CA1040311A - Electronic scoring system for bowling establishments - Google Patents

Electronic scoring system for bowling establishments

Info

Publication number
CA1040311A
CA1040311A CA202,212A CA202212A CA1040311A CA 1040311 A CA1040311 A CA 1040311A CA 202212 A CA202212 A CA 202212A CA 1040311 A CA1040311 A CA 1040311A
Authority
CA
Canada
Prior art keywords
memory
lane
pair
bowling
player
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA202,212A
Other languages
French (fr)
Inventor
Maureen R. Schmidt
Roy A. Ito
Walter L. Ross
Joseph B. Fischer
Stanley W. Stoddard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RCA Corp
Original Assignee
RCA Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RCA Corp filed Critical RCA Corp
Application granted granted Critical
Publication of CA1040311A publication Critical patent/CA1040311A/en
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63DBOWLING GAMES, e.g. SKITTLES, BOCCE OR BOWLS; INSTALLATIONS THEREFOR; BAGATELLE OR SIMILAR GAMES; BILLIARDS
    • A63D5/00Accessories for bowling-alleys or table alleys
    • A63D5/04Indicating devices
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63DBOWLING GAMES, e.g. SKITTLES, BOCCE OR BOWLS; INSTALLATIONS THEREFOR; BAGATELLE OR SIMILAR GAMES; BILLIARDS
    • A63D5/00Accessories for bowling-alleys or table alleys
    • A63D5/04Indicating devices
    • A63D2005/048Score sheets

Abstract

ELECTRONIC SCORING SYSTEM
FOR BOWLING ESTABLISHMENTS
Abstract of the Disclosure An automatic scoring system for a plurality of bowling lanes is disclosed which employs a central control unit including a general purpose mini-computer having a read-only memory programmed to control the processor in the computation and display of bowling scores. The system is constructed to be easily expanded by adding a player console and an electronic module for each added pair of bowling lanes. Bowling score sheet information is displayed on cathode ray tube display devices at player and proprietor locations. Pinfall information may be introduced manually or by automatic pinfall sensors.

Description

311 RCA 67,234 1 Background of the Invention Many electro-mechanical and some electronic ;~ systems have been proposed for accomplishing the automatic computation and display of bowling scores. The rules by which scores are computed in bowling contests are not simple, and demands for inexpensive and reliable automatic scoring equipment have yet to be satisfied. The approach ~-that has been followed in the past has been to design a ~-system in which every component is a special-purpose device useful solely in cooperation with the other special-purpose devices for computing bowling scores. This seemingly logical approach has resulted in scoring systems which are unnecessarily complex and unnecessarily expensive to build and maintain.
Summary of~the Invention -According to an example of the present invention, ~` an improved electronic scoring system for a plurality of bowling lanes is constructed using a general- ` `
purpose computer having an alterable read-only memory containing a computer program. The program consists of;sequences of instructions written to control the -~ ~ calculàtion and display of bowling scores. An electronic module is provided for each pair of bowling lanes, each module includes a lane pair memory, and all lane pair . ~ 25 memories are connected to operate as the main memory of ',.'! ,`,~ the mini-computer. Electronic modules, and player consoles, can be added to the system without complication ;~
whonever it may be desired to expand the system to handle additional pairs of bowling lanes.

` ~ -2-. ~

RCA 67,234 `i ` ~o4~13~1 "` 1 Brief Description of the Drawing Figure 1 is a schematic diagram of an automatic bowling score computing and display system constructed according to the teachings of the invention;
Figure 2 is a more detailed block dia~ram of a portion of the system shown in Figure l;
Figure 3 is a block diagram of a general-purpose mini-computer suitable for use in the system of -~ Figure l; and ;~ 10 Figure 4 is a block diagram of a lane pair ~ memory used as a memory by the computer of Figure 3 in i~ the system of Figure 1. -Description of a Preferred Embodiment Referring in greater detail to Figure 1 of the ~; 15 drawing, three pairs of bowling lanes are represented at. ~ lA, lB; 2A, 2B; and 3A, 3B. A pinfall sensor PS is ; ~ located at the remote end of each bowling lane. Each -~
~ ; ~ pinfall sensor PS provides a clocked series of binary ;; - ~ ~ units on its output conductor 11 which indicates the ~ 20 numbers of the pins which have been knocked down after `~ a ball has been rolled down the bowling lane or alley.
Wh~ile any pinfall sensor equipment may be employed, a suitable equipment is described in detail in Canadian . ;~ patent application Serial No. 187,180 filed by Hugo ,~ ~ Z5 Logemann, Jr. and Harold F. Dion on December 3,1973 a- ~ entitled "Bowling Pin Detector" and assigned to the assignee ; - ~ ~ of the present application. The outputs of all pinfall sensors PS are cabled to common pinfall sensor electronics unit PSE from which the signals are transmitted at suitable timed intervals to appropriate ones of player consoles :7~- ~

iO4()311 RCA 67,2~4 I PSl, PS2 and PS3.
Each ~layer cons0le PC is located at the player end of a pair o~ bowling lanes and includes a cathode-ray-tube di~play device D, a keyboard KB and a logic unit L.
The display device D is preferably a conventional television reciever which has heen somewhat modif'ied for ; use as a display device for alpha-numeric scoresheet information. ' Each player console PC also includes a keyboard KB by means of' which the following transactions can be introduced into the system: (a) Player Name Entry, (b) Handicap Entry, (c) Missing Player Entry, (d) Score Correction Entry, (e) Score Clear, (f) Lane Clear, and `~ ~g) Pinfall Entry. The keyboard KB consists of a push '~ 15 button matrix providing an output that is applied to a ~' coder 12 (Figure 2) in a logic unit L. The coder 12 has a number of output lines 13, and the pushing of a button result6 in a coded energization of appropriate ones of ' 3 the output lines. The output lines are connected to the } 20 inputs of a corresponding number of stages of a transmit shift register TSR. The transmit shift register is ,? constructed so that its contents can be shifted out in ; serial form through a switch 14 to a player console output line 15.
The logic unit L in player console PC also ~ receives serially-presented pinfall information si~nals A, on lead 16 from the pinsensor electronics PSE. This serial signal is i`ed into the input of a pini'all bufl`er shift register PFB. Information stored in the bui'~er - -~() may be read out serially through line 17 and switch 14 RCA 67,2'3~
~()4(~311 :'.' "
I to player console OUtp~lt line 15.
The output lines 15 in Figure 1 from player console PC, are connected to a player console inter~ace PCI in respective electronics modules MOD. The player console interface PCI in each electronics module is an interf'ace between a player console PC and a lane pair memory LPM in the electronics module. Each lane pair memory LPM is a conventional ~nown semiconductor random access memory consisting of 1024 words of 8 bits each.
The memory is made using 8 semiconductor chips each having storage locations for 1024 bits. Each semiconductor ~ ' chip includes an address decoder responsive to 10 input address bit lines ADDR (Figure 2) and operative to select one of the 1024 bit storage locations on the chip. The same address is simultaneously applied to all eight chips to access 8 bit storage locations constituting ;
one 8-bit memory word storage location. The 8 data lines of the lane pair memory are designated DATA. ~ ~
A player console interface PCI with the lane ~ - -pair memory includes a serial-to-parallel converter SPC~
(Figure 2) for the serial pinfall and other in~ormatlon received over line 15 from the player console. The parallel output lines 19 from the SPC are connected to the respective memory data lines DATA ~f the lane pair 2s memory LPM. The player console interface also includes a word ~raming logic WFL which senses the start bit of a word received on lines 15~ and transmits a write enable signal over line 21 to the memory LPM when an 8-bit word is accumulated in converter SPC. The in~ormation 3() suppl ied from the serial-to-parallel converter SPC is ..
-"

,., . .

i RCA 67,2:1~
~ ~o403~

. .
:~ 1 read into a ~t~ra~e location in memory LPM determined ~y the address in a counter CTR in the tim~ng unit T. The address is passed through gate 22 when enabled by a .~ memory cycle signal B. ; :
The lane pair memories LPM in the electronic modules MOD in Figure l are all connected by means of a '- ~ :
multiconductor bus B and a memory interface MI with~a . .
general purpose mini-computer or processor PROC in a central control unit CC. As shown in Figure 2, the .
'~ o memory lnterface M1 includes an address register AR, which ls a-serial-to-parallel converter, and to which addresses are supplied in serial form over line 23 from ehe ~processor. Pin address bits are applied in parallel from~register AR:through gate 24'and over pin~conductors '~~
5~ ;25~to the~;ten~address input lines ADDR of lane pair ;~ memory~LPM.'~A ten-bit address:~rom the~processor M C.
can address any one~of -the 1024: word locat~ons in the mémory~LPM~ On the~other hand, the remaining 6 blts in .
.~ address reg~ster AR~-re~app~11ed to.a::decoder'DEC, from `~20;~ whlch~one~output~ lne 26~ls-applied thr'ough gate 28 to the:~chIp.enable~lnput of:~one:res~pective lane pair memory The memory~interface ~1 also~lncludes an ;8-blt'~dat:a~register~MDR connected by eight parallel :~2~ oondnctors 27 w1th the eight data lines DATA of the~lane p lr memory LP~. The data register MDR is a serial-to~
` par-lle~llconverter and a parallel-to-serial converter.
EiKht dnta b1ts appIied ~rom memory LPM over parallel : lines 27 to data register DR are transferred serially 3U~ over line 29 to the processor PROC. And, eight serlal , , A 1;7, '~

~04031'1 1, bits applied over line 31 to re~ister MDR are transmitted over parallel lines 27 to the data lines DATA of memory ~.
LPM.
Each electronics module MOD in Figure 1 also includes a character generator CG and a video mixer VM.
Each character generator, as shown in Figure 2, includes a character generator read-only memory CGM connected to recieve 8-bit data words from memory LPM over lines 33.
Each such data word is applied as an address to the read-only memory CGM. The digital information bits in the addressed location are applied in parallel over lines 35 to a video shift register, or parallel-to-serial -converter VSR. The contents of the converter VSR is shifted out on serial output lead 37 as a digitally-generated video signal. That is, the signal on Iead 37 is~a pattern of pulses and spaces existing ln time sequeoce such that it can be used to control the intensity of the electron beam in a catho:de-ray tube and thus trace one line of a black-and-white line image (no gray ocale) on the face of the tube. The signal on lead 37 lS thus a video signal for tracing a part of an alpha-numeric character corresponding to a conventional digital representation of the character supplied from the :
data output DATA~of lane pair memory LPM to the address 25~ input of character generator read-only memory CGM. 'I
: The digitally-generated video signal on line 37 is applied to a video mixer VM, which also receives ~: ~ horizontal and vertical synchronizing signals, and signals for creating a crossed line score sheet pattern on the 3() display, from the timing unit T over line 39. The video ~ 1, ~ , _7_ , ., .- . ---.- .::
~.. . - . .,: . . . . . ....

RCA 67,2~

~403~ :
.
I signal, the synchronized pulses, and the crossed line ~; signal are mixed to produce an output video signal on lead 41 which is a standard television video signal suitable for application to the video circuit of a television receiver. The signal is applied over lead 41 ~ to a display device D in the player console PC (Figure 1), 3 the display device D being a slightly modified television receiver. The video signal on line 37 is also applied over line 43 to a selector SEL in the central control unit CC.
Each one of the electronics modules MOD is ;~
needed for a corresponding bowling~lane pair. The modules j~ are constructed exactly alike, and any reasonable number of modules can be connected into the system, that is, an 1 . :
electronics module (and player console) can be added to the system for every bowling lane pair that is added to , -the bowling establishment, without requiring any changes n, or substitution of, the central control unit CC.
The central control unit CC (Figure 1) includes ~ 20 a proprietor's control console PCC by which the proprietor ;~ ~ manages the operation of the bowling establishment through its automatic scoring system. The proprietor's control console includes a thumb wheel by which the proprietor controls the digital video selector SEL to select the video signnl from the electronics module corresponding to any desired bowling laoe palr. The selected video si~nal is combined-with horizontal and vertical synchronizing pulses in a video mixer VM' and is then applied over line 44 to a proprietor's display device D', which is the same 11) as the display device D in the player consoles PC. The . ., . : ..

RCA 67,2:~
.
1(~4031~

I video signal from mixer VM' is also applied over ]ine 45 to a printer PTR. The printcr PTR includes u cathode-ray-tube display on the l'ace ol whlch appears the same score sheet information as appears on the display device D'.
The printer also includes means to make a hard copy of the displayed score sheet on a piece of paper by any suitable method such as the xerographic method.
The proprietor's control console PCC includes a control panel and logic by which commands are sent over lines 46 between the console PCC and the computer processor PROC. For example, the proprietor can designate ~ each bowling lane as having a status of "off", "league", ;~ "open", or "practice". The proprietor's console has switches to accomplish "score clear", "lane clear", and "print score" functions. And player's names for any desired~lanes can be entered. All of these controls and others~are accomplished by signals over lines 46 to the -processor PROC
A central timing unit T controls the~timing of the entire~system by supplying various timing signals, designated t, to all units of the system.
The central control unit CC incIudes a general purpose minl-computer PROC and read-only memory ROM, as shown~ in more detail in Fi ure 3. The read-only memory ~ROM is a semiconductor memory containing computer ~: ~
~`~ instruction words 16-bits long. Instructions are read out Or the ~emory under control of addressing circuits including a pro~ram counter PCTR, an extended program counter PCE and a program counter control CC. The -3( instructions are read out in sequence, except when a jump _9_ ~CA (;7,~
~ 40311 I

1 to an out-of-sequence instruction is efPected by conventional logic in the computer processor. Instructions are read out to a 16-bit instruction register IR. There are eight types of instructions: Unconditional jump, Jump and save, Logic function, Arithmetic function, Control and test, Load immediate, Add immediate, and And immediate Portions of an instruction in the instruction register IR are applied to an operation decoder OP, a destination decoder DD, and a source decoder SD, which provide output signals to control transfers from one place to another in the systems. Another "function"
portion of an instruction in register IR is applied to an arithmetic unit AU together with the operation code, to control all functions performed on data present on busses A and B. The functions include: Add with carry, Subtract with carry, Left shift with carry, Gray to Binary with carry, Add, Subtract, Left shift, and Gray to binary, Logical AND, Exclusive OR, Inclusive OR. Complement, Rotate right, Transfer and Compare. The result is supplied to bus C. Eight-bit-word general registers GR-0 to GR-7 are connected with the busses and can be used by the computer programmer for the temporary storage of any type of information as needed in the execution of the computer program by which bowling scores are automatically computed and displayed. Data words handled by the processor contain 8 bits and are transferred on busses A, B, C in bit serial form. Timing signals are provided by an oscillator OSC and clock CLK which provide 3() two-phase clock signals TBA and TBB used for the basic RCA 67,234 10403il I timing of the processor. A bit time generator BTG
produces 12 timing pulses to control status level functions during execution of each instruction.
Figure 4 shows one of the lane pair memories LPM included in the system of Figure 1, and the memory interface MI included in the central control unit CC.
The memory address register consists of an X address register XAR and a Y address register YAR. Eight address bits from register XAR and two address bits from register YAR are applied through an address gating unit G to a decoder in the memory LPM to se~lect one 8-bit word location Prom the 1024 word locations in the memory LPM. ,-Six bits from register YAR are applied to an address decoder AD to select one lane pair memory LPM from the ~l5 ~ plurality of up to sixty-four similar lane pair memorles ~; in the system. Eight-bit memory words are read to and from the memory via a memory data register MDR. Data words are transferred in bit serial form between the memory register MDR and the data busses connected to the computer processor PROC.~
The memory control unit MC in Figure 4 controls the cyclic operation of the lane pair memory LPM in .
synohronism with timing and control signals supplied thereto~over leads 47. There are two alternating memory ~:~2S access cycles A and B during each bit time pulse from the bit timing generator BTG in Figure-3. Memory cycles A
~; can be used by the processor PROC shown in Figures 1, 2 and 3. During memory cycles B a digital word is read out from the memory to the respective character generator CG, ~-~ 30 shown in Flgures 1 and 2, where it is converted into a ,. --11--RCA 67,2:~

1(~40311 video signal to refresh the score sheet display on the respective cathode ray tube display device D. During field retrace in the display device D, memory cycles B
can be used to store information in the lane pair memory from the corresponding player console.
In the operation of the automatic scoring system, the proprietor acting through the proprietor's control console PCC energizes a particular lane pair for bowlers in a "league", "open", or "practice" mode.
The player's names are then entered, from the keyboard KB at the player's console PC, to the lane pair memory LPM during memory cycles B of the memory. Each lane pair memory has storage space reserved for the names of players using the corresponding pair of lanes, and their scores for bowling "frames" l through lO. Once the lane pair is put in operation, the display D in the player console PC is automatically and periodically refreshed with the information, such as players' names, contained in the lane pair memory during the memory cycles B of the memory.
As pinfall information is introduced, automatically by the pinfall sensors PS or manually from the player's console PC, this information for a given player is supplied to a nondisplayed storage locatioD
reserved for information from a respective player console in the lane pair memory during a memory cycle B of the memory. During memory cycles A, the processor continuously scans these non-displayed memory locations, and when new pinfall information of a given player is 3() found in one of these memory locations, the processor :

RCA 67~23~

~ 1~403~1 1 uses the information, together with the information located in displayed memory locations for the given player~ to compute the score that shvuld be displayed for that frame ~or the particular player. The score for the frame is then transferred to a prescribed location in the displayed portion of the lane pair memory LPM. All these memory accesses by the processor are done during memoxy cycles A of the memory. During memory cycles B of the memory, the entire score sheet information stored in the displayed portion of the memory, including the score for the frame just computed~ is read out of the memory to the character generator CG where the di~ital information is translated to a video signal suitable for tracing the score sheet information on the face of a cathode-ray-tube display D.
In this way, the scores of a player in each successive ~rame of a game are computed and displayed.
In turn, the the scores of all other players on the two lanes are computed and displayed as the balls are rolled. Similarly, the scores of all the players on all the other lane pairs are computed~and displayed at the respective player consoles. The single~
general-purpose computer processor PROC handles the computations for the many players and many frames in a time division multiplex fashion. The processor PROC
accomplishes the computation of each frame score so rapidly that it has time to handle the scores for up to twelve bowlers bowling on each of up to sixty-four pairs of bowling lanes Provision is made for correcting an error in RCA (;7,~

1S)40311 I a player's score. An error may occur as the result of a human error when operating in the semi-automatic mode, and as the result of unusual pin action when operating in the automatic mode. For exampleJ a pin may be shifted sideways by the ball to such an extent that it cannot be recognized as a standing pin by the pinfall sensor. An erroneous score in any frame is corrected by transferring the correct score for the frame from the player console to the message receiving area in the lane pair memory.
The processor recognizes the error correcting message, and requests a hard copy print of the existing score sheet information. While the print is being made, new pinfall information resulting from continued bowling is accummulated in a queue in the lane pair memory. When the print is finished, the processor recomputes the correct scores in the frame in which the correction was in~e~ted, and preceeding frames if they are affected, and in succeeding frames. The corrected scores are stored by the processor in the appropriate displayed information storage region of the respective lane pair memory. Then the queued pinfall information is processed to compute scores for frames bowled after the error was corrected.
Then the score sheet information displayed contains the fully-corrected up-to-date scores, the correction having been accomplished without any delay to the bowlers.
Provision is made for a "pacer" player to even up the number of players on two competlng teams. The pacer's name is entered with a + sign in front o~ the name. The pacers' scores are displayed, but not included in the team score total. Provision is also made for a RCA 67,23~
1~40311 I missing player. The player's average score is inserted in the tenth frame. These features of the system are accomplished by appropriate program routines stored in the read-only-memory ROM.
When a game on a lane pair is finished, a team captain pushes a "score clear" button on the player console. This causes the score clear information to be transferred from the player console to the lane pair memory. The processor recognizes the order, and checks to make sure the game is finished, and then causes a hard copy of the score sheet information to~be made by the printer PTR. Then the scores for frames 1 through lO are erased from the lane pair memory, and consequently - from the displayed score sheet information. The pressing -of a "lane clear" button on the player console causes a clearing of the player's names from the displayed score sheet.
When the players are relieved of the onerous ~ : .
score-keeping task, the bowling games proceed much more rapidly, and the increased revenue for the bowling .
establishment more than pays for the automatic scoring system.

i -15-~ . . . . . . .
.; - . .:: . .. .
. .: . . . . .-

Claims (2)

    The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:

    1. A scoring system for a plurality of pairs of bowling lanes comprising:
    a player console for each pair of bowling lanes, including a device responsive to video signals for display-ing information, a keyboard and a logic unit, an electronic module for each pair of bowling lanes, including a lane-pair memory and a character generator, said keyboard in each player console being con-nected to supply player and pinfall information in the form of digital signals through said logic unit in the player console to the lane-pair memory in the respective electronic module, said character generator in each electronic module being constructed to translate digital information received from the corresponding lane-pair memory into video signals and to supply the video signals to said display device in the respective player console, and a central control unit for all bowling lanes including a proprietor's control console, a propietor's device responsive to video signals for displaying infor-mation, a displayed-information printer unit, a lane-pair video signal selector to connect the video signal from the character generator associated with any desired one of said bowling lane pairs to said proprietor's display device and said printer unit, a general purpose processor connected
  1. Claim 1 continued.

    through a memory interface with all of said lane-pair memories so that said lane pair memories serve as the main memory for said processor, and a read-only memory containing a computer program for controlling the operation of the processor and thereby of the system in the computing and display of scores in all bowling lanes.
  2. 2. A fully automatic scoring system for a plurality of pairs of bowling lanes, comprising:
    a player console for each pair of bowling lanes, including a cathode-ray-tube display device, a keyboard and a logic unit, an electronic module for each pair of bowling lanes, including a lane-pair memory and a character generator, said keyboard in each player console being connected to supply player and score correcting pinfall information in the form of digital signals through said logic unit in the player console to the lane-pair memory in the respective electronic module, a separate, automatic pinfall sensor for each of said bowling lanes connected to supply pinfall infor-mation in electrical form through the logic unit of the corresponding player console to the lane-pair memory in the electronic module associated with that player console, said character generator in each electronic module being constructed to translate digital information received from the corresponding lane-pair memory into video signals and to supply the video signals to said display device in the respective player console, and a central control unit for all bowling lanes including a proprietor's control console, a proprietor's cathode-ray-tube display device, a displayed-information printer unit, a lane-pair video signal selector to connect the video signal from the character generator associated with any desired one of said bowling lane pairs to said proprietor's display device and said printer unit, a general purpose mini-computer processor connected through a memory interface with all of said lane-pair memories so that said lane pair memories serve as the main memory for said processor, and a read-only memory containing a computer program for controlling the operation of said processor and thereby of the system in the computing and display of scores in all bowling lanes.
CA202,212A 1973-06-22 1974-06-11 Electronic scoring system for bowling establishments Expired CA1040311A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US372647A US3907290A (en) 1973-06-22 1973-06-22 Electronic scoring system for bowling establishments

Publications (1)

Publication Number Publication Date
CA1040311A true CA1040311A (en) 1978-10-10

Family

ID=23469074

Family Applications (1)

Application Number Title Priority Date Filing Date
CA202,212A Expired CA1040311A (en) 1973-06-22 1974-06-11 Electronic scoring system for bowling establishments

Country Status (3)

Country Link
US (1) US3907290A (en)
JP (1) JPS5339815B2 (en)
CA (1) CA1040311A (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4093232A (en) * 1975-05-13 1978-06-06 Bally Manufacturing Corporation Player operated game apparatus
USRE31441E (en) * 1975-05-13 1983-11-15 Bally Manufacturing Corporation Player operated game apparatus
US4198051A (en) * 1975-11-19 1980-04-15 Bally Manufacturing Corporation Computerized pin ball machine
US4093223A (en) * 1976-01-23 1978-06-06 Wilke William F Electronic game apparatus and method
US4302010A (en) * 1977-01-31 1981-11-24 Amf Incorporated Electronic bowling scoring system with video communication interface between manager console and lane score consoles
US4131948A (en) * 1977-01-31 1978-12-26 Amf Incorporated Electronic bowling scoring system with bus communication between manager console and lane score consoles
US4148480A (en) * 1977-07-01 1979-04-10 Amf Incorporated Microprocessor controlled acoustic bowling pin detection system
US4148481A (en) * 1977-07-01 1979-04-10 Amf Incorporated Acoustic bowling pin detection system
US4133042A (en) * 1977-12-19 1979-01-02 Wallace Ben W Automatic pinsetter controller system
CA1245361A (en) * 1984-06-27 1988-11-22 Kerry E. Thacher Tournament data system
US5198976A (en) * 1986-04-09 1993-03-30 Computer Sport Systems, Inc. Multifunction interactive automatic bowling alley system utilizing a touch screen console
US4974161A (en) * 1987-07-29 1990-11-27 Cullen James P Hand-held bowling data processor
DE3727072A1 (en) * 1987-08-14 1989-02-23 Bernd Ihlow Auxiliary device for systems with data capture and output
US5101354A (en) * 1988-04-18 1992-03-31 Brunswick Bowling & Billards Corporation Multi-lane bowling system with remote operator control
US20060121982A1 (en) * 1992-03-06 2006-06-08 Arachnid, Inc. Parlor game
US5577971A (en) * 1992-07-31 1996-11-26 File; Jonathan P. Method of playing a combination game of bowling and random number matching
US5593349A (en) * 1994-09-09 1997-01-14 Valley Recreation Products Inc. Automated league and tournament system for electronic games
US5582549A (en) * 1995-06-26 1996-12-10 File; Jon P. Method of playing a bowling game
US6076021A (en) * 1998-04-09 2000-06-13 Merit Industries, Inc. System for handicapping substitute or unranked players in a dart game match
US6604997B2 (en) 2000-08-17 2003-08-12 Worldwinner.Com, Inc. Minimizing the effects of chance
US20070191125A1 (en) * 2006-02-15 2007-08-16 Minard Timothy J Method and system for using skill-based gaming strategies with bowling
NL2009192C2 (en) * 2012-07-16 2014-01-20 Wisis B V DRIVER FOR A DISPLAY AND ACCOMPANYING DEVICE.
USD827749S1 (en) 2017-01-03 2018-09-04 Roberto Camacho Self-righting target

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375352A (en) * 1963-04-09 1968-03-26 Brunswick Corp Bowling scorer utilizing semiconductor elements
US3531117A (en) * 1965-08-13 1970-09-29 Brite Lite Corp Of America Bowling scorekeeper apparatus
US3550939A (en) * 1967-01-30 1970-12-29 Brunswick Corp Electronic scorer for bowling games
US3516665A (en) * 1967-10-04 1970-06-23 Doban Labs Inc Automatic bowling scorekeeping system
GB1221891A (en) * 1968-05-14 1971-02-10 Amf Inc Formerly American Mach Bowling scorer
US3507575A (en) * 1968-10-16 1970-04-21 Minnesota Mining & Mfg Display-print module
US3705722A (en) * 1970-06-09 1972-12-12 Digilux Corp Method and apparatus for automatic bowling scorekeeper
US3718812A (en) * 1971-06-14 1973-02-27 H Tillman Bowling score computer

Also Published As

Publication number Publication date
US3907290A (en) 1975-09-23
JPS5339815B2 (en) 1978-10-24
JPS5036242A (en) 1975-04-05

Similar Documents

Publication Publication Date Title
CA1040311A (en) Electronic scoring system for bowling establishments
US4177462A (en) Computer control of television receiver display
US4485457A (en) Memory system including RAM and page switchable ROM
US4045789A (en) Animated video image display system and method
GB1535999A (en) Apparatus for controlling the video display of a standard television receiver
CA1143855A (en) Shared storage for multiple processor systems
US4112422A (en) Method and apparatus for generating moving objects on a video display screen
US4302010A (en) Electronic bowling scoring system with video communication interface between manager console and lane score consoles
US4628467A (en) Video display control system
US4296930A (en) TV Game apparatus
US4016362A (en) Multiple image positioning control system and method
US3593310A (en) Display system
JPS6336786B2 (en)
JPS58203551A (en) Microcomputer terminal system
NO822824L (en) LINE BUFFER FOR VIDEO VIEW ON SCREEN SCREEN
US4189728A (en) Apparatus for generating a plurality of moving objects on a video display screen utilizing associative memory
EP0280320B1 (en) Graphics display controller equipped with boundary searching circuit
CA1065513A (en) Electronic display system
CN1004524B (en) Method and system for displaying images in adjacent display areas
JPH0531256A (en) Hitting simulation device
US3858198A (en) Fixed format video data display employing crossed-line pattern format delineation
GB1571291A (en) Tv game apparatus
US5799202A (en) Video terminal architecture without dedicated memory
EP0099189A2 (en) High speed CPU/sequencer for video games
US3796865A (en) Apparatus for automatically processing scores of bowling games