactatcta cgtcctaaca taaagagagg aaattttgct 180
gaggaggaag tggaaatgat tgtcaaactc cacaaattat taggcaacag gtggtccctg 240
attgcaggaa ggctaccagg aaggacagca aatgacgtga aaaactattg gaactgtcat 300
ctaagcaaaa aactaaatgc tctagaagct gatcaagata ggtcacaatc atccaaagat 360
gttcaaatca ttaggccaca ggcaagaaac attggttcaa gctcagtgaa gagaaggagc 420
caaggagagt caccaactga ccaagttcta gttcaacaag agagtgacat gacaacattt 480
gatgctgatg gaaagaatca tatgcttgaa tcacaacaag acatgatggt gttttcatgc 540
ttggaccaac aaggtatggt tggtgagttt ccaatggatt ttcaattaga aggatttgaa 600
gctatggtaa gtggaggaga gggtagtagt agccaatgga attgggagga tttgctctta 660
gatatggatc tatataatgg tttttcttag 690
<210>2
<211>229
<212>PRT
<213> Medicago truncatula (Medicago truncatula)
<400>2
Met Gly Gly Val Ala Trp Thr Glu Glu Glu Asp His Leu Leu Lys Lys
1 5 10 15
Cys Ile Gln Gln Tyr Gly Glu Gly Lys Trp His Arg Val Pro Leu Leu
20 25 30
Ala Gly Leu Asn Arg Cys Arg Lys Ser Cys Arg Leu Arg Trp Leu Asn
35 40 45
Tyr Leu Arg Pro Asn Ile Lys Arg Gly Asn Phe Ala Glu Glu Glu Val
50 5560
Glu Met Ile Val Lys Leu His Lys Leu Leu Gly Asn Arg Trp Ser Leu
65 70 75 80
Ile Ala Gly Arg Leu Pro Gly Arg Thr Ala Asn Asp Val Lys Asn Tyr
85 90 95
Trp Asn Cys His Leu Ser Lys Lys Leu Asn Ala Leu Glu Ala Asp Gln
100 105 110
Asp Arg Ser Gln Ser Ser Lys Asp Val Gln Ile Ile Arg Pro Gln Ala
115 120 125
Arg Asn Ile Gly Ser Ser Ser Val Lys Arg Arg Ser Gln Gly Glu Ser
130 135 140
Pro Thr Asp Gln Val Leu Val Gln Gln Glu Ser Asp Met Thr Thr Phe
145 150 155 160
Asp Ala Asp Gly Lys Asn His Met Leu Glu Ser Gln Gln Asp Met Met
165 170 175
Val Tyr Ser Cys Leu Asp Gln Gln Gly Met Val Gly Glu Phe Pro Met
180 185 190
Asp Phe Gln Leu Glu Gly Phe Glu Ala Met Val Ser Gly Gly Glu Gly
195 200 205
Ser Ser Ser Gln Trp Asn Trp Glu Asp Leu Leu Leu Asp Met Asp Leu
210 215220
Tyr Asn Gly Phe Ser
225
<210>3
<211>6095
<212>DNA
<213> Artificial sequence
<220>
<223>
<400>3
actcttttac tacaattgca agttattata tttcaggaac aaaatattct aaagattgag 60
tcttggagca aaagaaagga gaattggagc tgattcgtgc caaaaatata aaagatctta 120
tacaaaaata tatggtgcaa ggattgagga aaaatatatg aatatctcat acaaaaatat 180
catgtgcaaa gaatttgaag atcttgtaca aatctataca agaggcgcgc cccactttag 240
tccttttgct gtttttgctt tccagacaag ctacctatta gtttatttct gacctaaaag 300
cctttggttt cttgtggaac attctagtga tgtattcctt aggttttaag tcgttataga 360
ctataaatag agtagctagc tatcataaca aatcatcttt tgttctctga aataataagt 420
gacaattgtt ttttttaata aaagttcatc tttattttct ttattttatt ttatgttctt 480
tttcttcttc ttcttcttct tcttttctat ggctacaatg aacgttagtg agtagactct 540
tcttgttttg ggattgttgg ataagtctaa tgacataatc ttaatcaaac caagccttaa 600
attctaattt atgtaaccct aatttctaat ctaaattcac cgttttaaca tgacttaaca 660
attatcaaac tgtagaagcg aaagtggagg gttagtaatt gttaattcat catctcaaat 720
atcaattcat aaaacgaaag tggagttttg atattcgaac aagtgaattt agacaaggat 780
tgcgaaacat gaaaatagtc tagcaaacct tgagacatat aaagtttcga acttcaagga 840
ttctaatagc aatcaaccat gaaaataggc gtgattgcta gaggaacaca ctcaatgaga 900
ccgaaagaag atgtgatagg ctaaagagaa acttgtcttt agaaattaag tctaacataa 960
ggttctaggt ttaatggttt ggtttgtgaa gggtttgtcg ccatgacgga ccaataatca 1020
caaggctctt ttatttttat tattttctta attaaaaatc caaacttttt aacctttgaa 1080
actttcatct aatcaatatt aaaagttaat tgaattcata actccctgtc ggaacgatac 1140
tctttttact acttcggtag aaccgtgcac ttgcggtttt atcccatcaa aagccatgat 1200
agtggatcct ttttccataa tggtggtaag gagatcaaga gagatggggt gataaattaa 1260
tagaagaacg gttgaatcaa gaaccgtcca catttcaaaa ctagcgtcaa atggaagtag 1320
gcttctcttt tccgggttga tgaatgatat gattgataac cttgttgaca ctagcatgaa 1380
tctcaaacaa ttcagtccac acggcatagt gatccttctc catttctagc acaaaagcaa 1440
tgtttttttt ttttttttaa tttttttttt tatattggtc actacaaggg ccgagtgaaa 1500
atcgggtttt gccgaattgg aggtcacgac agcgatggag gacacgaaag tgaacgacaa 1560
catggcaggg gaggaaggca tggtgtgacg agagagagag agagagagag agagagagag 1620
agagagagag agagagagag agagagagag agagagagag agagagagag agagagagag 1680
agagagagag agctgctggc acggtggtta gtgcggcaaa ggaagacact tgatcgacca 1740
tgggcggctc aagagaatag gcagcggcgg ccttgggtga agaaaatggc ggcggttgca 1800
aggaagaaag gggtaggtta cgtgggaaat tagactcgtg ataccataaa ggaaatcaat 1860
tcgtgaattt cattgataat gataagagta tatatatagt tacaataggt agagtcaaat 1920
ctaggagagt aattagaaaa taatggagag taattacaaa gtaataacta acataattac 1980
taacataatt acataaggtc aaacattcta tcatgaaact tcccaacaca cccggctcac 2040
acttagagct gaaaatccga agcatgacca gagtcattca ataatgggcg gtccaacgag 2100
tcttagaagg ttctaataaa atcttagaat taggattgaa cctaatccaa tcttagaaaa 2160
ccgatttgtg agacgatgag gacccaccga ttatagctaa tacttttaaa ttactcccta 2220
aatttaagat agaaagaaga aagctaattt ttttttagga ctacgtaatt tgttgctgcg 2280
cgatgcaatg cattagttgc gcctactatg tcctgacatt acaaagcggt tttaatagtg 2340
atttacaatc acactgcaat tgtagcctga tgcgattggc accaccacaa ccacaatatt 2400
gggaccgtat caggtgatac ggtccccaat ttgaaacatt gattggggct acaattgcag 2460
ttgtttagtg tattttaaaa tatggttgat atttagttaa aggggagtaa aaggcggaga 2520
ggattcacgt ccttgttcga taactaactt tatgcattct gaaagacttc actgttggca 2580
ttattgttat tctaagaaaa ctctcctaat cttaatgaga tgacaaatga cagaaaaata 2640
cagatgggat aggtttggct ttgaatagga aataatacaa gcttctaatg tatgatgaga 2700
tccaatttct ttgagatgat gaggaccacc attggatact tatgatgtct atttaaaaac 2760
atagagcttg gtatcagagt tttagaaaga gcaatggacc atttactatg aattttgaag 2820
catacgacat agtatattac tctgccttgc tggctagttt ggcacatctt acttcaagaa 2880
acatgtgtgt gtgtaggtgt gtatgtgttt atcaccacca cacatatata taaaagatgc 2940
aggtgtgggt cgaatatgag ggtgaaaaag tagtagtggt tgaagagttt cataagagat 3000
gggtggtgtt gcatggacag aagaagaaga tcacttgctt aagaaatgca tacaacaata 3060
tggtgaagga aagtggcata gggttccact attggctggt aaaagttaat caattatttt 3120
tcctttttct tgatatttct atttgtcttc tctaaaacgg atatttaatt acttctttga 3180
agtatgtcat ctgaggttcg atctctcaca aatatgtatg gaagaacatt tttttattga 3240
aaaatcaatc gtcgacctct taaaacggat catattattt tgagagattg gtccatactc 3300
ttgactagga aaaccttggg ttcactatta aaatgaaatc atcatgaaat gaccgactct 3360
tgaagtatgt catctgaggt tccatctctg ataaatatgt atggaagaac atttttttat 3420
tgaaaatcaa ctgtcgacct cttaaaacgg atccgttatt ttgagagatt ggtccatact 3480
cttcttgact agaaaaacct tgggtttact attaaaatga aatcatcatg aaatgactga 3540
cttgttcaat ctttgcaatt ggttcttaca caattgaacc aacatactta cttagttgat 3600
tatttttctt ttttcatcaa acattggttt gttgaaggtc taaacagatg cagaaagagt 3660
tgtaggctaa gatggttgaa ctatctacgt cctaacataa agagaggaaa ttttgctgag 3720
gaggaagtgg aaatgattgt caaactccac aaattattag gcaacaggta aactttgatc 3780
tttaagactt tcctttggta ttttctaatg tgttctaagt tctaacaact aggcatgggc 3840
catgatagcc ttatgcagtt tttccaaagg tgttaaagct cattagtgaa gagtgtgcat 3900
agtaaaaagt tagtgttcaa gtatagtaaa tgatgttctc gctgaaaaaa agtatataat 3960
ataggatgtg taatattcat tcaatttgaa ccaattgatt tggttttggt gtgtttagat 4020
ttttagcaag taagatgttt ggattcactt tttgagctta tctataaata aagcatttat 4080
atttgttttg atctctaatt ttttttaaaa atgcactttt tatagatcca taacgaccaa 4140
tccttgcgtg aattgcaagg atccaataag tcctacattg attttctctg aggtgtcaat 4200
tggacaaata tatctatagt gactaggatg gatatcctgc atccgaaaac tagcagttcg 4260
tcccgtcaat cctccaggac ccaaataact caattttctc ccatgaacta tttgggtcaa 4320
tggattggtt cgatctaaaa cttgagataa tgggtgtaat ctaaaaaagg attcataagt 4380
ggttgctaat ggagttgaaa tcactaaatt ttgaggaatt cgtatcaata tatctaattg 4440
ctttatatat agttcctcaa attatatttt ctaaaccaac tagagccaat ccaaattcat 4500
cttttaatag atcactatca gtgggagtta tatgaaaaaa acttaagata tgtccatatg 4560
ttgttttctg tttattttca aaaactatct ataataactt acaaaaacaa cttacagctc 4620
atatgaaaac atttttcatt tttttacaga taaaaatagt ttattttgta aaaaaaaaaa 4680
aaaatagttt attcataagc attgatataa taagtgctta attaagttgt ttatctaaac 4740
attactcaaa tgattttagt tattgacccc tttagagtcc gcttattata gttttattgt 4800
gaaaaaaaaa aaaaattcta aacaaagttt tatcacttat aaaagttttt cccatgtgtt 4860
acaattttct tttgaaaaag agaatccgaa aaatatctaa aaattgcttc aagaaactgt 4920
gatgaataat ttctccgaaa aatcattttt atatgtggtt gttttaaggg ttaaatatgt 4980
ttttggtccc tataaatata tttacttttt gttttagtcc ctctaaattt ttctttcaac 5040
tattagtccc tataaaattt tcaatcacta cttttggtcc ctatttttaa gttaattttt 5100
gtatttttta atgaaattgt gtgaaaatgt gtagaatatt gtaaaaatct ttcttagaaa 5160
aaaagttaga tttttttaac aaaacataaa ttaaatatta atttttaacc ataaaaaata 5220
taaaaattca tttttaattc atgttttgtt aaaaaataga attttctttt gcgagagatt 5280
cttataatat tatgattttt actgcaaaat tttattgaaa atatgaattc tacatatgag 5340
tttactttaa agtagggacc aaaaatgaag atggaaaacc tttgggggac taaaagtcga 5400
agaaattttt tagagggact aaaacgaaaa gttgacatat ttatagggac caaaaacata 5460
tttagccatt gttttaaaaa ggtaaattta attaggatga acaaacacaa actagcttca 5520
acttttaatt tttttttaaa aatttctaaa aattaatctt taaaattttc aaaatcacct 5580
ttttgcaatt agtaacaaat ggaccctaag ctatttgcta caattttttt ttcttcaggt 5640
ggtccctgat tgcaggaagg ctaccaggaa ggacagcaaa tgacgtgaaa aactattgga 5700
actgtcatct aagcaaaaaa ctaaatgctc tagaagctga tcaagatagg tcacaatcat 5760
ccaaagatgt tcaaatcatt aggccacagg caagaaacat tggttcaagc tcagtgaaga 5820
gaaggagcca aggagagtca ccaactgacc aagttctagt tcaacaagag agtgacatga 5880
caacatttga tgctgatgga aagaatcata tgcttgaatc acaacaagac atgatggtgt 5940
tttcatgctt ggaccaacaa ggtatggttg gtgagtttcc aatggatttt caattagaag 6000
gatttgaagc tatggtaagt ggaggagagg gtagtagtag ccaatggaat tgggaggatt 6060
tgctcttaga tatggatcta tataatggtt tttct 6095
<210>4
<211>1503
<212>DNA
<213> Artificial sequence
<220>
<223>
<400>4
tagattattg ttccttattg ccaataggga agacaatgta gtctctatac atgggttgtg 60
tgtcaatttc aaagttaaat gttatccaag gaaatggtgg cttaatcgat gtattttgta 120
aatcgaagta gttgttgttt aaataaacca ataaagtcgg tcttgtgaga catagttagc 180
cctaaaactg gttagtaata tggaaatagt tttgtagctt tttaaaccct attactatat 240
atctagtaga cgatttgttt ttttttaata gtatcctagt tgataataaa aaggaatatc 300
ctcctacata agagaggcag ataaatattc ctttatgttc tattggttga tcttagtgtc 360
ataaaaaaat tagctaccaa tgttaataaa gtttttaaat tttgattatg gtaacgattg 420
ttctgcaatc cttgatattg tagaaaatta tagttaaata caatcacaac tatctaaatt 480
atagtcgtaa acctttgttt aaaatttaag tcattatatt tccatctctt tcattccttc 540
agaatttgag gaatgaaaat acaaattttt tcttagatta tcctagtatg acatgctatt 600
agcttctttc ttcgtctccc ttctcccttc ttccttcatt ctttttaccc tccacactta 660
ttgggggaaa ttctctttta ttgcaatcct ttattctagg tgaatctttt gagttgtcaa 720
tgattatttg tgacttttat aagagttatt tgtactttta cgtttctttg atatgtggct 780
catatagaaa aatagaaatg ccaaacagct cttgataagg catgaacagt taaatcctac 840
cccttcacca caaaagaaga aagtcaaatc ctgccccacc tctgtttctg tttgagtatc 900
acctgtcttc atgatatcaa ttaaatattg gtgtttcttt gtgacaaaat atccattttt 960
ttagcttaac tagtttgttt ggtcgttttt ttaattttag ccctatggtt ttttaatagt1020
gtgattttga ccttcgtact tttaaacatg cgattttgcc ctctctagtt aaccctattt 1080
ttagtttcac aaccctctag ctctgaagcc catctacttt aaaatggatg acgtattgta 1140
ttacatgtgt atcctgcacc gatacctata tgatacttcc tgatacatat tagaagagta 1200
tctgatgatt atattttatt ttatttttta aaacaattat ctgatactat tcagatacat 1260
ctggaatacg agggataagc ggtagaaaac cgatatgtgc gggctacctg atgtttttat 1320
tatatttgat acatatgcaa ttgactaagt aatgatgttt tctatttagg atatatatca 1380
tatatgtaat tgattaattg tcgatttatt tattatcaat attacttaca tttatatctc 1440
catcgttgcc gtcgtctgtt ttgtgtctct ttatttgttt gagaacgatg ctattgttga 1500
ttg 1503
<210>5
<211>8417
<212>DNA
<213> Artificial sequence
<220>
<223>
<400>5
actcttttac tacaattgca agttattata tttcaggaac aaaatattct aaagattgag 60
tcttggagca aaagaaagga gaattggagc tgattcgtgc caaaaatata aaagatctta 120
tacaaaaata tatggtgcaa ggattgagga aaaatatatg aatatctcat acaaaaatat 180
catgtgcaaa gaatttgaag atcttgtaca aatctataca agaggcgcgc cccactttag 240
tccttttgct gtttttgctt tccagacaag ctacctatta gtttatttct gacctaaaag 300
cctttggttt cttgtggaac attctagtga tgtattcctt aggttttaag tcgttataga 360
ctataaatag agtagctagc tatcataaca aatcatcttt tgttctctga aataataagt 420
gacaattgtt ttttttaata aaagttcatc tttattttct ttattttatt ttatgttctt 480
tttcttcttc ttcttcttct tcttttctat ggctacaatg aacgttagtg agtagactct 540
tcttgttttg ggattgttgg ataagtctaa tgacataatc ttaatcaaac caagccttaa 600
attctaattt atgtaaccct aatttctaat ctaaattcac cgttttaaca tgacttaaca 660
attatcaaac tgtagaagcg aaagtggagg gttagtaatt gttaattcat catctcaaat 720
atcaattcat aaaacgaaag tggagttttg atattcgaac aagtgaattt agacaaggat 780
tgcgaaacat gaaaatagtc tagcaaacct tgagacatat aaagtttcga acttcaagga 840
ttctaatagc aatcaaccat gaaaataggc gtgattgcta gaggaacaca ctcaatgaga 900
ccgaaagaag atgtgatagg ctaaagagaa acttgtcttt agaaattaag tctaacataa 960
ggttctaggt ttaatggttt ggtttgtgaa gggtttgtcg ccatgacgga ccaataatca 1020
caaggctctt ttatttttat tattttctta attaaaaatc caaacttttt aacctttgaa 1080
actttcatct aatcaatatt aaaagttaat tgaattcata actccctgtc ggaacgatac 1140
tctttttact acttcggtag aaccgtgcac ttgcggtttt atcccatcaa aagccatgat 1200
agtggatcct ttttccataa tggtggtaag gagatcaaga gagatggggt gataaattaa 1260
tagaagaacg gttgaatcaa gaaccgtcca catttcaaaa ctagcgtcaa atggaagtag 1320
gcttctcttt tccgggttga tgaatgatat gattgataac cttgttgaca ctagcatgaa 1380
tctcaaacaa ttcagtccac acggcatagt gatccttctc catttctagc acaaaagcaa 1440
tgtttttttt ttttttttaa tttttttttt tatattggtc actacaaggg ccgagtgaaa 1500
atcgggtttt gccgaattgg aggtcacgac agcgatggag gacacgaaag tgaacgacaa 1560
catggcaggg gaggaaggca tggtgtgacg agagagagag agagagagag agagagagag 1620
agagagagag agagagagag agagagagag agagagagag agagagagag agagagagag 1680
agagagagag agctgctggc acggtggtta gtgcggcaaa ggaagacact tgatcgacca 1740
tgggcggctc aagagaatag gcagcggcgg ccttgggtga agaaaatggc ggcggttgca 1800
aggaagaaag gggtaggtta cgtgggaaat tagactcgtg ataccataaa ggaaatcaat 1860
tcgtgaattt cattgataat gataagagta tatatatagt tacaataggt agagtcaaat 1920
ctaggagagt aattagaaaa taatggagag taattacaaa gtaataacta acataattac 1980
taacataatt acataaggtc aaacattcta tcatgaaact tcccaacaca cccggctcac 2040
acttagagct gaaaatccga agcatgacca gagtcattca ataatgggcg gtccaacgag 2100
tcttagaagg ttctaataaa atcttagaat taggattgaa cctaatccaa tcttagaaaa 2160
ccgatttgtg agacgatgag gacccaccga ttatagctaa tacttttaaa ttactcccta 2220
aatttaagat agaaagaaga aagctaattt ttttttagga ctacgtaatt tgttgctgcg 2280
cgatgcaatg cattagttgc gcctactatg tcctgacatt acaaagcggt tttaatagtg 2340
atttacaatc acactgcaat tgtagcctga tgcgattggc accaccacaa ccacaatatt 2400
gggaccgtat caggtgatac ggtccccaat ttgaaacatt gattggggct acaattgcag 2460
ttgtttagtg tattttaaaa tatggttgat atttagttaa aggggagtaa aaggcggaga 2520
ggattcacgt ccttgttcga taactaactt tatgcattct gaaagacttc actgttggca 2580
ttattgttat tctaagaaaa ctctcctaat cttaatgaga tgacaaatga cagaaaaata 2640
cagatgggat aggtttggct ttgaatagga aataatacaa gcttctaatg tatgatgaga 2700
tccaatttct ttgagatgat gaggaccacc attggatact tatgatgtct atttaaaaac 2760
atagagcttg gtatcagagt tttagaaaga gcaatggacc atttactatg aattttgaag 2820
catacgacat agtatattac tctgccttgc tggctagttt ggcacatctt acttcaagaa 2880
acatgtgtgt gtgtaggtgt gtatgtgttt atcaccacca cacatatata taaaagatgc 2940
aggtgtgggt cgaatatgag ggtgaaaaag tagtagtggt tgaagagttt cataagagat 3000
gggtggtgtt gcatggacag aagaagaaga tcacttgctt aagaaatgca tacaacaata 3060
tggtgaagga aagtggcata gggttccact attggctggt aaaagttaat caattatttt 3120
tcctttttct tgatatttct atttgtcttc tctaaaacgg atatttaatt acttctttga 3180
agtatgtcat ctgaggttcg atctctcaca aatatgtatg gaagaacatt tttttattga 3240
aaaatcaatc gtcgacctct taaaacggat catattattt tgagagattg gtccatactc 3300
ttgactagga aaaccttggg ttcactatta aaatgaaatc atcatgaaat gaccgactct 3360
tgaagtatgt catctgaggt tccatctctg ataaatatgt atggaagaac atttttttat 3420
tgaaaatcaa ctgtcgacct cttaaaacgg atccgttatt ttgagagatt ggtccatact 3480
cttcttgact agaaaaacct tgggtttact attaaaatga aatcatcatg aaatgactga 3540
cttgttcaat ctttgcaatt ggttcttaca caattgaacc aacatactta cttagttgat 3600
tatttttctt ttttcatcaa acattggttt gttgaaggtc taaacagatg cagaaagagt 3660
tgtaggctaa gatggttgaa ctatctacgt cctaacataa agagaggaaa ttttgctgag 3720
gaggaagtgg aaatgattgt caaactccac aaattattag gcaacaggta aactttgatc 3780
tttaagactt tcctttggta ttttctaatg tgttctaagt tctaacaact aggcatgggc 3840
catgatagcc ttatgcagtt tttccaaagg tgttaaagct cattagtgaa gagtgtgcat 3900
agtaaaaagt tagtgttcaa gtatagtaaa tgatgttctc gctgaaaaaa agtatataat 3960
ataggatgtg taatattcat tcaatttgaa ccaattgatt tggttttggt gtgtttagat 4020
ttttagcaag taagatgttt ggattcactt tttgagctta tctataaata aagcatttat 4080
atttgttttg atctctaatt ttttttaaaa atgcactttt tatagatcca taacgaccaa 4140
tccttgcgtg aattgcaagg atccaataag tcctacattg attttctctg aggtgtcaat 4200
tggacaaata tatctatagt gactaggatg gatatcctgc atccgaaaac tagcagttcg 4260
tcccgtcaat cctccaggac ccaaataact caattttctc ccatgaacta tttgggtcaa 4320
tggattggtt cgatctaaaa cttgagataa tgggtgtaat ctaaaaaagg attcataagt 4380
ggttgctaat ggagttgaaa tcactaaatt ttgaggaatt cgtatcaata tatctaattg 4440
ctttatatat agttcctcaa attatatttt ctaaaccaac tagagccaat ccaaattcat 4500
cttttaatag atcactatca gtgggagtta tatgaaaaaa acttaagata tgtccatatg 4560
ttgttttctg tttattttca aaaactatct ataataactt acaaaaacaa cttacagctc 4620
atatgaaaac atttttcatt tttttacaga taaaaatagt ttattttgta aaaaaaaaaa 4680
aaaatagttt attcataagc attgatataa taagtgctta attaagttgt ttatctaaac 4740
attactcaaa tgattttagt tattgacccc tttagagtcc gcttattata gttttattgt 4800
gaaaaaaaaa aaaaattcta aacaaagttt tatcacttat aaaagttttt cccatgtgtt 4860
acaattttct tttgaaaaag agaatccgaa aaatatctaa aaattgcttc aagaaactgt 4920
gatgaataat ttctccgaaa aatcattttt atatgtggtt gttttaaggg ttaaatatgt 4980
ttttggtccc tataaatata tttacttttt gttttagtcc ctctaaattt ttctttcaac 5040
tattagtccc tataaaattt tcaatcacta cttttggtcc ctatttttaa gttaattttt 5100
gtatttttta atgaaattgt gtgaaaatgt gtagaatatt gtaaaaatct ttcttagaaa 5160
aaaagttaga tttttttaac aaaacataaa ttaaatatta atttttaacc ataaaaaata 5220
taaaaattca tttttaattc atgttttgtt aaaaaataga attttctttt gcgagagatt 5280
cttataatat tatgattttt actgcaaaat tttattgaaa atatgaattc tacatatgag 5340
tttactttaa agtagggacc aaaaatgaag atggaaaacc tttgggggac taaaagtcga 5400
agaaattttt tagagggact aaaacgaaaa gttgacatat ttatagggac caaaaacata 5460
tttagccatt gttttaaaaa ggtaaattta attaggatga acaaacacaa actagcttca 5520
acttttaatt tttttttaaa aatttctaaa aattaatctt taaaattttc aaaatcacct 5580
ttttgcaatt agtaacaaat ggaccctaag ctatttgcta caattttttt ttcttcaggt 5640
ggtccctgat tgcaggaagg ctaccaggaa ggacagcaaa tgacgtgaaa aactattgga 5700
actgtcatct aagcaaaaaa ctaaatgctc tagaagctga tcaagatagg tcacaatcat 5760
ccaaagatgt tcaaatcatt aggccacagg caagaaacat tggttcaagc tcagtgaaga 5820
gaaggagcca aggagagtca ccaactgacc aagttctagt tcaacaagag agtgacatga 5880
caacatttga tgctgatgga aagaatcata tgcttgaatc acaacaagac atgatggtgt 5940
tttcatgctt ggaccaacaa ggtatggttg gtgagtttcc aatggatttt caattagaag 6000
gatttgaagc tatggtaagt ggaggagagg gtagtagtag ccaatggaat tgggaggatt 6060
tgctcttaga tatggatcta tataatggtt tttctcgggg atctgtcgac ggtggcggag 6120
ggggtggcat gggtaaagga gaacttttca ctggagttgt cccaattctt gttgaattag 6180
atggtgatgt taatgggcac aaattttctg tcagtggaga gggtgaaggt gatgcaacat 6240
acggaaaact tacccttaaa tttatttgca ctactggaaa actacctgtt ccctggccaa 6300
cacttgtcac tactttctct tatggtgttc aatgcttttc aagataccca gatcatatga 6360
agcggcacga cttcttcaag agcgccatgc ctgagggata cgtgcaggag aggaccatct 6420
tcttcaagga cgacgggaac tacaagacac gtgctgaagt caagtttgag ggagacaccc 6480
tcgtcaacag gatcgagctt aagggaatcg atttcaagga ggacggaaac atcctcggcc 6540
acaagttgga atacaactac aactcccaca acgtatacat catggcagac aaacaaaaga 6600
atggaatcaa agttaacttc aaaattagac acaacattga agatggaagc gttcaactag 6660
cagaccatta tcaacaaaat actccaattg gcgatggccc tgtcctttta ccagacaacc 6720
attacctgtc cacacaatct gccctttcga aagatcccaa cgaaaagaga gaccacatgg 6780
tccttcttga gtttgtaaca gctgctggga ttacacatgg catggatgaa ctatacaggt 6840
ctatcgtcga cggtagctac ccttatgacg tccccgacta cgctggctat ccctacgatg 6900
tgcctgatta tgcctagatt attgttcctt attgccaata gggaagacaa tgtagtctct 6960
atacatgggt tgtgtgtcaa tttcaaagtt aaatgttatc caaggaaatg gtggcttaat 7020
cgatgtattt tgtaaatcga agtagttgtt gtttaaataa accaataaag tcggtcttgt 7080
gagacatagt tagccctaaa actggttagt aatatggaaa tagttttgta gctttttaaa 7140
ccctattact atatatctag tagacgattt gttttttttt aatagtatcc tagttgataa 7200
taaaaaggaa tatcctccta cataagagag gcagataaat attcctttat gttctattgg 7260
ttgatcttag tgtcataaaa aaattagcta ccaatgttaa taaagttttt aaattttgat 7320
tatggtaacg attgttctgc aatccttgat attgtagaaa attatagtta aatacaatca 7380
caactatcta aattatagtc gtaaaccttt gtttaaaatt taagtcatta tatttccatc 7440
tctttcattc cttcagaatt tgaggaatga aaatacaaat tttttcttag attatcctag 7500
tatgacatgc tattagcttc tttcttcgtc tcccttctcc cttcttcctt cattcttttt 7560
accctccaca cttattgggg gaaattctct tttattgcaa tcctttattc taggtgaatc 7620
ttttgagttg tcaatgatta tttgtgactt ttataagagt tatttgtact tttacgtttc 7680
tttgatatgt ggctcatata gaaaaataga aatgccaaac agctcttgat aaggcatgaa 7740
cagttaaatc ctaccccttc accacaaaag aagaaagtca aatcctgccc cacctctgtt 7800
tctgtttgag tatcacctgt cttcatgata tcaattaaat attggtgttt ctttgtgaca 7860
aaatatccat ttttttagct taactagttt gtttggtcgt ttttttaatt ttagccctat 7920
ggttttttaa tagtgtgatt ttgaccttcg tacttttaaa catgcgattt tgccctctct 7980
agttaaccct atttttagtt tcacaaccct ctagctctga agcccatcta ctttaaaatg 8040
gatgacgtat tgtattacat gtgtatcctg caccgatacc tatatgatac ttcctgatac 8100
atattagaag agtatctgat gattatattt tattttattt tttaaaacaa ttatctgata 8160
ctattcagat acatctggaa tacgagggat aagcggtaga aaaccgatat gtgcgggcta 8220
cctgatgttt ttattatatt tgatacatat gcaattgact aagtaatgat gttttctatt 8280
taggatatat atcatatatg taattgatta attgtcgatt tatttattat caatattact 8340
tacatttata tctccatcgt tgccgtcgtc tgttttgtgt ctctttattt gtttgagaac 8400
gatgctattg ttgattg 8417

Claims (7)

1. Use of any of the following for modulating carotenoid content in a plant;
1) the protein is composed of an amino acid sequence shown in a sequence 2 in a sequence table;
2) a gene encoding the protein of 1);
3) a recombinant expression vector, an expression cassette or a recombinant bacterium containing the gene of 2).
2. The use of claim 1, wherein: the genes are as follows (b1) or (b 2):
(b1) the coding region is a DNA molecule shown as a sequence 1 in a sequence table;
(b2) DNA molecule shown in sequence 5 of the sequence table.
3. A method of breeding a transgenic plant comprising the steps of: inhibiting the expression of the gene of claim 1 or 2 in a plant of interest to obtain a transgenic plant with reduced carotenoid content.
4. A method for reducing the carotenoid content of a plant comprises the following steps: inhibiting the expression of the protein of claim 1 in a plant of interest to obtain a transgenic plant having a reduced carotenoid content.
5. A method of breeding a transgenic plant comprising the steps of: a transgenic plant having an increased carotenoid content is obtained by introducing the gene of claim 1 or 2 into a target plant.
6. A method for increasing the carotenoid content in a plant, comprising the steps of: increasing the expression level of the protein of claim 1 in a plant of interest to obtain a transgenic plant with increased carotenoid content.
7. Use of the method of any one of claims 3 to 6 in plant breeding.
CN201810148402.4A 2018-02-13 2018-02-13 Plant carotenoid synthesis related protein and coding gene and application thereof Active CN108395473B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810148402.4A CN108395473B (en) 2018-02-13 2018-02-13 Plant carotenoid synthesis related protein and coding gene and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810148402.4A CN108395473B (en) 2018-02-13 2018-02-13 Plant carotenoid synthesis related protein and coding gene and application thereof

Publications (2)

Publication Number Publication Date
CN108395473A CN108395473A (en) 2018-08-14
CN108395473B true CN108395473B (en) 2020-03-27

Family

ID=63096533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810148402.4A Active CN108395473B (en) 2018-02-13 2018-02-13 Plant carotenoid synthesis related protein and coding gene and application thereof

Country Status (1)

Country Link
CN (1) CN108395473B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609519A (en) * 2018-10-31 2019-04-12 昆明理工大学 A kind of gene RKcrtYB and its application
CN116970053B (en) * 2023-09-22 2024-01-30 南京农业大学三亚研究院 Plant carotenoid synthesis related protein DcAPRR2, and coding gene and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008021574A2 (en) * 2006-08-18 2008-02-21 Ceres, Inc. Modulating plant carotenoid levels
CN102124111A (en) * 2008-06-06 2011-07-13 格拉斯兰兹技术有限公司 Novel genes involved in biosynthesis
CN103966254A (en) * 2013-01-29 2014-08-06 中国科学院上海生命科学研究院 Transcription factor capable of being used to adjust plant traits
US9447425B2 (en) * 2000-11-16 2016-09-20 Mendel Biotechnology, Inc. Transcription factor sequences for conferring advantageous properties to plants
CN107129998A (en) * 2009-06-10 2017-09-05 淡马锡生命科学研究院有限公司 The virus induced gene silencing (VIGS) analyzed for gene function in cotton
CN107365778A (en) * 2017-09-18 2017-11-21 合肥工业大学 Regulate and control transcription factor gene and its application of lutein synthesis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120137382A1 (en) * 1998-09-22 2012-05-31 Mendel Biotechnology, Inc. Stress tolerance in plants
US8426678B2 (en) * 2002-09-18 2013-04-23 Mendel Biotechnology, Inc. Polynucleotides and polypeptides in plants

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9447425B2 (en) * 2000-11-16 2016-09-20 Mendel Biotechnology, Inc. Transcription factor sequences for conferring advantageous properties to plants
WO2008021574A2 (en) * 2006-08-18 2008-02-21 Ceres, Inc. Modulating plant carotenoid levels
CN102124111A (en) * 2008-06-06 2011-07-13 格拉斯兰兹技术有限公司 Novel genes involved in biosynthesis
CN107129998A (en) * 2009-06-10 2017-09-05 淡马锡生命科学研究院有限公司 The virus induced gene silencing (VIGS) analyzed for gene function in cotton
CN103966254A (en) * 2013-01-29 2014-08-06 中国科学院上海生命科学研究院 Transcription factor capable of being used to adjust plant traits
CN107365778A (en) * 2017-09-18 2017-11-21 合肥工业大学 Regulate and control transcription factor gene and its application of lutein synthesis

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers;Janelle M. Sagawa等;《New Phytologist》;20150917;第209卷(第3期);1049-1057 *
An R2R3-MYB transcription factor represses the transformation of a- and b-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate;Feng Zhu等;《New Phytologist》;20170706;第216卷(第1期);178-192 *
Medicago truncatula myb transcription factor partial mRNA;Tang.H.等;《Genbank Database》;20150825;XM_013586917 *
Tang.H.等.Medicago truncatula myb transcription factor partial mRNA.《Genbank Database》.2015, *
植物Tnt1反转录转座子突变体库的特征及应用;魏解冰等;《植物学报》;20161231;第51卷(第6期);817-826 *
植物类胡萝卜素生物合成及其相关基因在基因工程中的应用;朱长甫等;《植物生理与分子生物学学报》;20041231;第30卷(第6期);609-618 *

Also Published As

Publication number Publication date
CN108395473A (en) 2018-08-14

Similar Documents

Publication Publication Date Title
AU2021225142B2 (en) Generation of haploid plants
AU2019276382B2 (en) Use of Yr4DS gene of Aegilops tauschii in stripe rust resistance breeding of Triticeae plants
CN109161550B (en) SlbHLH59 gene for regulating and controlling ascorbic acid content of tomato fruits and application method
CN110819607B (en) Application of CsLYK gene and coding protein thereof in improving citrus canker resistance
CN108822194B (en) Plant starch synthesis related protein OsFLO10, and coding gene and application thereof
CN110892074A (en) Compositions and methods for increasing the shelf life of bananas
CN108642065B (en) Rice endosperm aleurone related gene OsSecY2 and encoding protein and application thereof
CN108752441B (en) Plant gluten sorting related protein OsGPA5, and coding gene and application thereof
CN107759676B (en) Plant amylose synthesis related protein Du15, and coding gene and application thereof
CN108395473B (en) Plant carotenoid synthesis related protein and coding gene and application thereof
JP3530138B2 (en) Expression cassettes and plasmids for strong constitutive gene expression and methods of use
CN110857316B (en) Anthocyanin synthesis related protein and application thereof in regulating and controlling plant anthocyanin content
CN106749571B (en) Plant starch synthesis related protein OsNPPR and coding gene and application thereof
CN112812161B (en) Application of protein IbMYC2 in regulation and control of plant drought resistance
CN107326035B (en) Deubiquitinating enzyme gene UBP5 for regulating rice grain shape and leaf color and application thereof
CN112175973B (en) Rice disease spot control gene SPL36 and application thereof
CN106589085B (en) Plant starch synthesis related protein OsFLO8, and coding gene and application thereof
CN113646326A (en) Gene for resisting plant diseases
CN107446031B (en) Plant glutelin transport and storage related protein OsVHA-E1, and coding gene and application thereof
CN112961842B (en) Soybean phytochrome chromophore synthesis gene GmHY2 and encoding protein and application thereof
CN112724213B (en) Sweet potato anthocyanin synthesis and stress resistance related protein IbMYB4, and coding gene and application thereof
CN110484542B (en) Arabidopsis thaliana disease-resistant related gene EIJ1 and application thereof
CN113005138B (en) Arabidopsis PHO1; application of H10 protein and coding gene thereof in regulation and control of plant leaf anthocyanin synthesis
CN108795949B (en) Rice leaf color regulation related gene OsWSL6 and encoding protein and application thereof
CN101285068A (en) Methods for increasing plant cell proliferation by functionally inhibiting a plant cyclin inhibitor gene

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant