AU2001276035A1 - Telescoped multiwall nanotube and manufacture thereof - Google Patents

Telescoped multiwall nanotube and manufacture thereof

Info

Publication number
AU2001276035A1
AU2001276035A1 AU2001276035A AU7603501A AU2001276035A1 AU 2001276035 A1 AU2001276035 A1 AU 2001276035A1 AU 2001276035 A AU2001276035 A AU 2001276035A AU 7603501 A AU7603501 A AU 7603501A AU 2001276035 A1 AU2001276035 A1 AU 2001276035A1
Authority
AU
Australia
Prior art keywords
manufacture
multiwall nanotube
telescoped
telescoped multiwall
nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2001276035A
Inventor
Marvin L. Cohen
John P. Cumings
Steven G. Louie
Alex K. Zettl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lawrence Berkeley National Laboratory
Original Assignee
Lawrence Berkeley National Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lawrence Berkeley National Laboratory filed Critical Lawrence Berkeley National Laboratory
Publication of AU2001276035A1 publication Critical patent/AU2001276035A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0828Carbonitrides or oxycarbonitrides of metals, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • C01G30/008Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/006Compounds containing, besides tungsten, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/08Halides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • C01P2004/133Multiwall nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/724Devices having flexible or movable element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/743Carbon nanotubes, CNTs having specified tube end structure, e.g. close-ended shell or open-ended tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/752Multi-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T225/00Severing by tearing or breaking
    • Y10T225/10Methods
    • Y10T225/14Longitudinally of direction of feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T225/00Severing by tearing or breaking
    • Y10T225/20Severing by manually forcing against fixed edge
    • Y10T225/205With feed-out of predetermined length from work supply
    • Y10T225/21Merely to provide lead-end for manual grasping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T225/00Severing by tearing or breaking
    • Y10T225/20Severing by manually forcing against fixed edge
    • Y10T225/205With feed-out of predetermined length from work supply
    • Y10T225/211Manually operated feed-out mechanism
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)
AU2001276035A 2000-07-25 2001-07-24 Telescoped multiwall nanotube and manufacture thereof Abandoned AU2001276035A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US22055000P 2000-07-25 2000-07-25
US60220550 2000-07-25
PCT/US2001/023354 WO2002008120A2 (en) 2000-07-25 2001-07-24 Telescoped multiwall nanotube and manufacture thereof

Publications (1)

Publication Number Publication Date
AU2001276035A1 true AU2001276035A1 (en) 2002-02-05

Family

ID=22823985

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2001276035A Abandoned AU2001276035A1 (en) 2000-07-25 2001-07-24 Telescoped multiwall nanotube and manufacture thereof

Country Status (3)

Country Link
US (2) US6874668B2 (en)
AU (1) AU2001276035A1 (en)
WO (1) WO2002008120A2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002008120A2 (en) * 2000-07-25 2002-01-31 Lawrence Berkeley National Laboratory Telescoped multiwall nanotube and manufacture thereof
US7232790B2 (en) * 2001-09-11 2007-06-19 Showa Denko K.K. Activated carbon, method for production thereof and use thereof
WO2003068684A1 (en) * 2002-02-15 2003-08-21 Susumu Yoshikawa Ceramic nano-structure, composition comprising the same, method for producing the same, and functional article using the same
US20040245224A1 (en) * 2003-05-09 2004-12-09 Nano-Proprietary, Inc. Nanospot welder and method
US7053520B2 (en) * 2003-07-18 2006-05-30 The Regents Of The University Of California Rotational actuator or motor based on carbon nanotubes
US7456482B2 (en) * 2004-03-22 2008-11-25 Cabot Microelectronics Corporation Carbon nanotube-based electronic switch
US20050238565A1 (en) * 2004-04-27 2005-10-27 Steven Sullivan Systems and methods of manufacturing nanotube structures
US7335408B2 (en) * 2004-05-14 2008-02-26 Fujitsu Limited Carbon nanotube composite material comprising a continuous metal coating in the inner surface, magnetic material and production thereof
US7382648B2 (en) * 2004-09-30 2008-06-03 California Institute Of Technology Nanomechanical switching device
US7754183B2 (en) * 2005-05-20 2010-07-13 Clemson University Research Foundation Process for preparing carbon nanostructures with tailored properties and products utilizing same
US8691180B2 (en) * 2005-08-25 2014-04-08 The Regents Of The University Of California Controlled placement and orientation of nanostructures
US7915973B2 (en) * 2005-08-25 2011-03-29 The Regents Of The University Of California Tunable multiwalled nanotube resonator
US20070127164A1 (en) * 2005-11-21 2007-06-07 Physical Logic Ag Nanoscale Sensor
KR100745764B1 (en) * 2006-03-09 2007-08-02 삼성전자주식회사 Method of manufacturing nanowire memory device and system of controlling nanowire formation using in the method
US8137759B2 (en) * 2006-04-07 2012-03-20 The Regents Of The University Of California Gold nanostructures and methods of use
WO2008042479A2 (en) * 2006-06-12 2008-04-10 University Of Utah Research Foundation Methods and compositions related to bacterial flagellum and nanotube formation
US7554154B2 (en) * 2006-07-28 2009-06-30 Alpha Omega Semiconductor, Ltd. Bottom source LDMOSFET structure and method
US7884525B2 (en) * 2006-08-03 2011-02-08 Massachusetts Institute Of Technology Carbon nanotube based compliant mechanism
US10191082B1 (en) * 2007-01-30 2019-01-29 Victor B. Kley Carbon nanotube probes and structures and methods of measurement
WO2009102902A2 (en) 2008-02-14 2009-08-20 The Charles Stark Draper Laboratory, Inc. Rotary nanotube bearing structure and methods for manufacturing and using the same
US8776870B2 (en) * 2008-05-07 2014-07-15 The Regents Of The University Of California Tunable thermal link
US20100126985A1 (en) * 2008-06-13 2010-05-27 Tsinghua University Carbon nanotube heater
US20100145511A1 (en) * 2008-08-18 2010-06-10 Popa Dan O Microcrawler and conveyor robots, controllers, systems, and methods
US8539854B2 (en) * 2008-10-06 2013-09-24 Board Of Regents, The University Of Texas System Microrobots with large actuation volumes, and controllers, systems, and methods
US8299761B2 (en) * 2008-12-29 2012-10-30 Interstellar Technologies Corporation Dense energy storage via interacting nanostructures
US20100233070A1 (en) * 2009-02-19 2010-09-16 Nicolas Alonso-Vante CARBON-SUPPORTED CoSe2 NANOPARTICLES FOR OXYGEN REDUCTION AND HYDROGEN EVOLUTION IN ACIDIC ENVIRONMENTS
EP2363958A1 (en) * 2010-03-04 2011-09-07 Thomson Licensing Field programmable gate array
IL249804A0 (en) * 2016-12-27 2017-04-02 Yeda Res & Dev Electromechanical devices based on metal-chalcogenide nanotubes

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958358A (en) 1992-07-08 1999-09-28 Yeda Research And Development Co., Ltd. Oriented polycrystalline thin films of transition metal chalcogenides
US6231980B1 (en) 1995-02-14 2001-05-15 The Regents Of The University Of California BX CY NZ nanotubes and nanoparticles
US6280697B1 (en) * 1999-03-01 2001-08-28 The University Of North Carolina-Chapel Hill Nanotube-based high energy material and method
US6452171B1 (en) * 1999-07-23 2002-09-17 Piezomax Technologies, Inc. Method for sharpening nanotube bundles
US6582673B1 (en) * 2000-03-17 2003-06-24 University Of Central Florida Carbon nanotube with a graphitic outer layer: process and application
US6659598B2 (en) * 2000-04-07 2003-12-09 University Of Kentucky Research Foundation Apparatus and method for dispersing nano-elements to assemble a device
US6709566B2 (en) * 2000-07-25 2004-03-23 The Regents Of The University Of California Method for shaping a nanotube and a nanotube shaped thereby
WO2002008120A2 (en) * 2000-07-25 2002-01-31 Lawrence Berkeley National Laboratory Telescoped multiwall nanotube and manufacture thereof
DE10038124B4 (en) * 2000-08-04 2006-05-11 Infineon Technologies Ag Use of a multi-walled nanotube on a substrate and as an electronic component
US6740403B2 (en) * 2001-04-02 2004-05-25 Toyo Tanso Co., Ltd. Graphitic polyhederal crystals in the form of nanotubes, whiskers and nanorods, methods for their production and uses thereof

Also Published As

Publication number Publication date
US20020070426A1 (en) 2002-06-13
US7238425B2 (en) 2007-07-03
WO2002008120A3 (en) 2002-05-02
US6874668B2 (en) 2005-04-05
WO2002008120A2 (en) 2002-01-31
US20060057383A1 (en) 2006-03-16

Similar Documents

Publication Publication Date Title
AU2001276035A1 (en) Telescoped multiwall nanotube and manufacture thereof
TWI316062B (en) Anti-inflammatory compounds and uses thereof
AU2002230593A1 (en) Nanoparticles having oligonucleotides attached thereto and uses therefor
AU2001294585A1 (en) Fabrication of nanotube microscopy tips
AU2001292582A1 (en) C-nitroso compounds and use thereof
AU2002221749A1 (en) Synthetic viruses and uses thereof
AU2001240637A1 (en) Novel imidazotriazinones and the use thereof
AU2002219135A1 (en) Substituted 2-anilino-benzimidazoles and the use thereof as NHE-inhibitors
AU2001272011A1 (en) Siderophores-producing bifidobacteria thereby and uses thereof
AU2002211717A1 (en) Stresscopins and their uses
AU2001292936A1 (en) Octahydro-indolizines and quinolizines and hexahydro-pyrrolizines
AU2001295185A1 (en) Multiplexing-interleaving and demultiplexing-deinterleaving
AU2002224876A1 (en) Isolated luciferases and the use thereof
GB0110580D0 (en) Nanotubes
AU2001269276A1 (en) Drills and their manufacture
AU2000231564A1 (en) Phosphororganic compounds and the use thereof
AU2001262539A1 (en) Composite material and use thereof
AU4432001A (en) Trityl-type compounds and their use
AU2001228624A1 (en) Implements and their manufacture
AU2001260133A1 (en) Alkoxylated perfumed alcohols and the use thereof
AU2001252062A1 (en) Steatosis-modulating factors and uses thereof
AU2002358354A1 (en) Sugar-protein conjugates and their formation
AU2001261027A1 (en) Nano coupling magnetoadsorbent
AU2001231141A1 (en) Novel human septin and uses thereof
AU2001252710A1 (en) Chemically amplified resist and a resist composition