CN103517735A - 用于可植入装置中非接触功率传输的系统和方法 - Google Patents

用于可植入装置中非接触功率传输的系统和方法 Download PDF

Info

Publication number
CN103517735A
CN103517735A CN201280014305.7A CN201280014305A CN103517735A CN 103517735 A CN103517735 A CN 103517735A CN 201280014305 A CN201280014305 A CN 201280014305A CN 103517735 A CN103517735 A CN 103517735A
Authority
CN
China
Prior art keywords
coil
power
implantable device
rechargeable battery
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280014305.7A
Other languages
English (en)
Other versions
CN103517735B (zh
Inventor
A·K·博霍里
S·M·N·巴特
S·拉马钱德拉潘尼克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN103517735A publication Critical patent/CN103517735A/zh
Application granted granted Critical
Publication of CN103517735B publication Critical patent/CN103517735B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • A61N1/3787Electrical supply from an external energy source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • H04B5/266One coil at each side, e.g. with primary and secondary coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/23The load being a medical device, a medical implant, or a life supporting device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Mathematical Physics (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Medicinal Chemistry (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electrotherapy Devices (AREA)
  • Prostheses (AREA)

Abstract

提供了用于可植入装置中的非接触功率传输的系统和方法,所述非接触功率传输用于对布置在可植入装置内的可再充电电池充电。系统包括可电耦合到功率源的第一线圈,其中第一线圈配置成产生磁场。系统还包括第二线圈,其电耦合到布置在可植入装置内的所述可再充电电池并且配置成经由磁场从第一线圈接收功率并且将功率传输给可再充电电池。系统还包括场聚焦元件,其布置在第一线圈和第二线圈之间并且配置为具有驻波电流分布的自谐振线圈,以便将磁场聚焦到第二线圈上并且增强第一线圈和第二线圈之间的耦合。

Description

用于可植入装置中非接触功率传输的系统和方法
技术领域
本发明的实施例通常涉及非接触功率传输系统,并且更特别地涉及用于可植入装置中非接触功率传输的系统。
背景技术
装置可以被植入人体用于改进人体的运转以及增加生命期望。可以被植入人体的装置被称为可植入装置。可植入装置依靠可包括不可再充电或可再充电电池的电池来操作。
不可再充电电池通常在固定的时间段之后被替换。电池替换手术对于患者来说是昂贵、复杂和不方便的。
然而,对于延长电池替换手术之间的时间来说,可再充电电池的使用是有用的。常规地,可再充电电池通过电感耦合系统再充电。电感耦合系统包括在放置在人体外部的电容器和初级线圈以及在可植入装置内的放置在身体内部的电容器和次级线圈以便从初级线圈接收功率并且对可再充电电池再充电。人体的肉体的层有时导致减少电感耦合系统的效率的初级线圈和次级线圈之间的距离。此外,电感耦合系统要求外部充电装置关于可植入装置中的次级线圈的精确对准,使得系统难以使用。
因此,具有对改进的系统和方法的需要,以解决上述问题。
发明内容
在一个实施例中,提供了用于可植入装置中的非接触功率传输的系统,所述非接触功率传输用于对布置在可植入装置内的可再充电电池充电。系统包括可电耦合到功率源的第一线圈,其中第一线圈配置成产生磁场。系统还包括第二线圈,所述第二线圈电耦合到布置在可植入装置内的可再充电电池并且配置成经由磁场从第一线圈接收功率并且将功率传输给可再充电电池。系统还包括场聚焦元件,所述场聚焦元件布置在第一线圈和第二线圈之间并且被配置为具有驻波电流分布的自谐振线圈,以将磁场聚焦到第二线圈上并且增强第一线圈和第二线圈之间的耦合。
在另一个实施例中,提供了用于布置在可植入装置中的可再充电电池的非接触充电的方法。方法包括经由耦合到功率源的第一线圈生成磁场。方法还包括经由场聚焦元件将磁场聚焦到第二线圈。方法还包括经由磁场将功率从第一线圈传输给第二线圈。方法还包括将功率从第二线圈传送给布置在可植入装置内的可再充电电池。
附图说明
当参考附图阅读以下详细的描述,本发明的这些和其他特征、方面和优点将变得更好理解,其中在整个附图中相似的字符表示相似的部分,其中:
图1是根据本发明的实施例的、用于包括双通道场聚焦元件的可植入装置中非接触功率传输的系统的框图表示。
图2是根据本发明的实施例的、用于包括电耦合到第一线圈的双通道场聚焦元件的可植入装置中非接触功率传输的系统的备选配置的框图表示。
图3是根据本发明的实施例的、用于包括配置成将来自控制器的操作数据和数据信号传输给电子装置进行医学分析的双通道场聚焦元件的可植入装置中非接触功率传输的系统的另一个备选配置的框图表示。
图4是根据本发明的实施例的、用于包括单通道场聚焦元件的可植入装置中非接触功率传输的系统的框图表示。
图5是根据本发明的实施例的、用于包括单通道场聚焦元件的可植入装置中非接触功率传输的系统的备选配置的框图表示。
图6是根据本发明的实施例的、表示涉及布置在可植入装置中的可再充电电池的非接触充电的方法的步骤的流程图。
具体实施方式
本发明的实施例包括用于可植入装置中的非接触功率传输的系统,所述非接触功率传输用于对布置在可植入装置内的可再充电电池充电。系统包括可电耦合到功率源的第一线圈。第一线圈产生耦合到第二线圈的磁场,第二线圈电耦合到布置在可植入装置内的可再充电电池。第二线圈经由磁场从第一线圈接收功率并且还将功率传输给可再充电电池。非接触功率传输系统还包括布置在第一线圈和第二线圈之间的场聚焦元件。场聚焦元件充当(act as)具有驻波电流分布的自谐振线圈以将磁场聚焦到第二线圈上并且增强第一线圈和第二线圈之间的耦合。如本文使用,冠词“一”不指代数量的限制,而是指代引用的项目中的至少一个的存在。
图1是根据本发明的实施例的、用于包括双通道场聚焦元件14的可植入装置12中非接触功率传输的系统10的框图表示。在示范性实施例中,可植入装置12可包括心脏起搏器、神经模拟器、肌肉模拟器或耳蜗植入。系统10还包括充电装置16。
充电装置16包括功率源18,其电耦合到将从功率源18接收的AC功率22转换成DC功率24的第一整流器20。由第一整流器20提供的DC功率24被供应给高频逆变器26。高频逆变器26将DC功率24转换成高频AC功率28。在一个实施例中,AC功率28的频率包括生成人体组织的最小加热的频率。在更特定的实施例中,高频AC功率具有至少1MHz的频率。高频AC功率28还被传送给在充电装置16中提供的第一线圈30。第一线圈30接收高频AC功率28并且基于高频AC功率28生成磁场32。充电装置16可包括固定的充电装置或便携式充电装置。
经由布置在第一线圈30和第二线圈34之间的场聚焦元件14,磁场32被聚焦到在可植入装置12中提供的第二线圈34上。在图1的实施例中,场聚焦元件14位于可植入装置16内。如在通过引用全部并入本文的、共同受让的2010年10月28日提交的美国专利申请S/N12/914512和2010年3月25日提交的美国专利申请S/N12/731497中描述的,场聚焦元件14充当具有驻波电流分布的自谐振线圈以将磁场32聚焦到第二线圈34上并且增强第一线圈30和第二线圈34之间的耦合。在一个实施例中,场聚焦元件14包括至少一个谐振器。所述至少一个谐振器可配置成聚焦电场、磁场或电磁场中的至少一个。在更特定的实施例中,所述至少一个谐振器包括开口环结构、圆环结构、Koch分形、欧米加结构或螺旋结构。在示范性实施例中,所述至少一个谐振器布置在绝缘介质、磁介质或磁绝缘介质中的至少一个内。此外,在特别的实施例中,所述至少一个谐振器包括多个谐振器,其中多个谐振器中的至少两个具有不同的谐振频率。在一个实施例中,不同的谐振频率使能功率和数据信号的同时传输。
布置在可植入装置16内的第二线圈34,经由第一线圈30生成的磁场32接收来自第一线圈30的高频AC功率28。在特别的实施例中,在非接触功率传输期间,第一线圈30和第二线圈34被布置在大约15毫米到大约5厘米的范围内的距离处。第二线圈34将高频AC功率28传输给电耦合到可植入装置16内的第二线圈34的可再充电电池36。第二整流器38可布置在第二线圈34和可再充电电池36之间以便接收来自第二线圈34的高频AC功率28并且在将AC功率28转换成DC功率40之后,将DC功率40传输给可再充电电池36。在一个实施例中,传输给可再充电电池36的DC功率40在大约1毫瓦到大约900毫瓦的范围内。
在图1的实施例中,可再充电电池36耦合到管理可再充电电池36的充电的电池管理系统(BMS)42。在一个实施例中,BMS42追踪表示可再充电电池36中的功率水平的信号48并且计算用于对可再充电电池36充电所需要的功率和时间。在另一个实施例中,BMS42调节进入可再充电电池36的DC功率40的电压。在一些实施例中,BMS42与布置在充电装置16内的高频逆变器26通信以便提供与可再充电电池36的电压和充电水平有关的数据44。
BMS42通信耦合到高频调制器46,高频调制器46接收由BMS42生成的数据信号44并且调制数据信号44以提供已调制的数据信号50。高频调制器46耦合到第二线圈34。第二线圈34将已调制的数据信号50转换成经由场聚焦元件14被聚焦到第一线圈30上的数据磁场52。在这个实施例中,场聚焦元件14包括双通道场聚焦元件,双通道场聚焦元件包括用于传输AC功率28的一个单向通道和用于传输数据信号44的第二通道。功率滤波器53可布置在第二线圈34和高频调制器46之间以便从高频调制器46分离从第一线圈30接收的高频AC功率28。
第一线圈30接收数据磁场52并且将表示已调制的数据信号50的信号150传输给解调器54。在充电装置16处的功率滤波器56可用于限制第一线圈30内的高频AC功率28进入解调器54。解调器54从已调制的数据信号150中提取表示数据信号44的信号144并且将数据信号144传输给逆变器控制器58。逆变器控制器58通过基于数据信号144提供控制信号60来控制高频逆变器26在充电装置16中操作的功率的频率和电压。逆变器控制器58从数据信号144识别电压和充电状态并且因此调节逆变器操作以便提供期望的充电给可再充电电池36。
图2是根据本发明的实施例的、用于包括电耦合到第一线圈30的双通道场聚焦元件14的可植入装置12中非接触功率传输的系统10的备选配置的框图表示。在图2的实施例中,场聚焦元件14位于充电装置16内而不是可植入装置内。
图3是根据本发明的实施例的、用于包括配置成将来自电池管理系统42的数据信号44以及来自控制器45的操作数据43传输给电子装置47进行医学分析的双通道场聚焦元件14的可植入装置12中非接触功率传输的系统10的另一个备选配置的框图表示。在这个实施例中,可植入装置12包括控制器45,并且控制器45监视并且控制可植入装置12的操作并且存储操作数据43。操作数据43可用于进一步的分析,诸如,例如可植入装置12的预兆的健康监视。在一个实施例中,控制器45将操作数据43传输给多路复用操作数据43连同由BMS42传输给多路复用器49的数据信号44的多路复用器49。多路复用器49生成被传输给高频调制器46用于调制并且还被传送给第一线圈30的多路复用信号51。
第一线圈30接收表示可植入装置中的多路复用信号51的多路复用信号151并且在由如上所述的解调器54解调之后将多路复用信号151传输给解多路复用器55。解多路复用器55分别将操作数据143和数据信号144从表示可植入装置12中的操作数据43和数据信号44的多路复用信号151中分离。数据信号144被传输给如上所述的逆变器控制器58并且操作数据可被传输给在充电装置16外部提供的电子装置47用于进一步分析。
图4是根据本发明的实施例的、用于包括单通道场聚焦元件62的可植入装置12中非接触功率传输的系统10的框图表示。单通道场聚焦元件62将高频AC功率28从第一线圈30聚焦到第二线圈34,但是,和图1和2的实施例对比,单通道场聚焦元件62不将已调制的数据信号50从第二线圈34传输给第一线圈30。虽然单通道场聚焦元件62示出为正位于可植入装置中,但是单通道场聚焦元件62可备选地位于充电装置中。在图4的实施例中,从高频调制器46接收的已调制的数据信号50可被传输给布置在可植入装置12内的RF传送器天线64。RF传送器天线64将已调制的数据信号50传送给布置在充电装置16内的RF接收器天线66。RF接收器天线66接收表示来自可植入装置12的已调制的数据信号50的已调制的数据信号150并且将已调制的数据信号150传输给解调器54用于如上所述的进一步处理。
图5是可植入装置12中非接触功率传输的系统10的备选配置的框图表示,其中不要求数据传送回充电装置16。系统10包括用来将高频AC功率28从第一线圈30聚焦到第二线圈34的单通道场聚焦元件62。虽然单通道场聚焦元件62示出为正位于充电装置中,但是单通道场聚焦元件62可备选地位于可植入装置中。来自第二线圈34的高频AC功率28由第二整流器38转换成被传输给提供DC功率40的DC-DC转换器68的DC功率。DC功率40被馈送给可再充电电池36用于充电。可再充电电池36被耦合到调节可再充电电池36的充电的BMS42。在图5的实施例中,BMS42经由反馈回路耦合到DC-DC转换器68以调节进入可植入装置12中的可再充电电池36的DC功率40的电压。DC-DC转换器68经由反馈回路接收来自BMS42的数据信号44并且因此调整以便提供最佳充电给可再充电电池36。
图6是根据本发明的实施例的、表示涉及布置在可植入装置中的可再充电电池的非接触充电的方法80的步骤的流程图。方法80包括在步骤82中经由耦合到功率源的第一线圈生成磁场。通过在步骤84中采用场聚焦元件,由第一线圈生成的磁场被聚焦到第二线圈。在一个实施例中,在聚焦磁场之前,第一线圈和第二线圈布置在大约15毫米到大约5厘米的范围内的距离处。在步骤86中,第一线圈经由磁场将功率传输给第二线圈。在示范性实施例中,在大约1微瓦到大约900毫瓦的范围内,功率从第一线圈传输给第二线圈。在步骤88中,来自第二线圈的功率被传送给布置在可植入装置内的可再充电电池。在一个实施例中,关于可植入装置、可再充电电池的充电的状态或两者的数据信号通过场聚焦元件、第一线圈和第二线圈来获得并传输给位于可植入装置的外部的处理器。在更特定的实施例中,通过使来自可再充电电池和可植入装置的功率和数据信号分别地在不同谐振频率传输来促进(facilitate)过程。在又一些实施例中,数据传输或者不被要求或者由RF传送完成。
上述的可植入装置中非接触功率传输的系统的各种实施例包括经由非接触介质使能从第一线圈到第二线圈的功率的传输的功率源、第一线圈、场聚焦元件和第二线圈。例如,非接触功率传输系统使能在提供在人体外部的充电装置和布置在人体内部的可植入装置之间的有效率的非接触功率传输。在肉体的多层被提供在第一线圈和第二线圈之间的情况下,非接触功率传输系统还维持该效率。这提供了用于对布置在可植入装置内的可再充电电池充电的非破坏性方法并且减少了成本和在操作期间对人生命的风险。
要理解的是技术人员将认识到来自不同实施例的各种特征的可交换性并且所述的各种特征,以及每个特征的其他已知的等同,可由本领域普通技术人员混合并且匹配以构造根据这个公开的原理的附加的系统和技术。因此,要理解的是附加的权利要求意在覆盖落入本发明的真正精神之内所有这些修改和变化。

Claims (19)

1.一种用于可植入装置中的非接触功率传输的系统,所述非接触功率传输用于对布置在所述可植入装置内的可再充电电池充电,所述系统包括:
第一线圈,其可电耦合到功率源,其中所述第一线圈配置成产生磁场;
第二线圈,其电耦合到布置在所述可植入装置内的所述可再充电电池并且配置成经由所述磁场从所述第一线圈接收功率并且将所述功率传输给所述可再充电电池;以及
场聚焦元件,其布置在所述第一线圈和所述第二线圈之间并且配置为具有驻波电流分布的自谐振线圈,以便将所述磁场聚焦到所述第二线圈上并且增强所述第一线圈和所述第二线圈之间的耦合。
2.如权利要求1所述的系统,其中所述场聚焦元件布置在所述可植入装置内,或者其中所述场聚焦元件布置在充电装置内。
3.如权利要求1所述的系统,其中所述可植入装置包括心脏起搏器、神经模拟器、肌肉模拟器或耳蜗植入。
4.如权利要求1所述的系统,其中传输给所述可再充电电池的所述功率在大约1微瓦到大约900毫瓦的范围内。
5.如权利要求1所述的系统,其中在所述非接触功率传输期间,所述第一线圈和所述第二线圈布置在大约15毫米到大约5厘米的范围内的距离处。
6.如权利要求1所述的系统,还包括在所述功率源和所述第一线圈之间耦合的高频逆变器。
7.如权利要求1所述的系统,其中所述场聚焦元件包括至少一个谐振器。
8.如权利要求7所述的系统,其中所述至少一个谐振器包括开口环结构、圆环结构、Koch分形、欧米加结构或螺旋结构。
9.如权利要求7所述的系统,其中所述至少一个谐振器布置在绝缘介质、磁介质或磁绝缘介质中的至少一个内。
10.如权利要求7所述的系统,其中所述至少一个谐振器包括多个谐振器,其中所述多个谐振器中的至少两个具有不同谐振频率。
11.如权利要求10所述的系统,其中所述不同谐振频率配置成使能功率和数据信号的传输。
12.如权利要求7所述的系统,其中所述至少一个谐振器配置成聚焦电场、磁场或电磁场中的至少一个。
13.一种用于布置在可植入装置中的可再充电电池的非接触充电的方法,所述方法包括:
经由耦合到功率源的第一线圈生成磁场;
经由场聚焦元件将所述磁场聚焦到第二线圈;
经由所述磁场将功率从所述第一线圈传输给所述第二线圈;
将所述功率从所述第二线圈传送给布置在所述可植入装置内的所述可再充电电池。
14.如权利要求13所述的方法,其中将所述功率从所述第一线圈传输给所述第二线圈包括传输大约1微瓦到大约900毫瓦的范围内的功率。
15.如权利要求13所述的方法,还包括,在聚焦所述磁场之前,将所述第一线圈和所述第二线圈布置在大约15毫米到大约5厘米的范围内的距离处。
16.如权利要求13所述的方法,还包括获得关于所述可植入装置、所述可再充电电池的充电的状态或两者的数据信号,并且将所述数据信号传输给位于所述可植入装置外部的处理器。
17.如权利要求16所述的方法,其中所述数据信号的所述传输还包括在不同谐振频率处传输来自所述可植入装置的所述数据信号以及将所述功率传输给所述可再充电电池。
18.如权利要求16所述的方法,还包括使用所述数据信号来控制由所述第一线圈生成的所述磁场。
19.如权利要求13所述的方法,还包括获得关于所述可植入装置、所述可再充电电池的充电的状态或两者的数据信号,并且使用所述数据信号来控制从所述第二线圈传送给所述可再充电电池的所述功率。
CN201280014305.7A 2011-03-21 2012-03-16 用于可植入装置中非接触功率传输的系统和方法 Active CN103517735B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/052196 2011-03-21
US13/052,196 US8849402B2 (en) 2011-03-21 2011-03-21 System and method for contactless power transfer in implantable devices
PCT/US2012/029326 WO2012129061A1 (en) 2011-03-21 2012-03-16 System and method for contactless power transfer in implantable devices

Publications (2)

Publication Number Publication Date
CN103517735A true CN103517735A (zh) 2014-01-15
CN103517735B CN103517735B (zh) 2016-01-20

Family

ID=45929028

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280014305.7A Active CN103517735B (zh) 2011-03-21 2012-03-16 用于可植入装置中非接触功率传输的系统和方法

Country Status (6)

Country Link
US (1) US8849402B2 (zh)
EP (1) EP2688643B1 (zh)
JP (1) JP5990252B2 (zh)
KR (1) KR102013964B1 (zh)
CN (1) CN103517735B (zh)
WO (1) WO2012129061A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158237A (zh) * 2014-01-20 2014-11-19 中国海洋大学 基于磁共振的心脏起搏器的无线充电方法和装置
CN105119357A (zh) * 2015-09-18 2015-12-02 国网上海市电力公司 一种远距离无线充电设备
CN107106075A (zh) * 2014-10-09 2017-08-29 通用电气公司 用于门驱动器单元中的非接触功率传输的方法和系统
CN107580517A (zh) * 2015-05-06 2018-01-12 威里利生命科学有限责任公司 用于可植入装置的可更换电池
CN107847749A (zh) * 2015-07-23 2018-03-27 美敦力公司 用于可植入医疗设备的聚焦功率转移
CN108367155A (zh) * 2015-12-17 2018-08-03 诺华股份有限公司 用于电活性医疗设备电池管理的供电箱

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8674550B2 (en) 2010-03-25 2014-03-18 General Electric Company Contactless power transfer system and method
KR101688948B1 (ko) * 2011-05-27 2016-12-22 엘지전자 주식회사 무선 전력 전송을 이용한 데이터 통신 연결 수립
US10525181B2 (en) 2012-07-27 2020-01-07 Tc1 Llc Resonant power transfer system and method of estimating system state
US9825471B2 (en) 2012-07-27 2017-11-21 Thoratec Corporation Resonant power transfer systems with protective algorithm
WO2014018973A1 (en) 2012-07-27 2014-01-30 Thoratec Corporation Resonant power transmission coils and systems
US10383990B2 (en) 2012-07-27 2019-08-20 Tc1 Llc Variable capacitor for resonant power transfer systems
WO2014018964A2 (en) 2012-07-27 2014-01-30 Thoratec Corporation Thermal management for implantable wireless power transfer systems
US10291067B2 (en) 2012-07-27 2019-05-14 Tc1 Llc Computer modeling for resonant power transfer systems
WO2014018967A1 (en) 2012-07-27 2014-01-30 Thoratec Corporation Self-tuning resonant power transfer systems
US9805863B2 (en) 2012-07-27 2017-10-31 Thoratec Corporation Magnetic power transmission utilizing phased transmitter coil arrays and phased receiver coil arrays
US9697951B2 (en) * 2012-08-29 2017-07-04 General Electric Company Contactless power transfer system
US20140114373A1 (en) * 2012-10-22 2014-04-24 Boston Scientific Neuromodulation Corporation Intermediate Coupler to Facilitate Charging in an Implantable Medical Device System
EP3490102B1 (en) 2013-03-15 2020-08-05 Tc1 Llc Malleable tets coil with improved anatomical fit
WO2014145664A1 (en) 2013-03-15 2014-09-18 Thoratec Corporation Integrated implantable tets housing including fins and coil loops
SG11201508501QA (en) * 2013-04-15 2015-11-27 T&W Engineering As Ecg monitor with an implantable part
WO2014190167A2 (en) * 2013-05-22 2014-11-27 Deep Brain Innovations LLC Deep brain stimulator and method of use
JP6503351B2 (ja) 2013-07-29 2019-04-17 アルフレッド イー. マン ファウンデーション フォー サイエンティフィック リサーチ 埋め込み可能なデバイス用の高効率磁気リンク
AU2014296323B2 (en) 2013-07-29 2019-04-04 Alfred E. Mann Foundation For Scientific Research Microprocessor controlled class E driver
CN103560572B (zh) * 2013-10-18 2016-06-01 北京航空航天大学 一种植入式心脏起博器磁耦合谐振无线充电装置
JP6521993B2 (ja) 2013-11-11 2019-05-29 ティーシー1 エルエルシー 通信を有する共振電力伝送システム
WO2015070202A2 (en) 2013-11-11 2015-05-14 Thoratec Corporation Hinged resonant power transfer coil
WO2015070200A1 (en) * 2013-11-11 2015-05-14 Thoratec Corporation Resonant power transfer systems with communications
US10610692B2 (en) 2014-03-06 2020-04-07 Tc1 Llc Electrical connectors for implantable devices
GB2527075A (en) 2014-03-17 2015-12-16 Daassist As Percutaneous system, devices and methods
US9780575B2 (en) 2014-08-11 2017-10-03 General Electric Company System and method for contactless exchange of power
EP4213298A1 (en) 2014-09-22 2023-07-19 Tc1 Llc Antenna designs for communication between a wirelessly powered implant to an external device outside the body
WO2016057525A1 (en) 2014-10-06 2016-04-14 Thoratec Corporation Multiaxial connector for implantable devices
WO2017025606A1 (en) * 2015-08-12 2017-02-16 Nuheart As System, apparatus and method for improved contactless power transfer in implantable devices
US10148126B2 (en) 2015-08-31 2018-12-04 Tc1 Llc Wireless energy transfer system and wearables
WO2017062552A1 (en) 2015-10-07 2017-04-13 Tc1 Llc Resonant power transfer systems having efficiency optimization based on receiver impedance
US10893847B2 (en) 2015-12-30 2021-01-19 Nuheart As Transcatheter insertion system
EP3497775B1 (en) 2016-09-21 2022-07-13 Tc1 Llc Systems and methods for locating implanted wireless power transmission devices
US10335528B2 (en) 2016-10-07 2019-07-02 Nuheart As Transcatheter method and system for the delivery of intracorporeal devices
US10537672B2 (en) 2016-10-07 2020-01-21 Nuheart As Transcatheter device and system for the delivery of intracorporeal devices
KR20180076635A (ko) * 2016-12-28 2018-07-06 (주)뉴옵틱스 심부 뇌 자극 장치 및 그의 무선 전력 전송방법
US11197990B2 (en) 2017-01-18 2021-12-14 Tc1 Llc Systems and methods for transcutaneous power transfer using microneedles
US10888646B2 (en) 2017-04-28 2021-01-12 Nuheart As Ventricular assist device and method
US10537670B2 (en) 2017-04-28 2020-01-21 Nuheart As Ventricular assist device and method
US10770923B2 (en) 2018-01-04 2020-09-08 Tc1 Llc Systems and methods for elastic wireless power transmission devices
EP3512087B1 (en) 2018-01-12 2023-01-25 STMicroelectronics S.r.l. A galvanically isolated dc-dc converter circuit with data communication, corresponding system and corresponding method
IT201800004174A1 (it) 2018-04-03 2019-10-03 Circuito e sistema ad isolamento galvanico, procedimento corrispondente
CN113241860A (zh) * 2018-06-07 2021-08-10 北京航空航天大学 可植入设备及其无线电能传输装置
US11642537B2 (en) 2019-03-11 2023-05-09 Axonics, Inc. Charging device with off-center coil
CN110164265B (zh) * 2019-05-15 2021-04-27 河海大学 一种竖直纵波驻波实验测量装置及方法
US20210393968A1 (en) * 2020-06-19 2021-12-23 Medtronic, Inc. Radio frequency energy harvesting
US11482888B2 (en) 2020-06-19 2022-10-25 Medtronic, Inc. Antenna for use with RF energy harvesting
WO2022123531A1 (en) * 2020-12-10 2022-06-16 Cochlear Limited Antenna arrangements
KR102524396B1 (ko) * 2021-05-03 2023-04-24 주식회사 토닥 호환가능한 외부기를 이용하는 인공와우 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1153464A (zh) * 1994-05-27 1997-07-02 加里·卡林·米切尔森 传送电流的装置和方法
CN101578067A (zh) * 2005-10-14 2009-11-11 内诺斯蒂姆股份有限公司 无引线心脏起搏器和系统
US20100148589A1 (en) * 2008-10-01 2010-06-17 Hamam Rafif E Efficient near-field wireless energy transfer using adiabatic system variations
US20100308939A1 (en) * 2008-09-27 2010-12-09 Kurs Andre B Integrated resonator-shield structures

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690693A (en) 1995-06-07 1997-11-25 Sulzer Intermedics Inc. Transcutaneous energy transmission circuit for implantable medical device
US6960968B2 (en) 2002-06-26 2005-11-01 Koninklijke Philips Electronics N.V. Planar resonator for wireless power transfer
US7471986B2 (en) 2004-02-20 2008-12-30 Cardiac Pacemakers, Inc. System and method for transmitting energy to and establishing a communications network with one or more implanted devices
WO2006048838A1 (en) 2004-11-08 2006-05-11 Koninklijke Philips Electronics N.V. Wireless battery status management for medical devices
WO2007008646A2 (en) 2005-07-12 2007-01-18 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US7880337B2 (en) 2006-10-25 2011-02-01 Laszlo Farkas High power wireless resonant energy transfer system
TW200824215A (en) 2006-11-23 2008-06-01 Univ Nat Central A non-contact type power supply device having load and interval detection
CN101682216B (zh) * 2007-03-27 2013-06-26 麻省理工学院 无线能量传输
US7696722B2 (en) 2007-03-30 2010-04-13 General Electric Company Battery powered X-ray detector power system and method
JP4453741B2 (ja) 2007-10-25 2010-04-21 トヨタ自動車株式会社 電動車両および車両用給電装置
US8598743B2 (en) 2008-09-27 2013-12-03 Witricity Corporation Resonator arrays for wireless energy transfer
US8461719B2 (en) * 2008-09-27 2013-06-11 Witricity Corporation Wireless energy transfer systems
JP5324901B2 (ja) * 2008-12-09 2013-10-23 日立コンシューマエレクトロニクス株式会社 非接触電力伝送システム
US8335569B2 (en) * 2009-02-10 2012-12-18 Boston Scientific Neuromodulation Corporation External device for communicating with an implantable medical device having data telemetry and charging integrated in a single housing
US8674550B2 (en) 2010-03-25 2014-03-18 General Electric Company Contactless power transfer system and method
US8174134B2 (en) 2010-10-28 2012-05-08 General Electric Company Systems for contactless power transfer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1153464A (zh) * 1994-05-27 1997-07-02 加里·卡林·米切尔森 传送电流的装置和方法
CN101578067A (zh) * 2005-10-14 2009-11-11 内诺斯蒂姆股份有限公司 无引线心脏起搏器和系统
US20100308939A1 (en) * 2008-09-27 2010-12-09 Kurs Andre B Integrated resonator-shield structures
US20100148589A1 (en) * 2008-10-01 2010-06-17 Hamam Rafif E Efficient near-field wireless energy transfer using adiabatic system variations

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158237A (zh) * 2014-01-20 2014-11-19 中国海洋大学 基于磁共振的心脏起搏器的无线充电方法和装置
CN104158237B (zh) * 2014-01-20 2017-02-08 中国海洋大学 基于磁共振的心脏起搏器的无线充电方法和装置
CN107106075A (zh) * 2014-10-09 2017-08-29 通用电气公司 用于门驱动器单元中的非接触功率传输的方法和系统
CN107106075B (zh) * 2014-10-09 2020-06-30 通用电气公司 用于门驱动器单元中的非接触功率传输的方法和系统
CN107580517A (zh) * 2015-05-06 2018-01-12 威里利生命科学有限责任公司 用于可植入装置的可更换电池
CN107580517B (zh) * 2015-05-06 2021-09-28 威里利生命科学有限责任公司 用于可植入装置的可更换电池
CN107847749A (zh) * 2015-07-23 2018-03-27 美敦力公司 用于可植入医疗设备的聚焦功率转移
CN107847749B (zh) * 2015-07-23 2021-03-09 美敦力公司 用于可植入医疗设备的聚焦功率转移
CN105119357A (zh) * 2015-09-18 2015-12-02 国网上海市电力公司 一种远距离无线充电设备
CN108367155A (zh) * 2015-12-17 2018-08-03 诺华股份有限公司 用于电活性医疗设备电池管理的供电箱
CN108367155B (zh) * 2015-12-17 2021-08-13 爱尔康公司 用于电活性医疗设备电池管理的供电箱

Also Published As

Publication number Publication date
JP2014510511A (ja) 2014-04-24
KR20140007447A (ko) 2014-01-17
WO2012129061A1 (en) 2012-09-27
US8849402B2 (en) 2014-09-30
EP2688643A1 (en) 2014-01-29
CN103517735B (zh) 2016-01-20
KR102013964B1 (ko) 2019-08-23
US20120245649A1 (en) 2012-09-27
EP2688643B1 (en) 2019-03-13
JP5990252B2 (ja) 2016-09-07

Similar Documents

Publication Publication Date Title
CN103517735B (zh) 用于可植入装置中非接触功率传输的系统和方法
CN103748763B (zh) 可植入医疗设备及其功率控制方法
CN102810898B (zh) 用于便携式图像检测器中非接触功率传输的系统和方法
EP2453980B1 (en) Coil system
EP2909919B1 (en) Wireless power receiver and method for setting sleep mode in wireless power receiver
KR20160043972A (ko) 다중대역 무선 파워 시스템
CN103262435A (zh) 用于可植入医疗设备的磁感应通信系统
CN104662787A (zh) 用于感应电力传输的反馈控制线圈驱动器
CN105720613A (zh) 供电装置以及供电控制方法
WO2023185180A1 (zh) 电容耦合传能的神经电刺激系统及其体内神经电刺激器和体外能控器
Hached et al. A Bluetooth-based Low-Energy Qi-compliant battery charger for implantable medical devices
Tang A low-operating-voltage wireless intermediate-range scheme for energy and signal transmission by magnetic coupling for implantable devices
CN106924878A (zh) 可使用磁场和电场充电的植入式医疗设备
US10511189B2 (en) Implantable medical device charging
Mahmood et al. Wireless charging for cardiac pacemakers based on class‐D power amplifier and a series–parallel spider‐web coil
US20120293340A1 (en) Triggering recharging and wireless transmission of remote patient monitoring device
CN104836313A (zh) 一种人工耳蜗言语处理器无线充电装置及方法
CN105680574A (zh) 可提示调整位置的无线充电器、提示方法及可充电植入式医疗器械
Smys et al. Enhanced wireless power transfer system for implantable medical devices
KR20150057945A (ko) 전원관리유닛 및 이를 응용하는 무선전력공급유닛의 장치와 방법
Newaskar WIRELESS CHARGER FOR BIOMEDICAL DEVICES
Swain et al. Development of miniature wireless energy transfer system for implantable pressure sensor
KR20170047707A (ko) 고효율 무선전력 전송을 위한 고정임피던스 수신기기 전력 시스템 및 충전 방법
KR20120134072A (ko) 휴대용 이미지 검출기들에서 무접촉 전력 전달을 위한 시스템 및 방법
ELDOSOKY et al. Wireless Power Transfer Based on Spider Web–Coil for Biomedical Implants

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant