ZA200608135B - Synthesis of pyrrole-2-carbonitriles - Google Patents

Synthesis of pyrrole-2-carbonitriles Download PDF

Info

Publication number
ZA200608135B
ZA200608135B ZA200608135A ZA200608135A ZA200608135B ZA 200608135 B ZA200608135 B ZA 200608135B ZA 200608135 A ZA200608135 A ZA 200608135A ZA 200608135 A ZA200608135 A ZA 200608135A ZA 200608135 B ZA200608135 B ZA 200608135B
Authority
ZA
South Africa
Prior art keywords
process according
pyrrole
carbonitrile
solution phase
solvent
Prior art date
Application number
ZA200608135A
Inventor
Helom Jean Louise
Pilcher Anthony Scott
Rubezhov Arkadiy Zinoviy
Wilk Bogdan Kazimierz
Original Assignee
Wyeth Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wyeth Corp filed Critical Wyeth Corp
Publication of ZA200608135B publication Critical patent/ZA200608135B/en

Links

Landscapes

  • Pyrrole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

SYNTHESIS OF PYRROLE-2-CARBONITRILES
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Application No. 60/557,807, filed on
March 30, 2004, the disclosure of which is incorporated by reference herein in its entireties.
This application corresponds to U.S. Application No. __~ filed on March 22, 2005.
FIELD OF THE INVENTION
[0002] The present invention is in the field of synthesis and isolation of pyrrole-2- carbonitriles such as 1-methylpyrole-2-carbonitrile.
BACKGROUND OF THE INVENTION
[0003] Pyrrole-2-carbonitriles are useful as intermediates in the production of chemical compounds, including pharmaceutical and insecticide compositions. See, for example, U.S.
Patent Nos. 6,492,402 (directed to thrombin inhibitors) and 5 ,204,332 (directed to pyrrole carbonitrile insecticidal, acaricidal and molluscicidal agents).
[0004] Bamett, et al., J. Can. Chem. 1980, 58, 409, teaches a synthetic process for 1- methylpyrrole-2-carbonitrile involving the reaction of 1-methylpyrrole with chlorosulfonyl isocyanate in dichloromethane in a first step. In Barnett’s process, the product of the first step was reacted with DMF, and the reaction mixture was then poured into ice-cold 4M HCL
Following product workup and vacuum distillation, 1-methylpyrrole-2-carbonitile was said to be obtained in 58% yield.
[0005] Other synthetic methods for 1-methylpyrrole-2-carbonitrile from 1- methylpyrrole are said to include reaction with methanolic cyanide solution under anoidic oxidatien conditions {J. Am. Chem. Sot. 1977, 99, 6111), reaction with excess 1,4- dicyanobenzene as a photosensitizer in the presence of methanolic cyanide solution (J. Chem.
Soc., Chem. Commun. 1978, 1108), reaction of trimethylsilyl cyanide in a tetraphenylphorphine- sensitized photooxidation at -70 °C (J. Am. Chem. Soc. 1985, 107, 5279), and reaction with freshly prepared Ph;P(SCN) at -40 °C (J. Chem. Soc., Perkin Trans. 11980, 1132). Another synthetic process starts with 2-pyrrolecarboxaldehyde (Can. J. Chem. 1959, 37, 2053 and J.
Chem. Soc., Chem. Commun. 1972, 1226). Yet another process uses 2-pyrrolecarboxaldehyde as the starting material (J. Prakt. Chem. 1994, 336, 467 and Tetrahedron Lett. 1993, 34, 141). Such processes often require tedious aqueous workup and repetitive extractions with ether, methylene chloride, or some other suitable solvent. Some procedures require the use of chromatography in the isolation/purification step.
SUMMARY OF THE INVENTION
[0006] In some aspects, the instant invention concerns a process for the production of pyrrole-2-carbonitriles such as 1-methylpyrrole-2-carbonitrile. A pyrrole is reacted with chlorosulfonyl isocyanate in the presence of a solvent that is substantially unreactive with chlorosulfonyl isocyanate and contacting the resulting product with a molar excess (preferably at least about 2.0 molar equivalents) of an N,N-dialkylformamide. This product is then contacted with a molar excess (preferably at least about 2.0 molar equivalents) of an organic base to produce a precipitate and a solution phase. The precipitate is then separated from the solution phase and the corresponding pyrrole-2-carbonitrile is isolated from the resulting solution phase.
Tn some embodiments, water is added to the solution phase prior to isolating the pyrrole-2- carbonitrile. In certain embodiments, the pyrrole-2-carbonitrile is isolated by distillation.
[0007] In some embodiments, the solvent is toluene or acetonitrile. In certain of these embodiments, it is preferred that the solvent comprises toluene.
[0008] In other preferred embodiments, the N,N-dialkylformamide is N,N- dimethylformamide (DMF).
[0009] In certain embodiments, the base is a tertiary amine or an aromatic amine. In some preferred embodiments, the base is triethylamine.
[0010] In yet other embodiments, reaction of the pyrrole and the chlorosulfonyl isocyanate is performed at a temperature at or below about 0 °C. In certain embodiments 0.1 to 0.4 molar equivalents of water per equivalent of the solvent is added to effect dilution. In certain preferred embodiments, the isolated solution phase is concentrated prior to its subsequent dilution and distillation.
[0011] ii ofiver aspects, the invention also concerns products that are made by the processes of the instant invention.
DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
[0012] The instant invention relates to methods of producing pyrrole-2-carbonitriles, particularly 1-methylpyrrole-2-carbonitrile and preferably with improved isolated yields. In preferred embodiments, the methods of the invention involve reacting a pyrrole such as 1- methylpyrrole with chlorosulfonyl isocyanate. In certain embodiments, the molar ratio of pyrrole to chlorosulfonyl isocyanate is from about 0.9:1 to about 1.1:1, preferably approximately 1:1. It is also preferred that the reaction be preformed at or below about 0 °C. The product of this reaction is then contacted with N,N-dialkylformamide, followed by the addition of an organic base.
[0013] The synthesis of 1-methylpyrrole-2-carbonitrile from 1-methylpyrrole is illustrated in Scheme I.
Scheme I lo}
XS
_ oN Xo 1-methylpyrrole chlorosulfonyl isocyanate i) DMF ii) triethylamine { = 1-methylpyrrole-2-carbonitrile
[0014] Although we do not intend to be bound by any particular theory or mechanism of operation, the N,N-dialkylformamide (such as N,N-dimethylformamide (DMF)) is believed to serve as a catalyst for the reaction. It is preferred that two equivalents of DMF be used in the instant process. During the reaction, DMF-HC] and DMF-SO; complexes are believed to be formed. By using a molar excess of DMF (preferably at least two equivalents), it is believed that one can avoid emission of the gaseous by-products HCI and SOs.
[0015] Alkyl groups in N,N-dialkylformamides include aliphatic hydrocarbon chains having one to six, preferably one to four, and more preferably one to three carbon atoms, and includes, but is not limited to, straight and branched chains such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-pentyl, isopentyl, neo-pentyl, n-hexyl, and isohexyl. N,N-dialkylformamides also include cyclic compositions, e.g., where the cyclic group can have 5-7 ring members, such as six including N-formylpiperidine and N-formylmorpholine.
[0016] Organic bases useful in the instant invention include, but are not limited to, tertiary amines and aromatic amines. Tertiary amines include, but are not limited to, trimethylamine, triethylamine, tripropylamine, 1-methylpiperidine, 1,4-dimethylpiperazine, and -N,N-diisopropylethylamine (Hunig’s Base). Aromatic amines include, but are not limited to, pyridine, 2-picoline, 2,6-lutidine, quinoline, 5,6,7,8-tetrahydroquinoline. In some embodiments, triethylamine is preferred.
[0017] Solvents useful in the instant invention are those that are substantially unreactive with chlorosulfonyl isocyanate. These solvents include aliphatic hydrocarbons (such as heptane), aromatic hydrocarbons (such as toluene), chlorinated hydrocarbons (such as methylene chloride), chiorobenzene, dialkyl ethers (such as diisopropyl ether) and alkyl nitriles (such as acetonitrile). In some embodiments, toluene or acetonitrile are preferred. In other embodiments, toluene is preferred.
[0018] The pyrrole moiety is generally sensitive to acids and will form tar in their presence. In the instant process, the use of a molar excess of a base such as triethylamine (Et;N) (preferably at least two equivalents), is believed to effect precipitation of a relatively pure, solid salt (e.g., Bt;N-SO3) that can be removed by filtration. The filtrate (containing, e.g., BtsN-HCI) can be worked up by aqueous extraction. Applicants have found that the triethylamine treatment increased the 31-41 % yield reported by Barnett, et al., J. Can. Chem. 1980, 58, 409 to 65-76%.
[0019] Applicants have found that although one can distill the solution phase that is isolated following treatment with the organic base, in some embodiments, it is preferred to first add at least some water thereto, particularly when the distillation is performed at atmospheric pressure. While not wanting to be bound by theory, it is believed the addition of water breaks, for example, the toluene-nitrile complex. The addition of water has been found to allow »
separation of toluene from the product at a temperature of less than 85 °C. In certain embodiments, 0.1 to 0.4 molar equivalent of water per equivalent of solvent is used.
[0020] This invention can be further illustrated by the following examples of the preferred embodiments thereof, although it will be understood that these examples are included only for illustration and comparison to the existing art, and are not intended to limit the scope of the invention unless specifically indicated.
Example 1
[0021] A 5 liter flask was charged with acetonitrile (2.0 L) and 1-methylpyrrole (83 g, 3.5 mol). Chlorosulfonyl isocyanate (495 g, 3.5 mol) was added dropwise maintaining so as to maintain the reaction temperature at 6 to 0 °C. It should be noted that chlorosulfonyl isocyanate is corrosive and reacts violently with water. After stirring for 15 min., N,N-dimethylformamide (DMF, 511 g, 7.0 mol) was added at -4 to 0 °C followed by triethylamine (707 g, 7.0 mol) and the stirring was continued at 10 °C. The resulting white precipitate was filtered and washed with - acetonitrile (200 mL). The filtrate was concentrated under reduced pressure. Water (4.0 L) was added to the residue, phases were separated and the aqueous phase was extracted with ethyl acetate (2 x 200 mL). The combined organic phases were washed with brine (3 x 500 mL). The organic phase was concentrated under vacuum and the residue was distilled using a Vigreux column at approximately 4 mm Hg/ 70 + 10 °C to give 1-methylpyrrole-2-carbonitrile (282 g, 76% yield).
Example 2
[0022] Starting with 47.0 g of 1-methylpyrrole, the reaction was conducted in a marmer generally analogous to Example 1 except that the acetonitrile was replaced with toluene. After addition of chlorosulfony! isocyanate, two layers were formed. Upon cooling to Oto 5 °C, the bottom layer solidified. The hygroscopic solids were collected by filtration and washed with toluene. Concentration of the filtrates gave 325 mL of a toluene solution containing (as determined by 1H NMR) 0.55 mol of 1-methylpyrrole-2-carbonitrile (58.3 g, 95 % yield).
Example 3
[0023] A crude solution of 1-methylpyrrole-2-carbonitrile in toluene, produced as in
Example 2, was washed with brine containing sodium hydroxide to remove traces of acids. The separated organic layer (673 g) was atmospherically distilled (head temperature 110-115 °C) to remove the bulk of the toluene. Water was added (255 mL total) and the distillation was continued until te ead temperature started to increase to above 86 °C. The pot residue (290 g), containing some water, was fractionally distilled under reduced pressure to give 1- methylpyrrole-2-carbonitrile (217 g). :
[0024] All patents, patent applications, and other publications that appear in this application are incorporated herein in their entirety.

Claims (18)

What is Clainzed:
1. A process for preparing a pyrrole-2-carbonitrile comprising: (a) reacting apyrrole with chlorosulfonyl isocyanate in the presence of a solvent; (b) contacting the product of step (a) with a molar excess of an N,N- dialkylformamide; (c) contacting the product of step (b) with a molar excess of an organic base resulting in the production of a precipitate and a solution phase; (d) separating the precipitate from the solution phase; and (e) isolating a pyrrole-2-carbonitrile from the solution phase of step (d).
2. The process of claim 1 wherein at least about 2.0 molar equivalents of an N,N- dialkylformamide are used in step (b).
3. The process of claim 1 wherein said organic base is a tertiary amine or an aromatic amine.
4, The process of claim 3 wherein at least 2.0 molar equivalents of a tertiary amine or aromatic amine are used in step (c).
5. A process according to any one of claims 1 to 4 wherein the pyrrole-2-carbonitrile is isolated by distillation.
6. A process according to any one of claims 1 to 5 wherein the pyrrole is 1-methylpyrrole.
7. A process according to any one of claims 1 to 6 wherein the solvent is toluene or acetonitrile.
8. A process according to any one of claims 1 to 6 wherein the solvent is toluene.
9. A process according to any one of claims 3 to 8 wherein the tertiary amine is triethylamine.
10. A process according to any one of claims 3 to 8 wherein the aromatic amine is pyridine.
11. A process according to any one of claims 1 to 10 wherein the N,N-dialkylformamide is N,N-dimethylformamide, N-formylpiperidine or N-formylmorpholine.
12. A process according to any one of claims 1 to 10 wherein the N,N-dialkylformamide is N,N-dimethylformamide.
13. A process according to any one of claims 1 to 12 wherein the molar ratio of the pyrrole to chlorosulfonyl isocyanate is from 0.9:1 to 1.1:1.
14. A process according to claim 5 wherein water is added to the solution phase prior to distilling the pyrrole-2-carbonitrile from the solution phase of step (d).
15. A process according to claim 14 wherein 0.1 to 0.4 molar equivalent of water per equivalent of solvent is utilized.
16. A process according to claim 15 wherein the solution phase of step (d) is concentrated prior to the addition of water in step (e).
17. A process according to any one of claims 1 to 16 wherein step (a) is performed at a temperature at or below about 0 °C.
18. A product that is produced by the process of any one of claims 1 to 17.
ZA200608135A 2004-03-30 2006-09-29 Synthesis of pyrrole-2-carbonitriles ZA200608135B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US55780704P 2004-03-30 2004-03-30

Publications (1)

Publication Number Publication Date
ZA200608135B true ZA200608135B (en) 2008-07-30

Family

ID=37955147

Family Applications (1)

Application Number Title Priority Date Filing Date
ZA200608135A ZA200608135B (en) 2004-03-30 2006-09-29 Synthesis of pyrrole-2-carbonitriles

Country Status (2)

Country Link
CN (1) CN1938270B (en)
ZA (1) ZA200608135B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102358715B (en) * 2011-08-31 2013-06-26 河南科技大学 Method for synthesizing aromatic nitrile with arylboronic acid

Also Published As

Publication number Publication date
CN1938270B (en) 2011-11-23
CN1938270A (en) 2007-03-28

Similar Documents

Publication Publication Date Title
US8106187B2 (en) Process for the preparation of a macrocycle
EP3481201B1 (en) Processes for the preparation of 4-alkoxy-3-(acyl or alkyl)oxypicolinamides
KR100953879B1 (en) Novel optically active compounds, method for kinetic optical resolution of carboxylic acid derivatives and catalysts therefor
US7271268B1 (en) Process for preparation of [1-(mercaptomethyl)cyclopropyl]acetic acid and related derivatives
CN113135869B (en) Method for preparing alpha-aryl carbonyl compound and product
EP1730109B1 (en) Synthesis of pyrrole-2-carbonitriles
US20090253918A1 (en) Novel intermediate for glyt1 inhibitor
ZA200608135B (en) Synthesis of pyrrole-2-carbonitriles
US10457640B2 (en) Synthesis of inhibitors of EZH2
US20200255363A1 (en) Directed Beta-C(sp3)–H Iodination and Arylation of Ketones
KR20130034012A (en) Processes and intermediates for preparing a macrocyclic protease inhibitor of hcv
EP0768296B1 (en) A method for making alpha, beta-unsaturated-beta-trifluoromethyl-carboxylates
EP3484842B1 (en) Halogen-containing metathesis catalysts and methods thereof
MXPA06011026A (en) Synthesis of pyrrole-2-carbonitriles
IE47793B1 (en) 1-hydrocarbylpyrrole derivatives
JP4624923B2 (en) Hydroxyl protecting reagent and hydroxyl protecting method using the same
WO2017044043A1 (en) Process for direct amidation of amines via rh(i)-catalyzed addition of boroxines
JP2008503452A (en) Method for producing nitriles by elimination of water from aldehyde oximes with alkylphosphonic anhydrides
JP2004238322A (en) Method for producing (r)-3-aminopentanenitrile methanesulfonic acid salt
KR100927242B1 (en) Allyl allene derivatives and preparation methods thereof
KR100454090B1 (en) Process for preparing 3-chloro-2-(4-chloro-2-fluoro- 5-hydroxyphenyl)-4,5,6,7-tetrahydro-2H-indazole
SU565631A3 (en) Method for obtaining trizine derivatives
KR100647890B1 (en) Process for preparing serine alkyl ester derivatives
WO2008152514A2 (en) Process for the preparation of alfuzosin and salts thereof
KR20050062944A (en) New process for preparing diisopropyl ((1-((2-amino-6-chloro-9h-purin-9-yl)methyl)cyclopropyl)oxy)-methylphosphonate