ZA200801267B - Method for reducting odor in latex paints - Google Patents

Method for reducting odor in latex paints Download PDF

Info

Publication number
ZA200801267B
ZA200801267B ZA200801267A ZA200801267A ZA200801267B ZA 200801267 B ZA200801267 B ZA 200801267B ZA 200801267 A ZA200801267 A ZA 200801267A ZA 200801267 A ZA200801267 A ZA 200801267A ZA 200801267 B ZA200801267 B ZA 200801267B
Authority
ZA
South Africa
Prior art keywords
isothiazolin
stabilizer
tert
hydroxyethyl cellulose
acid
Prior art date
Application number
ZA200801267A
Inventor
Ashmore John William
Tran Thu-Ba Thi
Younathan Janet Nadya
Original Assignee
Rohm & Haas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm & Haas filed Critical Rohm & Haas
Publication of ZA200801267B publication Critical patent/ZA200801267B/en

Links

Landscapes

  • Paints Or Removers (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

PE ph — A -
METHOD FOR REDUCING ODOR IN LATEX PAINTS - So
This invention relates to a method for reducing odor arising from surfaces coated with latex paints.
Under some environmental conditions, including high heat, humidity and ozone, basic latex paints preserved with certain 3-isothiazolone biocides emit an - undesirable odor after application and drying. Copper salts have been used as preservatives for the isothiazolone biocides in an attempt to reduce this odor, but use of copper is undesirable due to coloring of the paint.
Addition of 4-hydroxy-2,2,6,6-tetramethylpiperidinoxyl (4-hydroxy
TEMPO) or diethyl hydroxylamine to stabilize polyurethane thickeners used in latex paints was disclosed in U.S. Pat. No. 6,437,020. However, a non-metallic stabilizer for reducing odor in latex paints containing 3-isothiazolones has not been described.
The problem addressed by this invention is to provide a method for reducing odor from surfaces coated with latex paints containing 3-isothiazolones.
STATEMENT OF THE INVENTION
The present invention is directed to a method for reducing odor arising from surfaces coated with latex paints. The method comprises combining in a latex paint: (i) at least one stabilizer comprising 4-hydroxy-2,2,6,6- tetramethylpiperidinoxyl, a hindered phenol, a hindered amine, an unsaturated fatty acid, nicotinamide, a thiodicarboxylic acid or an N,N-dialkylhydroxylamine; (i1) at least one isothiazolone biocide comprising 2-methyl-4-isothiazolin-3-one or 2-n-octyl-4-isothiazolin-3-one; and (iii) at least one thickener comprising a hydroxyethyl cellulose, a carboxymethyl cellulose, an alkali soluble emulsion polymer, a hydrophobically modified alkali soluble emulsion polymer or a hydrophobically modified hydroxyethyl cellulose. * In one embodiment of the invention, the method comprises combining in a latex paint: (i) at least one stabilizer comprising a hindered phenol, a hindered amine, an unsaturated fatty acid, nicotinamide, or a thiodicarboxylic acid; (ii) at least one isothiazolone biocide comprising 2-methyl-4-isothiazolin-3-one or 2-n-
a. octyl-4-isothiazolin-3-one; and (iii) at least one thickener comprising a : oo polyurethane, a hydroxyethyl cellulose, a carboxymethyl cellulose, an alkali soluble emulsion polymer, a hydrophobically modified alkali soluble emulsion polymer or a hydrophobically modified hydroxyethyl cellulose.
DETAILED DESCRIPTION OF THE INVENTION
“MIT” is 2-methyl-4-1sothiazolin-3-one, also referred to by the name 2- methyl-3-isothiazolone. “CMIT” is 5-chloro-2-methyl-4-isothiazolin-3-one, also referred to by the name 5-chloro-2-methyl-3-isothiazolone. “OIT” is 2-n-octyl-4- 1sothiazolin-3-one, also referred to by the name 2-n-octyl-3-isothiazolone. “BIT” is 1,2-benzisothiazolin-3-one. “(Meth)acrylic” or “(meth)acrylate” refer to acrylic or methacrylic, and acrylate or methacrylate, respectively. An “alkyl” group is a saturated hydrocarbyl group having from one to twenty carbon atoms in a linear, branched or cyclic arrangement. In one preferred embodiment, alkyl groups are acyclic. In one preferred embodiment, alkyl groups have from one to eight carbon atoms, alternatively from one to four carbon atoms.
The following abbreviations are used throughout the specification: ppm = parts per million by weight (weight/weight), mL = milliliter, Al=active ingredient, i.e., total amount of isothiazolones. Unless otherwise specified, temperatures are in degrees centigrade (°C), and references to amounts or percentages are by weight.
Combinations of the listed stabilizers may be used, with or without additional stabilizers. Hindered phenol stabilizers suitable for use in this invention include, e.g., 2,6-di-tert-butyl-4-methylphenol (BHT), 2,6-di-tert-butyl- 4-methoxyphenol, 2-tert-butyl-4-hydroxyanisole (BHA), propyl 3,4,5- trihydroxybenzoate, 2-(1,1-dimethylethyl)-1,4-benzenediol, 2,5-di-tert- butylhydroquinone, 4-tert-butylcatechol; pentaerythritol, tetrakis(3-(3,5-di-tert- butyl-4-hydroxyphenyl)propionate) (available from Ciba Corp. as IRGANOX 1010); octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate (available from
Ciba Corp. as IRGANOX 1076); and 2',3-bis[[3-[3,5-di-tert-butyl-4- hydroxyphenyllpropionylllpropionohydrazide (available from Ciba Corp. as -JRGANOX MD 1024). Hindered amine stabilizers suitable for use in this invention include, e.g., 4-hydroxy-2,2,6,6-tetramethylpiperidine, TINUVIN.770, . =. diphenylpicrylhydrazyl, N-methylaniline, diphenylamine, tetra-benzyl-p- phenylenediamine; 1,3,5-triazine-2,4,6-triamine,N,N"’-[1,2-ethane-diyl-bis [[[4,6- bis: [butyl (1,2,2,6,6-pentamethyl-4-piperidinyl)amino]-1,3,5-triazine-2-yl] imino]- 3,1-propanediyl] ] bis [N’,N”- dibutyl-N’,N"-bis(1,2,2,6,6-pentamethyl-4- piperidinyl)- (available from Ciba Corp. as CHIMASSORB 119 FL); 1,6
Hexanediamine, N, N'-bis(2,2,6,6-tetramethyl-4-piperidinyl)-polymer with 2,4,6- trichloro-1,3,5- triazine, reaction products with N-butyl-1-butanamine an N- butyl-2,2,6,6-tetramethyl-4-piperidinamine (available from Ciba Corp. as
CHIMASSORB 2020); and Polyl[6-[(1,1,3,3-tetramethylbutyl)amino)-1,3,5- triazine-2,4-diyll[(2,2,6,6-tetramethyl-4-piperidinyl)imino]-1,6- hexanediyll(2,2,6,6-tetramethyl-4-piperidinyl)iminol]) (available from Ciba Corp. as CHIMASSORB 944). A particularly preferred N,N-dialkylhydroxylamine is
N,N-diethylhydroxylamine.
Fatty acids are acyclic aliphatic carboxylic acids containing from 8 to 24 carbon atoms; typically, they contain from 12 to 22 carbon atoms. With respect to carbon-carbon bonds, fatty acids may be saturated or unsaturated.
Unsaturated fatty acids may be monounsaturated or polyunsaturated (typically 2 or 3 carbon-carbon double bonds). Polyunsaturated fatty acids or their derivatives are preferred as stabilizers. Particularly preferred polyunsaturated fatty acids include, e.g., linolenic acid, stearidonic acid, ecosatetraenoic acid, eicosapentaenoic acid, clupanodonic acid, docosahexaenoic acid, linoleic acid, ecosadienoic acid, arachidonic acid, docosadienoic acid, adrenic acid, docosapentaenoic acid, mead acid, rumenic acid, calendic acid, jacaric acid, eleostearic acid, catalpic acid, pucinic acid, rumelenic acid, parinaric acid, and bosseopentaenoic acid. Derivatives include salts, alkyl esters, diglycerides, and triglycerides. Particularly preferred derivatives are diglycerides and triglycerides.
Thiodicarboxylic acids include, e.g., 3,3"-thiodipropionic acid and 3,3 thiodiacetic acid.
Preferably, the stabilizer(s) is present in the latex paint at a total level from 10 ppm to 2000 ppm. In one embodiment of the invention, the stabilizer is
BE present at a level of no greater than 1500 ppm, alternatively no greater than Co : 1000 ppm, alternatively no greater than 500 ppm, alternatively no greater than 250 ppm, alternatively no greater than 200 ppm, alternatively no greater than 150 ppm. In one embodiment of the invention, the stabilizer is present at a level of at least 20 ppm, alternatively at least 50 ppm, alternatively at least 75 ppm.
Preferably, the amount of stabilizer is from 10% to 100%, more preferably from 70% to 100% of the total amount of MIT and OIT.
Latex paints may contain a variety of polymeric binders, including, e.g., acrylic polymers and vinyl acetate polymers, e.g., ethylene vinyl acetate. In one embodiment of the invention, the paint contains acrylic polymers, i.e., polymers having at least 75% monomer residues of (meth)acrylic acids and alkyl (meth)acrylate esters, more preferably at least 90%. The latex paints preferably have a pigment volume concentration {PVC, defined as [(volume of inorganic solids)/(volume of inorganic solids + volume of polymeric binder)] * 100%} of 15% to 70%, more preferably 45% to 70%, more preferably from 55% to 70%.
Preferably, the thickener(s) is present in the paint at a level from 0.1% to 1.2%, alternatively from 0.1% to 1.1%, alternatively from 0.1% to 0.9%, alternatively from 0.15% to 0.6%, as a weight percentage of solid thickener in the total weight of the paint. One or more other thickeners may be present. In one embodiment of the invention, the thickener used in the latex paint comprises a hydroxyethyl cellulose (HEC). In one embodiment of the invention, the latex paint has less than 5% of polyurethane thickeners, alternatively less than 4%, alternatively less than 3%, alternatively less than 2%, alternatively less than 1%, alternatively less than 0.5%. In one embodiment of the invention, the latex paint is free of polyurethane thickeners.
Preferably, the total level of isothiazolone biocide in the paint is from 10 ppm to 2000 ppm. In one embodiment of the invention the isothiazolone biocide level is at least 20 ppm, alternatively at least 50 ppm, alternatively at least 75 ppm. In one embodiment of the invention, the isothiazolone biocide level is no greater than 1500 ppm, alternatively no greater than 1000 ppm, alternatively no greater than 500 ppm, alternatively no greater than 250 ppm, alternatively no greater than 200 ppm, alternatively no greater than 150 ppm. In one
- embodiment of the invention, the latex paint comprises MIT. In one embodiment - of the invention, the MIT used in the latex paint contains less than 2% CMIT, alternatively less than 1%, alternatively less than 0.5%, alternatively less than 0.2%, alternatively less than 0.1%. Preferably, the total level of MIT and OIT in 5 the paint is from 10 ppm to 2000 ppm. In one embodiment of the invention the total level of MIT and OIT is at least 20 ppm, alternatively at least 50 ppm, alternatively at least 75 ppm. In one embodiment of the invention, the total level of MIT and OIT is no greater than 1500 ppm, alternatively no greater than 1000 ppm, alternatively no greater than 500 ppm, alternatively no greater than 250 ppm, alternatively no greater than 200 ppm, alternatively no greater than 150 ppm.
The stabilizer can be added at any point during the paint-making process in any form (e.g., as an emulsion, dispersion, dry powder, paste or liquid). The stabilizer, isothiazolone biocide and thickener may be combined in the latex paint in any order or in any manner. In one embodiment of the invention, the thickener and stabilizer are added with the solid components of the paint, e.g., the pigments, and the biocide is added with the liquid polymer latex. In another embodiment, the stabilizer is added to the biocide prior to adding this combination to the paint. In another embodiment, the stabilizer and the biocide are added to the liquid polymer latex.
In one embodiment of the invention, the method comprises combining in a latex paint: (i) at least one stabilizer comprising a hindered amine, an unsaturated fatty acid, nicotinamide, or a thiodicarboxylic acid; (ii) at least one isothiazolone biocide comprising 2-methyl-4-isothiazolin-3-one or 2-n-octyl-4- isothiazolin-3-one; and (iii) at least one thickener comprising a polyurethane, a hydroxyethyl cellulose, a carboxymethyl cellulose, an alkali soluble emulsion polymer, a hydrophobically modified alkali soluble emulsion polymer or a hydrophobically modified hydroxyethyl cellulose.
The paint used as the basis for this study contained 22% of an acrylic latex, 22% water, 24% titanium dioxide, 14% talc, 7% clay, 9% calcium carbonate, and other minor ingredients including 0.25% hydroxyethyl cellulose thickener. A series of paints were prepared by adding MIT at 1000 ppm to the basis latex paint. This amount is ten-fold normal-use level, chosen to increase the resulting odor and allow easier detection and differentiation between samples. The stabilizer was added immediately prior to addition of the biocide.
The paint had a PVC of 63.25%. The stabilized paints were then subjected to accelerated, in-can aging at 40 °C or 50 °C for 2 or 3 weeks. After heat-age, the paints were coated on a glass support and dried for 48 h. A sensory (olfactory) evaluation was conducted for the sulfury odor with the results listed in Table I. “An identical follow-up experiment was conducted with selected scavengers in combination with a typical use level of MIT (100 ppm). These results are reported in Table II.
So Table I. Sensory evaluation of paint films containing various radical scavengers... . in paint containing 1000 ppm MIT after in-can heat age, coating, and air drying (scavenger level in ppm) (4-OH TEMPO) (1000) (1000) 2,5-di-tert-butylhydroquinone 1000) | ~~ mone (1000) linoleicacid 1000) | mome 1. Hindered amine light stabilizer comprising a benzotriazole-substituted hindered phenol (available from Ciba Corp.) 2. Hindered phenol light stabilizer (available from Ciba Corp.)
Table II. Sensory evaluation of paint films containing various radical scavengers. in paint containing 100 ppm MIT after in-can heat age, coating, and air drying (scavenger level at 100 ppm)
Cen tetramethylpiperidinoxyl — 4-OH
TEMPO
4. 25-ditert-butylhydroquinone [mone 6. linoleicacid [pone

Claims (13)

Hi The—
1. A method for reducing odor arising from surfaces coated with latex paints; said method comprising combining in a latex paint: (i) at least one stabilizer comprising 4-hydroxy-2,2,6-tetramethylpiperidinoxyl, a hindered phenol, a hindered amine, an unsaturated fatty acid, nicotinamide, a thiodicarboxylic acid or N,N- dialkylhylamine; (ii) at least one isothiazolone biocide comprising 2-methyl-4- isothiazolin-3-one or 2-n-octyl-4-isothiazolin-3-one; and (iii) at least one thickener comprising a hydroxyethyl cellulose, a carboxymethyl cellulose, an alkali soluble emulsion polymer, a hydrophobically modified alkali emulsion or a hydrophobically modified hydroxyethyl cellulose.
2. The method of claim 1 in which said at least one stabilizer comprisises at least one of 4-hydroxy-2,2,6,6-tetramethylpiperidinoxyl, a hindered phenol and an unsaturated fatty acid.
3. The method of claim 2 in which said at least one stabilizer comprises at least one hindered phenol selected from among 2,6-di-tert-butyl-4- methylphenol 2,6-di-tert- butyl-4-methoxyphenol, 2-tert-butyl-4-hydroxyanisole, propyl 3,4,5-trihydroxybenzoate, 2-(1,1-dimethylethyl)-1,4-benzenediol, 2,5-di-tert-butylhydroquinone,-4-tert- butylcatechol; pentaerythritol, tetrakis (3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate); octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate; and 3°,3-bis[[3-5-di-tert- butyl-4 hydroxyphenyl]propionyl]]propionohydrazide.
4, The method of claim 2 in which said at least one stabilizer comprises at least one unsaturated fatty acid. The method of claim 4 in which said at least one unsaturated fatty acid comprises linoleic acid.
] Co
6. The method of claim 2 in which said at least one stabilizer comprises 4- =~ = hydroxy-2,2,6,6-tetramethylpiperidinoxyl.
7. The method of claim 6 in which the latex paint comprises 2-methyl-4- isothiazolin-3-one and a hydroxyethyl cellulose.
8. The method of claim 7 in which the amount of stabilizer is from 70% to 100% of the amount of 2-methyl-4-isothiazolin-3-one, and the latex paint has less than 5% of polyurethane thickeners.
9. The method of claim 1 in which the latex paint has less than 5% of polyurethane thickeners.
10. The method for reducing odor arising from surfaces coated with latex paints; said method comprising combining in a latex paint: (i) at least one stabilizer comprising a hindered phenol, a hindered amine, an unsaturated fatty acid, nicotinamide, or a thiodicarboxylic acid; (ii) at least one isothiazolone biocide comprising 2-methyl-4- isothiazolin-3-one or 2-n-octyl-4-isothiazolin-3-one; and (iii) at least one thickener comprising a polyurethane, a hydroxyethyl cellulose, a carboxymethyl cellulose, an alkali soluble emulsion polymer, a hydrophobically modified alkali soluble emulsion polymer or a hydrophobically modified hydroxyethyl cellulose.
11. A latex paint including (i) at least one stabilizer comprising 4-hydroxy- 2,2,6-tetramethylpiperidinoxyl, a hindered phenol, a hindered amine, an unsaturated fatty acid, nicotinamide, a thiodicarboxylic acid or N,N-dialkylhylamine; (ii) at least one isothiazolone biocide comprising 2-methyl-4-isothiazolin-3-one or 2-n-octyl-4- isothiazolin-3-one; and (iii) at least one thickener comprising a hydroxyethyl cellulose, a carboxymethyl cellulose, an alkali soluble emulsion polymer, a hydrophobically modified alkali emulsion or a hydrophobically modified hydroxyethyl cellulose.
12. A method of manufacturing a latex paint, said method comprising combining in a latex paint: (i) at least one stabilizer comprising 4-hydroxy-2,2,6- tetramethylpiperidinoxyl, a hindered phenol, a hindered amine, an unsaturated fatty acid, : nicotinamide, a thiodicarboxylic acid or N,N-dialkylhylamine; (ii) at least one
[} ’ isothiazolone biocide comprising 2-methyl-4-isothiazolin-3-one or 2-n-octyl-4- isothiazolin-3-one; and (iii) at least one thickener comprising a hydroxyethyl cellulose, a carboxymethyl cellulose, an alkali soluble emulsion polymer, a hydrophobically modified alkali emulsion or a hydrophobically modified hydroxyethyl cellulose.
13. A method of manufacturing a latex paint, substantially as herein described with reference to and as exemplified in the Example.
12. Any one of a series of latex paints, substantially as herein described with reference to and as exemplified in the Example. Dated this 6 day of February 2008 : BOWMAN GILFILLAN JOHN & KERNICK FOR THE APPLICANT
ZA200801267A 2007-02-09 2008-02-06 Method for reducting odor in latex paints ZA200801267B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US90059607P 2007-02-09 2007-02-09

Publications (1)

Publication Number Publication Date
ZA200801267B true ZA200801267B (en) 2008-12-31

Family

ID=39931968

Family Applications (1)

Application Number Title Priority Date Filing Date
ZA200801267A ZA200801267B (en) 2007-02-09 2008-02-06 Method for reducting odor in latex paints

Country Status (2)

Country Link
CN (1) CN101240128B (en)
ZA (1) ZA200801267B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079028A (en) * 1975-10-03 1978-03-14 Rohm And Haas Company Polyurethane thickeners in latex compositions
US4102843A (en) * 1977-01-07 1978-07-25 Rohm And Haas Company Dispersing paint pigments

Also Published As

Publication number Publication date
CN101240128B (en) 2012-06-27
CN101240128A (en) 2008-08-13

Similar Documents

Publication Publication Date Title
US7767729B2 (en) Method for reducing odor in latex paints
US11312867B2 (en) Water-based coating compositions that resist dirt pickup
ATE460461T1 (en) COMPOSITION FOR PROTECTION AGAINST WATER TREES
JP2008540760A5 (en)
BRPI0709118B1 (en) stable aqueous suspension concentrate, its compositions and article comprising substrate coated with said concentrate
US5460644A (en) Stain-blocking and mildewcide resistant coating compositions
US10196537B2 (en) Dirt pick-up resistant composition
CA1207481A (en) Radiation stabilization of polymeric material
CA3091374A1 (en) Coalescing agents for waterborne coatings
EP2216372B1 (en) Compounds for preventing Ghost odour
BR112021008724A2 (en) aqueous coatings containing biosurfactants as bioadjuvants and methods of using them
ZA200801267B (en) Method for reducting odor in latex paints
BRPI0502912A (en) stabilizing composition, method for stabilizing a composition, polymeric composition, and, article
JPH0341127B2 (en)
SE2030058A1 (en) A non-sensitizing anti-microbial composition for waterborne coating compositions
US4711915A (en) Surface coating compositions containing substituted 1,3,4-thiadiazoles
JP6938242B2 (en) Industrial preservative
BRPI0602502B1 (en) COMPOSITION OF RESIN-FIXED BIOCIDA
CN112839515A (en) Process for producing aqueous coating composition
BR102012029205B1 (en) process and composition comprising halamine
BR112019015590B1 (en) WATER-BASED COATING COMPOSITION WITH LOW VOLATILE ORGANIC COMPOUNDS AND HIGH RESISTANCE TO DIRT SETTING, AND, USE OF WATER-BASED COATING COMPOSITION
CZ306201B6 (en) Softened nitrocellulose coating compositions
JP2006137788A (en) Stabilized polyolefin-based resin and method for stabilizing polyolefin-based resin