ZA200509142B - Nitrogen-containing heteroaryl compounds and their use in increasing endogenous erythropoietin - Google Patents

Nitrogen-containing heteroaryl compounds and their use in increasing endogenous erythropoietin Download PDF

Info

Publication number
ZA200509142B
ZA200509142B ZA200509142A ZA200509142A ZA200509142B ZA 200509142 B ZA200509142 B ZA 200509142B ZA 200509142 A ZA200509142 A ZA 200509142A ZA 200509142 A ZA200509142 A ZA 200509142A ZA 200509142 B ZA200509142 B ZA 200509142B
Authority
ZA
South Africa
Prior art keywords
hydroxy
isoquinoline
amino
carbonyl
acetic acid
Prior art date
Application number
ZA200509142A
Inventor
Michael P Arend
Lee A Flippen
Guenzler-Pukall Volkmar
Ho-Wen-Bin
Eric D Turtle
Du Xiaohui
Original Assignee
Fibrogen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fibrogen Inc filed Critical Fibrogen Inc
Publication of ZA200509142B publication Critical patent/ZA200509142B/en

Links

Description

NITROGEN- CONTAINING HETEROARYL COMPOUNDS AND THEIR USE IN INCREASING ENDOGENEOUS
ERYTHROPOIETIN
Cross Reference to Related Application
[0001] This application claims the benefit under 35 U.S.C. §119(e) of United States
Provisional Application Serial No. 60/476,811, filed June 6, 2003; No. 60/476,420 filed
June 6, 2003; No. 60/476,633, filed June 6, 2003; and No. 60/476,519, filed June 6, 2003; all of which are hereby incorporated by reference in their entirety.
BACKGROUND OF THE INVENTION Field of the Invention
[0002] The present invention relates to methods and compounds capable of modulating the stability of the alpha subunit of hypoxia inducible factor (HIF) and increasing endogenous erythropoietin, ex vivo and in vivo.
State of the Art
[0003] An early response to tissue hypoxia is induction of hypoxia inducible factor (HIF), a basic helix-loop-helix (PHLH) PAS (Per/Arnt/Sim) transcriptional activator that mediates changes in gene expression in response to changes in cellular oxygen concentration. HIF is a heterodimer containing an oxygen-regulated alpha subunit (HIFa) and a constitutively expressed beta subunit (HIF), also known as aryl hydrocarbon receptor nuclear transporter (ARNT). In oxygenated (normoxic) cells, HIFo subunits are rapidly degraded by a mechanism that involves ubiquitination by the von Hippel-Lindau tumor suppressor (pVHL) E3 ligase complex. Under hypoxic conditions, HIF. is not degraded, and an active HIFa/B complex accumulates in the nucleus and activates the expression of several genes including glycolytic enzymes, glucose transporter (GLUT)-1, erythropoietin (EPO), and vascular endothelial growth factor (VEGF). (Jiang, ef al.,
(1996) J. Biol. Chem., 271:17771-17778; Tliopoulus, et al., (1996) Proc. Natl. Acad. Sci.
USA, 93:10595-10599; Maxwell, ef al., (1999), Nature, 399:271-275; Sutter, et al., (2000) Proc. Natl. Acad. Sci. USA, 97:4748-4753; Cockman, et al., (2000) J. Biol.
Chem., 275:25733-25741; and Tanimoto, et al., (2000) EMBO. J. 19:4298-4309.)
[0004] Levels of HIF protein are elevated in most cells in response to hypoxia and
HIF is induced in vivo when animals are subjected to anemia or hypoxia. HIFa levels rise within a few hours after the onset of hypoxia and return to baseline under continued hypoxic conditions. HIF has been implicated in numerous cellular and developmental processes including cell proliferation, angiogenesis, and cell cycle arrest. HIFa has also been associated with myocardial acute ischemia and early infarction, pulmonary hypertension, and inflammation. Although HIF has been associated with tumor growth and metastasis, there is little indication that HIF is directly involved in tumorigenesis.
Hypoxic preconditioning, in which a target organ is subjected to brief periods of hypoxia, has been shown to protect both myocardium and brain against hypoxic-ischemic injury.
HIF aq stabilization is closely associated with ischemia and is induced by preconditioning. (Wang and Semenza, (1993) Proc. Natl. Acad. Sci. USA, 90:4304-4308; Stroka, ef al., (2001) FASEB. J., 15:2445-2453; Semenza, ef al., (1997) Kidney Int., 51:553-555;
Carmeliet, ef al., (1998), Nature 394:485-490; Zhong, et al., (1999) Cancer Res., : 59:5830-5835; Lee, ef al., (2000) N. Engl. J. Med., 343:148-149; Sharp, et al., (2000) J.
Cereb. Blood Flow Metab., 20:1011-1032; Semenza, ef al., (2000) Adv. Exp. Med. Biol., 475:123-130; Thornton, ef al., (2000) Biochem. J. 350:307-312; Deindl and Schaper, (1998) Mol. Cell. Biochem., 186:43-51; Bergeron, ef al., (2000) Ann. Neurol. 48:285- 296.)
[0005] Several investigators have studied the mechanism of interaction between HIF a and pVHL. An oxygen-dependent degradation domain (ODD) within HIF-10 from residue 401 to 603 was originally identified as sufficient to confer oxygen-dependent instability to chimeric protein constructs. A domain containing a portion of the ODD, from residue 526 to 652, was found to be required for pVHL-dependent degradation.
Further, mutation of PsesY1 to aspartic acids or mutation of Ks3; to arginine within a region conserved among HIFa homologs (residue 556 to 574 in HIF-10) rendered the full-length HIFa protein stable under normoxic conditions and resistant to pVHL- mediated degradation. (Huang, ef al., (1998) Proc. Natl. Acad. Sci. USA, 95:7987-7992; and Tanimoto, ef al., (2000) EMBO. J. 19:4298-4309.)
[0006] HIFa levels are increased by a number of factors that mimic hypoxia, including iron chelators such as desferrioxamine (DFO) and divalent metal salts such as CoCl,,
HIFa levels are increased by angiotensin II, thrombin, and platelet-derived growth factor under normoxic conditions using a mechanism involving reactive oxygen species.
Reports have also suggested HIFa is regulated by phosphorylation through pathways involving nitric oxide-activated phosphatidylinositol 3"-kinase (PI3K), hepatocyte growth factor, or mitogen-activated protein kinase. Glycogen-synthase kinase, which isa downstream target of PI3K, directly phosphorylates the HIFo. ODD domain. (Richard, es al., (2000) J. Biol. Chem., 275:26765-26771; Sandau, ef al., (2000) Biochem. Biophys.
Res. Commun. 278:263-267; Tacchini, ef al., (2001) Carcinogenesis, 22:1363-1371; and
Sodhi, et al., (2001) Biochem. Biophys. Res. Commun, 287:292-300.)
[0007] Erythropoietin (EPO), a naturally occurring hormone that is produced in response to HIFa, stimulates the production of red blood cells (erythrocytes), which carry oxygen throughout the body. EPO is normally secreted by the kidneys, and endogenous
EPO is increased under conditions of reduced oxygen (hypoxia). All types of anemia are characterized by the blood's reduced capacity to carry oxygen, and thus are associated with similar signs and symptoms, including pallor of the skin and mucous membranes,
! weakness, dizziness, easy fatigability, and drowsiness, leading to a decrease in quality of life. Subjects with severe cases of anemia show difficulty in breathing and heart abnormalities. Anemia is typically associated with a condition in which the blood is deficient in red blood cells or in hemoglobin. h NG
[0008] Common causes of anemia include deficiencies of iron, vitamin By», and folic acid. Anemia can also develop in association with chronic diseases, e.g, in inflammatory disorders, including disorders with consequent inflammatory suppression of marrow, etc.
Anemia may be caused by loss of blood, for example, due to accidents, surgery, or gastrointestinal bleeding caused by medications such as aspirin and ibuprofen. Excessive blood loss can also be seen in women with heavy menstrual periods, and in people with stomach ulcers, duodenal ulcers, hemorrhoids, or cancer of the stomach or large intestine, etc.
[0009] Various conditions can cause the destruction of erythrocytes (hemolysis), thus leading to anemia. For example, allergic-type reactions to bacterial toxins and various chemical agents such as sulfonamides and benzene can cause hemolysis. Hemolytic anemia is often caused by chemical poisoning, parasites, infection, or sickle-cell anemia.
In addition, there are unusual situations in which the body produces antibodies against its own erythrocytes, resulting in hemolysis. Any disease or injury to the bone marrow can cause anemia, since that tissue is the site of erythropoiesis, i.e. erythrocyte synthesis.
Irradiation, disease, or various chemical agents can also cause bone marrow destruction, producing aplastic anemia. Cancer patients undergoing chemotherapy often have aplastic anemia. Anemia is also associated with renal dysfunction, the severity of the anemia correlating highly with the extent of the dysfunction. Most patients with renal failure undergoing dialysis suffer from chronic anemia.
[0010] In addition to being produced in the kidney, erythropoietin is produced by astrocytes and neurons in the central nervous system (CNS), and EPO and EPO receptors are expressed at capillaries of the brain-periphery interface. Furthermore, systemically administered EPO crosses the blood-brain barrier and reduces neuronal cell loss in response to cerebral and spinal chord ischemia, mechanical trauma, epilepsy, excitotoxins, and neuroinflammation. (Sakanaka, (1 998) Proc. Natl. Acad. Sci. USA, 95:4635-4640; Celik, et al., (2002) Proc. Natl. Acad. Sci. USA, 99:2258-2263; Brines, et al., (2000) Proc. Natl. Acad. Sci. USA, 97:10526-10531; Calapai, et al, (2000) Eur. J.
Pharmacol., 401:349-356; and Siren, ef al., (2001) Proc. Natl. Acad. Sci. USA, 98:4044- 404.)
[0011] In the late 1980s, Amgen introduced a genetically engineered EPO for the treatment of anemia in chronic renal failure patients. EPO is also administered to cancer patients undergoing radiation and/or chemotherapy, decreasing the need for blood transfusions. EPO is used to treat anemia associated with HIV infection or azidothymidine (AZT) therapy. Although the market for EPO therapy is increasing, future sales are adversely affected by the high cost of the product. In addition, recombinant EPO therapy requires intravenous administration of EPO one to three times per week for up to twelve weeks, a treatment regimen that limits self-administration and is inconvenient for the patient. Further, human serum EPO shows size heterogeneity due to extensive and varied glycosylation not reproduced in any recombinant human EPO.
[0012] Hypoxia, the condition that induces the production of HIF, is a state of reduced oxygen, which can occur when the lungs are compromised or blood flow is reduced.
Ischemia, reduction in blood flow, can be caused by the obstruction of an artery or vein by a blood clot (thrombus) or by any foreign circulating matter (embolus), or by a vascular disorder such as atherosclerosis. Reduction in blood flow can have a sudden :
onset and short duration (acute ischemia), or can have a slow onset with long duration or frequent recurrence (chronic ischemia). Acute ischemia is often associated with regional, irreversible tissue necrosis (an infarct), whereas chronic ischemia is usually associated with transient hypoxic tissue injury. If the decrease in perfusion is prolonged or severe, however, chronic ischemia can also be associated with an infarct. Infarctions commonly occur in the spleen, kidney, lungs, brain, and heart, producing disorders such as intestinal infarction, pulmonary infarction, ischemic stroke, and myocardial infarction.
[0013] Pathologic changes in ischemic disorders depend on the duration and severity of ischemia, and on the length of patient survival. Necrosis can be seen within the infarct in the first 24 hours, and an acute inflammatory response develops in the viable tissue adjacent to the infarct with leukocytes migrating into the area of dead tissue. Over succeeding days, there is a gradual breakdown and removal of cells within the infarct by phagocytosis, and replacement with a collagenous or glial scar.
[0014] Hypoperfusion or infarction in one organ often affects other organs. For example, ischemia of the lung, caused by, for example, a pulmonary embolism, not only affects the lung, but also puts the heart and other organs, such as the brain, under hypoxic stress. Myocardial infarction, which often involves coronary artery blockage due to thrombosis, arterial wall vasospasms, or viral infection of the heart, can lead to congestive heart failure and systemic hypotension. Secondary complications such as global ischemic encephalopathy can develop if the cardiac arrest is prolonged with continued hypoperfusion. Cerebral ischemia, most commonly caused by vascular occlusion due to atherosclerosis, can range in severity from transient ischemic attacks (TIAs) to cerebral infarction or stroke. While the symptoms of TIAs are temporary and reversible, TIAs tend to recur and are often followed by a stroke.
[0015] Occlusive arterial disease includes coronary artery disease, which can lead to myocardial infarction, and peripheral arterial disease, which can affect the abdominal aorta, its major branches, and arteries of the legs. Peripheral arterial disease includes
Buerger's disease, Raynaud's disease, and acrocyanosis. Although peripheral arterial ‘a “ disease is commonly caused by atherosclerosis, other major causes include, e.g., diabetes, ~ .. etc. Complications associated with peripheral arterial disease include severe leg cramps, angina, abnormal heart rhythms, heart failure, heart attack, stroke, and kidney failure.
[0016] Ischemic and hypoxic disorders are a major cause of morbidity and mortality.
Cardiovascular diseases cause at least 15 million deaths every year and are responsible for 30% of deaths worldwide. Among the various cardiovascular diseases, ischemic heart disease and cerebrovascular diseases cause approximately 17% of deaths. Annually, 1.3 million cases of nonfatal acute myocardial infarction are reported, making the prevalence approximately 600 per 100,000 people. Further, an estimated five million Americans suffer from venous thrombosis every year, and approximately 600,000 of these cases result in pulmonary embolism. About one-third of the pulmonary embolisms end in death, making pulmonary embolism the third most common cause of death in the United
States.
[0017] Currently, treatment of ischemic and hypoxic disorders is focused on relief of symptoms and treatment of causative disorders. For example, treatments for myocardial infarction include nitroglycerin and analgesics to control pain and relieve the workload of the heart. Other medications, including digoxin, diuretics, amrinone, B-blockers, lipid- lowering agents and angiotensin-converting enzyme inhibitors, are used to stabilize the condition, but none of these therapies directly address the tissue damage produced by the ischemia and hypoxia.
[0018] Due to deficiencies in current treatments and in the production and use of recombinant EPO, there remains a need for compounds that are effective in treating erythropoietin-associated conditions such as anemia, including anemia associated with diabetes, ulcers, kidney failure, cancer, infection, dialysis, surgery, and chemotherapy and conditions involving ischemia and hypoxia such as occlusive arterial disease, angina pectoris, intestinal infarctions, pulmonary infarctions, cerebral ischemia, and myocardial infarction. There is also a need for compounds that are effective in the prevention of tissue damage caused by ischemia that occurs due to, e.g., atherosclerosis, diabetes, and pulmonary disorders such as pulmonary embolism and the like. In summary, there isa need in the art for methods and compounds that modulate HIF and/or endogenous erythropoietin and can be used to treat and prevent HIF-associated and EPO-associated disorders including conditions involving anemia, ischemia and hypoxia.
SUMMARY OF THE INVENTION
: [0019] This invention is directed to novel compounds and methods that can modulate hypoxia inducible factor (HIF) and/or endogenous erythropoietin (EPO).
[0020] In one of its compound aspects, there is provided compounds represented by formula I:
RS R* o R R 3 Ra eG
P NG R"
Re RO) wherein: q is zero or one; p is zero or one;
Co WO 20041108681 PCT/US2004/017773 : Re is—COOH or -WR?; provided that when R* is COOH then p is zero and when Re is _WR® then p is one; | | .
W is selected from the group consisting of oxygen, -S(O)a- and NR’- where n is zero, one or two, R’ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, acyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, : heterocyclic and substituted heterocyclic and R® is selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, or when W is -NR’- then R® and R®, together with the nitrogen atom to which they are bound, can be joined to form a heterocyclic or a substituted heterocyclic group, provided that when W is —S(O),- and n is one or two, then
R%is not hydrogen;
R! is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkoxy, substituted alkoxy, amino, substituted amino, aminoacyl, aryl, substituted aryl, halo, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, and -
XRS where X is oxygen, ~S(O)q- Or -NR’- where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl or aryl or, when X is -NR’-, then R7 and RS, together with the nitrogen atom to which } they are bound, can be joined to form a heterocyclic or substituted heterocyclic group;
R? and R? are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, halo, hydroxy, cyano, -S(O)s-NR®-R® where nis 0, 1, or 2, -NRC(O)NR'R?, -XR® where X is oxygen, -S(O)y- or “NR’- where n is zero, one or two, each RS is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, 9
Amended sheet 10/04/2007
: aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic provided that when X is _S0- or -SO;-, thenRs © is not hydrogen, and R is selected from the group consisting of hydrogen, atkyl, aryl, or
R?, R? together with the carbon atom pendent thereto, form an aryl substituted aryl, heteroaryl, or substituted heteroaryl;
R* and R® are independently selected from the group consisting of ‘ hydrogen, halo, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, heteroaryl, substituted heteroaryl and -XR® where X is oxygen, -S(O),- or -NR'- where n is zero, one or two, RS is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R” is hydrogen, alkyl or aryl or, when X is NR’, then R” and R®, together with the nitrogen atom to which they are bound, can be joined to form a oo heterocyclic or substituted heterocyclic group;
R is selected from the group consisting of hydrogen, deuterium and methyl;
R' is selected from the group consisting of hydrogen, deuterium, alkyl and substituted alkyl; alternatively, R and R” and the carbon pendent thereto can be joined to form cycloalkyl, substituted cycloalkyl, heterocyclic or substituted heterocyclic group;
R" is selected from the group consisting of hydrogen and alkyl or R" together with R' and the nitrogen pendent thereto can be joined to form a heterocyclic or substituted heterocyclic group; ‘
R'" is selected from the group consisting of hydroxy, alkoxy, substituted alkoxy, acyloxy, cycloalkoxy, substituted cycloalkoxy, aryloxy, substituted aryloxy, . Amended sheet 10/04/2007 heteroaryloxy, substituted heteroaryloxy, aryl, -S(0)-R"® wherein R'is selected from the group consisting of alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl and substituted heteroaryl and n is zero, one or two;
and pharmaceutically acceptable salts, esters and prodrugs thereof;
with the proviso that when R, R' and R" are hydrogen and q is zero, and R* is either -COOH (p is zero) or -WR® (p is one) and W is oxygen and R? is hydrogen then at least one of the following occurs:
1) R! is fluoro, bromo, iodo, alkyl, substituted alkyl, alkoxy, aminoacyl, substituted alkoxy, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, and -XR® where X is oxygen, -S(O)p- or -NR'-
where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted : heterocyclic, and R' is hydrogen, alkyl or aryl; or 2) R? is substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, fluoro, bromo, iodo, cyano, “XR where X is oxygen, -S(O)n- or -NR’- where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl or aryl provided that:
a) when R? is substituted alkyl such a substituent does not include trifluoromethyl;
b) “XR is not alkoxy; and c) when -XR? is substituted alkoxy such a substituent does not include benzyl or benzyl substituted by a substituent selected from the group consisting of (C;-
Cs) alkyl and (C,-Cs) alkoxy or does not include a fluoroalkoxy substituent of the formula: -O-[CH,)x-CHpgr-g)Fg where x is zero or one; fis an integer of from 1 to 5; and g is an integer of from 1 to 2f+ 1); or 3) R3 is substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, bromo, iodo, -XR® where X is oxygen, -S(O),- or -NR’- where n is zero, one or two, RC is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R is hydrogen, alkyl or aryl provided that: a) when R3 is substituted alkyl such a substituent does not include trifluoromethyl; b) -XR® is not alkoxy; and c) when -XR® is substituted alkoxy such a substituent does not include benzyl or benzyl substituted by a substituent selected from the group consisting of (Ci-
Cs) alkyl and (C,-Cs) alkoxy or does not include a fluoroalkoxy substituent of the formula: -O-[CHzJx-CiHarr1-9)Fg where x is zero or one; fis an integer of from 1 to 5; and g is an integer of from 1 to 2+ 1); or
4) R‘isiodo, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, -XR® where X is oxygen, -S(O)q- or NR’- where n is zero, one or two, RS is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl or aryl provided that: a) when R* is substituted alkyl such a substituent does not include trifluoromethyl; : b) XR? is not alkoxy; and c) when -XR? is substituted alkoxy such a substituent does not include a fluoroalkoxy substituent of the formula: Co -O-[CHy}x-CiHog1-9)F where x is zero or one; fis an integer of from 1 to 5; and g is an integer of from 1 to (2f +1); or 5) R® is iodo, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, -XR® where X is oxygen, -S(O)n- or -NR’- where n is zero, one or two, RS is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl or aryl provided that: a) when R® is substituted alkyl such a substituent does not include trifluoromethyl; b) -XR®is not alkoxy; and
3) when -XR® is substituted alkoxy such a substituent does not include a fluoroalkoxy substituent of the formula: -O-[CH)-CHop+ 1-9) where x is zero or one; fis an integer of from 1 to 5; and g is an integer of from 1 to 21+ 1); and with the further following proviso: that when R, rR, R?, and RS are hydrogen, then R? is not bromo.
[0021] In an alternative embodiment, the compounds of formula I are represented by formula IA:
RS R™ 0 RE
Rs ’ ~ N COOH
N n
R Z \ R
Re ri ©) " wherein R!, R%, R?, R*, R%, R,R’, R”’, R*>” and q are as defined above; and pharmaceutically acceptable salts, esters, prodrugs thereof.
[0022] In an another alternative embodiment, the compounds of formula I are represented by the formula IB:
RS R™ 0) 3 WRS
R Z A R
R¢ Rt (©)q IB wherein R', R%, R?, RY RR”, R*”, WR2 and q are as defined above; and pharmaceutically acceptable salts, esters, prodrugs thereof.
[0023] In an another alternative embodiment, the invention is directed to compounds represented by the formula IC: .
RS R™ 0 R R' 3 WRS
R XN N XX
~ N R"
R N
R4 R? ©)q 1(e) wherein R!, R%, R?, R* R> R,R’,R”,R”, WR? and q are as defined above; and pharmaceutically acceptable salts, esters, prodrugs thereof.
[0024] In yet another alternative embodiment, the invention is directed to compounds represented by the formula ID:
RS R" 9)
R3
X "COOH
N " ’
R = \ R
R#4 Rt (©)q ID wherein R!, R?, R3, R* R’, R,R’,R”’, R’”’ and q are as defined above; and pharmaceutically acceptable salts, esters, prodrugs thereof.
[0025] In other embodiments, the invention is directed to compounds represented by the formulae ITA, IIB, IIC, and IID, wherein said formulae are defined below.
Preferred Embodiments
[0026] In compounds of formulae I, IA, IB, IC, and ID, preferably R! is selected from the group consisting of hydrogen, alkyl, substituted alkyl, halo, alkoxy, aryloxy, substituted aryloxy, substituted aryl, alkylthio, aminoacyl, aryl, substituted amino, heteroaryl, heteroaryloxy, -S(O)p-aryl, -S(O),-substituted aryl, -S(O),-heteroaryl, and -S(O).-substituted heteroaryl, where n is zero, one or two.
[0027] More preferably, R' is selected from the group consisting of: (3-methoxyphenyl)sulfanyl; (4-chlorophenyl)sulfanyl;
(4-methylphenyl)sulfanyl; 2-fluorophenoxy; 2-methoxyphenoxy; (2-methoxyphenyl)sulfanyl 3-fluorophenoxy; 3-methoxyphenoxy; 4-(methylcarbonylamino)phenoxy; 4-(methylsulfonamido)phenoxy; 4-fluorophenoxy; 4-methoxyphenoxy; 4-methoxyphenylsulfanyl; 4-methylphenyl; bromo; chloro; dimethylaminomethyl; ethoxy; ethylsulfanyl; hydrogen; isopropyl; methoxy; methoxymethyl; : methyl;
N,N-dimethylaminocarbonyl; naphth-2-yloxy; naphthylsulfanyl; phenoxy; phenyl;
phenylamino; phenylsulfinyl; : phenylsulfanyl; pyridin-2-yloxy; pyridin-2-yl; and pyridin-2-ylsulfanyl.
[0028] In compounds of formulae LIA, IB, IC and ID, R? is preferably selected from the group consisting of substituted amino, aryloxy, substituted aryloxy, alkoxy, substituted alkoxy, halo, hydrogen, alkyl, substituted alkyl, aryl, -S(O),-aryl, -S(O)y-substituted aryl, -S(0)p-cycloalkyl, where n is zero, one or two, aminocarbonylamino, heteroaryloxy, and cycloalkyloxy.
[0029] More preferably, R? is selected from the group consisting of: (4-methoxy)phenylsulfonylamino ; 2,6-dimethylphenoxy; 3,4-difluorophenoxy; 3,5-difluorophenoxy; 3-chloro-4-fluorophenoxy; 3-methoxy-4-fluorophenoxy; 3-methoxy-5-fluorophenoxy; 4-(methylsulfonamido)phenoxy; 4-(phenylsulfonamido)phenoxy; 4-CF;-O-phenoxy; 4-CF3-phenoxy; 4-chlorophenoxy; 4-fluorophenoxy,; 4-(4-fluorophenoxy)phenoxy;
4-methoxyphenoxy; 4-nitrophenoxy; benzyloxy; bromo; butoxy;
CFs; chloro; cyclohexyloxy; cyclohexylsulfanyl; cyclohexylsulfonyl; fluoro; hydrogen; 10do; isopropoxy; methyl; phenoxy; phenyl; phenylsulfanyl; phenylsulfinyl; phenylsulfonyl; phenylurea; " pyridin-1-ylsulfanyl; pyridin-3-yloxy; and pyridin-4-ylsulfanyl {0030] In compounds of formulae I, IA, IB, IC, and ID, R3is preferably selected from the group consisting of: substituted aryloxy, substituted alkoxy, alkoxy, substituted alkyl, alkyl, amino, cycloalkyloxy, hydrogen, halo, aryl, -S(O)a-aryl, -S(O),-substituted aryl,
-S(O)y-heteroaryl, and -S(O),-substituted heteroaryl, where n is zero, one or two, aminocarbonylamino, and heteroaryloxy.
[0031] More preferably, R? is selected from the group consisting of: amino; (4-methyl)phenylsulfonylaminophenoxy; 3,4-difluorophenoxy; 3,5-difluorophenoxy; 3-fluoro-5-methoxy-phenoxy; 3-chloro-4-fluorophenoxy 4-CF3-O-phenoxy; 4-CF3-phenoxy; 4-chlorophenoxy; 4-fluorophenoxy; 4-(4-fluorophenoxy)phenoxy; 4-methoxyphenoxy; benzyloxy; bromo; butoxy;
CFs; chloro; cyclohexyloxy; hydrogen; iodo; isopropoxy; phenoxy; phenyl;
phenylsulfanyl; phenylsulfonyl; phenylsulfinyl; phenylurea; pyridin-1-ylsulfanyl; pyridin-3-yloxy; and pyridin-4-ylsulfanyl.
[0032] Alternatively, R2 and R?, combined with the carbon atoms pendent thereto, are joined to form an aryl group. Preferably, the aryl group is phenyl.
[0033] In compounds of formulae I, IA, IB, IC, and ID, R? is preferably selected from the group consisting of: substituted arylthio, halo, hydrogen, substituted alkyl and aryl.
[0034] More preferably, R* is selected from the group consisting of: 4-chlorophenyl sulfanyl; chloro; hydrogen; methoxymethyl; and phenyl.
[0035] In compounds of formulae I, IA, IB, IC, and ID, R’ is preferably hydrogen or aryl. More preferably R’ is hydrogen or phenyl.
[0036] In compounds of formulae I, IA and IC, Ris preferably selected from the group consisting of hydrogen, deuterium, aryl and alkyl. More preferably R is selected from the group consisting of phenyl, hydrogen, deuterium and methyl.
[0037] In compounds of formulae I, IA and IC, R’ is selected from the group consisting of preferably hydrogen, deuterium, alkyl, substituted alkyl, and substituted amino. More preferably, R’ is selected from the group consisting of:
4-aminobutyl; 4-hydroxybenzyl; benzyl; carboxylmethyl; deuterium; hydroxymethyl, imidazol-4-ylmethyl; isopropyl; methyl; and propyl.
[0038] Alternatively, R, R’ and the carbon atom pendent thereto join to form a cycloalkyl and more preferably cyclopropyl.
[0039] In compounds of formulae I, IA, and IC, R”’ is preferably hydrogen, alkyl or substituted alkyl. More preferably, R”’ is hydrogen, methyl or carboxylmethyl (-
CH,C(O)OH). Alternatively, R’, R’* and the carbon atom and nitrogen atom respectively pendent thereto join to form a heterocyclic group and more preferably pyrrolidinyl.
[0040] In compounds of formulae 1, IA, IB, IC, and ID, preferably R’* is selected from the group consisting of hydrogen, hydroxy, alkoxy, substituted alkoxy, cycloalkoxy, substituted cycloalkoxy, thiol, acyloxy and aryl. Preferably, R’”’ is selected from the group consisting of: hydroxy, benzyloxy; ethoxy; thiol; methoxy; methylcarbonyloxy; and phenyl.
[0041] In compounds of formulae I, IB, and IC, WR is preferably selected from the group consisting of amino, substituted amino, aminoacyl, hydroxy, and alkoxy. More preferably, WR is selected from the group consisting of: amino; dimethylamino; hydroxy, methoxy; and methylcarbonylamino.
[0042] Representative compounds for this application are presented in Tables A-D, wherein said table letter corresponds to formula letter (i.e., representative compounds of formula IA are in Table A).
Table A
OH O R R
R3 ~ v coor yp N R"
R
R!
No [Re Tw Tr IR IR
TT [oH lbeploy |H [methyl ____ [H |] — Ja um Im IH [hydoomethyl JH —5 Ja qm fw "1TH |hdoomethyl [H —% Ja |H __ liopropoxy _ |H [hydroxymethyl JH 6 [Ci [sopopoxy _ |® [H [hydroxymethyl [H —s [a [HH methyl [methyl IH —o [Ci [H _____ [isopropoxy [methyl methyl TH
J HH AN
Imethyl
IE LAN =~
Imethyl 12 Jo ww |H [iscpropyl [WH —3 (oa ® qm |H [isopropyl [HW
ST J § SS SS —® Tan. benmiey [H _ [isopropyl [H
SE A I SR § SS IU = —
RE US SR SN 7: TR—
Ta [a sopepoxy _[H [bens [H — Ta [8 |wopopoxy [WH benzyl [H — Sr To [wopopory [Hm lbenzyg ____ |H —s Ta [mm [4hydoobenzyl |H — [ol [mm [HW |ahydoxbensyl JH — To [E__ |isopopoxy |H _[4hydoxybenzyl JH —% [ol |H__ |isoropoxy |H |ahydroybenzyl [H
To [isopopoy [HW |ahydogbenzyl [H [ol [sopopoxy |B ___[H | 4bydoxybenzyl [H
Cl H H R’ and R”’ and the carbon and nitrogen atom 13 respectively pendent to which
Ris attached join to form a pyrrolidinyl
Cl H H R’ and R”’ and the carbon and nitrogen atom pendent to which
R”’ is attached join to form a pyrrolidinyl
Cl H isopropoxy H R’ and R”’ and the carbon and nitrogen atom respectively pendent to which
R’’ is attached join to form a pyrrolidinyl
Cl H isopropoxy H R’ and R’’ and the carbon and nitrogen atom
HEE pendent to which
R” is attached join to form a pyrrolidinyl —37 (oa mim IH |daemnobuyl JH —3 Jo mH 1H [4aminobuyl JH —39 Jol |®H lisopropoxy |H [d-aminobuyl JH —a0 cl [Wm lisopropoxy |H [4aminobutyl JH 41 cl isopropoxy [H [H [daminobutyl JH — 4 [ct lisopropoyy |[H |H [d4aminobutyl TH 3 Ja jm ju |H [carboxylmethyl JH
ST EN § SS J SU arta mu [H [euboomeyl [H —is Tor [8 [isopopory __[H _|caboxymetiyl [H —a Te [8 [iopopoxy |B | carboxymethyl [FH
Cl H H R, R’ together with | H the carbon to which 43 they are attached cyclopropyl
LT TEE the carbon to which 49 they are attached join to form cyclopropyl — Je J&___ mp pb __ ~~ [IH]
Tor JH |vemyloy [WH _ (metyl [H — or lbmgloy 8 [H {metyl H 5 To Jbemploy [HH methyl [H ] — Tam [wu mei [H — Tor a fw IH lmehyi [H —5e To [8 lsopopoy |H meyi 1H — To soppy |B [H Imetyi JH —50 [6 |Achlorophenory [HH [memyl JH —& (HH [dchloophenowy [H __ |metyl 1H — [0H |3Adforophenoxy [HH _ |metyl JH 6 [HB (vhenyisulfanyl _ |W | H |metyl IH —4 TH [vhenyisuifanyl __|H [H _ |methyl JH —s [H _ Iphenoy [HH [methyl ~~ |H 66 [H [4metowphenowy |H _ [H [metyl JH 67 [H__ [phenybulfonyt _[H _ [H [methyl IH 68 | mehoqgmethyl [pheno [WH IH methyl IH 69 | meoxymothyl | phenory _____ |H [H |methyl JH —0 [8 |phenoy ___[H [H Imeyl JH ]
JE di CAN EAN GA Gc LB 71 sulfanyl
JEN A AN A i sulfanyl
IE 30 A A Jn UA fluoropheno 57 [6 [oyclohexyloy [H JH methyl JH 75 [memyl ___ |A-fluorophenoxy |W |H Tmethyl JH —76 [B_____ |Afwoophenoy [H IH [methyl JH —77 |memyl ___ [phenoy JH [H methyl JH 78 [methyl |phenyisultenyt |W |H methyl JH pheno
Table B
OH O
8
R3 EON ~~ WR -N H : R
Cl
IE A I A
— 71 | _____H | H | mehoxy — 3 | isopropoxy | H | amino 3 | ______H_ |isopropoxy| methoxy —4 | HH [ ® [| ammo |} | 0m | H | hydroxy 6 | ® |isopropoxy| hydroxy — 8 | H | H _|methylcarbonylamino 9 | H lisopropoxy| amino dimethylamino
Table C
H oH O 3
R 009 N OH 1
N H
R SF
Cl (No. | rR rR
Table D
RS " 0) 3
R RN N"cooH
N R" :
R ZZ
R* R!
No. ® |] rm __ | ® TT ® | ® [| RR rR” . di(CHj)phenyloxy — 5 bw (Hm lw Im lom —5 {Br [pheno [WH _____|w |m |u lou — loa [Bm lu [HH JOH —s |B (om Jw JH JH JOH —% Jo 1 wm Tw [H JH JOH — Ja mt ww |H [H |OH 8 [cl |phemoxy [mm [H IH JOH 9 [Cl |phemylulmyl [BH _________|H |w TH |OH “to [Br |-cF, [wm lw [H [H JOH 1 [Br |H __ Iphemwy {®w [H [H |OH 12 [co [Hm lphemyl [H [H [OH di(CH;)phenylox: 4 {eH lcm Ww JH [HOH
OH
16 [Br |phemylsulfamyl [H __ |H [H [H [OH 17 [cl [dH phenylsulfayl |H [H [H OH
ERE A a A 18 phenyl- sulfanyl 19 |B |@ [H ___ lphemyl [H |H [OH
OH
1 |B |H iw Tm [H [JH [OH 2 [Br |memy [mH |H JH [OH > |B [HH [buoy |H IH IH IOH 24 [Brn Ja ta JH |H [OH 2s lc |H phenoxy |B IH [JH _ |OH 2 |B |H phenoxy HTH [H [OH 27 {a_______ | —1wm wm [HH [H |OH 28 {Br phenyl [HH JH [H OH 5s Ter |B [pesmi [HW Im [om 30 |ethylsulfnyl |[H |B [H JH [H |OH
OH
[8 |H phenyl Iw JH JH JOH 33 [Br (Ha IH [phen |H [OH 34 (Br [Fm Iw [H JH [OH oF phenylox 6 [eH pei HH [HW __ [om 37 |H____ |phenoxy [Ww JH |H [H JOH
No. ® 1 ® | ® ® [ ® | R | rR” 38 TH [phegulfamyi HA _|H [H | OH 3 TH |phemi JH 1® Jum JH | OH a0 {8 18 phenoxy __|H |H [H | OH ar IH |B |phenyisulfanyl ____[H _|H JH | OH > In [8 |®m_ [phemyl [H [H | OH — Ja [8m [H phemyl [H | OH aa Ha |W [um phenyl |H | OH —s {a [Fm Tm u_TH | OH
OH
OH
—&% 0 [Rpm |- {uw Im |u___ToH 45 [Br |H ___ |bemgyloy [HH _|H [methyl JOH so Jo [Hum 1H IH methyl | OH si (cl |H_____ lisopropoxy __ |H |H [methyl JOH
OH
Ja |® m1’ JH = [CHCOOH|OH sa cl |H _____ lisopropoxy __ |H |H |CHCOOH]OH
IE Fri A GA CA lox:
IE Fl A 0 § pheno! fm pheno > fluorophenoxy
EH LE LS fluoropheno
ICN A A fluoropheno phenoxy 4-(methy! H H H H H. OH 63 carbonyl amino) pheno
EEE 2 i sulfonamido) phenoxy
OH
“66 |H____ |H |pyndn3yloy ~~ [H JH {H OH 67 [H____ |pydndylyy [HH 1H [H JOH es lc wm JH [H JH |metho "6 lc wm wm "TH [HH ethoxy 0 [memory [HB [mw [a Tom
OH carbonylo "95 |phemyt |® |®@ ~~ JH IH [H |OH 74 ethoxy [Hm ~~ |H IH JH | phenyl 7s (co a tw HH [H [phenyl 76 (8 {wm a IH JH IH [phenyl
IEC ac LA LN LS ES methoxy H H H H
ENF A LR A EO oT mw [ow _ [® [ ® [wm [ RY
N,N-dimethyl | H H H H H OH
EC WO ul i carbonyl 50 Tmeiyi [EH |phemey [mm [mod “81 [methyl |phemoxy Hw A [H OH 2 Tmetyl [phenoxy |B ____[m _|H IH | benzylo 83 methyl [phenoxy |B [um [® [H etho
EXE nl nd A A i A amino carbonyl - methyl
ICN = A a A I i nhenyl 57 methyl [4fworophemow |H [HH [HH | OH
IE GN = A J A pheno
I GF A A pheno {ol |H__ |émehoxyphenoxy [BH [WH [H | OH 51 [8 [8H |4mehoxyphenoxy [H JH TH OH —o0 {ol |4Chpheny [Hm [HH | OH 5 |H _ |4CKphexy |H [HH IH | OH 5a Jol |® |4Chgphemoyy [HH JH OH os [H. __[H | 4Chphenoy |H |H JH | OH 56 [Cl |dfworophenoxy |H ___[® |H JH | OH 7H |4fuoroprenoxy |H [dH [WH JH | OH 58 [C0 |H | 4fuoophenosy _[H [H JH OH ~os [Wm |W | 4fuoophenoxy _|H [H JH OH - sulfanyl
Tor TH (H |pyidndyisufanyt |[H [HTH OH
Too [H _ |phewylufmyl |H _ [® [WH JH OH
Ts [0H [pheyisuionyl [HH [HW JH OH oa [HH |phemjisutfmyl [HH JH OH os TH |B |phemyisulfonyl __ |H JH IH | OH oe [Hm ammo 1m JH JH | OH
C220 107 phenylsulfonyl amino os |H_____ |phewhre JH |B JH JH | OH
Goo [H [WH |phemywea HH JH | OH
DFE LE LS SE sulfanyl (4-chloro H H H H OH
EEE A A sulfanyl (4-methyl H H H H H OH
EE A oi sulfanyl = 1sulfanyl (3-methoxy H H H H H OH
EE A A A sulfanyl
NT w ® ® ® | ® [ ww TR 0 = A SA ul i 115 phenyl sulfanyl sulfanyl sulfinyl
ICN A A sulfonyl sulfanyl j
Te HH |pwdwoyisifanyi |B |W [HoH .
TG [pheno lphenoy ww [um {oH
TH phenoxy ___ |phenow |W JW JH JOH
NH-phenoxy
TH mmo [Hw mm JoH
M55 TH [phemoxy _ |H ____ [W [TH [mH wil
Te Tw [om lw {uw Tw Ju Tio
EEN 3 J A LL amido) pheno
ENE Ew RE LA A A amido) phenoxy |H |Ahlorophenoxy |H [HH [H JOH [H___|H__ [4chlorophenoy |H [HH | OH ” pheno fluorophenoxy
EN EE El LE LS difluorophenox
OH
|H |4ChOpenoy [H [8H [HH | OH 36 |B |H _ [4CFOphenoy |H [H TH | OH . difluorophenox 3s |® [dH _ |35diforophenoxy [H _[H [H | OH
ES = A Gl A 139 fluorophenoxy) pheno on fluorophenoxy)phenox; i. fluorophenoxy
I I F-=+ L fluorophenoxy
OH
OH
EE cm ooo A a A difluoropheno pheno
OH a8 |B [H _ Joydohewyloy ~~ [H JH [H JOH a5 |H__ |oyclohexyloxy [HH JH IH IOH 50 [metiyl lovely [H [mw [H JH ou wT ® ___® _[® ® [ ®m | rR”
ER A LW A A sulfanyl > sulfonyl 55 Theol [Hw ww [oH si [pdms [nw {wm | [OH
G55 Lehi [phemoy |W [wu Iw [OH . amino methyl 157 [methyl | phemyiulfamyt [Hm |w lH LOH ” pheno
[0043] Compounds included within the scope of this invention include, for example, those set forth below: {[4-Hydroxy-1-(naphthalen-2-yloxy)-isoquinoline-3-carbonyl]-amino}- acetic acid; {[4-Hydroxy-1-(pyridin-3-yloxy)-isoquinoline-3-carbonyl]-amino}-acetic acid; {[4-Hydroxy-1-(4-methoxy-phenoxy) -isoquinoline-3-carbonyl]-amino}- : acetic acid, {[4-Hydroxy-1-(3-methoxy-phenoxy)-isoquinoline-3-carbonyl]-amino} - acetic acid; {1-3 -Fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl}-amino} - acetic acid; {[1-(4-Fluoro-phenoxy)-4-hydroxy-isoquinoline-3 -carbonyl}-amino}- : acetic acid; {[1-(2-Fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino}- acetic acid; {[4-Hydroxy-1 -(2-methoxy-phenoxy)-isoquinoline-3-carbonyl}-amino}- acetic acid; {[1-(4-Acetylamino-phenoxy)-4-hydroxy-isoquinoline-3 -carbonyl]- amino }-acetic acid; . {[4-Hydroxy-1-(4-methanesulfonylamino-phenoxy)-isoquinoline-3- carbonyl]-amino}-acetic acid; [(4-Hydroxy-1-phenylamino-isoquinoline-3-carbonyl)-amino]-acetic acid; {[4-Hydroxy-6-(pyridin-3-yloxy)-isoquinoline-3-carbonyl]-amino}-acetic acid,
{[4-Hydroxy-7-(pyridin-3-yloxy)-isoquinoline-3-carbonyl]-amino} -acetic acid; - [(1-Chloro-4-methoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Chloro-4-ethoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; - [(4-Hydroxy-1-methoxy-isoquinoline-3 -carbonyl)-amino]-acetic acid; [(1-Ethoxy-4-hydroxy-isoquinoline-3 -carbonyl)-amino]-acetic acid; [(4-Acetoxy-1 -phenyl-isoquinoline-3-carbonyl)-amino] -acetic acid; [(4-Hydroxy-1 -phenyl-isoquinoline-3-carbonyl)-amino] -acetic acid; [(1-Ethoxy-4-phenyl-isoquinoline-3 -carbonyl)-amino]-acetic acid; [(1-Chloro-4-phenyl-isoquinoline-3 -carbonyl)-amino]-acetic acid; [(4-Phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-1-methyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-1-methoxymethyl-isoquinoline-3 -carbonyl)-amino]-acetic acid; [(1 -Dimethylearbamoyl-4-hydroxy-isoquinoline-3 -carbonyl)-amino]-acetic acid; [(4-Hydroxy- 1-methyl-6-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4 Hyeny- 1-methyl-7-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Benzyloxy-1-methyl-7-phenoxy-isoquinoline-3-carbonyl)-amino}- acetic acid; [(4-Ethoxy- 1-methyl-7-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Dimethylcarbamoyl-4-hydroxy-7-phenoxy-isoquinoline-3-carbonyl)- amino]-acetic acid; [(4-Hydroxy- 1-methoxymethyl-7-phenoxy-isoquinoline-3-carbonyl)- amino]-acetic acid; [(4-Hydroxy-1-p-tolyl-isoquinoline-3-carbonyl)-amino]-acetic acid; {[7-(4-Fluoro-phenoxy)-4-hydroxy-1-methyl-isoquinoline-3-carbonyl]- amino }-acetic acid;
{in -Chloro-4-hydroxy-7-(4-methoxy-phenoxy)-isoquinoline-3 -carbonyl}- amino} -acetic acid; {[4-Hydroxy-7-(4-methoxy-phenoxy)-isoquinoline-3-carbonyl]-amino}- acetic acid; {[1-Chloro-4-hydroxy-6-(4-methoxy-phenoxy)-isoquinoline-3-carbonyl]- amino} -acetic acid; { [4-Hydroxy-6-(4-methoxy-phenoxy)-isoquinoline-3 -carbonyl]-amino}- acetic acid; {[1-Chloro -4-hydroxy-7-(4-trifluoromethyl-phenoxy)-isoquinoline-3- carbonyl]-amino}-acetic acid; {[4-Hydroxy-7 -(4-triflucromethyl-phenoxy)-isoquinoline-3-carbonyl]- amino }-acetic acid; {1 -Chloro-4-hydroxy-6-(4-trifluoromethyl-phenoxy)-isoquinoline-3 - carbonyl]-amino }-acetic acid; { [4-Hydroxy-6-(4-trifluoromethyl-phenoxy)-isoquinoline-3-carbonyl] - amino }-acetic acid; {[1 -Chloro-7-(4-fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino }-acetic acid; { [7-(4-Fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl] -amino}- acetic acid; {[1-Chloro-6-(4-fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino }-acetic acid; {[6-(4-Fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino}- acetic acid; {[4-Hydroxy-7-(pyridin-4-ylsulfanyl)-isoquinoline-3-carbonyl]-amino}- acetic acid; {[4-Hydroxy-6-(pyridin-4-ylsulfanyl)-isoquinoline-3-carbonyl]-amino}- acetic acid; [(7-Benzenesulfinyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(7-Benzenesulfonyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(6-Benzenesulfinyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid;
[(6-Benzenesulfonyl-4-hydroxy-isoquinoline-3 -carbonyl)-amino]-acetic acid; [(6-Amino-4-hydroxy-isoquinoline-3-carbonyl)-amino] -acetic acid, {[4-Hydroxy-7-(4-methoxy-benzenesulfonylamino)-isoquinoline-3- carbonyl]}-amino}-acetic acid; {[4-Hydroxy-7-(3-phenyl-ureido)-isoquinoline-3 -carbonyl]-amino}-acetic acid; {[4-Hydroxy-6-(3 -phenyl-ureido)-isoquinoline-3-carbonyl]-amino}-acetic acid; [(4-Hydroxy-1 -phenylsulfanyl-isoquinoline-3-carbonyl)-amino]-acetic acid; {[1 -(4-Chloro-phenylsulfanyl)-4-hydroxy-isoquinoline-3-carbonyl]- amino }-acetic acid; [(4-Hydroxy-1 -p-tolylsulfanyl-isoquinoline-3-carbonyl)-amino]-acetic acid; {[4-Hydroxy-1-(pyridin-2-ylsulfanyl)-isoquinoline-3-carbonyl]-amino}- acetic acid; {[4-Hydroxy-1 -(3-methoxy-phenylsulfanyl)-isoquinoline-3-carbonyl]- amino }-acetic acid; {[4-Hydroxy-1 -(2-methoxy-phenylsulfanyl)-isoquinoline-3-carbonyl]- amino }-acetic acid; {[4-Hydroxy-1 -(naphthalen-2-ylsulfanyl)-isoquinoline-3 -carbonyl]- amino }-acetic acid; [a -Benzenesulfinyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid, [(1-Benzenesulfonyl-4-hydroxy-isoquinoline-3 -carbonyl)-amino}-acetic acid; {[4-Hydroxy-7-(pyridin-2-ylsulfanyl)-isoquinoline-3-carbonyl]-amino}- acetic acid; {[4-Hydroxy-6-(pyridin-2-ylsulfanyl)-isoquinoline-3-carbonyl] -amino}- acetic acid, [(1-Chloro-4-hydroxy-6,7-diphenoxy-isoquinoline-3-carbonyl)-amino]- acetic acid; [(4-Hydroxy-6,7-diphenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid;
({4-Hydroxy-7-{4-(toluene-4-sulfonylamino)-phenoxy]-isoquinoline-3- carbonyl }-amino)-acetic acid; {[4-Hydroxy-7-(4-nitro-phenoxy)-isoquinoline-3-carbonyl]-amino}-acetic acid; [(4-Mercapto-7-phenoxy-isoquinoline-3-carbonyl)-amino}-acetic acid; [(4-Mercapto-7-trifluoromethyl-isoquinoline-3-carbonyl)-amino]-acetic acid; {[7-(4-Benzenesulfonylamino-phenoxy)-4-hydroxy-isoquinoline-3- carbonyl]-amino}-acetic acid; {[4-Hydroxy-7-(4-methanesulfonylamino-phenoxy)-isoquinoline-3- carbonyl ]-amino}-acetic acid; {[7-(4-Chloro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino}- acetic acid; {[6-(4-Chloro-phenoxy)-4-hydroxy-isoquinoline-3 -carbonyl]-amino}- acetic acid; {{6-(3-Fluoro-5-methoxy-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl}- amino }-acetic acid; {[7-(3 -Fluoro-5-methoxy-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino }-acetic acid; {[7-(3,4-Difluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino} - acetic acid; {[6-(3 ,4-Difluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl}-amino}- acetic acid; { [4-Hydroxy-7-(4-trifluoromethoxy-phenoxy)-isoquinoline-3 -carbonyl]- amino}-acetic acid; {[4-Hydroxy-6-(4-trifluoromethoxy-phenoxy)-isoquinoline-3-carbonyl}- amino}-acetic acid; 2-(S)-{[7-(4-Chloro-phenoxy)-4-hydroxy-isoquinoline-3 -carbonyl]- amino} -propionic acid; 2-(8)-{[6-(4-Chloro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino}-propionic acid; 2-{[7-(3,4-Difluoro-phenoxy)-4-hydroxy-isoquinoline-3 _carbonyl]- amino} -propionic acid; 2-(S)-[(4-Hydroxy-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]- propionic acid.;
2-(R)-[(4-Hydroxy-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]- propionic acid; 2-(R)-{(4-Hydroxy-7-phenoxy-isoquinoline-3-carbonyl)-amino}-propionic acid; 2-(S)-{[4-Hydroxy-7-(4-methoxy-phenoxy)-isoquinoline-3-carbonyl]- amino }-propionic acid; 2-(S)-[(7-Benzenesulfonyl-4-hydroxy-isoquinoline-3-carbonyl)-amino}- propionic acid; : (R)-2-[(4-Hydroxy-1 -methoxymethyl-7-phenoxy-isoquinoline-3- carbonyl)-amino]-propionic acid; (S)-2-[(4-Hydroxy-1 -methoxymethyl-7-phenoxy-isoquinoline-3-carbonyl)- amino ]-propionic acid; (S)-2-[(4-Mercapto-7-phenoxy-isoquinoline-3-carbonyl)-amino]-propionic acid; (S)-2-{ [1-(4-Chloro-phenylsulfanyl)-4-hydroxy-isoquinoline-3-carbonyl]- amino }-propionic acid; (R)-2-{[1-(4-Chloro-phenylsulfanyl) -4-hydroxy-isoquinoline-3-carbonyl]- amino }-propionic acid; [(4-Hydroxy-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-6-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Chloro-4-hydroxy-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]- acetic acid; [(1-Chloro-4-hydroxy-6-phenylsulfanyl-isoquinoline-3-carbonyl)-amino}- acetic acid; [(1-Bromo-4-hydroxy-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]- acetic acid; [(1-Bromo-4-hydroxy-6-phenylsulfanyl-isoquinoline-3-carbonyl)-amino}- acetic acid, [(4-Hydroxy-7-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-6-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Chloro-4-hydroxy-7-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid;
[(1-Chloro-4-hydroxy-6-phenoxy-isoquinoline-3-carbonyl)-amino}-acetic acid; [a -Bromo-4-hydroxy-7-phenoxy-isoquinoline-3-carbonyl)-amino] -acetic acid; [a -Bromo-4-hydroxy-6-phenoxy-isoquinoline-3 -carbonyl)-amino]-acetic acid; { [7-(2,6-Dimethyl-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino} - acetic acid; {{1-Chloro -7-(2,6-dimethyl-phenoxy)-4-hydroxy-isoquinoline-3- carbonyl]-amino}-acetic acid; {[1 -Bromo-7-(2,6-dimethyl-phenoxy)-4-hydroxy-isoquinoline-3- carbonyl]-amino}-acetic acid; [(1-Bromo-7-chloro-4-hydroxy-isoquinoline-3 -carbonyl)-amino]-acetic acid; [(1-Bromo-6-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [1 -Bromo-4-hydroxy-7-trifluoromethyl-isoquinoline-3-carbonyl)-amino}- acetic acid; [a -Bromo-4-hydroxy-6-trifluoromethyl-isoquinoline-3-carbonyl)-amino]- acetic acid; [(4-Hydroxy-1-phenoxy-isoquinoline-3-carbonyl)-amino] -acetic acid, [(1,7-dibromo-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(7-Bromo-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}-acetic acid; [(6-Bromo-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1 -Bromo-7-fluoro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(7-Fluoro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [1 -Chloro-7-fluoro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Chloro-4-hydroxy-benzo[g]isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-6-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid;
[(4-Hydroxy-7-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1 -Chloro-4-hydroxy-6-phenyl-isoquinoline-3 -carbonyl)-amino]-acetic acid; [a -Chloro-4-hydroxy-7-phenyl-isoquinoline-3 -carbonyl)-amino]-acetic acid; : {¢! -Bromo-4-hydroxy-6-phenyl-isoquinoline-3-carbonyl)-aminoj-acetic acid; [(1-Bromo-4-hydroxy-7-phenyl-isoquinoline-3 -carbonyl)-amino]-acetic acid; [(4-Hydroxy-5-phenyl-isoquinoline-3-carbonyl)-amino] -acetic acid; [(4-Hydroxy-8-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Chloro-4-hydroxy-5-phenyl-isoquinoline-3 -carbonyl)-amino]-acetic acid; [1 -Chloro-4-hydroxy-8-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [1 -Bromo-4-hydroxy-5-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [a -Bromo-4-hydroxy-8-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid, [a -Ethylsulfanyl-4-hydroxy-isoquinoline-3-carbonyl)-amino}-acetic acid; {[4-Hydroxy-1-(4-methoxy-phenylsulfanyl)-isoquinoline-3 -carbonyl]- amino }-acetic acid; [(1 -Chloro-4-hydroxy-7-iodo-isoquinoline-3-carbonyl)-amino]-acetic acid; [a -Chloro-4-hydroxy-6-iodo-isoquinoline-3-carbonyl)-amino}-acetic acid; [(4-Hydroxy-7-iodo-isoquinoline-3-carbonyl)-amino}-acetic acid; [(1-Bromo-4-hydroxy-7-methyl-isoquinoline-3-carbonyl)-amino] -acetic acid; [(1-Bromo-7-butoxy-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-6-butoxy-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid, [(6-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-methyl- aminol-acetic acid;
~ WO 2004/108681 PCT/US2004/017773 [(1-Chloro-4-hydroxy-isoquinoline-3 -carbonyl)-methyl-amino]-acetic acid; [a -Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3 -carbonyl)-methyl- amino]-acetic acid; [1 -Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-methyl- amino]-acetic acid; [Carboxymethyl-(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]- acetic acid; [Carboxymethyl-(1-chloro-4-hydroxy-6-isopropoxy-isoquinoline-3- carbonyl)-amino]-acetic acid; 1-Chloro-4-hydroxy-isoquinoline-3-carboxylic acid (2-amino-ethyl)-amide (trifluoro-acetic acid salt); 1-Chloro-4-hydroxy-isoquinoline-3-carboxylic acid (2-methoxy-ethyl)- amide; 1-Chloro-4-hydroxy-isoquinoline-3-carboxylic acid (2-hydroxy-ethyl)- amide; 1-Chloro-4-hydroxy-isoquinoline-3-carboxylic acid (2-dimethylamino- ethyl)~amide; 1-Chloro-4-hydroxy-isoquinoline-3-carboxylic acid (2-acetylamino-ethyl)- amide; 1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carboxylic acid (2- hydroxy-ethyl)-amide; 1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carboxylic acid (2- methoxy-ethyl)-amide; 1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carboxylic acid (2- amino-ethyl)-amide (trifluoro-acetic acid salt); 1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carboxylic acid (2- dimethylamino-ethyl)-amide; 1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carboxylic acid (2- amino-ethyl)-amide (trifluoro-acetic acid salt); 1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carboxylic acid (2- methoxy-ethyl)-amide; 1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carboxylic acid (2- dimethylamino-ethyl)-amide;
-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carboxylic acid (2- hydroxy-ethyl)-amide; (S)-2-[(6-Benzyloxy-1 -chloro-4-hydroxy-isoquinoline-3 -carbonyl)- ’ amino]-propionic acid;
R)-2-[(1 _Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-hydroxy- propionic acid; (S)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}-3-hydroxy- propionic acid; (R)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)- amino]-3-hydroxy-propionic acid; (S)-2-[(1 -Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3 -carbonyl)- amino]-3-hydroxy-propionic acid; (R)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)- amino]-3-hydroxy-propionic acid; (S)-2-[(1 Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)- amino]-3-hydroxy-propionic acid; 2-[(1 -Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino] -2-methyl- propionic acid; 2-[(1 -Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino} -2- methyl-propionic acid; (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-(1H- imidazol-4-yl)-propionic acid (trifluoro-acetic acid salt); (S)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-(1H- imidazol-4-yl)-propionic acid (trifluoro-acetic acid salt); (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}-3-methyl- butyric acid; (S)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-methyl- butyric acid; (R)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)- amino]-3-methyl-butyric acid; (S)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)- amino]-3-methyl-butyric acid; (R)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)- amino]-3-methyl-butyric acid;
(S)-2-[(1 _Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)- amino]-3-methyl-butyric acid; (S)-2-[(6-Benzyloxy-1 -chloro-4-hydroxy-isoquinoline-3-carbonyl)- amino]-3-methyl-butyric acid; (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3 -carbonyl)-amino]-3-phenyl- propionic acid; (S)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-phenyl- propionic acid; (R)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbony1)- : amino]-3-phenyl-propionic acid; (S)-2-[(1 -Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)- amino -3-phenyl-propionic acid; (R)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)- amino]-3-phenyl-propionic acid; (S)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)- amino]-3-phenyl-propionic acid; (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3 -carbonyl)-amino]-3-(4- hydroxy-phenyl)-propionic acid; (S)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}-3-(4- hydroxy-phenyl)-propionic acid; (R)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)- amino]-3-(4-hydroxy-phenyl)-propionic acid; (S)-2-[(1 -Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)- amino]-3-(4-hydroxy-pheny!)-propionic acid; (R)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)- amino]-3-(4-hydroxy-phenyl)-propionic acid; (S)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)- amino}-3-(4-hydroxy-phenyl)-propionic acid; (R)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)- amino]-pentanoic acid, (S)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)- amino]-pentanoic acid; (R)-1-(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-pyrrolidine-2- carboxylic acid;
(S)-1-(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-pyrrolidine-2- carboxylic acid;
R)-11 -Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)- pyrrolidine-2-carboxylic acid; (S)-1-(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)- pyrrolidine-2-carboxylic acid; (R)-6-Amino-2-{(1 ~chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]- hexanoic acid (trifluoro-acetic acid salt); (S)-6-Amino-2-[(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]- hexanoic acid (trifluoro-acetic acid salt); (R)-6-Amino-2-[(1 -chloro-4-hydroxy-6-isopropoxy-isoquinoline-3- carbonyl)-amino]-hexanoic acid; trifluoroacetic acid salt; (S)-6-Amino-2-[(1-chloro-4-hydroxy-6-isopropoxy-isoquinoline-3- carbonyl)-amino]-hexanoic acid (trifluoro-acetic acid salt); (R)-6-Amino-2-[(1-chloro-4-hydroxy-7 -isopropoxy-isoquinoline-3- carbonyl)-amino]-hexanoic acid; trifluoroacetic acid salt; (S)-6-Amino-2-[(1 -chloro-4-hydroxy-7-isopropoxy-isoquinoline-3- carbonyl)-amino]-hexanoic acid (trifluoro-acetic acid salt); (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-succinic acid; (S)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-succinic acid; (R)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3 -carbonyl)- amino]-succinic acid; (S)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)- amino]-succinic acid; (R)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3 -carbonyl)- amino]-succinic acid; 1-[(1-Chloro-4-hydroxy-isoquinoline-3 -carbonyl)-amino}- cyclopropanecarboxylic acid; 1-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino)- cyclopropanecarboxylic acid;
Dideutero-[(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid;
(R)-2-[(6-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3 -carbonyl)- amino]-propionic acid; (S)-2-[(7-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3 -carbonyl)- amino]-propionic acid; (R)-2-[(7-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)- amino]-propionic acid; (S)-2-[(1 -Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}-propionic acid; (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-propionic acid; (S)-2-[(6-Isopropoxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)- amino]-propionic acid; (R)-2-[6-Isopropoxy-1-chloro-4-hydroxy-isoquinoline-3 -carbonyl)- amino}-propionic acid, (S)-2-[(7-Isopropoxy- 1 -chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino- propionic acid; (R)-2-[(7-Isopropoxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)- amino] propionic acid; 1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carboxylic acid (2- hydroxy-1-hydroxymethyl-ethyl)-amide; 1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carboxylic acid (2- hydroxy-1-hydroxymethyl-ethyl)-amide; 1-Chloro-4-hydroxy-isoquinoline-3-carboxylic acid (2-hydroxy-1- hydroxymethyl-ethyl)-amide; {[7-(3,5-Difluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino}- acetic acid; {[6-(3,5-Difluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino} - acetic acid; ({7-[4-(4-Fluoro-phenoxy)-phenoxy]-4-hydroxy-isoquinoline-3-carbonyl}- amino)-acetic acid; ({6-[4-(4-Fluoro-phenoxy)-phenoxy]-4-hydroxy-isoquinoline-3-carbonyl}- amino)-acetic acid; {[7-(3-Chloro-4-fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino }-acetic acid;
{[6-(3 _Chloro-4-fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino }-acetic acid; (S)- 2-{[7-(3-Fluoro-5 -methoxy-phenoxy)-4-hydroxy-isoquinoline-3- carbonyl]-amino}-propionic acid, 2-(S)-[(7-Cyclohexyloxy-4-hydroxy-isoquinoline-3-carbonyl)-amino]- propionic acid; 2-(S)-{[7 -(4-Fluoro-phenoxy)-4-hydroxy- 1-methyl-isoquinoline-3- carbonyl]-amino }-propionic acid; 2-(S)-{[7-(4-Fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino }-propionic acid; 2-(S)-[(4-Hydroxy-1-methyl-7-phenoxy-isoquinoline-3-carbonyl)-amino}- propionic acid; 2-(S)-[(4-Hydroxy-1-methyl-7-phenylsulfanyl-isoquinoline-3 ~carbonyl)- amino]-propionic acid; 2-(S)-{[4-Hydroxy-7-(4-trifluoromethyl-phenoxy)-isoquinoline-3- carbonyl]-amino }-propionic acid; {[7-(4-Chloro-phenoxy)-4-hydroxy-1-methyl-isoquinoline-3-carbonyl]- amino }-acetic acid; {[6-(4-Chloro-phenoxy)-4-hydroxy-1-methyl-isoquinoline-3-carbonyl]- amino }-acetic acid; {[7-(3,5-Diflucro-phenoxy)-4-hydroxy-1-methyl-isoquinoline-3- carbonyl]-amino}-acetic acid; {[4-Hydroxy-7-(4-methoxy-phenoxy)-1-methyl-isoquinoline-3-carbonyl]- amino }-acetic acid; {[4-Hydroxy-6-(4-methoxy-phenoxy)-1-methyl-isoquinoline-3-carbonyl]- amino }-acetic acid; [(6-Cyclohexyloxy-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(7-Cyclohexyloxy-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(7-Cyclobexyloxy-4-hydroxy-1-methyl-isoquinoline-3-carbonyl)-amino}- acetic acid; [(7-Cyclohexylsulfanyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid;
[(7-Cyclohexanesulfonyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]- acetic acid; [(4-Hydroxy-1-isobutyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-1-pyridin-2-yl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Ethyl-4-hydroxy-7-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [a -Dimethylaminomethyl-4-hydroxy-7-phenylsulfanyl-isoquinoline-3- carbonyl)-amino]-acetic acid; [(4-Hydroxy-1 -methyl-7-phenylsulfanyl-isoquinoline-3-carbonyl)- amino]- acetic acid; {[4-Hydroxy-1 -methyl-7-(4-trifluoromethyl-phenoxy)-isoquinoline-3- carbonyl]-amino}-acetic acid; and pharmaceutically acceptable salts, esters and prodrugs thereof.
[0044] In still another embodiment of the invention, a pharmaceutical composition is provided comprising a pharmaceutically acceptable excipient or carrier and a therapeutically effective amount of a compound of formula I or a mixture of such compounds.
[0045] Also provided are methods for treating, preventing or pretreating a condition mediated at least in part by HIF and/or EPO is provided. The method comprises administering to a mammalian patient a therapeutically effective amount of a compound having the structure of formula I above with the proviso that the compound is not selected from the group consisting of:
N-((1-chloro-4-hydroxy-7-(2-propyloxy) isoquinolin-3 -yl)-carbonyl)-glycine,
N-((1-chloro-4-hydroxy-6-(2-propyloxy) isoquinolin-3-yl)-carbonyl)-glycine,
N-((1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino) acetic acid,
N-((1-chloro-4-hydroxy-7-methoxyisoquinolin-3-yl)-carbonyl)-glycine,
N-((1-chloro-4-hydroxy-6-methoxyisoquinolin-3-yl)-carbonyl)-giycine,
N-((7-butyloxy-1-chloro-4-hydroxyisoquinolin-3-yl)-carbonyl)-glycine,
N-((6-benzyloxy-1 -chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino)-acetic acid,
N-((7-benzyloxy-1-chloro-4-hydroxy-isoquinoline-3 -carbonyl)-amino)-acetic acid,
N-((8-chloro-4-hydroxyisoquinolin-3-yl)-carbonyl)-glycine,
N-((7-butoxy-4-hydroxy-isoquinoline-3-carbonyl)-amino) acetic acid, and ((7-benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)amino)acetic acid methyl ester.
[0046] A further embodiment of this invention provides a method of inhibiting the : activity hydroxylase enzyme which modifies the alpha subunit of hypoxia inducible factor.
[0047] This invention also contemplates a composition comprising the compound of formula 1 or a mixture of compounds of formula 1 in combination with at least one additional therapeutic agent. Preferably, the additional therapeutic agent is erythropoietin.
DETAILED DESCRIPTION OF THE INVENTION
[0048] Before the present compositions and methods are described, it is to be understood that the invention is not limited to the particular methodologies, protocols, cell lines, assays, and reagents described, as these may vary. It is also to be understood that the terminology used herein is intended to describe particular embodiments of the present invention, and is in no way intended to limit the scope of the present invention as set forth in the appended claims.
[0049] It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural references unless the context clearly dictates otherwise.
[0050] Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods, devices, and materials are now described. All publications cited herein are incorporated herein by reference in their entirety for the purpose of describing and disclosing the methodologies, reagents, and tools reported in the publications that might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
[0051] The practice of the present invention will employ, unless otherwise indicated, conventional methods of chemistry, biochemistry, molecular biology, cell biology, genetics, immunology and pharmacology, within the skill of the art. Such techniques are explained fully in the literature. (See, e.g., Gennaro, A.R., ed. (1990) Remington’s
Pharmaceutical Sciences, 18™ ed., Mack Publishing Co.; Colowick, S. ez al., eds.,
Methods In Enzymology, Academic Press, Inc.; Handbook of Experimental Immunology,
Vols. I-IV (D.M. Weir and C.C. Blackwell, eds., 1986, Blackwell Scientific
Publications); Maniatis, T. et al., eds. (1989) Molecular Cloning: A Laboratory Manual, 2™ edition, Vols. I-III, Cold Spring Harbor Laboratory Press; Ausubel, F. M. ef al., eds. (1999) Short Protocols in Molecular Biology, 4" edition, John Wiley & Sons; Ream ef al., eds. (1998) Molecular Biology Techniques: An Intensive Laboratory Course,
Academic Press); PCR (Introduction to Biotechniques Series), 2nd ed. (Newton &
Graham eds., 1997, Springer Verlag)).
[0052] The term "anemia" as used herein refers to any abnormality in hemoglobin or erythrocytes that leads to reduced oxygen levels in the blood. Anemia can be associated with abnormal production, processing, or performance of erythrocytes and/or hemoglobin. The term anemia refers to any reduction in the number of red blood cells and/or level of hemoglobin in blood relative to normal blood levels.
[0053] Anemia can arise due to conditions such as acute or chronic kidney disease, infections, inflammation, cancer, irradiation, toxins, diabetes, and surgery. Infections may be due to, e.g., virus, bacteria, and/or parasites, efc. Inflammation may be due to infection, autoimmune disorders, such as rheumatoid arthritis, efc. Anemia can also be associated with blood loss due to, e.g., stomach ulcer, duodenal ulcer, hemorrhoids, cancer of the stomach or large intestine, trauma, injury, surgical procedures, etc. Anemia is further associated with radiation therapy, chemotherapy, and kidney dialysis. Anemia is also associated with HIV-infected patients undergoing treatment with azidothymidine (zidovudine) or other reverse transcriptase inhibitors, and can develop in cancer patients undergoing chemotherapy, e.g., with cyclic cisplatin- or non-cisplatin-containing chemotherapeutics. Aplastic anemia and myelodysplastic syndromes are diseases associated with bone marrow failure that result in decreased production of erythrocytes.
Further, anemia can result from defective or abnormal hemoglobin or erythrocytes, such as in disorders including microcytic anemia, hypochromic anemia, efc. Anemia can result from disorders in iron transport, processing, and utilization, see, e.g., sideroblastic anemia, efc.
[0054] The terms "disorders," "diseases," and "conditions" are used inclusively and refer to any condition deviating from normal.
[0055] The terms "anemic conditions" and "anemic disorders" refer to any condition, disease, or disorder associated with anemia. Such disorders include, but are not limited to, those disorders listed above. Anemic disorders further include, but are not limited to, aplastic anemia, autoimmune hemolytic anemia, bone marrow transplantation, Churg-
Strauss syndrome, Diamond Blackfan anemia, Fanconi's anemia, Felty syndrome, graft versus host disease, hematopoietic stem cell transplantation, hemolytic uremic syndrome, myelodysplastic syndrome, nocturnal paroxysmal hemoglobinuria, osteomyelofibrosis, pancytopenia, pure red-cell aplasia, purpura Schoenlein-Henoch, sideroblastic anemia, refractory anemia with excess of blasts, rheumatoid arthritis, Shwachman syndrome, sickle cell disease, thalassemia major, thalassemia minor, thrombocytopenic purpura, efc.
[0056] The term "erythropoietin-associated conditions" is used inclusively and refers to any condition associated with below normal, abnormal, or inappropriate modulation of erythropoietin. Erythropoietin-associated conditions include any condition wherein an increase in EPO level would provide therapeutic benefit. Levels of erythropoietin associated with such conditions can be determined by any measure accepted and utilized by those of skill in the art. Erythropoietin-associated conditions include anemic conditions such as those described above.
[0057] Erythropoietin-associated conditions further include neurological disorders and/or injuries, including cases of stroke, trauma, epilepsy, neurodegenerative disease and the like, wherein erythropoietin may provide a neuroprotective effect. Neurodegenerative diseases contemplated by the invention include Alzheimer’s disease, Parkinson’s disease,
Huntington’s disease, and the like.
[0058] The term "erythropoietin" refers to any recombinant or naturally occurring erythropoietin including, e.g., human erythropoietin (GenBank Accession No.
AAAS52400; Lin et al. (1985) Proc Nat’l Acad. Sci USA 82:7580-7584), EPOETIN human recombinant erythropoietin (Amgen, Inc., Thousand Oaks CA), ARANESP human recombinant erythropoietin (Amgen), PROCRIT human recombinant erythropoietin (Ortho Biotech Products, L.P., Raritan NJ), etc.
[0059] The term "HIFo" refers to the alpha subunit of hypoxia inducible factor protein.
HIFo may be any human or other mammalian protein, or fragment thereof, including human HIF-1a (Genbank Accession No. Q16665), HIF-20, (Genbank Accession No.
AABA41495), and HIF-30 (Genbank Accession No. AAD22668); murine HIF-1a (Genbank Accession No. Q61221), HIF-2a (Genbank Accession No. BAA20130 and
AAB41496), and HIF-3a (Genbank Accession No. AAC72734); rat HIF-1a (Genbank
Accession No. CAA70701), HIF-2a. (Genbank Accession No. CAB96612), and HIF-3a (Genbank Accession No. CAB96611); and bovine HIF-1a (Genbank Accession No.
BAA78675). HIFo may also be any non-mammalian protein or fragment thereof, including Xenopus laevis HIF-1a (Genbank Accession No. CAB96628), Drosophila melanogaster HIF-10. (Genbank Accession No. JC4851), and chicken HIF-1a (Genbank
Accession No. BAA34234). HIFa gene sequences may also be obtained by routine cloning techniques, for example by using all or part of a HIFa gene sequence described above as a probe to recover and determine the sequence of a HIFa. gene in another species.
[0060] A fragment of HIFa includes any fragment retaining at least one functional or structural characteristic of HIFa. Fragments of HIFa include, e.g., the regions defined by human HIF-1a from amino acids 401 to 603 (Huang et al., supra), amino acid 531 to 575 (Jiang et al. (1997) J Biol. Chem 272:19253-19260), amino acid 556 to 575 (Tanimoto er al., supra), amino acid 557 to 571 (Srinivas et al. (1999) Biochem Biophys Res. Commun 260:557-561), and amino acid 556 to 575 (Ivan and Kaelin (2001) Science 292:464-468),
Further, HIFa fragments include any fragment containing at least one occurrence of the motif LXXLAP, e.g., as occurs in the human HIF-1a native sequence at L3o;TLLAP and
LsssEMLAP.
[0061] The terms "amino acid sequence" or "polypeptide" as used herein, e.g., to refer to HIFo and fragments thereof, contemplate an oligopeptide, peptide, or protein sequence, or to a fragment of any of these, and to naturally occurring or synthetic molecules. "Fragments" can refer to any portion of a sequence that retains at least one structural or functional characteristic of the protein. Immunogenic fragments or antigenic fragments are fragments of polypeptides, preferably, fragments of about five to fifteen amino acids in length, that retain at least one biological or immunological activity. Where "amino acid sequence” is used to refer to the polypeptide sequence of a naturally occurring protein molecule, "amino acid sequence” and like terms are not meant to limit the amino acid sequence to the complete native sequence associated with the recited protein molecule.
[0062] The term "related proteins” as used herein, for example, to refer to proteins related to HIFa prolyl hydroxylase, encompasses other 2-oxoglutarate dioxygenase enzymes, especially those family members that similarly require Fe?*, 2-oxoglutarate, and oxygen to maintain hydroxylase activity. Such enzymes include, but are not limited to, e.g., procollagen lysyl hydroxylase, procollagen prolyl 4-hydroxylase, and Factor
Inhibiting HIF (FIH), an asparaginyl hydroxylase responsible for regulating transactivation of HIF. (GenBank Accession No. AAL27308; Mahon ef al. (2001)
Genes Dev 15:2675-2686; Lando et al. (2002) Science 295:858-861; and Lando et al. (2002) Genes Dev 16:1466-1471. See also Elkins et al. (2002) J Biol Chem
C200644200, etc.)
[0063] The terms "HIF prolyl hydroxylase" and "HIF PH" refer to any enzyme capable of hydroxylating a proline residue in the HIF protein. Preferably, the proline residue hydroxylated by HIF PH includes the proline found within the motif LXXLAP, e.g., as occurs in the human HIF-1o native sequence at L3g7TLLAP and LsssEMLAP. HIF PH includes members of the Egl-Nine (EGLN) gene family described by Taylor (2001, Gene 275:125-132), and characterized by Aravind and Koonin (2001, Genome Biol 2:
RESEARCH 0007), Epstein ef al. (2001, Cell 107:43-54), and Bruick and McKnight (2001, Science 294:1337-1340). Examples of HIF PH enzymes include human SM-20 (EGLN1) (GenBank Accession No. AAG33965; Dupuy et al. (2000) Genomics 69:348- 54), EGLN2 isoform 1 (GenBank Accession No. CAC42510; Taylor, supra), EGLN2 isoform 2 (GenBank Accession No. NP_060025), and EGLNS3 (GenBank Accession No.
CAC42511; Taylor, supra); mouse EGLN1 (GenBank Accession No. CAC42515),
EGLN2 (GenBank Accession No. CAC42511), and EGLN3 (SM-20) (GenBank
Accession No. CAC42517); and rat SM-20 (GenBank Accession No. AAA19321).
Additionally, HIF PH may include Caenorhabditis elegans EGL-9 (GenBank Accession
No. AAD56365) and Drosophila melanogaster CG1114 gene product (GenBank
Accession No. AAF52050). HIF PH also includes any fragment of the foregoing full- length proteins that retain at least one structural or functional characteristic.
[0064] The term "agonist" refers to a molecule that increases or prolongs the duration of the effect of a particular molecule. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules that increase the effect(s) of the target molecule.
[0065] The term "antagonist" refers to a molecule that decreases the extent or duration of the effect of the biological or immunological activity of a particular molecule.
Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules that decrease the effect(s) of the target molecule.
[0066] The term "microarray" refers to any arrangement of nucleic acids, amino acids, antibodies, etc., on a substrate. The substrate can be any suitable support, e.g., beads, glass, paper, nitrocellulose, nylon, or any appropriate membrane, efc. A substrate can be any rigid or semi-rigid support including, but not limited to, membranes, filters, wafers,
chips, slides, fibers, beads, including magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles, capillaries, etc. The substrate can provide a surface for coating and/or can have a variety of surface forms, such as wells, pins, trenches, channels, and pores, to which the nucleic acids, amino acids, efc., may be bound.
[0067] The term "excipient" as used herein means an inert or inactive substance used in the production of pharmaceutical products or other tablets, including without limitation any substance used as a binder, disintegrant, coating, compression/encapsulation aid, cream or lotion, lubricant, parenteral, sweetener or flavoring, suspending/gelling agent, or wet granulation agent. Binders include, e.g., carbopol, povidone, xanthan gum, efc.; coatings include, e.g., cellulose acetate phthalate, ethylcellulose, gellan gum, maltodextrin, efc.; compression/encapsulation aids include, e.g., calcium carbonate, dextrose, fructose dc, honey dc, lactose (anhydrate or monohydrate; optionally in combination with aspartame, cellulose, or microcrystalline cellulose), starch dc, sucrose, etc.; disintegrants include, e.g., croscarmellose sodium, gellan gum, sodium starch glycolate, efc.; creams and lotions include, e.g., maltodextrin, carrageenans, efc.; lubricants include, e.g, magnesium stearate, stearic acid, sodium stearyl fumarate, efc.; materials for chewable tablets include, e.g., dextrose, fructose dc, lactose (monohydrate, optionally in combination with aspartame or cellulose), efc.; parenterals include, e.g., mannitol, povidone, etc.; plasticizers include, e.g., dibutyl sebacate, polyvinylacetate phthalate, etc.; suspending/gelling agents include, e.g., carrageenan, sodium starch glycolate, xanthan gum, etc.; sweeteners include, e.g., aspartame, dextrose, fructose dc, sorbitol, sucrose dc, efc.; and wet granulation agents include, e.g., calcium carbonate, maltodextrin, microcrystalline cellulose, etc.
[0068] The term "loading dose" as used herein refers to a single or multiple dose administered initially to rapidly achieve the desired pharmacological level. For example,
a loading dose in reference to the methods of the invention refers to an initial dosing regimen that rapidly increases, e.g. , the plasma concentration of a compound of the invention to a pharmaceutically active level.
[0069] The term "induction dose" as used herein refers to a repeated dose strength administered initially to rapidly achieve the desired physiological response. For example, an induction dose in reference to the methods of the invention refers to an initial dosing regimen that rapidly increases the hematocrit or hemoglobin level to within a target range, which may be at or below normal hematocrit/hemoglobin levels.
[0070] The term "maintenance dose" as used herein refers to the dose level administered after a loading or induction dose in order to maintain a desired physiological response. For example, a maintenance dose in reference to the methods of the invention refers to a dosing regimen that maintains hematocrit and/or hemoglobin within a desired target range, which may be at or below normal hematocrit/hemoglobin levels.
[0071] The term "sample" is used herein in its broadest sense. Samples may be derived from any source, for example, from bodily fluids, secretions, tissues, cells, or cells in culture including, but not limited to, saliva, blood, urine, serum, plasma, vitreous, synovial fluid, cerebral spinal fluid, amniotic fluid, and organ tissue (e.g, biopsied tissue); from chromosomes, organelles, or other membranes isolated from a cell; from genomic DNA, cDNA, RNA, mRNA, etc.; and from cleared cells or tissues, or blots or imprints from such cells or tissues. Samples may be derived from any source, such as, for example, a human subject, or a non-human mammalian subject, etc. Also contemplated are samples derived from any animal model of disease. A sample can be in solution or can be, for example, fixed or bound to a substrate. A sample can refer to any material suitable for testing for the presence of erythropoietin or HIFa or to fragments thereof, or suitable for screening for molecules that increase endogenous levels of erythropoietin or
HIFo. or to fragments thereof. Methods for obtaining such samples are within the level of skill in the art.
[0072] The term "subject" is used herein in its broadest sense. Subjects may include isolated cells, either prokaryotic or eukaryotic, or tissues grown in culture. In certain embodiments, a subject is an animal, particularly an animal selected from a mammalian species including rat, rabbit, bovine, ovine, porcine, canine, feline, murine, equine, and primate, particularly human.
[0073] As used herein, "alkyl" refers to monovalent alkyl groups having from 1 to 10 carbon atoms, preferably from 1 to 5 carbon atoms and more preferably 1 to 3 carbon atoms. This term is exemplified by groups such as methyl, ethyl, n-propyl, iso-propyl, n- butyl, t-butyl, n-pentyl and the like.
[0074] “Substituted alkyl” refers to an alkyl group, of from 1 to 10 carbon atoms, preferably, 1 to 5 carbon atoms, having from 1 to 5 substituents, preferably 1 to 3 substituents, independently selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminoacyl, aminocarbonylamino, aminothiocarbonylamino, aminocarbonyloxy, aryl, substituted aryl, aryloxy, substituted aryloxy, aryloxyaryl, substituted aryloxyaryl, cyano, halogen, hydroxyl, nitro, oxo, thioxo, carboxyl, carboxyl esters, cycloalkyl, substituted cycloalkyl, thiol, alkylthio, substituted alkylthio, arylthio, substituted arylthio, cycloalkylthio, substituted cycloalkylthio, heteroarylthio, substituted heteroarylthio, heterocyclicthio, substituted heterocyclicthio, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, cycloalkoxy, substituted cycloalkoxy, heteroaryloxy, substituted heteroaryloxy, heterocyclyloxy, substituted heterocyclyloxy, oxycarbonylamino, oxythiocarbonylamino, -OS(QO),-alkyl, -OS(O),-substituted alkyl, -OS(O),-aryl, -0S(0),-substituted aryl, OS(O),-heteroaryl, -OS(O),-substituted heteroaryl,
-0S(O),-heterocyclic, -OS(O)-substituted heterocyclic, -0S0,-NR¥R* where each R*’ is hydrogen or alkyl, -NR*’S(0);-alkyl, -NR**S(O),-substituted alkyl -NR*S(0),-aryl,
NR*S(0),-substituted aryl, -NR*’S(0),-heteroaryl, -NR*’S(O)z-substituted heteroaryl,
NR*’S(0),-heterocyclic, -NR*’S(0),-substituted heterocyclic, NR*S(0),-NR**-alkyl,
NR¥S(0),-NR*-substituted alkyl, -NR*’S(0),-NR*’-aryl, “NR¥S(0),-NR*-substituted aryl, -NR*S(0),-NR*-heteroaryl, NR*°S(0),-NR*-substituted heteroaryl,
NR*’S(0),-NR*-heterocyclic, and “NR*S(0),-NR*-substituted heterocyclic where each
R* is hydrogen or alkyl.
[0075] "Alkoxy" refers to the group "alkyl-O-" which includes, by way of example, methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, t-butoxy, sec-butoxy, n-pentoxy and the like. }
[0076] "Substituted alkoxy" refers to the group "substituted alkyl-O-".
[0077] “Acyl” refers to the groups H-C(O)-, alkyl-C(O)-, substituted alkyl-C(O)-, alkenyl-C(O)-, substituted alkenyl-C(O)-, alkynyl-C(O)-, substituted alkynyl-C(O)-, cycloalkyl-C(O)-, substituted cycloalkyl-C(O)-, aryl-C(O)-, substituted aryl-C(O)-, heteroaryl-C(O)-, substituted heteroaryl-C(O), heterocyclic-C(O)-, and substituted heterocyclic-C(O)- provided that a nitrogen atom of the heterocyclic or substituted heterocyclic is not bound to the -C(O)- group wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.
[0078] The term “aminoacyl” or as a prefix “carbamoyl” or “carboxamide” or “substituted carbamoyl” or “substituted carboxamide” refers to the group -C(O)NR*?R* where each R* is independently selected from the group consisting of hydrogen, alkyl,
substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic and where each R* is joined to form together with the nitrogen atom a heterocyclic or substituted heterocyclic wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.
[0079] "Acyloxy" refers to the groups alkyl-C(0)O-, substituted alkyl-C(O)O-, alkenyl-
C(0)O-, substituted alkenyl-C(O)O-, alkynyl-C(O)O-, substituted alkynyl-C(O)O-, aryl-
C(0)0-, substituted aryl-C(O)O-, cycloalkyl-C(0)O-, substituted cycloalkyl-C(0)O-, heteroaryl-C(0)O-, substituted heteroaryl-C(O)O-, heterocyclic-C(0)O-, and substituted heterocyclic-C(O)O- wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.
[0080] "Alkenyl" refers to alkenyl group preferably having from 2 to 6 carbon atoms and more preferably 2 to 4 carbon atoms and having at least 1 and preferably from 1 to 2 sites of alkenyl unsaturation.
[0081] "Substituted alkenyl" refers to alkenyl groups having from 1 to 3 substituents, and preferably 1 to 2 substituents, selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cyano, halogen, hydroxyl, nitro, carboxyl, carboxyl esters, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
[0082] "Alkynyl" refers to alkynyl group preferably having from 2 to 6 carbon atoms and more preferably 2 to 3 carbon atoms and having at least 1 and preferably from 1-2 sites of alkynyl unsaturation.
[0083] "Substituted alkynyl" refers to alkynyl groups having from 1 to 3 substituents, and preferably 1 to 2 substituents, selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cyano, halogen, hydroxyl, nitro, carboxyl, carboxyl esters, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
[0084] "Amino" refers to the group —NH,.
[0085] “Substituted amino” refers to the group -NR*'R*, where each R* group is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, -SO;-alkyl, -SO,-substituted alkyl, -SO,-alkenyl, -SO»- substituted alkenyl, -SO;-cycloalkyl, -SO,-substituted cycloalkyl, -SO,-aryl, -SO2- substituted aryl, -SOx-heteroaryl, -SO,-substituted heteroaryl, -SO;,-heterocyclic, -SO,- substituted heterocyclic, provided that both R*! groups are not hydrogen; or the RH groups can be joined together with the nitrogen atom to form a heterocyclic or substituted heterocyclic ring.
[0086] “Acylamino” refers to the groups _NR*C(0)alkyl, -NR*C(O)substituted alkyl,
NR“C(O)cycloalkyl, NR*C(O)substituted cycloalkyl, -NR*C(O)alkenyl,
NR¥C(O)substituted alkenyl, NR**C(O)alkynyl, -NR*C(O)substituted alkynyl,
NR¥C(O)aryl, -NR¥C(O)substituted aryl, NR“C(O)heteroaryl, NR*C(O)substituted heteroaryl, -NR*C(O)heterocyclic, and -NR**C(O)substituted heterocyclic where R¥ is hydrogen or alkyl and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are defined herein.
[0087] “Carbonyloxyamino” refers to the groups —-NR*C(0)0-alkyl, -NR*C(0)0O- substituted alkyl, -NR*6C(0)O-alkenyl, -NR*C(0)O-substituted alkenyl, NR*C(0)O- alkynyl, -NR*C(0)O-substituted alkynyl, -NR*C(0)O-cycloalkyl, -NR*C(0)O- substituted cycloalkyl, -NR¥C(0)O-aryl, -NR*C(O)O-substituted aryl, -NR**C(0)O- heteroaryl, -NR*C(0)O-substituted heteroaryl, NR*C(0)0-heterocyclic, and -NR*C(0)O-substituted heterocyclic where R* is hydrogen or alkyl and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.
[0088] “Aminocarbonyloxy” or as a prefix “carbamoyloxy” or “substituted carbamoyloxy” refers to the groups -OC(O)NR*'RY where each RY is independently hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic or where each Ris joined to form, together with the nitrogen atom a heterocyclic or substituted heterocyclic and wherein alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic are as defined herein.
[0089] “Aminocarbonylamino” refers to the group -NR*C(O)NR*- where R* is selected from the group consisting of hydrogen and alkyl.
[0090] "Aryl" or "Ar" refers to a monovalent aromatic carbocyclic group of from 6 to 14 carbon atoms having a single ring (e.g., phenyl) or multiple condensed rings (e.g., naphthyl or anthryl) which condensed rings may or may not be aromatic (e.g., 2- benzoxazolinone, 2H-1,4-benzoxazin-3(4H)-one-7-y}, and the like) provided that the point of attachment is the aryl group. Preferred aryls include phenyl and naphthyl.
[0091] “Substituted aryl” refers to aryl groups, as defined herein, which are substituted with from 1 to 4, oreferably 1-3, substituents selected from the group consisting of hydroxy, acyl, acylamino, carbonylaminothio, acyloxy, alkyl, substituted alkyl, alkoxy, substituted alkoxy, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amidino, amino, substituted amino, aminoacyl, aminocarbonyloxy, aminocarbonylamino, aminothiocarbonylamino, aryl, substituted aryl, aryloxy, substituted aryloxy, cycloalkoxy, substituted cycloalkoxy, heteroaryloxy, substituted heteroaryloxy, heterocyclyloxy, substituted heterocyclyloxy, carboxyl, carboxyl esters cyano, thiol, alkylthio, substituted alkylthio, arylthio, substituted arylthio, heteroarylthio, substituted heteroarylthio, cycloalkylthio, substituted cycloalkylthio, heterocyclicthio, substituted heterocyclicthio, cycloalkyl, substituted cycloalkyl, guanidino, halo, nitro, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, oxycarbonylamino, oxythiocarbonylamino, -S(O)-alkyl, -S(O),-substituted alkyl, -S(O),-cycloalkyl, -S(O)z- substituted cycloalkyl, -S(O),-alkenyl, -S(O),-substituted alkenyl, -S(O),-aryl, -S(O)2- substituted aryl, -S(O);-heteroaryl, -S(O),-substituted heteroaryl, -S(O);-heterocyclic, -S(O)z-substituted heterocyclic, -OS(0)z-alkyl, -0S(0),-substituted alkyl, -OS(O),-aryl, -
OS(0);-substituted aryl, -OS(O),-heteroaryl, -0S(0),-substituted heteroaryl, -OS(O),- heterocyclic, -OS(O)z-substituted heterocyclic, -0S0,-NR’'R®! where each Ris hydrogen or alkyl, -NR'S(O)-alkyl, -NR*'S(O),-substituted alkyl, NR*'S(0),-aryl, -
NR3!'S(0),-substituted aryl, NR*!S(0),-heteroaryl, -NR’!S(O),-substituted heteroaryl, -
NR5'S(0),-heterocyclic, -NR®!S(0),-substituted heterocyclic, NR3'S(0),-NR* alkyl, -
NRS!S(0),-NRS substituted alkyl, -NR*'S(0)>-NR*'-aryl, NR®!S(0),-NR*'-substituted aryl, -NR’!S(0),-NR’! heteroaryl, NR?!S(0),-NR>'-substituted heteroaryl, NR*'S(0),-
NR®!-heterocyclic, -NR*'S(0),-NR®' substituted heterocyclic where each R3! is hydrogen or alkyl, wherein each of the terms is as defined herein.
[0092] "Aryloxy" refers to the group aryl-O- that includes, by way of example, phenoxy, naphthoxy, and the like.
[0093] "Substituted aryloxy" refers to substituted aryl-O- groups.
[0094] "Aryloxyaryl" refers to the group -aryl-O-aryl.
[0095] "Substituted aryloxyaryl" refers to aryloxyaryl groups substituted with from 1 to 3 substituents on either or both aryl rings as defined above for substituted aryl.
[0096] "Carboxyl" refers to -COOH or salts thereof.
[0097] “Carboxyl esters" refers to the groups —C(0)O-alkyl, —C(0)O-substituted alkyl, -C(0)O-aryl, and ~C(0)O-substituted aryl wherein alkyl, substituted alkyl, aryl and substituted aryl are as defined herein.
[0098] "Cycloalkyl" refers to cyclic alkyl groups of from 3 to 10 carbon atoms having single or multiple cyclic rings including, by way of example, adamantyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclooctyl and the like.
[0099] "Substituted cycloalkyl" refers to a cycloalkyl group, having from 1 to 5 substituents selected from the group consisting of oxo (=O), thioxo (=8), alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminoacyl, aryl, substituted aryl, aryloxy, substituted aryloxy, cyano, halogen, hydroxyl, nitro, carboxyl, carboxyl esters, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic, and substituted heterocyclic.
[0100] "Cycloalkoxy" refers to -O-cycloalkyl groups.
[0101] "Substituted cycloalkoxy" refers to -O-substituted cycloalkyl groups.
[0102] "Halo" or "halogen" refers to fluoro, chloro, bromo and iodo and preferably is fluoro or chloro.
[0103] "Heteroaryl" refers to an aromatic group of from 1 to 15 carbon atoms, preferably from 1 to 10 carbon atoms, and 1 to 4 heteroatoms selected from the group consisting of oxygen, nitrogen and sulfur within the ring. Such heteroaryl groups can have a single ring (e.g., pyridiny! or furyl) or multiple condensed rings (e.g., indolizinyl or benzothienyl). Preferred heteroaryls include pyridinyl, pyrrolyl, indolyl, thiophenyl, and furyl.
[0104] “Substituted heteroaryl” refers to heteroaryl groups that are substituted with from 1 to 3 substituents selected from the same group of substituents defined for substituted aryl.
[0105] "Heteroaryloxy" refers to the group -O-heteroaryl and " substituted heteroaryloxy" refers to the group -O-substituted heteroaryl.
[0106] "Heterocycle" or "heterocyclic" refers to a saturated or unsaturated group having a single ring or multiple condensed rings, from 1 to 10 carbon atoms and from 1 to 4 hetero atoms selected from the group consisting of nitrogen, sulfur or oxygen within the ring wherein, in fused ring systems, one or more the rings can be aryl or heteroaryl provided that the point of attachment is at the heterocycle.
[0107] "Substituted heterocyclic" refers to heterocycle groups that are substituted with from 1 to 3 of the same substituents as defined for substituted cycloalkyl.
[0108] Examples of heterocycles and heteroaryls include, but are not limited to, azetidine, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine,
indolizine, isoindole, indole, dihydroindole, indazole, purine, quinolizine, isoquinoline, quinoline, phthalazine, naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, phenoxazine, phenothiazine, imidazolidine, imidazoline, piperidine, piperazine, indoline, phthalimide, 1,2,3 4-tetrahydro-isoquinoline, 4,5,6,7- tetrahydrobenzo[b]thiophene, thiazole, thiazolidine, thiophene, benzo[b]thiophene, ) morpholinyl, thiomorpholinyl (also referred to as thiamorpholinyl), piperidinyl, pyrrolidine, tetrahydrofuranyl, and the like. :
[0109] "Heterocyclyloxy" refers to the group -O-heterocyclic and "substituted heterocyclyloxy" refers to the group -O-substituted heterocyclic.
[0110] “Thiol” or “mercapto” refers to the group -SH.
[0111] “Alkylsulfanyl” and “alkylthio” refer to the groups -S-alkyl where alkyl is as defined above.
[0112] “Qubstituted alkylthio” and wgybstituted alkylsulfanyl” refer to the group -S- substituted alkyl is as defined above.
[0113] “Cycloalkylthio™ or “cycloalkylsulfanyl” refers to the groups -S-cycloalkyl where cycloalkyl is as defined above.
[0114] «Qubstituted cycloalkylthio” refers to the group -S-substituted cycloalkyl where substituted cycloalkyl is as defined above.
[0115] “Arylthio” refers to the group -S-aryl and “substituted arylthio” refers to the group _S-substituted aryl where aryl and substituted aryl are as defined above.
[0116] «Heteroarylthio” refers to the group -S-heteroaryl and “substituted heteroarylthio” refers to the group -S-substituted heteroaryl where heteroaryl and substituted heteroaryl are as defined above.
[0117] “Heterocyclicthio” refers to the group -S-heterocyclic and “substituted heterocyclicthio” refers to the group -S-substituted heterocyclic where heterocyclic and : substituted heterocyclic are as defined above.
[0118] The term “amino acid” refers to any of the naturally occurring amino acids, as well as synthetic analogs (e.g., D-stereoisomers of the naturally occurring amino acids, such as D-threonine) and derivatives thereof. o.-Amino acids comprise a carbon atom to which is bonded an amino group, a carboxyl group, a hydrogen atom, and a distinctive group referred to as a “side chain”. The side chains of naturally occurring amino acids are well known in the art and include, for example, hydrogen (e.g., as in glycine), alkyl (e.g., as in alanine, valine, leucine, isoleucine, proline), substituted alkyl (e.g, as in threonine, serine, methionine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine, and lysine), arylalkyl (e.g., as in phenylalanine and tryptophan), substituted arylalkyl (e.g., as in tyrosine), and heteroarylalkyl (e.g., as in histidine). Unnatural amino acids are also known in the art, as set forth in, for example, Williams (ed.), Synthesis of Optically
Active .alpha.-Amino Acids, Pergamon Press (1989); Evans et al., J. Amer. Chem. Soc., 112:4011-4030 (1990); Pu et al., J. Amer. Chem. Soc., 56:1280-1283 (1991); Williams et al., J. Amer. Chem. Soc., 113:9276-9286 (1991); and all references cited therein. The present invention includes the side chains of unnatural amino acids as well.
[0119] "Pharmaceutically acceptable salt" refers to pharmaceutically acceptable salts of a compound, which salts are derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the molecule contains a basic functionality, salts of organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, oxalate and the like.
[0120] The term “prodrug” refers to compounds of this invention which have been modified to include a physiologically and biocompatible removable group which group is removed in vivo to provide for the active drug, a pharmaceutically acceptable salt thereof or a biologically active metabolite thereof. Suitable removable groups are well known in the art and particularly preferred removable groups include esters of the carboxylic acid moiety on the glycine substituent. Preferably such esters include those derived from alkyl alcohols, substituted alkyl alcohols, hydroxy substituted aryls and heteroaryls and the like. Another preferred removable group are the amides formed from the carboxylic acid moiety on the glycine substituent. Suitable amides are derived from amines of the formula HNR?°R?! where R?’ and R?! are independently hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, and the like.
[0121] It is understood that in all substituted groups defined above, polymers arrived at : by defining substituents with further substituents to themselves (e.g., substituted aryl : having a substituted aryl group as a substituent which is itself substituted with a substituted ary] group, efc.) are not intended for inclusion herein. In such cases, the maximum number of such substituents is three. That is to say that each of the above definitions is constrained by a limitation that, for example, substituted aryl groups are limited to —substituted aryl-(substituted aryl)-substituted aryl.
[0122] Similarly, itis understood that the above definitions are not intended to include impermissible substitution patterns (e.g., methyl substituted with 5 fluoro groups ora hydroxyl group alpha to ethenylic or acetylenic unsaturation). Such impermissible substitution patterns are well known to the skilled artisan.
The Methods of the Invention
[0123] The present invention provides methods of modulating HIF and/or EPO by inhibiting HIFo. hydroxylation, thereby stabilizing HIF and activating HIF-regulated gene expression. The methods can be applied to the prevention, pretreatment, or treatment of conditions associated with HIF and or EPO including anemic, ischemic and hypoxic conditions.
Treatment of HIF-Associated Conditions
[0124] Ischemia and Hypoxia are two conditions associated with HIF and include, but are not limited to, myocardial infarction, liver ischemia, renal ischemia, and stroke; peripheral vascular disorders, ulcers, burns, and chronic wounds; pulmonary embolism; and ischemic-reperfusion injury, including, for example, ischemic-reperfusion injury associated with surgery and organ transplantation. In one embodiment, the present invention provides methods of stabilizing HIF before, during, or immediately after ischemia or hypoxia, particularly in association with myocardial infarction, stroke, or renal ischemic-reperfusion injury.
[0125] In one aspect, the invention provides methods for treating various ischemic and hypoxic conditions, in particular, using the compounds described herein. In one : embodiment, the methods of the invention produce therapeutic benefit when administered following ischemia or hypoxia. For example, the methods of the invention produce a dramatic decrease in morbidity and mortality following myocardial infarction, and a significant improvement in heart architecture and performance. Further, the methods of the invention improve liver function when administered following hepatic toxic-ischemic injury. Hypoxia is a significant component of liver disease, especially in chronic liver disease associated with hepatotoxic compounds such as ethanol. Additionally, expression of genes known to be induced by HIFa, e.g, nitric oxide synthase and glucose transporter-1, is increased in alcoholic liver disease. (See, e.g., Areel et al. (1997)
Hepatology 25:920-926; Strubelt (1984) Fundam. Appl. Toxicol. 4:144-151; Sato (1983)
Pharmacol Biochem Behav 18 (Suppl. 1):443-447; Nanji ef al. (1995) Am. J. Pathol. 146:329-334; and Morio et al. (2001) Toxicol. Appl. Pharmacol. 172:44-51.)
[0126] Therefore, the present invention provides methods of treating conditions associated with ischemia or hypoxia, the method comprising administering a therapeutically effective amount of a compound or a pharmaceutically acceptable salt thereof, alone or in combination with a pharmaceutically acceptable excipient, to a subject. In one embodiment, the compound is administered immediately following a condition producing acute ischemia, . g., myocardial infarction, pulmonary embolism, intestinal infarction, ischemic stroke, and renal ischemic-reperfusion injury. In another embodiment, the compound is administered to a patient diagnosed with a condition associated with the development of chronic ischemia, e.g., cardiac cirrhosis, macular degeneration, pulmonary embolism, acute respiratory failure, neonatal respiratory distress syndrome, and congestive heart failure. In yet another embodiment, the compound is administered immediately after a trauma or injury.
[0127] In another aspect, the invention provides methods for treating a patient at risk of developing an ischemic or hypoxic condition, e.g., individuals at high risk for atherosclerosis, efc., using the compounds described herein. Risk factors for atherosclerosis include, e.g., hyperlipidemia, cigarette smoking, hypertension, diabetes mellitus, hyperinsulinemia, and abdominal obesity. Therefore, the present invention provides methods of preventing ischemic tissue injury, the method comprising administering a therapeutically effective amount of a compound or a pharmaceutically acceptable salt thereof, alone or in combination with a pharmaceutically acceptable excipient, to a patient in need. In one embodiment, the compound can be administered based on predisposing conditions, e.g, hypertension, diabetes, occlusive arterial disease,
chronic venous insufficiency, Raynaud’s disease, chronic skin ulcers, cirrhosis, congestive heart failure, and systemic sclerosis.
[0128] In one specific embodiment, the methods are used to increase vascularization and/or granulation tissue formation in damaged tissue, wounds, and ulcers. For example, compounds of the invention have been shown to be effective in stimulating granulation tissue formation in wound healing. Granulation tissue contains newly formed, leaky blood vessels and a provisional stroma of plasma proteins, such as fibrinogen and plasma fibronectin. Release of growth factors from inflammatory cells, platelets, and activated endothelium, stimulates fibroblast and endothelial cell migration and proliferation within the granulation tissue. Ulceration can occur if vascularization or neuronal stimulation is impaired. The methods of the invention are effective at promoting granulation tissue formation. Thus, the invention provides methods for treating a patient having tissue damage due to, e.g., an infarct, having wounds induced by, e.g., trauma or injury, or having chronic wounds or ulcers produced as a consequence of a disorder, e.g., diabetes.
The method comprises administering a therapeutically effective amount of a compound or a pharmaceutically acceptable salt thereof, alone or in combination with a pharmaceutically acceptable excipient, to a patient in need.
[0129] In another aspect, the invention provides methods of using the compounds to pretreat a subject to decrease or prevent the development of tissue damage associated with ischemia or hypoxia. The methods of the invention produce therapeutic benefit when administered immediately before a condition involving ischemia or hypoxia. For example, application of the methods of the invention prior to induction of myocardial infarction shows statistically significant improvement in heart architecture and performance. Further, the methods of the invention produce therapeutic benefit when administered immediately before and during ischemic-reperfusion injury, significantly reducing diagnostic parameters associated with renal failure.
[0130] Therefore, the invention provides methods of pretreating a subject to decrease or prevent the tissue damage associated with ischemia or hypoxia, the method comprising administering a therapeutically effective amount of a compound or a pharmaceutically acceptable salt thereof, alone or in combination with a pharmaceutically acceptable excipient, to a patient with a history of ischemic disorders, e.g., myocardial infarctions, or having symptoms of impending ischemia, e.g., angina pectoris. In another embodiment, the compound can be administered based on physical parameters implicating possible ischemia, e.g., individuals placed under general anesthesia or temporarily working at high altitudes. In yet another embodiment, the compounds may be used in organ transplants to pretreat organ donors and to maintain organs removed from the body prior to implantation in the recipient.
[0131] Previous studies have shown that certain compounds used in the methods of the present invention are effective inhibitors of procollagen prolyl 4-hydroxylase. While it is recognized that recovery from an initial infarct or wound requires connective tissue deposition within the necrotic region, the present invention demonstrates no adverse affects of treatment with respect to scar formation. Thus, based on the benefits provided by certain compounds of the invention on treatment and prevention of hypoxic tissue damage and fibrosis, the present invention contemplates a “dual-therapy” approach to treatment or prevention of conditions involving ischemia or hypoxia, including ischemia or hypoxia associated with subsequent reactive fibrosis, e.g., myocardial infarction and resultant congestive heart failure. The method may use one compound that inhibits more than one 2-oxoglutarate dioxygenase enzyme, e.g., HIF prolyl hydroxylase and procollagen prolyl 4-hydroxylase, with either the same specificity or with different specificities. Alternatively, the method may use a combination of compounds wherein each compound specifically inhibits only one 2-oxoglutarate dioxygenase enzyme, e.g., one compound specifically inhibits HIF prolyl hydroxylase and a second compound specifically inhibits procollagen prolyl 4-hydroxylase.
[0132] In one aspect, a compound of the invention inhibits one or more 2-oxoglutarate dioxygenase enzymes. In one embodiment, the compound inhibits at least two 2- oxoglutarate dioxygenase family members, e.g., HIF prolyl hydroxylase and HIF asparagine-hydroxylase (FIH-1), with either the same specificity or with differential specificity. In another embodiment, the compound is specific for one 2-oxoglutarate dioxygenase, e.g., HIF prolyl hydroxylase, and shows little to no specificity for other family members.
[0133] The compounds can be administered in combination with various other therapeutic approaches. In one embodiment, the compound is administered with another 2-oxoglutarate dioxygenase inhibitor, wherein the two compounds have differential specificity for individual 2-oxoglutarate dioxygenase family members. The two compounds may be administered at the same time as a ratio of one relative to the other.
Determination of a ratio appropriate to a given course of treatment or a particular subject is within the level of skill in the art. Alternatively, the two compounds may be administered consecutively during a treatment time course, e.g., following myocardial infarction. In a particular embodiment, one compound specifically inhibits HIF prolyl hydroxylase enzyme activity, and a second compound specifically inhibits procollagen prolyl 4-hydroxylase enzyme activity. In another specific embodiment, one compound specifically inhibits HIF prolyl hydroxylase enzyme activity, and a second compound specifically inhibits HIF asparaginyl-hydroxylase enzyme activity. In another embodiment, the compound is administered with another therapeutic agent having a different mode of action, e.g., an ACE inhibitor (ACEI), angiotensin-II receptor blocker (ARB), statin, diuretic, digoxin, carnitine, etc.
Treatment EPO-Associated Conditions
[0134] The present invention provides methods of increasing endogenous erythropoietin (EPO). These methods can be applied in vivo, e.g., in blood plasma, or in vitro, e. g,in cell culture conditioned media. The invention further provides methods of increasing endogenous EPO levels to prevent, pretreat, or treat EPO-associated conditions, including, e.g., conditions associated with anemia and neurological disorders. Conditions associated with anemia include disorders such as acute or chronic kidney disease, diabetes, cancer, ulcers, infection with virus, e.g., HIV, bacteria, or parasites; inflammation, efc. Anemic conditions can further include those associated with procedures or treatments including, e.g., radiation therapy, chemotherapy, dialysis, and surgery. Disorders associated with anemia additionally include abnormal hemoglobin and/or erythrocytes, such as found in disorders such as microcytic anemia, hypochromic anemia, aplastic anemia, efc.
[0135] The present methods can be used to increase endogenous EPO in a subject undergoing a specific treatment or procedure, prophylactically or concurrently, for example, an HIV-infected anemic patient being treated with azidothymidine (zidovudine) or other reverse transcriptase inhibitors, an anemic cancer patient receiving cyclic cisplatin- or non-cisplatin-containing chemotherapeutics, or an anemic or non-anemic patient scheduled to undergo surgery. Methods of increasing endogenous EPO can also be used to prevent, pretreat, or treat EPO-associated conditions associated with nerve damage or neural tissue degeneration including, but not limited to, stroke, trauma, epilepsy, spinal cord injury, and neurodegenerative disorders.
[0136] Additionally, the methods can be used to increase endogenous EPO levels in an anemic or non-anemic patient scheduled to undergo surgery to reduce the need for allogenic blood transfusions or to facilitate banking of blood prior to surgery. The small decreases in hematocrit that typically occur after presurgical autologous blood donation do not stimulate an increase in endogenous EPO or in compensatory erythropoiesis.
However, preoperative stimulation of endogenous EPO would effectively increase erythrocyte mass and autologous donation volumes while maintaining higher hematocrit levels, and such methods are specifically contemplated herein. In some surgical populations, particularly those individuals who experience surgical blood losses in excess of 2 liters, the methods of the invention could be applied to reduce allogeneic blood : exposure. Crosby (2002) Amer. J. Therap. 9:371-376.
[0137] The methods of the invention can also be used to enhance athletic performance, improve exercise capacity, and facilitate or enhance aerobic conditioning. Such methods can be used, e.g., by athletes to facilitate training and by soldiers to improve, e.g., stamina and endurance.
[0138] The methods of the invention have been shown to increase endogenous erythropoietin levels in media from cultured cells treated in vitro and in blood plasma from animals treated in vivo. Although the kidney is the major source of erythropoietin in the body, other organs, including brain, liver, and bone marrow, can and do synthesize erythropoietin upon appropriate stimulation. Using the methods of the invention, endogenous erythropoietin expression can be increased in various organs of the body, including brain, kidney, and liver. Indeed, methods of the invention even increase endogenous erythropoietin levels in animals that have undergone bilateral nephrectomy.
[0139] The methods of the invention demonstrate that erythropoietin levels can be increased even when kidney function is compromised. Although the invention is not to be limited by the mechanism by which erythropoietin is produced, the decrease in erythropoietin secretion typically seen during kidney failure may be due to hyperoxia in renal tissue due to increased flowthroughfreperfusion. Priyadarshi et al. (2002) Kidney
Int. 61:542-546,
[0140] Further, the methods of the invention increase the hematocrit and blood hemoglobin level in animals treated in vivo. The increases in plasma EPO, hematocrit, and blood hemoglobin in response to the compounds used in the methods of the invention are dose-sensitive; however, dosing regimes can be established which produce a constant, controlled level of response to the compounds of the invention. Further, treatment with compounds of the invention can correct anemia, for example, induced by a toxic compound such as the chemotherapeutic agent cisplatin, or due to blood loss, e.g., trauma, injury, parasites, or surgery.
[0141] The increase in hematocrit and blood hemoglobin in animals treated with compounds of the invention is preceded by an increase in the percentage of circulating immature red blood cells (reticulocytes) within the blood. As such, the invention contemplates the use of the compounds of the invention in methods to increase reticulocyte levels in the blood of animals for production of cell-free reticulocyte lysates as described by, e.g., Pelham and Jackson. Eur. J. Biochem. 67:247-256 (1976).
Circulating reticulocyte levels are increased in animals, e.g., rabbits, efc., by treatment with compounds of the invention, alone or in combination with another compound such as, e.g., acetylphenylhydrazine, etc. The blood is collected, and reticulocytes are pelleted by centrifugation and lysed with distilled water. Extracts can be further processed using any appropriate methodology known to those skilled in the art. See, e.g., Jackson and
Hunt (1983) Methods Enzymol. 96:50-74.
[0142] The compounds of this invention can be prepared from readily available starting materials using the following general methods and procedures. It will be appreciated that where typical or preferred process conditions (i.e., reaction temperatures, times, mole ratios of reactants, solvents, pressures, etc.) are given, other process conditions can also be used unless otherwise stated. Optimum reaction conditions may vary with the particular reactants or solvent used, but such conditions can be determined by one skilled in the art by routine optimization procedures.
[0143] Additionally, as will be apparent to those skilled in the art, conventional protecting groups may be necessary to prevent certain functional groups from undergoing undesired reactions. Suitable protecting groups for various functional groups as well as suitable conditions for protecting and deprotecting particular functional groups are well known in the art. For example, numerous protecting groups are described in T. W.
Greene and G. M. Wuts, Protecting Groups in Organic Synthesis, Second Edition, Wiley,
New York, 1991, and references cited therein.
[0144] Furthermore, the compounds of this invention will typically contain one or more chiral centers. Accordingly, if desired, such compounds can be prepared or isolated as pure stereoisomers, Ie., as individual enantiomers or diastereomers, or as stereoisomer- enriched mixtures. All such stereoisomers (and enriched mixtures) are included within the scope of this invention, unless otherwise indicated. Pure stereoisomers (or enriched mixtures) may be prepared using, for example, optically active starting materials or stereoselective reagents well-known in the art. Alternatively, racemic mixtures of such compounds can be separated using, for example, chiral column chromatography, chiral resolving agents and the like.
“a PCT/US2004/017773
[0145] The compounds of this invention are preferably prepared by a convergent synthetic protocol combining the amino entity and the substituted isoquinoline acetic acid derivative under conventional coupling conditions as illustrated in Scheme 1 below: s rR" o R ,
R RS rR" le} R R
R3 = Pg! elo Re EN Ha
R2 ZN A PA R"
R?
RY Ro R¢ RI 1 2 3
RS R" 9g R' R RS R" O RR
R3 MX RY NM
Xx OH + R'N Re N Ra
R2 7, H R2 AAT
R4 R? R4 Rt 4 2 5
R,R’,R”,R*”, RY, R%, R}, RY, R®, and R® are as defined herein
Pg’ refers to a suitable protecting group such as t-butyl esters or orthoesters.
Scheme 1
[0146] Specifically, in Scheme 1, an appropriately substituted 3-protected carboxyl isoquinoline, compound 1, is combined with at least a stoichiometric amount and preferably an excess of the substituted amine or the N-alkyl derivative thereof, compound 2. The reaction is conducted under conventional coupling conditions well known in the art. In one embodiment, the reaction is conducted in the presence of sodium methoxide in methanol under elevated reaction temperatures and preferably at reflux. The reaction is continued until it is substantially complete which typically occurs within about 1 to 48 hours. Upon reaction completion, compound 3, can be recovered by conventional techniques such as neutralization, extraction, precipitation, chromatography, filtration and the like; or, alternatively, used in the next step without purification and/or isolation.
[0147] Alternatively, coupling of the substituted 3-protected carboxyl isoquinoline, compound 1, is combined with the substituted amine or the N-alkyl derivative thereof, compound 2, can proceed via conventional peptide coupling procedures well known in the art. This coupling reaction is typically conducted using well-known coupling reagents such as carbodiimides, BOP reagent (benzotriazol-1-yloxy- tris(dimethylamino)phosphonium hexafluorophosphonate) and the like. Suitable carbodiimides include, by way of example, dicyclohexylcarbodiimide (DCC), 1-(3- dimethylamino-propyl)-3 -ethylcarbodiimide (DECI) and the like. If desired, polymer supported forms of carbodiimide coupling reagents may also be used including, for example, those described in Tetrahedron Letters, 34(48), 7685 (1993). Additionally, well-known coupling promoters, such as N-hydroxysuccinimide, 1-hydroxybenzotriazole and the like, may be used to facilitate the coupling reaction.
[0148] This coupling reaction is typically conducted by contacting compound 1 (typically as the free acid) with about 1 to about 2 equivalents of the coupling reagent and at least one equivalent, preferably about 1 to about 1.2 equivalents, of compound 2, in an inert diluent, such as dichloromethane, chloroform, acetonitrile, tetrahydrofuran, N,N- dimethylformamide and the like. Generally, this reaction is conducted at a temperature ranging from about 0°C to about 37°C for about 12 to about 24 hours. Upon completion of the reaction, compound 3 is recovered by conventional methods including neutralization, extraction, precipitation, chromatography, filtration, and the like.
[0149] Alternatively, the substituted 3-protected carboxyl isoquinoline, compound 1, can be converted into an acid halide and the acid halide coupled with compound 2 to provide for compound 3. The acid halide of compound 1 can be prepared by contacting compound 1 with an inorganic acid halide, such as thionyl chloride, phosphorous trichloride, phosphorous tribromide or phosphorous penta-chloride, or preferably, with oxalyl chloride under conventional conditions. Generally, this reaction is conducted using about 1 to 5 molar equivalents of the inorganic acid halide or oxalyl chloride, either neat or in an inert solvent, such as dichloromethane or carbon tetrachloride, at ’ temperature in the range of about 0°C to about 80°C for about 1 to about 48 hours. A catalyst, such as DMF, may also be used in this reaction.
[0150] The acid halide (not shown) is then contacted with at least one equivalent, preferably about 1.1 to about 1.5 equivalents, of compound 2, in an inert diluent, such as dichloromethane, at a temperature ranging from about -70°C to about 40°C for about 1 to about 24 hours. Preferably, this reaction is conducted in the presence of a suitable base to scavenge the acid generated during the reaction. Suitable bases include, by way of example, tertiary amines, such as triethylamine, diisopropylethylamine, N-methyl- morpholine and the like. Alternatively, the reaction can be conducted under Schotten-
Baumann-type conditions using aqueous alkali, such as sodium hydroxide and the like.
Upon completion of the reaction, compound 3 is recovered by conventional methods including neutralization, extraction, precipitation, chromatography, filtration, and the like.
[0151] In one embodiment, the nitrogen atom of the isoquinoline ring system can be oxidized via conventional techniques to provide for the comesponding N-oxide compound, compounds 4 and 5. Oxidation can proceed by use of conventional oxidizing agents such as m-chloroperbenzoic acid or hydrogen peroxide under conventional conditions. As depicted in Scheme 1, N-oxide formation can occur either with the substituted 3-protected carboxyl isoquinoline, compound 1, or with compound 3.
[0152] The starting materials for use in the reactions found in Scheme 1 are either commercially available or can be prepared by methods well known in the art. For example, glycine and N-alkylglycines such as sarcosine, N-ethylglycine, and the like are commercially available from Aldrich Chemical Company, Milwaukee, Wisconsin, USA. (“Aldrich”).
[0153] The synthesis of substituted isoquinoline acetic acids are also well known in the art and are described in detail by, for example, Weidmann, et al., U.S. Patent No. 6,093,730 which is incorporated herein by reference in its entirety. One particular method for preparation of such derivatives are set forth in Scheme 2 below:
CN COOH
6 7
Oo oO
Oo 0 oC — ore
N R— lo] ! | ° le} 8
OH O OH O
RS RS
S Xr” No” Xr” Yo” co oA
OH OH
11
Scheme 2
[0154] Specifically, in Scheme 2, commercially available 4-phenylsulfanyl- phthalonitrile, compound 6, is hydrolyzed to the corresponding diacid, compound 7, under conventional conditions such as treatment with a 1:1 mixture of 50% aqueous
KOH/methanol. The reaction is continued until it is substantially complete which typically occurs within about 48 to 96 hours. Upon reaction completion, the resulting
~~ WO 2004/108681 PCT/US2004/017773 diacid, compound 7, can be recovered by conventional techniques such as neutralization, extraction, precipitation, chromatography, filtration and the like; or, alternatively, used in the next step without purification and/or isolation.
[0155] Compound 7 is cyclized in the presence of a stoichiometric equivalent of glycine. The reaction is conducted in the solid phase by first forming a homogeneous mixture of the reagents and then heating the mixture to an elevated temperature to form a molten mass. Preferably, the reaction is heated to over 200°C and more preferably from about 210° to about 220°C. The reaction is continued until it is substantially complete which typically occurs within about 48 to 96 hours. Upon reaction completion, the resulting phthalimide, compound 8, can be recovered by conventional techniques such as neutralization, extraction, precipitation, chromatography, filtration and the like; or, alternatively, used in the next step without purification and/or isolation.
[0156] Conventional esterification of compound 8 leads to compound 9 where R® is alkyl. This compound is then subject to ring expansion under basic conditions.
Specifically, compound 9 is contacted with an stoichiometric excess, preferably 2 equivalents, of sodium or potassium alkoxide, such as sodium butoxide, in a suitable solvent such as n-butanol and maintained at an elevated temperature of from about 70°C to about 120°C and preferably from about 95°C to about 100°C. The reaction is continued until it is substantially complete which typically occurs within about 0.5 to 6 hours. Upon reaction completion, the resulting isoquinoline isomers, compounds 9 and can be recovered by conventional techniques such as neutralization, extraction, precipitation, chromatography, filtration and the like; or, alternatively, used in the next step without purification and/or isolation.
[0157] The reaction conditions set forth above can lead to transesterification of the ester functionality (if R® is not n-butyl). In any event, the alkyl moiety of the ester group serves as a suitable protecting group for the carboxyl functionality on compound 9 and is depicted as Pg' in compound 1 of Scheme 1.
[0158] As is apparent, the hydroxy functionality at the 1 position is subject to numerous derivation schemes that are well known in the art. Suitable derivations include formation of alkoxy, substituted alkoxy, aryloxy, substituted aryloxy, heteroaryloxy, substituted heteroaryloxy, heterocycyloxy, substituted heterocycloxy, halogenation, dehalogenation (to provide for hydrogen at this position), alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl products. Still further, the hydroxyl group can be modified using art recognized procedures to provide for -N(R")R® derivatives which can be achieved by reacting the halo substituent with a suitable amine. Similarly, sulfanyl and oxidized sulfanyl derivatives can be prepared by conventional methods such as reacting the hydroxy! group with phosphorous pentasulfide, Lawesson's reagent, or the like, optionally followed by reaction of the resulting sulfhydryl group with an alkylating agents, such as ethyl iodide or the like, to give an alkylsulfanyl derivative. Sulfanyl derivatives may further be oxidized with standard peroxy acid reagents, such as m- chloroperbenzoic acid.
[0159] Still further, substitution on the phenyl ring of the isoquinoline compounds is achieved by appropriate choice of starting materials. Many of these starting materials are commercially available such as 4-phenoxy-phthalonitrile (Aldrich), and the like.
Alternatively, compounds such as 4-(2,6-dimethylphenoxy)-phthalonitrile can be prepared by art-recognized techniques.
[0160] Alternatively, commercially available substituted phthalic anhydride or phthalic acid can be used in place of compound 7 in Scheme 1. Such anhydrides include, for example, 3-fluorophthalic anhydride (Aldrich), 3-nitrophthalic anhydride (Aldrich), 3-
chlorophthalic anhydride (TCI America, Portland OR 97203 “TCI”) and the like. Such acids include, for example, 4-trifluoromethyl-phthalic acid (TCI) and the like.
TESTING AND ADMINISTRATION
Biological Testing
[0161] The biological activity of the compounds of the invention may be assessed using any conventionally known methods. Suitable assay methods are well known in the art.
The following assays are presented only as examples and are not intended to be limiting.
The compounds of the invention are active in at least one of the following assays.
Cell-based HIF a stabilization assay
[0162] Human cells derived from various tissues were separately seeded into 35 mm culture dishes and grown at 37°C, 20% O,, 5% CO; in standard culture medium, e.g,
DMEM, 10% FBS. When cell layers reached confluence, the media was replaced with
OPTI-MEM media (Invitrogen Life Technologies, Carlsbad CA) and cell layers were incubated for approximately 24 hours in 20% O, 5% CO; at 37°C. Compound or 0.013% DMSO was then added to existing medium, and incubation was continued overnight.
[0163] Following incubation, the media was removed, centrifuged, and stored for analysis (see VEGF and EPO assays below). The cells were washed two times in cold phosphate buffered saline (PBS) and then lysed in 1 ml of 10 mM Tris (pH 7.4), 1 mM
EDTA, 150 mM NaCl, 0.5% IGEPAL (Sigma-Aldrich, St. Louis MO), and a protease inhibitor mix (Roche Molecular Biochemicals) for 15 minutes on ice. Cell lysates were centrifuged at 3,000 xg for 5 minutes at 4°C, and the cytosolic fractions (supernatant) were collected. The nuclei (pellet) were resuspended and lysed in 100 ul of 20 mM
HEPES (pH 7.2), 400 mM NaCl, 1 mM EDTA, 1 mM dithiothreitol, and a protease mix
(Roche Molecular Biochemicals), centrifuged at 13,000 xg for 5 minutes at 4°C, and the nuclear protein fractions (supernatant) were collected.
[0164] Nuclear fractions were analyzed for HIF-1g using a QUANTIKINE immunoassay (R&D Systems, Inc., Minneapolis MN) according to the manufacturer's instructions.
Cell-based VEGF and EPO ELISA assays
[0165] Conditioned media collected from cell cultures as described above was analyzed for vascular endothelial growth factor (VEGF) and/or erythropoietin (EPO) expression using an appropriate QUANTIKINE immunoassay (R&D Systems) according to the manufacturer’s instructions.
Oxygen Consumption Assay
[0166] Oxygen Sensor cell culture plates (BD Biosciences) contain a ruthenium complex which is more fluorescent in the absence of oxygen. Therefore, the fluorescent read-out is increased by the presence of oxygen-consuming cells in the plate, which change the equilibrium to lower oxygen saturation and higher fluorescence. A compound that stabilizes HIF by inhibiting hydroxylation is expected to decrease oxygen consumption by decreasing oxygen consumed by the hydroxylation event itself and/or by shifting cellular metabolism from aerobic to anaerobic energy production.
[0167] Human cells derived from adenovirus-transformed fetal kidney epithelium (293A) or cervical epithelial adenocarcinoma (HeLa) (American Type Culture Collection,
Manassas VA) were grown to confluence in media (high glucose DMEM (Mediatech,
Inc., Herndon VA), 1% penicillin/streptomycin mixture (Mediatech), 1% fetal bovine serum) at 37°C, 10% CO,. Cells were collected and resuspended in media at a density of 500,000 cells/ml. The cell suspension was distributed at 0.2 ml/well into each well of an
Oxygen Biosensor 96-well cell culture plate (BD Biosciences, Bedford MA). The following treatments were added in 10 pl volumes to triplicate sets of wells: (1) 0.5%
DMSO; (2) 200 uM sodium dodecy! sulfate; or (3) 1, 10, or 50 uM compound.
[0168] Cultures were incubated at 37°C, 10% CO for 72 hours and plates were then read in an FL600 flourimeter (Biotek Instruments, Inec., Winooski VT) at an excitation wavelength of 485 nm and emission wavelength of 590 nm. Data was plotted as a function of fold change relative to DMSO control (O; consumption) or absorbance at a wavelength of 450 nm (WST-1) and descriptive statistical analysis was performed using
EXCEL software (Microsoft Corporation, Bellevue WA).
HIF-PH2 (PHD2) assay
Material
[0169] HIF-PH2 (EGLN1) was expressed from Hi5 cells and partially purified through a SP ion exchange chromatography column. Keto glutaric acid H-[1-14C]- sodium salt was obtained from Perkin-Elmer. Alphaketoglutaric acid sodium salt was purchased from
SIGMA. HPLC purified DLD19 Peptide (Acetyl-DLDLEMLAPYIPMDDDFQL-
CONH2) was made by Synpep.
[0170] HIF-PH2 (EGLNI) was expressed from insect HiS cells and partially purified through a SP ion exchange chromatography column. Enzyme activity was determined by capturing CO, using an assay described by Kivirikko and Myllyla (1982, Methods
Enzymol 82:245-304). Assay reactions contained 50 mM HEPES (pH 7.4), 100 uM ai- ketoglutaric acid sodium salt, 0.30 pCi/ml ketoglutaric acid p-[1-14C)- sodium salt; Perkin
Elmer, Wellesley MA), 40 pM FeSOq, 1mM ascorbate, 1541.8 units/ml Catalase, with or without 50 uM peptide substrate (Acetyl-DLDLEMLAPYIPMDDDFQL-CONH,) and various concentrations of compound of the invention. Reactions were initiated by addition of HIF-PH2 enzyme. o . : )
Amended sheet 10/04/2007
[0171] The peptide-dependent percent turnover was calculated by subtracting percent turnover in the absence of peptide from percent turnover in the presence of substrate peptide. Percent inhibition and ICs were calculated using peptide-dependent percent turnover at given inhibitor concentrations. Calculation of ICsq values for each inhibitor was conducted using GraFit software (Erithacus Software Ltd., Surrey UK).
Pharmaceutical Formulations and Routes of Administration
[0172] The compositions of the present invention can be delivered directly or in pharmaceutical compositions along with suitable carriers or excipients, as is well known in the art. Present methods of treatment can comprise administration of an effective amount of a compound of the invention to a subject having or at risk for anemia due to, e.g., chronic renal failure, diabetes, cancer, AIDS, radiation therapy, chemotherapy, kidney dialysis, or surgery. In a preferred embodiment, the subject is a mammalian subject, and in a most preferred embodiment, the subject is a human subject.
[0173] An effective amount of such agents can readily be determined by routine experimentation, as can the most effective and convenient route of administration and the most appropriate formulation. Various formulations and drug delivery systems are available in the art. See, e.g., Gennaro, A.R., ed. (1995) Remington's Pharmaceutical
Sciences, supra.
[0174] Suitable routes of administration may, for example, include oral, rectal, transmucosal, nasal, or intestinal administration and parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections. The agent or composition thereof may be administered in a local rather than a systemic manner. For example, a suitable agent can be delivered via injection or in a targeted drug delivery system, such as a depot or sustained release formulation.
[0175] . The pharmaceutical compositions of the present invention may be manufactured by any of the methods well-known in the art, such as by conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes. As noted above, the compositions of the present invention can include one or more physiologically acceptable carriers such as excipients and auxiliaries that facilitate processing of active molecules into preparations for pharmaceutical use.
[0176] Proper formulation is dependent upon the route of administration chosen. For injection, for example, the composition may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiological saline buffer. For transmucosal or nasal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art. In a preferred embodiment of the present invention, the present compounds are prepared in a formulation intended for oral administration. For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a subject. The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.
[0177] Pharmaceutical preparations for oral use can be obtained as solid excipients, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl- cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Also, wetting agents such as sodium dodecy! sulfate may be included.
[0178] Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.
[0179] Pharmaceutical preparations for oral administration include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds’ may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration.
[0180] In one embodiment, the compounds of the present invention can be administered transdermally, such as through a skin patch, or topically. In one aspect, the transdermal or topical formulations of the present invention can additionally comprise one or multiple penetration enhancers or other effectors, including agents that enhance migration of the delivered compound. Transdermal or topical administration could be preferred, for example, in situations in which location specific delivery is desired.
[0181] For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide, or any other suitable gas. In the case of a pressurized aerosol, the appropriate dosage unit may be determined by providing a valve to deliver a metered amount.
Capsules and cartridges of, for example, gelatin, for use in an inhaler or insufflator may be formulated. These typically contain a powder mix of the compound and a suitable powder base such as lactose or starch.
[0182] Compositions formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion can be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.
Formulations for parenteral administration include aqueous solutions or other compositions in water-soluble form.
[0183] Suspensions of the active compounds may also be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil and synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran,
Optionally, the suspension may also contain suitable stabilizers or agents that increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
[0184] As mentioned above, the compositions of the present invention may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example, subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the present compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.
[0185] Suitable carriers for the hydrophobic molecules of the invention are well known in the art and include co-solvent systems comprising, for example, benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The co- solvent system may be the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co- solvent system is effective in dissolving hydrophobic compounds and produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics.
Furthermore, the identity of the co-solvent components may be varied. For example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80, the fraction size of polyethylene glycol may be varied, other biocompatible polymers may replace polyethylene glycol, e.g, polyvinyl pyrrolidone, and other sugars or polysaccharides may substitute for dextrose.
[0186] Alternatively, other delivery systems for hydrophobic molecules may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Liposomal delivery systems are discussed above in the context of gene-delivery systems. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using sustained-release systems, such as semi-permeable matrices of solid hydrophobic polymers containing the effective amount of the composition to be administered. Various sustained-release materials are established and available to those of skill in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein stabilization may be employed.
[0187] For any composition used in the present methods of treatment, a therapeutically effective dose can be estimated initially using a variety of techniques well known in the art. For example, in a cell culture assay, a dose can be formulated in animal models to achieve a circulating concentration range that includes the ICs as determined in cell culture. Dosage ranges appropriate for human subjects can be determined, for example, using data obtained from cell culture assays and other animal studies.
[0188] A therapeutically effective dose of an agent refers to that amount of the agent that results in amelioration of symptoms or a prolongation of survival in a subject.
Toxicity and therapeutic efficacy of such molecules can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., by determining the LDs (the dose lethal to 50% of the population) and the EDs (the dose therapeutically effective in 50% of the population). The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the ratio LDs¢/EDsp. Agents that exhibit high therapeutic indices are preferred.
[0189] Dosages preferably fall within a range of circulating concentrations that includes the EDs, with little or no toxicity. Dosages may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration, and dosage should be chosen, according to methods known in the art, in view of the specifics of a subject’s condition.
[0190] Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety that are sufficient to modulate endogenous erythropoietin plasma levels as desired, i.e. minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from, for example, in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. Agents or compositions thereof should be administered using a regimen which maintains plasma levels above the MEC for about 10-90% of the duration of treatment, preferably about 30-90% of the duration of treatment, and most preferably between 50-90%. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration. Alternatively, stimulation of endogenous erythropoietin may be achieved by 1) administering a loading dose followed by a maintenance dose, 2) administering an induction dose to rapidly achieve erythropoietin levels within a target range, followed by a lower maintenance dose to maintain hematocrit within a desired target range, or 3) repeated intermittent dosing. {0191] The amount of agent or composition administered will, of course, be dependent on a variety of factors, including the sex, age, and weight of the subject being treated, the severity of the affliction, the manner of administration, and the judgment of the prescribing physician.
[0192] The present compositions may, if desired, be presented in a pack or dispenser device containing one or more unit dosage forms containing the active ingredient. Such a pack or device may, for example, comprise metal or plastic foil, such as a blister pack.
The pack or dispenser device may be accompanied by instructions for administration.
Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition. Suitable conditions indicated on the label may include treatment of conditions, disorders, or diseases in which anemia is a major indication.
[0193] These and other embodiments of the present invention will readily occur to those of ordinary skill in the art in view of the disclosure herein, and are specifically contemplated.
EXAMPLES
[0194] The invention is further understood by reference to the following examples, which are intended to be purely exemplary of the invention. The present invention is not limited in scope by the exemplified embodiments, which are intended as illustrations of single aspects of the invention only. Any methods that are functionally equivalent are within the scope of the invention. Various modifications of the invention in addition to those described herein will become apparent to those skilled in the art from the foregoing description and accompanying figures. Such modifications fall within the scope of the appended claims.
[0195] Unless otherwise stated all temperatures are in degrees Celsius. Also, in these examples and elsewhere, abbreviations have the following meanings: ul = microliter amu = atomic mass unit atm = atmosphere bs = broad singlet
CICO,iBu = isobutylchloro formate
CICONMe, = dimethylcarbamic chloride cone. = concentrated d = doublet
DABCO = diazobicyclo[2.2.2]octane dd = doublet of doublets
DMF = dimethyl formamide
DMSO = dimethyl sulfoxide
Et,SO, = ethyl sulfate
Etl = ethyl iodide
EtOAc = ethyl acetate
EtOH = ethanol
EtOH = ethanol g = gram h = hour
HATU = N-dimethylamino-1H- 1,2,3-triazolo[4,5-b] pyridin-1-ylmethylene-N- methylmethanaminium hexafluorophosphate N- oxide
HBTU = 1-H-Benzotriazolium
Hz = Hertz
M = molar m = multiplet
Me,SO4 = methyl sulfate
Me3sOBF, = trimethylboroxine
Mel = methyl iodide
MeOCH,l = iodomethoxy methane
MeOH = methanol
MeONa = sodium methoxide mg = milligram
MHz = mega Hertz min = minute ml = milliliter mmol = millimolar
N = normal
NaOMe = sodium methoxide n-BuLi = n-butyl lithium n-BuOH = n-butanol
NEt; = triethyl amine
PhCH,Br = bromomethyl benzene q = quartet quint = quintuplet r.t. = room temperature
Re = retention factor s = second t = triplet
TFA = trifluoro acetic acid
THF = tetrahydrofuran
TLC = thin layer chromatography wt % = weight percent
Example A-1 (82(6-Benzyloxy-1-chloro-4-hydroxy-isoquinline 3-carbonyl)-amino]-propionic aci a. ()-2-[6-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]- propionic acid methyl ester
[0196] 6-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carboxylic-acid (can be obtained according to US Patent 6,093,730, 10/1998, Weidmann ef al), 0.33 g, 0.5 ml of triethylamine, 0.38 g of HATU, and 0.151 g of commercial L-Alanine methyl! ester hydrochloride were stirred in 15 ml] CH,Cl; at room temperature for 18 h to give, after silica gel chromatography (eluant = 4:1 hexane-EtOAc). 0.220g of (S)-2-[(6-benzyloxy-1- chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-propionic acid methyl ester as a white solid, MS — (+)-ion, M+1= 415.8 amu. b. (8)-2-{(6-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]- propionic acid
[0197] 0.200 g of the (S) methyl ester described in Example A-1 a) and 15 ml ofa 1.5
M solution of NaOH in methanol was stirred at room temperature for 3 h and concentrated. The residue was dissolved in water and extracted with EtOAc. The aqueous layer was acidified to pH ~1 with hydrochloric acid and the resulting precipitate was collected by filtration, washed with water, dried in a vacuum oven (70°C) to give 0.174 ¢ of (S) — 2-[(6-Benzyloxy-1 -chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-propionic acid as an off-white solid, MS-(+)-ion, M+1= 401.0 amu.
Example A-2 (R)-2-{(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-hydroxy-propionic aci a. (1,3-Dioxo-1,3-dihydro-isoindol-2-yl)-acetic acid butyl ester
[0198] A mixture of 160 ml of butanol, 20.0 g of ( 1,3-dioxo-1,3-dihydro-isoindol-2-yl)- acetic acid (94.6 mmol) and 2.0 ml of concentrated sulfuric acid was refluxed with stirring for 24 h. Then 5 g of sodium bicarbonate were added in portions, stirring continued at r.t. for 5 min and the solvent evaporated in vacuo. The residue was partitioned between 100 ml of water and 100 ml of ethyl acetate. The organic phase was washed with 100 ml of brine, dried over sodium sulfate and was evaporated in vacuo to give a yellowish oil that later solidified. 24.02 g of the title compound were obtained;
MS-(+)-ion: M+1 =261.9 amu. b. 1,4-Dihydroxy-isoquinoline-3-carboxylic acid butyl ester
[0199] 4.41 g of sodium (190 mmol) were dissolved in 250 ml of n-butanol with stirring. After the sodium was completely dissolved the solution was allowed to cool to ambient temperature and a solution of 24.0 g (91.9 mmol) of (1,3-dioxo-1,3-dihydro- isoindol-2-yl)-acetic acid butyl ester in 150 ml of butanol was added with stirring. The solution was heated to 100°C within 30 min and stirred at this temperature for 1 h. Then the mixture was allowed to cool to ambient temperature and was stored at ambient temperature for 18 h. Then the pH of the mixture was adjusted to 2 to 3 by the addition of aqueous 2N hydrochloric acid with stirring. Stirring was continued for 30 min before the solid component was filtered by suction. The filter cake was washed thoroughly with water, and dried ir vacuo at 50°C to give a white solid. 17.75 g of the title compound were obtained; MS-(+)-ion: M+1 = 262.1 amu. c. 1-Chloro-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester
[0200] A mixture of 17.3 g (66.2 mmol) of 1,4-dihydroxy-isoquinoline-3-carboxylic acid butyl ester and 100 ml of phosphorous oxychloride was stirred at ambient temperature for 1 h, and then heated slowly with stirring in the course of 2 h to reflux temperature. The mixture was refluxed gently with stirring for 30 min. After cooling to room temperature the excess phosphorous oxychloride was evaporated in vacuo, and the residue was dissolved in 100 ml of ethyl acetate. The solution was poured into 300 ml of a saturated aqueous sodium bicarbonate solution with stirring. The precipitate formed was removed by vacuum filtration. The organic phase was separated, and the aqueous phase was extracted with 3 x 100 ml of ethyl acetate. The combined aqueous phases were dried over sodium sulfate, filtered through a pad of silica gel and evaporated in vacuo to give a brown oil that solidified later. 11.37 g of the title compound were obtained; 'H NMR (CDCl3): 8 =11.91 (s, 1 H), 8.41 (m, 1 H), 8.29 (m, 1 H), 7.83 (m, 2 H), 4.49 (t,2 H), 1.84 (m, 2 H), 1.48 (m, 2 H), 0.99 (t, 3 H). d. 1-Chloro-4-hydroxy-isoquinoline-3-carboxylic acid
[0201] A mixture 0f 9.23 g of 1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester (33 mmol), 90 ml of 2.5N aqueous sodium hydroxide solution, water (20 ml) and ethanol (110 ml) was refluxed with stirring for 2 h. Then the pH of the mixture was adjusted to 2 by the addition of concentrated aqueous hydrochloric acid. During the addition, the temperature of the mixture was kept at 20°C by cooling with an ice bath.
Stirring was then continued for 1 h before the solid component was separated by vacuum filtration. The filter cake was washed with water and dried in vacuo at 85°C to give a white powder. 6.64 g of the title compound were obtained; MS-(+)-ion: M+1 = 224.1 amu. e. (R)-3-tert-Butoxy-2-[(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}- propionic acid tert-butyl ester
[0202] To a mixture of 45 mg (0.2 mmol) of 1-chloro-4-hydroxy-isoquinoline-3- carboxylic acid, 76 mg (0.2 mmol) of benzotriazol-1-yl-(bis-dimethylamino-methylene)- oxonium hexafluoro phosphate (HBTU), 50.8 mg (R)-2-amino-3-tert-butoxy-propionic acid tert-butyl ester hydrochloride (0.2 mmol), and 1 ml of dichloromethane was added 122.5 pl (0.7 mmol) of ethyl-diisopropyl-amine with stirring. Stirring was continued at ambient temperature for 40 h. The product was isolated from the reaction mixture by flash column chromatography on silica gel using hexanes : ethyl acetate (9 : 1) as the eluent to give a colorless oil. 27 mg of the title compound was obtained; MS-(+)-ion:
M+1 =422 8 amu. f. (R)-2- [(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-hydroxy- propionic acid
[0203] A mixture of 27 mg (0.06 mmol) of (R)-3-tert-Butoxy-2-[(1 -chloro-4-hydroxy- isoquinoline-3-carbonyl)-amino]-propionic acid tert-butyl ester and 2 ml of trifluoroacetic acid was stirred for 2 h at ambient temperature. Then the excess trifluoroacetic acid was evaporated in vacuo, the residue dissolved in 2 ml of absolute ethanol and the solution was concentrated in vacuo to give a tan solid. 27 mg of the title compound was obtained;
MS-(+)-ion: M+1 = 310.9 amu.
Example A-3 (8)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-hydroxy-propionic acid
[0204] Prepared in analogy to Example A-2 €) and f) from 1-chloro-4-hydroxy- isoquinoline-3-carboxylic acid from Example A-2 d) and (S)-2-amino-3-tert-butoxy- propionic acid tert-butyl ester hydrochloride; MS-(+)-ion: M+1 = 310.9 amu.
Example A-4 (R)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino}-3- hydroxy-propionic acid
[0205] Prepared in analogy to Example A-2 €) and f) from 1-chloro-4-hydroxy-6- isopropoxy-isoquinoline-3-carboxylic acid (can be obtained according to US Patent 6,093,730, 10/1998, Weidmann ef al.) and (R)-2-amino-3-tert-butoxy-propionic acid tert- butyl ester hydrochloride; MS-(+)-ion: M+1 = 369.0 amu.
Example A-5 (8)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- hydroxy-propionic acid
[0206] Prepared in analogy to Example A-2 e) and f) from 1-chloro-4-hydroxy-6- isopropoxy-isoquinoline-3 -carboxylic acid (can be obtained according to US Patent 6,093,730, 10/1998, Weidmann ef al.) and (S)-2-amino-3-tert-butoxy-propionic acid tert- butyl ester hydrochloride; MS-(+)-ion: M+1 = 369.0 amu.
Example A-6 (R)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- hydroxy-propionic acid
[0207] Prepared in analogy to Example A-2 e) and f) from 1-chloro-4-hydroxy-7- isopropoxy-isoquinoline-3-carboxylic acid (can be obtained according to US Patent 6,093,730, 10/1998, Weidmann ef al.) and (R)-2-amino-3-tert-butoxy-propionic acid tert- butyl ester hydrochloride; MS-(+)-ion: M+1 = 369.0 amu.
Example A-7 (S)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- hydroxy-propionic acid
[0208] Prepared in analogy to Example A-2 €) and f) from 1-chloro-4-hydroxy-7- isopropoxy-isoquinoline-3-carboxylic acid (can be obtained according to US Patent 6,093,730, 10/1998, Weidmann et al.) and (S)-2-amino-3-tert-butoxy-propionic acid tert- butyl ester hydrochloride; MS-(+)-ion: M+1 = 369.0 amu.
Example A-8 2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-2-methyl-propionic acid
[0209] Prepared in analogy to Example A-1 a) and b) from 1-chloro-4-hydroxy- isoquinoline-3-carboxylic acid from Example A-2 d) and 2-amino-2-methyl-propionic acid methyl ester hydrochloride; MS~(+)-ion: M+1 = 308.9 amu.
Example A-9 2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoguinoline-3-carbonyl)-amino]-2-methyl- propionic acid
[0210] Prepared in analogy to Example A-1 a) and b) from 1-chloro-4-hydroxy-6- isopropoxy-isoquinoline-3-carboxylic acid (can be obtained according to US Patent 6,093,730, 10/1998, Weidmann et al) and 2-amino-2-methyl-propionic acid methyl ester hydrochloride; MS-(+)-ion: M+1 = 367.0 amu.
Example A-10 (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}-3-(1H-imidazol-4-yl)- propionic acid; trifluoro-acetic acid salt
[0211] Prepared in analogy to Example A-2 e) from 1-chloro-4-hydroxy-isoquinoline-3- carboxylic acid from Example A-2 d) and (R)-2-amino-3-(1-trityl-1H-imidazol-4-yl)- propionic acid methyl ester hydrochloride followed by deprotection in analogy to
Example A-1 b) and then in analogy to 2 f); MS-(-)-ion: M-1 = 359.1 amu.
Example A-11 (8)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-(1H-imidazol-4-y1)- propionic acid; trifluoro-acetic acid salt
[0212] Prepared in analogy to Example A-2 e) from 1-chloro-4-hydroxy-isoquinoline-3- carboxylic acid from Example A-2 d) and (S)-2-amino-3-(1-trityl-1 H-imidazol-4-y1)- propionic acid methyl ester hydrochloride followed by deprotection in analogy to
Example A-1 b) and then in analogy to 2 f); MS-(-)-ion: M-1 = 359.1 amu.
Example A-12 (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-methyl-butyric acid
[0213] Prepared in analogy to Example A-1 a) and b); MS-(-)-ion: M-1 = 321.1 amu. : Example A-13 (S)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-methyl-butyric acid
[0214] Prepared in analogy to Example A-2 e) and f); MS-(+)-ion: M+1 = 323.0 amu.
Example A-14 (R)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- methyl-butyric acid
[0215] Prepared in analogy to Example A-2 e) and f); MS-(+)-ion; M+1 = 381.1 amu.
Example A-15 (8)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]-3-methyl- butyric acid
[0216] Prepared in analogy to Example A-2 e) and f); MS-(+)-ion: M+1 = 381.0 amu.
Example A-16 (R)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino}-3- methyl-butyric acid
[0217] Prepared in analogy to Example A-2 e) and f); MS-(+)-ion: M+1 = 381.0 amu.
Example A-17 (8)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino]-3-methyl- butyric acid
[0218] Prepared in analogy to Example A-2 e) and f); MS-(+)-ion: M+1 = 381.0 amu.
Example A-18 (8)-2-[(6-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}-3-methyl- butyric acid
[0219] Prepared in analogy to Example A-1 a) and b); MS-(-)-ion: M-1 = 429.0 amu.
Example A-19 (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}-3-phenyl-propionic acid
[0220] Prepared in analogy to Example A-2 e) and f); MS-(+)-ion: M+1 = 371.0 amu.
Example A-20 (S)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-phenyl-propionic acid
[0221] Prepared in analogy to Example A-2 e) and f); MS-(+)-ion: M+1 =371.0 amu.
Example A-21 (R)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- phenyl-propionic acid
[0222] Prepared in analogy to Example A-2 e) and f); MS-(+)-ion: M+1 = 429.0 amu.
Example A-22 (8)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino}-3-phenyl- propionic acid
[0223] Prepared in analogy to Example A-2 ¢) and f); MS-(+)-ion: M+1 = 429.0 amu.
Example A-23 (R)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- phenyl-propionic acid
[0224] Prepared in analogy to Example A-2 €) and f); MS-(+)-ion: M+1 = 429.0 amu.
Example A-24 (S)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino}-3-phenyl- propionic acid
[0225] Prepared in analogy to Example A-2 e) and f); MS-(+)-ion: M+1 = 429.0 amu.
Example A-25 (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-(4-hydroxy-phenyl)- propionic acid
[0226] Prepared in analogy to Example A-2 e) and f); MS-(-)-ion: M-1 = 385.0 amu.
Example A-26 (S)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-(4-hydroxy-phenyl)- propionic acid
[0227] Prepared in analogy to Example A-2 ¢) and f); MS-(+)-ion: M+1 = 387.1 amu.
Example A-27 (R)-2-{(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]-3-(4- hydroxy-phenyl)-propionic acid
[0228] Prepared in analogy to Example A-2 e) and f); MS-(-)-ion: M-1 = 443.0 amu.
Example A-28 (8)-2-{(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-(4-hydroxy-phenyl)- propionic acid
[0229] Prepared in analogy to Example A-2 ¢) and f); MS-(-)-ion: M-1 = 443.0 amu.
Example A-29 (R)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino]-3-(4- hydroxy-phenyl)-propionic acid
[0230] Prepared in analogy to Example A-2 e) and ); MS-(+)-ion: M+1 = 445.1 amu.
Example A-30 (S)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino}-3-(4- hydroxy-phenyl)-propionic acid
[0231] Prepared in analogy to Example A-2 €) and f); MS-(+)-ion: M+1 = 445.1 amu.
Example A-31 (R)-2-[(1-Chlore-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino}- pentanoic acid
[0232] Prepared in analogy to Example A-1 a) and b); MS-(+)-ion: M+1 = 381.0 amu.
Example A-32 (S)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]-pentanoic acid
[0233] Prepared in analogy to Example A-1 a) and b); MS-(-)-ion: M-1 = 379.0 amu.
Example A-33 (R)-1-(1-Chloro-4-hydroxy-isequinoline-3-carbonyl)-pyrrolidine-2-carboxylic acid
[0234] Prepared in analogy to Example A-2 e) and f); MS-(+)-ion: M+1 = 321.0 amu.
Example A-34 (S)-1-(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-pyrrolidine-2-carboxylic acid
[0235] Prepared in analogy to Example A-2 e) and f); MS-(+)-ion: M+1 = 321.0 amu.
Example A-35 (R)-1-(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-pyrrolidine-2- carboxylic acid
[0236] Prepared in analogy to Example A-2 e) and f); MS-(+)-ion: M+1 = 379.1 amu.
Example A-36 (5)-1-(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-pyrrolidine-2- carboxylic acid
[0237] Prepared in analogy to Example A-2 ¢) and f); MS-(+)-ion: M+1 = 379.1 amu.
Example A-37 (R)-6-Amino-2-[(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}-hexanoic acid; trifluoroacetic acid salt
[0238] Prepared in analogy to Example A-2 e) and f); MS-(+)-ion: M+1 = 352.2 amu.
Example A-38 (8)-6-Amino-2-[(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-hexanoic acid; trifluoroacetic acid salt
[0239] Prepared in analogy to Example A-2 €) and f); MS-(+)-ion: M+1 = 352.1 amu.
Example A-39 (R)-6-Amino-2-[(1-chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-aminoj- hexanoic acid; trifluoroacetic acid salt
[0240] Prepared in analogy to Example A-2 €) and f); MS-(+)-ion: M+1 =410.1 amu.
Example A-40 (S)-6-Amino-2-[(1-chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino)- hexanoic acid; trifluoroacetic acid salt
[0241] Prepared in analogy to Example A-2 e) and f); MS-(+)-ion: M+1 = 410.1 amu.
Example A-41 (R)-6-Amino-2-[(1-chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino}- hexanoic acid; trifluoroacetic acid salt
[0242] Prepared in analogy to Example A-2 €) and f); MS-(+)-ion: M+1 = 410.1 amu.
Example A-42 (8)-6-Amino-2-[(1-chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino]- hexanoic acid; trifluoroacetic acid salt
[0243] Prepared in analogy to Example A-2 e) and f); MS-(+)-ion: M+1 = 410.1 amu.
Example A-43 (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-succinic acid
[0244] Prepared in analogy to Example A-1 a) and b); MS-(+)-ion: M+1 = 338.9 amu.
Example A-44 (S)-2-[a -Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-succinic acid
[0245] Prepared in analogy to Example A-2 ¢) and f); MS-(-)-ion: M-1 = 337.0 amu.
Example A-45 (R)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]-succinic acid
[0246] Prepared in analogy to Example A-1 a) and b); MS-(+)-ion: M+1 = 397.0 amu.
Example A-46 (S)-2- [(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino} -succinic acid
[0247] Prepared in analogy to Example A-2 €) and f); MS-(+)-ion: M+1 = 397.1 amu.
Example A-47 (R)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino]-succinic acid
[0248] Prepared in analogy to Example A-1 a) and b); MS-(+)-ion: M+1 = 397.0 amu.
Example A-48 1-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-cyclopropanecarboxylic acid
[0249] Prepared in analogy to Example A-1 a) and b); MS-(-)-ion: M-1 = 305.0 amu.
Example A-49 1-{(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]- cyclopropanecarboxylic acid
[0250] Prepared in analogy to Example A-1 a) and b); MS-(+)-ion; M+1 = 365.0 amu.
Example A-50
Dideutero-[(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid
[0251] A mixture of 70 mg (0.25 mmol) of 1-chloro-4-hydroxy-isoquinoline-3- carboxylic acid butyl ester from Example A-2c), 193 mg (2.5 mmol) of glycine-2,2-d,, and 5 ml of a 0.5N sodium methoxide solution in methanol was refluxed with stirring for h. Then the solvent was evaporated in vacuo, the residue dissolved in 8 ml of water, and the solution was washed with 2 x 20 ml of ethyl acetate. The pH of the solution was adjusted to 3 by addition of aqueous IN hydrochloric acid and the mixture was extracted with 3 x 20 ml of ethyl acetate. The combined extracts were dried over magnesium sulfate and concentrated in vacuo to give a white solid. 61 mg of the title compound were obtained; MS-(-)-ion: M-1 = 280.9 amu.
Example A-51 (R) ~2-A(6-Benzyloxy-I-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino-propionic aci a. (R)-2-[(6-Benzyloxy-1-chloro-4-hydroxy-isoqunoline-3-carbonyl-amino]- propionic acid methyl ester
[0252] 6-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid, 0.33 g, was coupled with D-Alanine methyl ester hydrochloride, 0.150 g, analogously to Example A- 1a). 0.205 g of off-white, solid product were obtained, MS-(+)-ion, M+1= 415.0 amu. b. (R) —2-[(6-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]- propionic acid
[0253] 0.164 g of white solid, prepared analogously to Example A-1 b): MS-(=)-ion,
M+1=401.1 amu.
Example A-52 (5)-2-[(7-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-propionic acid a, (8)-2-[(7-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}- propionic acid methyl ester
[0254] 7-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid, 0.33 g, was coupled with L-Alanine methyl ester hydrochloride, 0.150 g, analogously to Example A-1 a). 0.264 G of white solid were obtained: MS-(+)-ion, M+1= 415. amu. b. (S)-2-[(7-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]- propionic acid
[0255] 0.216 g of white solid, prepared analogously to Example A-1 b): MS-(+)-ion,
M+1=401.9 amu.
Example A-53 (R)-2-|(7-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}-propionic acid a. (R)-2-[(7-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]- propionic acid methyl ester
[0256] 7-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid, 0.33 g, was coupled with D-Alanine methyl ester analogously to Example A-1 a). 0.246 g of off- white solid were obtained: MS-(+)-ion, M+1=415.0 amu. b. (R)-2-[(7-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-aminoj- propionic acid
[0257] 0.211 g of an off-white solid, prepared analogously to Example A-1 b): MS-(+)- ion, M+1= 401.0 amu.
Example A-54 (8)-2-1(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-propionic acid a) (8)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-propionic acid methyl ester
[0258] 1-Chloro-4-hydroxy-isoquinoline-3-carboxylic acid, 0.55 g, 1.5 ml of triethylamine, 0.55 g of DECI, and 0.56 g of (L)-Alanine methyl ester hydrochloride were stirred in 15 ml of methylene chloride at room temperature for 72 h. The reaction mixture was partitioned between ethyl acetate and water, the organic layer was separated and successively washed with 1M aqueous HCI, satd. aqueous NaHCO, and satd. aqueous
NaCl. The organic layer was dried with sodium sulfate, filtered, and concentrated under vacuum to afford 0.133 g of off-white solid product: MS-(+)-ion, M+1=308.9 Daltons. b) (8)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}-propionic acid.
[0259] 0.116 g of (S) methyl ester, described in Example A-54 a), were saponified/acidified analogously to Example A-1 b) to give 0.087 g of a white solid product: MS —(+)-ion, M+1= 294.9 amu. }
Example A-55 (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-propionic acid a. (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}-propionic acid methyl ester
[0260] 1-Chloro-4-hydroxy-isoquinoline-3-carboxylic acid, 0.55 g, was coupled with 0.40 g of D-Alanine methyl ester analogously to Example A-54 a) and 0.200 g of off- white, solid product were obtained: MS-(+)-icon, M+1=308.8 amu. b. (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-propionic acid
[0261] 0.127 g of white solid, prepared analogously to Example A-1 b): MS-(+)-ion,
M+1=294.9 amu.
Example A-56 (8)-2-[(6-Isopropoxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}-propionic acid
[0262] 0.030 g of 6-isopropoxy-1-chloro-4-hydroxy-isoquinoline-3-carboxylic acid and 0.046 g of HATU were allowed to react with 0.017 g of L-Alanine methyl] ester under analogous conditions to Example A-1 a). Treatment of the crude product ester with 0.014 g of NaOH in 0.1 ml of 1:1 methanol-water at room temperature for 2 days, followed by acidification to pH = ~2 with IM hydrochloric acid, gave a solid product. The product was collected by filtration, washed with water, and dried to give 0.023 g of an off-white solid: MS-(-)-ion, M-1= 353.0 amu.
Example A-57
R) ~2-[6-Isopropoxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]- propionic acid
[0263] Analogously to Example A-56, 0.030 g of 6-isopropoxy-1-chloro-4-hydroxy- isoquinoline-3-carboxylic acid was coupled with D-Alanine methyl ester hydrochloride and the product was hydrolyzed to give 0.022 g of an off-white solid: MS-(-)ion, M-1= 353.0 amu.
Example A-58 (S)-2-[(7-Isopropoxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino-propionic acid
[0264] Analogously to Example A-56, 0.040 g of 7-isopropoxy-1-chloro-4-hydroxy- isoquinoline-3-carboxylic acid were allowed to react with 0.020 g of L-Alanine methyl ester hydrochloride to give, after hydrolysis of the intermediate ester, 0.047 g of a white solid: MS-(-)-ion, M-1=1353.1 amu.
Example A-59 (1 2{(7-Isopropoxy-I-chloro-&-hydroxy-isoquinaline 3-carbonyl)-amino] propionic aci
[0265] Analogously to Example A-56, 0.040 g of 7-isopropoxy-1-chloro-4-hydroxy- isoquinoline-3-carboxylic acid were allowed to react with D-Alanine methyl ester hydrochloride. The intermediate ester product was hydrolyzed as in Example A-56 to give 0.042 g of a white solid: MS-(-)-ion, M-1= 353.0 amu.
Example A-60
H(O-{7-4-Chloro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyll-amino}-propionic aci a) 4-(4-Chloro-phenoxy)-phthalonitrile
[0266] A mixture of 4-nitrophthalonitrile (5.0 g), 4-chlorophenol (3.13 ml) and potassium carbonate (7.99 g) in acetone (87 ml) was refluxed for 3 h. After filtration and concentration, the residue was dissolved in ethyl acetate (100 ml). The solution was washed with NaOH (IN, 50 mlx3) and brine. The organic layer was dried, filtered, concentrated and diluted with dichloromethane. Filtration and rinse through a pad of silica gel gave 5.7 g of the title compound. '"H NMR (200 MHz, DMSO) 5 8.09 (d,J=9
Hz, 1H), 7.83 (d, 1=2.6, 1H), 7.53 (d, J =8.6 Hz, 2H), 7.42 (dd, J = 2.8, 8.6 Hz, 1H), 7.24 (d, J = 8.6, 2H). b) 4-(4-Chloro-phenoxy)-phthalic acid
[0267] A mixture of 1.31 g of 4-(4-Chloro-phenoxy)-phthalonitrile, 45% potassium hydroxide (3.5 ml), and methanol (3.5 mi) was refluxed 18 h, 6N HCI was added to adjust pH to 4. The precipitate was filtered, washed with water, and dried to give 1.45 g of the title compound. MS-(-)-ion: M-1 =291.0.
¢) [S-(4-Chloro-phenoxy)-1,3-dioxo-1,3-dihydro-isoindol-2-yl}-acetic acid butyl ester
[0268] A mixture of 500 mg 4-(4-Chloro-phenoxy)-phthalic acid and glycine n-butyl ester (286 mg) was heated at 250 °C for 5 min. The reaction mixture was purified by chromatography with dichloromethane as eluent to give 436 mg the title compound. 'H
NMR (200 MHz, DMSO) § 7.48 (d, J = 8.6 Hz, 1H), 7.59 (d, J = 9.0 Hz, 2H), 7.46 (m, 2H), 7.29 (d, J = 9.0 Hz, 2H), 4.46 (s, 2H), 4.16 (t, ] = 6.2 Hz, 2H), 1.61 (m, 2H), 1.38 (m, 2H), 0.92 (t, J = 7.0 Hz, 3H). d) 6- and 7-(4-Chloro-phenoxy)-1,4-dihydroxy-isoquinoline-3-carboxylic acid butyl ester
[0269] Prepared in analogy to Example A-2 b). Mixture of two isomers. MS-(-)-ion: M- 1 =386.1. e) 1-Chloro-6- and 7-(4-chloro-phenoxy)-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester
[0270] Prepared in analogy to Example A-2 c). Mixture of two isomers. MS-(-)-ion; M- 1=404.2. f) 6- and 7-(4-Chloro-phenoxy)-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester:
[0271] A mixture of 1-Chloro-6- and 7-(4-chloro-phenoxy)-4-hydroxy-isoquinoline-3- carboxylic acid butyl ester (280 mg), 0.27 ml of 57 wt% HI, glacial acetic acid (3 ml), and red phosphorous (43 mg) was refluxed for 25 min. Then the mixture was diluted with water, basified by solid NaHCOj3 to pH 8, extracted with ethyl acetate (2x). The ethyl acetate layer was washed with sodium metabisulfite solution, saturated sodium bicarbonate, dried and concentrated. Purification by chromatography with hexanes/ethyl acetate gave 7-(4-Chloro-phenoxy)-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester (103 mg, Compound of Example A-60 a): MS-(-)-ion: M-1 = 370.3 and 6-(4-Chloro-
phenoxy)-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester (71 mg, Compound of
Example 60 b): MS-(-)-ion: M-1 = 370.3. 2) 2-(S)-{ [7-(4-Chloro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl] -amino}- propionic acid
[0272] Prepared in analogy to Example A-50 by reacting 7-(4-Chloro-phenoxy)-4- hydroxy-isoquinoline-3-carboxylic acid butyl ester (compound of example A-60 a) with
L-alanine in a microwave reactor for 20 min at 130 C. MS-(-)-ion: M-1 = 385.1.
Example A-61 2~(S)-{[6-(4-Chloro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino}-propionic acid
[0273] Prepared in analogy to Example A-50 by reacting 6-(4-Chloro-phenoxy)-4- hydroxy-isoquinoline-3-carboxylic acid butyl ester (compound of Example A-60 b) with
L-alanine in a microwave reactor for 25 min at 130°C. MS-(-)-ion: M-1 = 385.1
Example A-62 2-{[7-(3,4-Difluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino}-propionic acid a) 5-(3,4-Difluoro-phenoxy)-isoindole-1,3-dione
[0274] 3,4-Difluorophenol (650 mg) was azeotroped with benzene and dissolved in sodium methoxide solution in methanol (0.5 M, 10 ml). The methanol was then removed under reduced pressure under nitrogen. Then an anhydrous DMF (10 mi) solution of 4- nitrophthalimide (769 mg) was added to the previous mixture. The resulting mixture was refluxed under nitrogen for 23 h. The reaction was cooled down and added 80 ml water.
The resulting precipitate was filtered, washed with water (4x) and dried to give the title compound 685 mg. MS-(-)-ion: M-1 =274.3.
b) [5-3,4-Difluoro-phenoxy)-1,3-dioxo-1,3-dihydro-isoindol-2-yl]-acetic acid methyl ester
[0275] To a pressure tube was added 5-(3,4-difluoro-phenoxy)-isoindole-1,3-dione (680 mg), potassium carbonate (1 g), 3-pentanone (20 ml), and methyl bromoacetate (295 pL).
The resulting mixture was heated to 105 °C for 17 h. The reaction was diluted with 20 ml water and extracted with ethyl acetate (2x). The organic layer was dried and concentrated.
The mixture was purified through silica gel chromatography with 4:1 hexanes/ethyl acetate and 3:1 hexanes/ethyl acetate to give 657 mg title compound. 'H NMR (200
MHz, DMSO) 8 7.95 (d, J = 9.0 Hz, 1H), 7.64-7.41 (m, 4H), 7.15-7.08 (m, 1H), 4.44 (s, 2H), 3.70 (s, 3H). c) 6- and 7-(3,4-Difluoro-phenoxy)-1,4-dihydroxy-isoquinoline-3-carboxylic acid butyl ester
[0276] Prepared in analogy to example A-2 b). Mixture of two isomers. MS-(-)-ion: M- 1=388.1. d) 1-Chloro-6- and 7-(3,4-difluoro-phenoxy)-4-hydroxy-isoquinoline-3- carboxylic acid butyl ester
[0277] Prepared in analogy to Example A-2 c). Mixture of two isomers was directly carried on to next step. e) 6- and 7-(3,4-Difluoro-phenoxy)-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester
[0278] To a solution of 1-Chloro-6- and 7-(3,4-difluoro-phenoxy)-4-hydroxy- isoquinoline-3-carboxylic acid butyl ester (220 mg) in ethyl acetate (4 ml) was added 10% Pd/C (50% wet, 88 mg) and then ammonium formate (340 mg). Resulting mixture was heated to reflux for 0.5 h. After cooling, the reaction mixture was diluted with ethyl acetate and filtered through a pad of Celite. Filtrate was concentrated and separated by chromatography to give 131 mg 7-(3,4-Difluoro-phenoxy)-4-hydroxy-isoquinoline-3- carboxylic acid butyl ester (Compound of Example A-62 a) and 55 mg 6-(3,4-Difluoro-
phenoxy)-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester (Compound of Example
A-62 b). f) 2-{ [7-(3,4-Difluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl}-amino}- propionic acid
[0279] Prepared in analogy to Example A-50 by reacting 7-(3,4-Difluoro-phenoxy)-4- hydroxy-isoquinoline-3-carboxylic acid butyl ester (compound of Example A-62 a) with
L-alanine in a pressure tube for 3 days at 85°C. MS-(+)-ion: M-1 =389.2.
Example A-63 2-(8)-[(4-Hydroxy-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]-propionic acid. a) 4-Phenylsulfanyl-phthalic acid
[0280] A mixture of 5.06 g of 4-phenylsulfanyl-phthalonitrile (21.4 mmol), 10 ml of 50% aqueous KOH, and 10 ml of methanol was refluxed with stirring for 3.5 days. Then the mixture was diluted with 100 ml of water and acidified with concentrated hydrochloric acid. The precipitated product was filtered by suction, washed thoroughly with water, and dried in vacuo at 60 °C. 5.75 g of the title compound were obtained; MS- (-)-ion: M-1=273.0. b) (1,3-Dioxo-5-phenylsulfanyl-1,3-dihydro-iseindol-2-yl)-acetic acid
[0281] 5.62 g of 4-phenylsulfanyl-phthalic acid (20.5 mmol) and 1.55 g of glycine (20.5 mmol) were ground thoroughly together in a mortar. Then the mixture was heated to 210 °C to 220 °C in an oil bath. The molten mass was stirred with a spatula at this temperature for 15 min before it was allowed to cool to ambient temperature in vacuo. 6.30 g of the title compound were obtained; MS-(-)-ion; M-1 = 311.8; 'H NMR (DMSO-dg): 6=17.82 (d, 1 H), 7.46 to 7.62 (m, 7 H), 4.26 (s, 2 H).
c) a »3-Dioxo-5-phenylsulfanyl-1,3-dibydro-isoindol-2-yl)-acetic acid methyl ester
[0282] A mixture of 20 ml of methanol, 6.27 g of (1,3-dioxo-5-phenylsulfanyl-1,3- dihydro-isoindol-2-yl)-acetic acid (20 mmol) and 0.3 ml of concentrated sulfuric acid was refluxed with stirring for 18 h. Then 100 ml of concentrated aqueous sodium bicarbonate solution were added and the mixture was extracted with 100 ml of ethyl acetate. The organic phase was dried over MgSO; and evaporated in vacuo. 6.30 g of the title compound were obtained; MS-(+)-ion: M+1 = 328.0; '"H NMR (CDCl): 6=17.69 (d, 1
H), 7.4110 7.55 (m, 7 H), 4.40 (s, 2 H), 3.75 (s, 3 H). d) 1,4-Dihydroxy-7-phenylsulfanyl-isoquinoline-3-carboxylic acid butyl ester (A) and 1,4-Dihydroxy-6-phenylsulfanyl-isoquinoline-3-carboxylic acid butyl ester (B)
[0283] 0.92 g of sodium (40 mmol) were dissolved in 100 ml of n-butanol with stirring.
Then the temperature was raised to 95 °C to 100 °C, a hot solution of 6.5 g of (1,3-dioxo- 5-phenylsulfanyl-1,3-dihydro-isoindol-2-yl)-acetic acid methyl ester (19.85 mmol) in 20 ml of n-butanol was added and stirring was continued at 95 °C to 100 °C for 1 h.
Subsequently, the solvent was evaporated in vacuo, 25 ml of aqueous 2N HCI and 100 ml of ethyl acetate were added and the mixture was stirred vigorously for 1 h before it was filtered by suction. The filter cake was washed thoroughly with water, and dried in vacuo at 60°C to give 4.43 g of a yellow solid. 4.4 g of this mixture of A and B were separated by flash column column chromatography on silica gel eluting with dichloromethane: ethyl acetate (98 : 2). Evaporation of the first fraction yielded 1.99 g of A; '"H NMR (CDCl;): 8 =10.48 (bs, 1 H), 8.39 (bs, 1 H), 8.24 (d, 1 H), 8.01 (d, 1 H), 7.35 to 7.55 (m, 6 H), 4.39 (t,2 H), 1.77 (m, 2 H), 1.46 (m, 2 H), 0.99 (t, 3 H). Evaporation of the second fraction yielded 2.26 g of B; "HNMR (CDCly): § = 10.38 (bs, 1 H), 8.32 (bs, 1 H), 8.24
(d, 1 H), 7.86 (d, 1 H), 7.37 to 7.56 (m, 6 H), 4.39 (t,2 H), 1.77 (m, 2 H), 1.46 (m, 2 H), 0.99 (t, 3 H). €) 1-Bromo-4-hydroxy-7-phenylsulfanyl-isoquinoline-3-carboxylic acid butyl ester
[0284] To a solution of 4.59 g of phosphorous oxybromide (16 mmol) in 25 ml of anhydrous acetonitrile were added 1.11 g of 1,4-dihydroxy-7-phenylsulfanyl- isoquinoline-3-carboxylic acid butyl ester (3 mmol) and the mixture was refluxed gently with stirring for 1 h. Then 5.04 g of sodium bicarbonate (60 mmol) were added, followed by the dropwise addition of 8 ml of water. After stirring at ambient temperature for 90 min the mixture was concentrated in vacuo to about one third of its volume, 40 ml of water were added and the mixture was extracted with 30 ml of ethyl acetate. The mixture was filtered by suction. The organic phase was separated, dried over MgSO, and filtered through a pad of silica gel. Evaporation in vacuo gave 0.885 g of the title compound; 'H
NMR (CDCl3): 8 = 11.84 (s, 1 H), 8.21 (d, 1 H), 7.91 (d, 1 H), 7.40 to 7.55 (m, 6 H), 4.46 (t,2 H), 1.84 (m, 2 H), 1.48 (m, 2 H), 0.98 (t, 3 H). 1) 4-Hydroxy-7-phenylsulfanyl-isoquinoline-3-carboxylic acid butyl ester
[0285] A mixture of 432 mg of 1-bromo-4-hydroxy-7-phenylsulfanyl-isoquinoline-3- carboxylic acid butyl ester (1 mmol), 63 mg of red phosphorous (2 mmol), 0.4.ml of aqueous 57 wt% HI (3 mmol), and 1 ml of glacial acetic acid was refluxed with stirring for 30 min. Then the reaction mixture was diluted with 25 ml of ethyl acetate, filtered by suction through a pad of celite, washed with a solution of 0.2 g of NaHSOs in 5 ml of water, and washed two times with 5 ml of concentrated aqueous sodium bicarbonate solution. The organic phase was dried over MgSO and evaporated in vacuo. The residue was purified by flash column chromatography on silica gel eluting with hexanes : ethyl acetate (85 : 15). 123 mg of the title compound were obtained; 'H NMR (CDCly): § =
11.85 (s, 1 H), 8.60 (s,1 H), 8.23 (d, 1 H), 7.38 to 7.63 (m, 7H), 4.49 (1,2 H), 1.87 (m, 2
H), 1.47 (m, 2 H), 0.98 (t, 3 H). 2) 2-(S)-{(4-Hydroxy-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino}- propionic acid
[0286] A mixture of 4-hydroxy-7-phenylsulfanyl-isoquinoline-3-carboxylic acid butyl ester (0.20 g) and L-alanine (0.75 g) in 0.5 M NaOMe/MeOH (11.3 ml) was heated to reflux for 36 h. After coolng, reaction mixture was concentrated. The residue was suspended in water (50 ml) and extracted with ethyl acetate (50 ml) which was discarded.
The aqueous layer was acidified by 2 N HCI aqueous solution. Extracted with ethyl acetate (2 x 50 ml). Combined organic layers were dried over magnesium sulfate, filtered, and concentrated to give the title compound (0.15 g). MS-(-)-ion: M-1 = 367.1.
Example A-64 2-(R)-[(4-Hydroxy-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]-propionic acid
[0287] Prepared in analogy to Example A-63 g) by reacting 4-hydroxy-7- phenylsulfanyl-isoquinoline-3-carboxylic acid butyl ester with D-alanine. MS-(-)-ion: M- 1=367.1.
Example A-65 2-(R)-|(4-Hydroxy-7-phenoxy-isoquinoline-3-carbonyl)-amino]-propionic acid a) 4-Phenoxy-phthalic acid
[0288] Synthesized from 4-phenoxy-phthalonitrile in analogy to Example A-63 a); MS- (-)-ion: M-1 = 256.9; '"HNMR (DMSO-dg): 8 =7.93 (d,1 H), 7.07 to 7.52 (m, 7 H). b) (1,3-Dioxo-5-phenoxy-1,3-dihydro-isoindol-2-yl)-acetic acid
[0289] Synthesized from 4-phenoxy-phthalic acid in analogy to Example A-63 b). MS- (+)-ion: M+1 = 297.9; "TH NMR (DMSO-dg): 6 =7.87 (d, 1 H), 7.17 to 7.52 (m, 7 H), 4.26 (s, 2 H).
©) (1,3-Dioxo-5-phenoxy-1,3-dihydro-isoindol-2-yl)-acetic acid methyl ester
[0290] Synthesized from (1,3-dioxo-5 -phenoxy-1,3-dihydro-isoindol-2-yl)-acetic acid in analogy to Example A-63 c); "TH NMR (CDCl): 8=17.83 (d, 1 H), 7.05 to 7.46 (m, 7H), 4.41 (s,2 H), 3.76 (s, 3 H). d) 1,4-Dihydroxy-7-phenoxy-isoquinoline-3-carboxylic acid butyl ester (A) and 1,4-Dihydroxy-6-phenoxy-isoquinoline-3-carboxylic acid butyl ester (B)
[0291] Synthesized from ( 1,3-dioxo-5-phenoxy-1,3-dihydro-isoindol-2-yl)-acetic acid methyl ester in analogy to Example A-63 d); Compound A: '"H NMR (CDCl3): 8=10.58 (bs, 1 H), 8.37 (bs, 1 H), 8.14 (d, 1 H), 7.87 (d, I H), 7.05 to 7.49 (m, 6 H), 4.39 (t, 2 H), 1.77 (m, 2 H), 1.46 (m, 2 H), 0.99 (t, 3 H); Compound B: 'H NMR (CDCl): 8=10.38 (bs, 1 H), 8.38 (d, 1 H), 8.28 (bs, 1 H), 7.56 (d, 1 H), 7.06 to 7.47 (m, 6 H), 4.40 (t, 2 H), 1.77 (m, 2 H), 1.46 (m, 2 H), 0.99 (t, 3 H). €) 1-Bromo-4-hydroxy-7-phenoxy-isoquinoline-3-carboxylic acid butyl ester
[0292] Synthesized from 1,4-dihydroxy-7-phenoxy-isoquinoline-3-carboxylic acid butyl ester in analogy to Example A-63 €); 'H NMR (CDCl3): 8=11.89 (s, 1 H), 8.35 (d, 1H), 7.63 (d, 1 H), 7.08 to 7.52 (m, 6 H), 4.47 (1, 2 H), 1.84 (m, 2 H), 1.48 (m, 2 H), 0.99 (t, 3 H). f) 4-Hydroxy-7-phenoxy-isoquinoline-3-carboxylic acid butyl ester
[0293] A mixture of 208 mg of 1-Bromo-4-hydroxy-7-phenoxy-isoquinoline-3- carboxylic acid butyl ester (0.5 mmol), 49 mg of sodium acetate (0.6 mmol), 50 mg of 10 wit% palladium on charcoal, 10 ml of methanol, and 5 ml of ethyl acetate was stirred under hydrogen at 1 atm for 15 h. Then the mixture was filtered by suction through a pad of celite and was concentrated in vacuo. The residue was partitioned between 2 ml of half concentrated aqueous bicarbonate solution and 8 ml of ethyl acetate. The organic phase was dried over MgSO. Evaporation in vacuo gave 130 mg of the title compound; 'H
NMR (CDCl3): § = 11.89 (bs, 1 H), 8.61 (s, 1 H), 8.36 (d, 1 H), 7.10 to 7.53 (m, 7 H), 4.49 (t, 2 H), 1.87 (m, 2 H), 1.47 (m, 2 H), 0.98 (t, 3 H). 2) 2-(R)-[(4-Hydroxy-7-phenoxy-isoquinoline-3-carbonyl)-amino]-propionic acid
[0294] Prepared in analogy to Example A-63 8) by reacting 4-hydroxy-7-phenoxy- isoquinoline-3-carboxylic acid butyl ester with D-alanine at the reflux condition for 5 days. MS-(-)-ion: M-1 = 351.1.
Example A-66 2-(S)-{[4-Hydroxy-7-(4-methoxy-phenoxy)-isoquinoline-3-carbonyl]-amino}- propionic acid a) 4-(4-Methoxy-phenoxy)-phthalonitrile
[0295] A mixture of 4-nitro-phthalonitrile (4.00 g), 4-methoxy-phenol (3.46 g) and potassium carbonate (6.39 g) in acetone (64 ml) was heated to reflux for 2 h. Reaction mixture was cooled and filtered. Filtrate was concentrated and the residue was dissolved in ethyl acetate (100 ml). The solution was washed with NaOH (1 N, 50 ml), water, and then brine. The organic layer was dried over magnesium sulfate, filtered, and concentrated to give the product (6.14 g). "H NMR (200 MHz, CDCl3) 6 6.70 (d,J=17.8
Hz, 1 H), 7.21 (m, 2 H), 6.96 (m, 4 H), 3.84 (s, 3 H). b) 4-(4-Methoxy-phenoxy)-phthalic acid
[0296] Prepared in analogy to Example A-63 a). MS-(-)-ion: M-1 = 286.9. ©) [5-(4-Methoxy-phenoxy)-1,3-dioxo-1,3-dihydro-isoindol-2-yl]-acetic acid methyl ester
[0297] Prepared in analogy to examples A-63 b and c). 'H NMR (200 MHz, CDCl3) 8 7.74 (d,J=8.6 Hz, 1 H), 7.25 (m, 2 H), 6.98 (m, 4 H), 4.40 (s, 2 H), 3.83 (s, 3 H), 3.75 (s, 3 H).
d) 6- and 7-(4-Methoxy-phenoxy)-1,4-dihydroxy-isoquinoline-3-carboxylic acid butyl ester
[0298] Prepared in analogy to Example A-63 d). MS-(+)-ion: M+1 = 384.10. e) 6- and 7-(4-methoxy-phenoxy)-1-bromo-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester
[0299] Prepared in analogy to Example A-63 €). MS-(+)-ion: M+1 = 448.05, 446.05. 2) 7-(4-Methoxy-phenoxy)-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester (A) and 6-(4-Methoxy-phenoxy)-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester (B)
[0300] To a solution of the above compound (2.78 g) in ethyl acetate (50 ml) was added wt% palladium on charcoal (wet) (1.2 g) and then ammonium formate (5.9 2).
Resulting mixture was refluxed for 4 h. After cooling, it was filtered and rinsed with ethyl acetate (100 ml). Filtrate was concentrated and the residue was purified by silica gel chromatography (33% - 50% ethyl acetate in hexanes) to give 7-(4-methoxy-phenoxy)-4- hydroxy-isoquinoline-3-carboxylic acid butyl ester (A) (0.74 g) MS-(+)-ion: M+1 = 368.16) and 6-(4-methoxy-phenoxy)-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester (B) (1.11 g) (MMS-(+)-ion: M+1 = 368.17). h) 2-(S)-{ [4-Hydroxy-7-(4-methoxy-phenoxy)-isoquinoline-3-carbonyl}-amino}- propionic acid
[0301] Prepared in analogy to Example A-63 g) from 7-(4-methoxy-phenoxy)-4- hydroxy-isoquinoline-3-carboxylic acid butyl ester (of Example of A-66 a) and L-alanine.
MS-(-)-ion: M-1 = 381.13.
Example A-67 2-H Benzenesullonyl-&-hydroxy-isoquinoline-3-carbonyl)-amino-propionie ack a) 7-benzenesulfonyl-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester
[0302] A mixture of 7-benzenesulfanyl-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester (Compound 363 f) (165 mg) and m-chloroperoxy benzoic acid (77%) (377 mg) in methylene chloride (5 ml) was stirred at room temperature overnight. Reaction mixture was filtered. Filtrate was diluted with methylene chloride (20 ml) and washed sequentially with saturated sodium bicarbonate aqueous solution (2 x 20 ml), water and brine. Organic layer was dried over magnesium sulfate, filtered, and concentrated. The crude product was purified by silica gel chromatography (eluting with 0% - 20% ethyl acetate in methylene chloride) to give the title compound 120 mg. MS-(+)-ion: M+1 = 386.11. b) 2-(S)-[(7-Benzenesulfonyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]- propionic acid :
[0303] Prepared in analogy to Example A-63 g) from 7-benzenesulfonyl-4-hydroxy- isoquinoline-3-carboxylic acid butyl ester and L-alanine. MS-(-)-ion: M-1 = 399.1,
Example A-68 (R)-2-[(4-Hydroxy-1-methoxymethyl-7-phenoxy-isoquinoline-3-carbonyl)-amino]- propionic acid a) 1-Bromo-4-hydroxy-7-phenoxy-isoquinoline-3-carboxylic acid
[0304] A mixture of 1-Bromo-4-hydroxy-7-phenoxy-isoquinoline-3-carboxylic acid butyl ester (3.52 g, 8.45 mmol; Example A-65 ¢) aqueous 2N NaOH (50 ml, 100 mmol) and EtOH (50 ml) was refluxed with stirring for 2 h. Then the solution was concentrated in vacuo to 2 of its volume, diluted with water (180 ml), and was acidified by addition of aqueous 6N HCI (20 ml). After stirring at ambient temperature for 30 min the resulting suspension was submitted to vacuum filtration. The filter cake was washed thoroughly with water and dried in vacuo at 70°C to give the title compound as a white solid (3.05 g); 'H NMR (DMSO0-d6): 8 = 8.33 (d, 1 H), 7.20 to 7.61 (m, 7 H).
b) 4-Benzyloxy-1-methoxymethyl-7-phenoxy-isoquinoline-3-carboxylic acid benzyl ester
[0305] To a solution of 1-Bromo-4-hydroxy-7-phenoxy-isoquinoline-3-carboxylic acid (721 mg, 2 mmol) in anhydrous THF (100 m1) was added slowly a 2.5 M solution of n-
BuLi in hexanes (3.2 ml, 8 mmol) at -78°C with stirring. After stirring for another 5 min
MeOCHo,I (357 pl, 4 mmol) was added. Stirring was continued for additional 15 min at -78°C before water (50 ml) and aqueous 6N HCI (1.5 ml) were added. The mixture was allowed to warm up to ambient temperature with stirring, and was then concentrated in vacuo to ca. 1/3 of its volume. Traces of iodine were removed by addition of sodium- meta-bisulfite before the mixture was extracted with EtOAc (100 ml). The organic phase was dried over MgSO, and concentrated in vacuo to give a tan solid (576 mg). A mixture of 570 mg of the aforementioned yellowish solid, benzyl bromide (0.97 ml, 8 mmol),
K,COs (2.76 g, 20 mmol) and acetone (40 ml) was refluxed with stirring for 3.5 d. Then the mixture was concentrated in vacuo. To the residue was added water (15 ml) and the mixture was extracted with EtOAc (60 ml). The organic phase was dried over MgSO, and concentrated in vacuo to give a yellowish oil. Purification by flash column chromatography on silica gel using hexanes : EtOAc = 75 : 25 as the eluent gave the title compound as yellow oil (490 mg); MS-(+)-ion: M+1 = 506.2. c) 4-Benzyloxy-1-methoxymethyl-7-phenoxy-isoquinoline-3-carboxylic acid
[0306] A mixture of 4-Benzyloxy-1-methoxymethyl-7-phenoxy-isoquinoline-3- carboxylic acid benzyl ester (480 mg, 0.95 mmol), KOH (325 mg, 5 mmol) and EtOH (10 ml) was stirred at ambient temperature for 48 h before the solvent was evaporated in vacuo. To the residue was added water (10 ml), the mixture was acidified by the addition of aqueous 6N HCI and extracted with EtOAc (2x 25 ml). The combined organic phases were dried over MgSO, and concentrated in vacuo to give the title compound as a tan solid (355 mg); MS-(-)-ion: M-1 =414.1.
d) (R)-2-[(4-Benzyloxy-1 -methoxymethyl-7-phenoxy-isoquinoline-3-carbonyl)- amino]-propionic acid tert-butyl ester
[0307] To a mixture of 4-Benzyloxy-1-methoxymethyl-7-phenoxy-isoquinoline-3- carboxylic acid (79 mg, 0.19 mmol), NEt; (56 pl, 0.4 mmol), and CH,Cl, (5 ml) cooled with an ice bath was added CICO,Bu (26.5 pl, 0.2 mmol) with stirring. After stirring for min (R)-alanine tert-butyl ester hydrochloride (36 mg, 0.2 mmol) was added and the mixture was allowed to warm up to ambient temperature overnight with stirring.
Subsequently; the mixture was concentrated in vacuo. To the residue was added water (10 ml) and a few drops of aqueous 6N HCI. The mixture was extracted with EtOAc (2x 15 ml). The organic phase was dried over MgSO; and concentrated i» vacuo. Purification by flash column chromatography on silica gel using EtOAc as the eluent gave the title compound as a tan oil (88 mg); MS-(+)-ion: M+23 = 565.2. e) (R)-[(4-Hydroxy-1-methoxymethyl-7-phenoxy-isoquinoline-3-carbonyl)- amino]-acetic acid tert-butyl ester
[0308] A mixture of (R)-2-[(4-Benzyloxy-1-methoxymethyl-7-phenoxy-isoquinoline-3- carbonyl)-amino}-propionic acid tert-butyl ester (81 mg, 0.15 mmol), Pd/C (50 mg, 10 wt% Pd), EtOAc (15 ml) was stirred under a Hj-atmosphere at ambient pressure and temperature for 18 h. Then the mixture was filtered through a pad of celite. Celite and filter cake were washed thoroughly with EtOAc and the combined organic phases were concentrated in vacuo to give the title compound as a tan oil (63 mg); MS-(-)-ion: M-1 = 451.2. f) (R)-2-[(4-Hydroxy-1-methoxymethyl-7-phenoxy-isoquinoline-3-carbonyl)- amino]-propionic acid
[0309] A mixture of (R)-[(4-Hydroxy-1-methoxymethyl-7-phenoxy-isoquinoline-3- carbonyl)-amino]-acetic acid tert-butyl ester (59 mg, 0.13 mmol) and trifluoroacetic acid (4 ml) was stirred at ambient temperature for 4 h. Then the mixture was concentrated in vacuo and the residue dissolved in EtOH. The solvent was evaporated in vacuo to give the title compound as a tan solid (52 mg); MS-(+)-ion: M+1 = 397.1.
Example A-69 (5)-2-{(4-Hydroxy-1-methoxymethyl-7-phenoxy-isoquinoline-3-carbonyl)-amino}- propionic acid a) (8)-2-[(4-Benzyloxy-1-methoxymethyl-7-phenoxy-isoquinoline-3-carbonyl)- amino]-propionic acid tert-butyl ester
[0310] Synthesized from (S)-alanin tert-butyl ester and 4-Benzyloxy-1-methoxymethyl- 7-phenoxy-isoquinoline-3-carboxylic acid (Example A-68 c) in analogy to Example A-68 d); MS-(+)-ion: M+23 = 565.2. b) (8)-2-[(4-Hydroxy-1-methoxymethyl-7-phenoxy-isoquinoline-3-carbonyl)- amino]-propionic acid tert-butyl ester
[0311] Synthesized from (8)-2-[(4-Benzyloxy-1-methoxymethyl-7-phenoxy- isoquinoline-3-carbonyl)-amino]-propionic acid tert-butyl ester in analogy to Example A- : 68 e); MS-(-)-ion: M-1 = 451.2. c) (5)-2-[(4-Hydroxy-1-methoxymethyl-7-phenoxy-isoquinoline-3-carbonyl)- amino]-propionic acid
[0312] Synthesized from (S)-2-[(4-Hydroxy-1-methoxymethyl-7-phenoxy-isoquinoline- 3-carbonyl)-amino]-propionic acid tert-butyl ester in analogy to Example A-68 f); MS- (+)-ion: M+1 =397.1.
Example A-70 (S)-2-[(4-Mercapto-7-phenoxy-isoquinoline-3-carbonyl)-amino]-propionic acid a) 4-Dimethylthiocarbamoyloxy-7-phenoxy-isoquinoline-3-carboxylic acid butyl ester
[0313] To a solution of 1.5 g of 4-Hydroxy-7-phenoxy-isoquinoline-3-carboxylic acid butyl ester, Example A-65.1, in 6.3 ml of anhydrous DMF was added 578 mg of dimethylthiocarbamoylchloride and 1.5 g of 1,4-diazabicyclo[2.2.2]octane. The mixture was stirred overnight at room temperature. The mixture was poured into 30 ml of | N
HCI and extracted three times with 30 ml portions of ethyl acetate. The organic fractions were washed with water and brine, dried over anhydrous sodium sulfate, and concentrated to 1.9 g of product; MS (+) m/z 425.27 (M+1) b) 4-Dimethylcarbamoylsulfany}-7-phenoxy-isoquinoline-3-carboxylic acid butyl ester
[0314] A solution of 1.9 g of 4-Dimethylthiocarbamoyloxy-7-phenoxy-isoquinoline-3- carboxylic acid butyl ester in 22 ml of phenyl ether was heated to 190 °C for 2 hours. The solution was concentrated under vacuum to give a crude residue, which was purified by column chromatography on silica gel, eluting the product with a gradient of 30-80% ethyl acetate in hexanes to give 1.73 g; MS (+) m/z 425.07 (M+1) ¢) 4-Mercapto-7-phenoxy-isoquinoline-3-carboxylic acid methyl ester
[0315] To a solution of 6.5 ml of 0.5 N sodium methoxide in methanol was added 460 mg of 4-Dimethylcarbamoylsulfanyl-7-phenoxy-isoquinoline-3-carboxylic acid butyl ester. The resultant solution was heated to 50-60 °C for 8 hours, cooled to room temperature, and diluted with 10 ml water and 7.0 ml 1 N HCI. The resulting yellow precipitate was collected by filtering the solution through a (medium) porous buchner filter funnel to give 307 mg of product; MS (+) m/z 312.08 M+1) : d) (8)2-{(4-Mereapto-7-phenoxy-isoquinoline-3-carbonyl)-amino]-propionie aci
[0316] To a solution of 6.0ml of 0.5 M sodium methoxide in methanol was added 100 mg of 4-Mercapto-7-phenoxy-isoquinoline-3-carboxylic acid methyl! ester and 286 mg of
L-alanine. The mixture was heated to 150 °C for 15 minutes using a CEM Discover microwave reactor. The resultant solution was acidified to pH 3 with 1 N HCI, diluted with 10 ml water, and extracted with 20 ml of ethyl acetate. The organic fraction was washed with brine, dried over anhydrous sodium sulfate, and concentrated to 114 mg of product; MS (-): m/z 369.07 (M-1).
Example A-71 (8)-2-{[1-(4-Chloro-phenylsulfanyl)-4-hydroxy-isoquinoline-3-carbonyl}-amino}- propionic acid a) 1-bromo-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester
[0317] The title compound was prepared from (1,3-Dioxo-1,3-dihydro-isoindol-2-y1)- acetic acid methyl ester in analogy to examples A-65 c)-e); "H NMR (200 MHz, CD;0D) 8 11.89 (s,1H), 8.41 (m, 1H), 8.25 (m, 1H), 7.84 (m, 2H), 4.49 (t, J=7.0 Hz, 2H), 1.87 (m, 2H), 1.47 (m, 2H), 1.00 (t, J=7.2 Hz, 3H). b) (S)-2-{[1-bromo-4-hydroxy-isoquinoline-3-carbonyl]-amino}-propionic acid
[0318] 400 mg of 1-bromo-4-hydroxy-isoquinoline-3-carboxylic acid buty! ester and 890 mg of (L)-Alanine was suspended in a 20 ml solution of 0.5 M of sodium methoxide in methanol. The mixture was heated to 160 °C for 12 min using a CEM Discover microwave reactor. The resultant solution was concentrated to ca. 10 ml, and 0.5 N HCl was added until a pH 3 was reached. The solution was extracted three times with ethyl acetate, and the organic fractions dried over sodium sulfate and concentrated to a tan solid; MS (-): m/z 337.14 (M-1) c) (S)-2-{[1-(4-Chloro-phenylsulfanyl)-4-hydroxy-isoquinoline-3-carbonyl]- amino}-propionic acid
[0319] To a solution of 250 mg of (S)-2-{[1-bromo-4-hydroxy-isoquinoline-3- carbonyl]-amino}-propionic acid in 0.7 ml of 1-methyl-2-pryrrolidinone was added 433 mg of 4-chloro-benzenethiol. The solution was heated at 210 °C for 30 min. using a CEM
Discover microwave reactor. The solution was concentrated under vacuum. The resultant residue was crystallized from methanol to yield 18 mg of a tan solid; MS (-): m/z 401.10
M-1)
Example A-72 (R)-2-{[1-(4-Chloro-phenylsulfanyl)-4-hydroxy-isoquinoline-3-carbonyl]-amino}- propionic acid
[0320] The title compound was prepared from 1-bromo-4-hydroxy-isoquinoline-3- carboxylic acid butyl ester, Example A-71 a), and (D)-alanine under conditions analogous to Example A-71.b-c; MS (-): m/z 401.08 (M-1).
Example A-73
S)- 2-{[7-(3-Fluoro-5-methoxy-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino}-propionic acid a) 4-(3,4-Difluoro-phenoxy)-phthalonitrile
[0321] Prepared in analogy to Example A-60 a). "HNMR (200 MHz, DMSO) § 8.14 (d,
J=9 Hz, 1H), 7.95 (d, J = 2.6, 1H), 7.56 (dd, J = 2.6, 8.6 Hz, 1H), 7.19 (dt, J =2.4,9.2
Hz, 1H), 7.04 (m, 2H). b) 4-(3-Fluoro-5-methoxy-phenoxy)-phthalic acid
[0322] Prepared in analogy to Example A-60 b). One of the fluoro group is substituted by a methoxy group during the hydrolysis. MS-(-)-ion M-1 = 305.0. c) [5-(3-Fluoro-5-methoxy-phenoxy)-1,3-dioxo-1,3-dihydro-isoindol-2-yl]-acetic acid butyl ester
[0323] Prepared in analogy to Example A-60 c). "H NMR (200 MHz, DMSO) & 7.93 (d,
J =8.6 Hz, 1H), 7.43 (m, 2H), 6.79-6.63 (m, 3H), 4.41 (s, 2H), 4.10 (t, J = 6.2, 2H), 1.54 (m, 2H), 1.30 (m, 2H), 0.86 (t, J = 7.0, 3H). d) 6- and 7-(3-Fluoro-5-methoxy-phenoxy)-1,4-dihydroxy-isoquinoline-3- carboxylic acid butyl ester
[0324] Prepared in analogy to Example A-2 b). Mixture of two isomers. MS-(-)-ion
M-1=400.1.
€) 1-Chloro-6- and 7-(3-fluoro-5-methoxy-phenoxy)-4-hydroxy-isoquinoline-3- carboxylic acid butyl ester
[0325] Prepared in analogy to Example A-2 c). Mixture of two isomers. MS-(-)-ion
M-1=418.3. f) 6- and 7-(3-Fluoro-5-methoxy-phenoxy)-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester
[0326] Prepared in analogy to example A-62 e). The mixture of isomers were separated to give 7~(3-fluoro-5-methoxy-phenoxy)-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester (Compound of example A-73 a) and 6-(3-fluoro-5-methoxy-phenoxy)-4-hydroxy- isoquinoline-3-carboxylic acid butyl ester (Compound of example A-73 b). 'H NMR (200 MHz, CD30D) § 8.73 (s, 1H), 8.15 (d, J = 9.0 Hz, 1H), 7.71 (s, 1H), 7.59 (m, 1H), 6.65-6.47 (m, 3H), 4.49 (t, J = 6.6 Hz, 2H), 3.81 (s, 3H), 1.87 (m, 2H), 1.56 (m, 2H), 1.03 (t, J=7.4.3H). 2) (S)- 2-{[7-(3-Fluoro-5-methoxy-phenoxy)-4-hydroxy-isoquinoline-3- carbonyl]-amino}-propionic acid
[0327] Prepared in analogy to Example A-50 by reacting 7-(3-fluoro-5-methoxy- phenoxy)-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester (compound of example
A-73 2) with L-alanine in a pressure tube for 3 days at 90 C. MS-(-)-ion M-1=399.1.
Example A-74 2-(S)-[(7-Cyclohexyloxy-4-hydroxy-isoquinoline-3-carbonyl)-amino]-propionic acid a. (S-Hydroxy-1,3-dioxo-1,3-dihydro-isoindol-2-yl)-acetic acid ethyl ester
[0328] Prepared in analogy to example D-100 c) from 4-hydroxy-phthalic acid and glycine ethyl ester HCl salt. 'H NMR (200 MHz, DMSO-ds) § 11.0 (br s, 1 H), 7.74 @, J =7.8 Hz, 1 H), 7.17 (m, 2 H), 4.35 (5,2 H), 4.13 (q, J =7.0 Hz, 2 H), 1.20 (t, ] = 7.0 Hz, 3 H).
b. (S-Cyclohexyloxy-1,3-dioxo-1,3-dihydro-isoindol-2-yl)-acetic acid ethyl ester
[0329] To a mixture of (5-hydroxy-1,3-dioxo-1,3-dihydro-isoindol-2-yl)-acetic acid ethyl ester (8.0 g) in anhydrous tetrahydrofuran (160 ml) was added cyclohexanol (3.2 g), diethylazadicarboxylate (6,9 g) and then triphenyl phosphine (12.6 g). Resulting mixture was stirred at room temperature overnight and concentrated. Residue was partitioned between water and ethyl acetate. Aqueous layer was extracted with ethyl acetate.
Combined organic layers were washed with brine, dried over magnesium sulfate and filtered. Filtrate was concentrated and purified by silica gel chromatography (eluting with 5% ethyl acetate in methylene chloride) to give the title compound (6.2 g). "HNMR (200
MHz, CDCl3) 5 7.73 (dd, J = 8.2, 0.8 Hz, 1 H), 7.30 (brs, 1 H), 7.12 (m, 1 H), 4.38 (m, 3
H),4.21(q,J=7.1 Hz, 2 H), 2.02 (m, 2 H), 1.82-1.25 (m, 13 H).
Cc 6- and 7-Cyclohexyloxy-1,4-dihydroxy-isoquinoline-3-carboxylic acid butyl ester
[0330] Prepared in analogy to Example A-63 d) to give 7-cyclohexyloxy-1,4- dihydroxy-isoquinoline-3-carboxylic acid butyl ester (Compound A-74 cl) (MS-(+)-ion
M+1 = 360.16) and 6-cyclohexyloxy-1,4-dihydroxy-isoquinoline-3-carboxylic acid butyl ester (Compound A-74 ¢2) (MS-(+)-ion M+1 = 360.18). d. 1-Bromo-7-cyclohexyloxy-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester
[0331] A mixture of 7-cyclohexyloxy-1,4-dihydroxy-isoquinoline-3-carboxylic acid butyl ester (Compound A-74 ¢1) (1.3 g) and phosphorus oxybromide (1.35 g) in anhydrous toluene (25 ml) was heated in a microwave reactor (sealed tube) at 130 °C for min. After cooling, reaction mixture was concentrated. The residue was treated with saturated sodium bicarbonate aqueous solution (100 ml) and stirred at room temperature for 20 min. Extracted with ethyl acetate. Organic layer was washed with water, brine,
dried over magnesium sulfate, filtered, and concentrated to give the title compound (1.2 8). MS-(+)-ion M+1 = 422.12, 424.12. e. 7-Cyclohexyloxy-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester
[0332] To a mixture of 1-bromo-7-cyclohexyloxy-4-hydroxy-isoquinoline-3 -carboxylic acid butyl ester (936 mg) in ethyl acetate (25 ml) was added 10% Pd/C (50% wet) (430 mg) and then ammonium formate (1.4 g)- Resulting mixture was refluxed for 4 h. After cooling, reaction mixture was filtered and concentrated. The residue was purified by silica gel chromatography (3% - 10% ethyl acetate in methylene chloride) to give the title compound (550 mg). MS-(+)-ion M+1 =344.22. f. 2-(S)-[(7-Cyclohexyloxy-4-hydroxy-isoquinoline-3-carbonyl)-amino]- propionic acid
[0333] A mixture of 7-cyclohexyloxyl-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester (80 mg) and L-alanine (207 mg) in 0.5 M sodium methoxide in methanol (3.7 ml) was heated in a microwave reactor (sealed tube) at 120 °C for 40 min. Reaction mixture was concentrated, dissolved in water (30 ml), and acidified by 2 N HCI to pH=4. It was extracted with ethyl acetate. Organic layer was washed with water, brine, dried over magnesium sulfate, and filtered. Filtrate was concentrated and purified by silica gel chromatography to give the title compound (52 mg). MS-(+)-ion M+1 =359.18.
Example A-75 2-(S)-{[7-(4-Fluoro-phenoxy)-4-hydroxy-1-methyl-isoquinoline-3-carbonyl}-amino}- propionic acid a. 5-(4-Fluoro-phenoxy)-isoindole-1,3-dione
[0334] A mixture of 5-Nitro-isoindole-1,3-dione (177 g, 0.904 mol), 4-fluoro-phenol (128 g, 1.13 mol), K,CO; (419 g, 3 mol) and DMF (2 1) was refluxed with stirring for 3 h before the mixture was poured into water (12 1) with stirring. The precipitate formed was isolated by vacuum filtration, washed with water (8 1) and dried in vacuo at 70°C to give the title compound as a tan powder (43.2 g); 'H NMR (CDCl3) 8 =17.79 (d, 1 H), 7.57 (br s, 1 H), 7.01 to 7.29 (m, 6 H). b. [5-(4-Fluoro-phenoxy)-1,3-dioxo-1,3-dihydro-isoindol-2-yl]-acetic acid methyl ester
[0335] A mixture of 5-(4-fluoro-phenoxy)-isoindole-1,3-dione (42.9 g, 167 mmol),
Bromo-acetic acid methyl ester (21.1 ml, 223 mmol), K,CO;3 (62.3 g, 446 mmol) and
Et,CO (700 ml) was refluxed with stirring for 16 h before the mixture was concentrated in vacuo. To the residue was added water (150 ml) and the resulting slurry was extracted with EtOAc (1 x 750 ml, 1 x 250 ml). The combined organic phases were dried over
MgSO, and concentrated in vacuo to give the title compound as a tan solid (49.7 g); 'H
NMR (CDCl3) 8 = 7.80 (d, 1 H), 7.01 to 7.30 (m, 6 H), 4.41 (s, 2 H), 3.76 (s, 3 H).
Cc 7-(4-Fluoro-phenoxy)-1,4-dihydroxy-isoquinoline-3-carboxylic acid butyl ester
[0336] Sodium (7.2 g, 310 mmol) was dissolved in n-butanol (300 ml) with stirring at 70°C. Afterwards, the temperature was raised to 95-100°C and a solution of [5-(4-Fluoro- phenoxy)-1,3-dioxo-1,3-dihydro-isoindol-2-yl]-acetic acid methyl ester (49.4 g, 150 mmol) in hot n-butanol (300 ml) was added with vigorous stirring. The mixture was stirred for another 90 min at 95-100°C and was then allowed to cool to 60°C with stirring before 2 N HCI (160 ml) was added. The mixture was stirred vigorously for 30 min and was then allowed to cool to ambient temperature. Subsequently, the mixture was submitted to vacuum filtration. The filter cake was washed thoroughly with water and dried in vacuo at 70°C to give a pale yellow solid. Purification by flash column chromatography on silica gel using CH,Cl, EtOAc = 98 2 as the eluent gave the title compound (14.4 g, first fraction); 'H NMR (CDCl3) 6 = 8.40 (brs, 1 H), 8.14 (d, 1 H), 7.80 (d, 1 H), 7.42 to 7.48 (m, 1 H), 7.04 to 7.14 (m, 4 H), 4.39 (t,2 H), 1.70 to 1.85 (m, 2
H), 1.37 to 1.55 (m, 2 H), 0.99 (t, 3 H).
d. 1-Bromo-7-(4-fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carboxylic acid butyl ester
[0337] A mixture of 7-(4-Fluoro-phenoxy)-1,4-dihydroxy-isoquinoline-3-carboxylic acid butyl ester (14.33 g, 38.6 mmol), POBr; (44.7 g, 154.4 mmol) and anhydrous methyl cyanide (290 ml) was refluxed gently with stirring for 75 min before NaHCO; (100.8 g, 1.2 mol) was added in small portions with stirring. Subsequently, water (200 ml) was added slowly with stirring and the mixture was stirred vigorously for 1 h at ambient temperature before it was concentrated in vacuo to ca. % of its volume. Then water (200 ml) was added and the mixture was extracted with EtOAc (1x 400 ml, 1 x 200 ml). The combined organic phases were dried over MgSO, and evaporated in vacuo to give a tan solid. The tan solid was dissolved in CH,Cl, and purified by filtration through a plug of silica gel. In vacuo concentration of the resulting CH,Cl solution yielded the title compound (11.4 g); 'H NMR (CDCl3) 5 = 11.89 (s, 1 H),836(d, 1 H), 7.57 (d, 1 H), 7.4410 7.50 (m, 1 H), 7.08 to 7.16 (m, 4 H), 4.47 (t, 2 H), 1.78 to 1.93 (m, 2 H), 1.38 to 1.58 (m, 2 H), 0.99 (1, 3 H). e. 7-(4-Fluoro-phenoxy)-4-hydroxy-1-methyl-isoquinoline-3-carboxylic acid butyl ester
[0338] A mixture of 1-Bromo-7-(4-fluoro-phenoxy)-4-hydroxy-isoquinoline-3- carboxylic acid butyl ester (434 mg, 1 mmol), Pd(PPhs), (116 mg, 0.1 mmol), trimethylboroxine (140 pl, 1 mmol), K,COs (414 mg, 3 mmol), and 1,4-dioxane (8 ml) was refluxed with stirring for 2 h. Subsequently, the mixture was concentrated in vacuo.
To the residue was added water (10 ml). The mixture was acidified by the addition of aqueous 6N HCl and then extracted with EtOAc (40 ml). The organic phase was dried over MgSO; and evaporated in vacuo. Purification of the residue by flash column chromatography on silica gel using hexanes : EtOAc = 94 : 6 as the eluent gave the title compound as white solid (229 mg); MS-(+)-ion M+1 = 370.1.

Claims (69)

CLAIMS:
1. A compound represented by formula I: R5 R" 0 R R 3 My Re Z "\ R" Rt Rt (0) : wherein: g 1s Zero or ong; p 1s zero or one; R? is COOH or -WR?; provided that when R* is -COOH then p is zero and when R* is “WR? then p is one; W is selected from the group consisting of oxygen, -S(O),- and -NR’- where n is zero, one or two, R’ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, acyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic and R® is selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, or when W is -NR’- then R® and R’, together with the nitrogen atom to which they are bound, can be joined to form a heterocyclic or a substituted heterocyclic group, provided that when W is —S(O),- and n is one or two, then R® is not hydrogen; R' is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkoxy, substituted alkoxy, amino, substituted amino, aminoacyl, aryl, substituted aryl, halo, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, and -XR® where X is oxygen, -S(O)n- or -NR’- where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl or aryl or, when X is - NR’-, then R’ and R®, together with the nitrogen atom to which they are bound, can be joined to form a heterocyclic or substituted heterocyclic group; R? and R? are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, halo, hydroxy, cyano, -S(0).-N(R%)-R® where n is 0, 1, or 2, -NR°C(O)NRR®, -XR® where X is oxygen, -S(O),- or -NR’- where n is zero, one or two, each R® is independently selected from Amended sheet 10/04/2007 the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic provided that when X is ~SO- or -SO,-, then Rg is not hydrogen, and R’ is selected from the group consisting of hydrogen, alkyl, aryl, or R?, R’ together with the carbon atom pendent thereto, form an aryl substituted aryl, heteroaryl, or substituted heteroaryl,
R* and R® are independently selected from the group consisting of hydrogen, halo, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, heteroaryl, substituted heteroaryl and -XR® where X is oxygen, -S(O)n- or -NR’- where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R” is hydrogen, alkyl or aryl or, when X is -NR’-, then R’ and R®, together with the nitrogen atom to which they are bound, can be joined to form a heterocyclic or substituted heterocyclic group;
R is selected from the group consisting of hydrogen, deuterium and methyl;
R'is selected from the group consisting of hydrogen, deuterium, alkyl and substituted alkyl; alternatively, R and R’ and the carbon pendent thereto can be joined to form cycloalkyl, substituted cycloalkyl, heterocyclic or substituted heterocyclic group;
R" is selected from the group consisting of hydrogen and alkyl or R" together with R' and the nitrogen pendent thereto can be joined to form a heterocyclic or substituted heterocyclic group;
R™ is selected from the group consisting of hydroxy, alkoxy, substituted alkoxy, acyloxy, cycloalkoxy, substituted cycloalkoxy, aryloxy, substituted aryloxy, heteroaryloxy, substituted heteroaryloxy, aryl, -S(0),-R' wherein R'% is selected from the group consisting of alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, aryl, substituted aryl, heteroaryl and substituted heteroaryl and n is zero, one or two;
and pharmaceutically acceptable salts, esters and prodrugs thereof;
with the proviso that when R, R' and R" are hydrogen and q is zero, and R* is either -COOH (p is zero) or -WR (p is one) and W is oxygen and R® is hydrogen then at least one of the following occurs:
1) R! is fluoro, bromo, iodo, alkyl, substituted alkyl, alkoxy, aminoacyl, substituted alkoxy, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, and -XR® where X is oxygen, -S(O),- or -NR’- where n is zero, one or two, RS is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted
Amended sheet 10/04/2007 aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R is hydrogen, alkyl or aryl; or
2) R? is substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, fluoro, bromo, iodo, cyano, -XR® where X is oxygen, -S(O),- or -NR’- where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R is hydrogen, alkyl or aryl provided that:
a) when R? is substituted alkyl such a substituent does not include trifluoromethyl;
b) -XR? is not alkoxy; and c) when -XR? is substituted alkoxy such a substituent does not include benzyl or benzyl substituted by a substituent selected from the group consisting of (C,-Cs) alkyl and (C,-Cs) alkoxy or does not include a fluoroalkoxy substituent of the formula:
-O-[CH2Jx-CiHapr1 Fg where x is zero or one; fis an integer of from 1 to 5; and g is an integer of from 1 to (2f + 1); or
3) R? is substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, bromo, iodo, -XR® where X is oxygen, -S(O),- or -NR’- where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl or aryl provided that:
a) when R’ is substituted alkyl such a substituent does not include trifluoromethyl;
b) -XRS is not alkoxy; and c) when -XR® is substituted alkoxy such a substituent does not include benzyl or benzyl substituted by a substituent selected from the group consisting of (C;-Cs) alkyl and (C,-Cs) alkoxy or does not include a fluoroalkoxy substituent of the formula:
-O-[CH,]Jx-CHearr1-g)F where x is zero or one; fis an integer of from 1 to 5; and g is an integer of from 1 to (2f + 1); or
4) R* is iodo, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, -XR® where X is oxygen, -S(O),- or -NR’- where n is zero, one or two, RS is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl,
Amended sheet 10/04/2007 heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R” is hydrogen, alkyl or aryl provided that: a) when R* is substituted alkyl such a substituent does not include trifluoromethyl; b) -XR? is not alkoxy; and c) when -XR® is substituted alkoxy such a substituent does not include a fluoroalkoxy substituent of the formula: -O-[CH,]x-CHag+1-g)Fg where x is zero or one; fis an integer of from 1 to 5; and g is an integer of from 1 to (2f+ 1); or 5) R’ is iodo, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, -XR® where X is oxygen, -S(O)n- or -NR’- where n is zero, one or two, R¢ is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and Ris hydrogen, alkyl or aryl provided that: a) when R’ is substituted alkyl such a substituent does not include trifluoromethyl; b) -XR?® is not alkoxy; and C) when -XR® is substituted alkoxy such a substituent does not include a fluoroalkoxy substituent of the formula: -O-[CH2]x-CH2pr1.g)F where x is zero or one; fis an integer of from 1 to 5; and g is an integer of from 1 to (2f + 1); and with the further following proviso: that when R', R® , R®, and R® are hydrogen, then R? is not bromo.
2. A compound as in claim 1, wherein said compound is represented by formula IA: RS R" 0 rR Rr CE R = "\ R" RE Re (Oh A wherein R', R?, R3, RY, R’,R,R’,R’’,R’”’ and q are as defined above; and Amended sheet 10/04/2007 pharmaceutically acceptable salts, esters, prodrugs thereof.
3. A compound as in claim 1, wherein said compound is represented by formula IB: R5 R™ 0) R3 WRS py N R" R N R4 R1 (O)q IB wherein R!, R?, R?, RY, RS, R”’,R’”’, WRE and q are as defined above; and pharmaceutically acceptable salts, esters, prodrugs thereof. 4, A compound as in claim 1, wherein said compound is represented by the formula IC: R5 R"™ 0) R R' 3 WRS R Xn Oo — N R" R N RR Ok - wherein R!, RZ, R, RY, R’, R,R,R”,R’”, WR, and q are as defined above; and pharmaceutically acceptable salts, esters, prodrugs thereof.
5. A compound as in claim 1, wherein said compound is represented by formula ID: RS rR" 0 R3 x nN" cooH — N R" R N R4 RH! (©) ID wherein R!, R?, rR? , R®, R’ ,R,R’,R”’, R””’ and q are as defined above; and pharmaceutically acceptable salts, esters, prodrugs thereof.
6. A compound as in claim 1, wherein R! is selected from the group consisting of hydrogen, alkyl, substituted alkyl, halo, alkoxy, aryloxy, substituted aryloxy, substituted aryl, Amended sheet 10/04/2007 alkylthio, aminoacyl, aryl, substituted amino, heteroaryl, heteroaryloxy, -S(O),-aryl, -S(O)n-substituted aryl, -S(O),-heteroaryl, and -S(O),-substituted heteroaryl, where n is zero, one or two.
7. A compound as in claim 6, wherein R' is selected from the group consisting of: (4-methoxy)phenylsulfonylamino ; 2,6-dimethylphenoxy; 3,4-difluorophenoxy; 3,5-difluorophenoxy; 3-chloro-4-fluorophenoxy; 3-methoxy-4-fluorophenoxy; 3-methoxy-5-fluorophenoxy; 4-(methylsulfonamido)phenoxy; 4-(phenylsulfonamido)phenoxy; 4-CF;-O-phenoxy; 4-CF;-phenoxy; 4-chlorophenoxy; 4-fluorophenoxy; 4-(4-fluorophenoxy)phenoxy; 4-methoxyphenoxy; 4-nitrophenoxy; benzyloxy; bromo; butoxy; CFs; chloro; cyclohexyloxy; cyclohexylsulfanyl; cyclohexylsulfonyl; fluoro; hydrogen; iodo; isopropoxy; Amended sheet 10/04/2007 methyl; phenoxy; phenyl; phenylsulfanyl; phenylsulfinyl; phenylsulfonyl; phenylurea; pyridin-1-ylsulfanyl; pyridin-3-yloxy; and pyridin-4-ylsulfanyl.
8. A compound as in claim 1, wherein R? is selected from the group consisting of substituted amino, aryloxy, substituted aryloxy, alkoxy, substituted alkoxy, halo, hydrogen, alkyl, substituted alkyl, aryl, -S(O),-aryl, -S(O),-substituted aryl, -S(O),-cycloalkyl, where n is zero, one or two, aminocarbonylamino, heteroaryloxy, and cycloalkyloxy.
9. A compound as in claim 8, wherein R? is selected from the group consisting of: (4-methoxy)phenylsulfonylamino; 2,6-dimethylphenoxy; 3,4-difluorophenoxy; 3,5-difluorophenoxy; 3-chloro-4-fluorophenoxy; 3-methoxy-4-fluorophenoxy; 3-methoxy-5-fluorophenoxy; 4-(methylsulfonamido)phenoxy; 4-(phenylsulfonamido)phenoxy; 4-CF3-O-phenoxy; 4-CF3-phenoxy; 4-chlorophenoxy; 4-fluorophenoxy; 4-(4-fluorophenoxy)phenoxy; 4-methoxyphenoxy; 4-nitrophenoxy; Amended sheet 10/04/2007 benzyloxy, bromo; butoxy; CF3; chloro; cyclohexyloxy; cyclohexylsulfanyl; cyclohexylsulfonyl; fluoro; hydrogen; 10do; isopropoxy; methyl; phenoxy; phenyl; phenylsulfanyl; phenylsulfinyl; phenylsulfonyl; phenylurea; pyridin-1-ylsulfanyl; pyridin-3-yloxy; and pyridin-4-ylsulfanyl.
10. A compound as in claim 1, wherein R’ is selected from the group consisting of: substituted aryloxy, substituted alkoxy, alkoxy, substituted alkyl, alkyl, amino, cycloalkyloxy, hydrogen, halo, aryl, -S(O),-aryl, -S(O)»-substituted aryl, -S(O)n-heteroaryl, and -S(O),-substituted heteroaryl, where n is zero, one or two, aminocarbonylamino, and heteroaryloxy.
11. A compound as in claim 10, wherein R? is selected from the group consisting of: amino; (4-methyl)phenylsulfonylaminophenoxy; 3,4-difluorophenoxy; Amended sheet 10/04/2007
3,5-difluorophenoxy; 3-fluoro-5-methoxy-phenoxy; 3-chloro-4-fluorophenoxy 4-CF;-O-phenoxy; 4-CFs-phenoxy; 4-chlorophenoxy; 4-fluorophenoxy; 4-(4-fluorophenoxy)phenoxy; 4-methoxyphenoxy; benzyloxy; bromo; butoxy; CF3; chloro; cyclohexyloxy; hydrogen; iodo; isopropoxy; phenoxy; phenyl; phenylsulfanyl, phenylsulfonyl; phenylsulfinyl; phenylurea; pyridin-1-ylsulfanyl, pyridin-3-yloxy; and pyridin-4-ylsulfanyl.
12. A compound as in claim 1, wherein R? and R® , combined with the carbon atom pendent thereto, join to form an aryl group.
13. A compound as in claim 12, wherein said aryl group is phenyl. Amended sheet 10/04/2007
14. A compound as in claim 1, wherein R* is selected from the group consisting of substituted arylthio, halo, hydrogen, substituted alkyl and aryl.
15. A compound as in claim 14, wherein R* is selected from the group consisting of: 4-chlorophenyl sulfanyl; chloro; hydrogen; methoxymethyl; and phenyl.
16. A compound as in claim 1, wherein R’ is hydrogen or aryl.
17. A compound as in claim 16, wherein R® is phenyl.
18. A compound as in claim 1, wherein R is selected from the group consisting of hydrogen, deuterium, aryl and alkyl.
19. A compound as in claim 18, wherein R is selected from the group consisting of phenyl, hydrogen, deuterium and methyl.
20. A compound as in claim 1, wherein R’ is selected from the group consisting of hydrogen, deuterium, alkyl, substituted alkyl, and substituted amino.
21. A compound of claim 20, wherein R’ is selected from the group consisting of: 4-aminobutyl; 4-hydroxybenzyl; benzyl, carboxylmethyl; deuterium; hydroxymethyl; imidazol-4-ylmethyl; isopropyl; methyl; and Amended sheet 10/04/2007 propyl.
22. A compound as in claim 1, wherein R, R’ and the carbon atom pendent thereto join to form a cycloalkyl.
23. A compound as in claim 22, wherein said cycloalkyl is cyclopropyl.
24, A compound as in claim 1, wherein R’’ is hydrogen.
25. A compound as in claim 1, wherein R’, R’’ and the carbon atom and nitrogen atom respectively pendent thereto join to form a heterocyclic group.
26. A compound as in claim 25, wherein said heterocyclic group is pyrrolidinyl.
27. A compound as in claim 1, wherein R’’’ is selected from the group consisting of hydrogen, hydroxy, alkoxy, substituted alkoxy, thiol, acyloxy and aryl.
28. A compound as in claim 27, wherein R’”’ is selected from the group consisting of: hydroxy; benzyloxy; ethoxy; hydrogen; thiol; methoxy; methylcarbonyloxy; and phenyl.
29. A compound as in claim 1, wherein WR? is selected from the group consisting of amino, substituted amino, hydroxy, and alkoxy.
30. A compound as in claim 29, wherein WR? is selected from the group consisting of: amino; dimethylamino; Amended sheet 10/04/2007 hydroxy; methoxy; and methylcarbonylamino.
31. A compound as in claim 1, wherein said compound is represented by formula IIA: RS OH O R R RS NX n> coon R = "\ R" Re Ri (Oh IA wherein: q 1s zero or ong; R! is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, halo, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, and -XR® where X is oxygen, -S(O),- or -NR’- where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl or aryl; R? and R? are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, heteroaryl, substituted heteroaryl, halo, hydroxy, cyano, -XR® where X is oxygen, -S(O),- or -NR’- where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl or aryl; R* and R’ are independently selected from the group consisting of hydrogen, halo, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, heteroaryl, substituted heteroaryl and -XR® where X is oxygen, -S(O),- or -NR’- where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl or aryl; R is selected from the group consisting of hydrogen and methyl; Amended sheet 10/04/2007
R'is selected from the group consisting of alkyl and substituted alkyl; or R and R’ may be joined to form a cycloalkyl, substituted cycloalkyl, heterocyclic or substituted heterocyclic; R" is selected from the group consisting of hydrogen and alkyl or R" together with R' and the nitrogen pendent thereto forms a heterocyclic or substituted heterocyclic group; or pharmaceutically acceptable salts and/or prodrugs thereof.
32. A compound as in claim 1, wherein said compound is represented by formula IIB: Rs OH O R3 Xn N ~~ WR? R 7 AW Rr RR Ok . wherein: q 1s zero or one; W is selected from the group consisting of oxygen, -S(O),- and -NR’- where n is zero, one or two, R’ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, acyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R® is selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic; R" is selected from hydrogen and alkyl; R' is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, halo, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, and -XR® where X is oxygen, -S(O)n- or -NR’- where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R is hydrogen, alkyl or aryl; R? and R? are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, heteroaryl, substituted heteroaryl, halo, hydroxy, cyano, -XR® where X is oxygen, -S(O),- or -NR’- Amended sheet 10/04/2007 where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl or aryl; R* and R® are independently selected from the group consisting of hydrogen, halo, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, heteroaryl, substituted heteroaryl and -XR® where X is oxygen, -S(O),- or -NR’- where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl or aryl; or pharmaceutically acceptable salts and/or prodrugs thereof.
33. A compound as in claim 1, wherein said compound is represented by formula IIC: RS OH O R R R3 AN EW RS R — "\ ke Re rt (Oh IC wherein: q is zero or one; R' is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, halo, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, and -XR® where X is oxygen, -S(O)n- or -NR’- where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl, or aryl; R? and R? are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, heteroaryl, substituted heteroaryl, halo, hydroxy, cyano, -XR® where X is oxygen, -S(O)y- or -NR’- where n is zero, one or two, R° is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl, or aryl; R* and R® are independently selected from the group consisting of hydrogen, halo, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, heteroaryl, Amended sheet 10/04/2007 substituted heteroaryl and -XR® where X is oxygen, -S(O),- or -NR’- where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl, or aryl; R is selected from the group consisting of hydrogen and methyl; R'is selected from the group consisting of alkyl and substituted alkyl; or R and R’ can be joined to form cycloalkyl, substituted cycloalkyl, heterocyclic or substituted heterocyclic R" is selected from the group consisting of hydrogen and alkyl or R" together with R' and the nitrogen pendent thereto forms a heterocyclic or substituted heterocyclic group; W is selected from the group consisting of oxygen, -S(O),- and ~-NR®’- where n is zero, one or two, R’ is selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R? is selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic; or pharmaceutically acceptable salts and/or prodrugs thereof.
34. A compound as in claim 1, wherein said compound is represented by formula IID: Rs OH O Rr: Xr” N77 COOH R = "\ x ROR Ok - wherein: q is zero or one; R" is selected from hydrogen and alkyl; R! is selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, halo, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, and -XR® where X is oxygen, -S(O)y- or -NR’- where n is zero, one or two, RC is selected from the group consisting of alkyl, substituted alkyl, aryl, Amended sheet 10/04/2007 substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R is hydrogen, alkyl or aryl, R? and R? are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, halo, hydroxy, cyano, -XR® where X is oxygen, -S(O),- or -NR’- where n is zero, one or two, R%is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl or aryl; R* and R® are independently selected from the group consisting of hydrogen, halo, alkyl, substituted alkyl, alkoxy, substituted alkoxy, aryl, substituted aryl, heteroaryl, substituted heteroaryl and -XR® where X is oxygen, -S(O),- or -NR’- where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl or aryl; or pharmaceutically acceptable salts and/or prodrugs thereof.
35. A compound selected from the group consisting of: {[4-Hydroxy-1-(naphthalen-2-yloxy)-isoquinoline-3-carbonyl]-amino}-acetic acid; {[4-Hydroxy-1-(pyridin-3-yloxy)-isoquinoline-3-carbonyl}-amino} -acetic acid; {[4-Hydroxy-1-(4-methoxy-phenoxy)-isoquinoline-3-carbonyl]-amino} -acetic acid; {[4-Hydroxy-1-(3-methoxy-phenoxy)-isoquinoline-3-carbonyl]-amino}-acetic acid; {[1-(3-Fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino}-acetic acid; {[1-(4-Fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino}-acetic acid, {[1-(2-Fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino}-acetic acid, {[4-Hydroxy-1-(2-methoxy-phenoxy)-isoquinoline-3-carbonyl]-amino}-acetic acid; Amended sheet 10/04/2007
{[1-(4-Acetylamino-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino}- acetic acid; {[4-Hydroxy-1-(4-methanesulfonylamino-phenoxy)-isoquinoline-3-carbonyl]- amino}-acetic acid, [(4-Hydroxy-1-phenylamino-isoquinoline-3-carbonyl)-amino]-acetic acid, {[4-Hydroxy-6-(pyridin-3-yloxy)-isoquinoline-3-carbonyl]-amino} -acetic acid; {[4-Hydroxy-7-(pyridin-3-yloxy)-isoquinoline-3-carbonyl]-amino} -acetic acid; [(1-Chloro-4-methoxy-isoquinoline-3-carbonyl)-amino]-acetic acid, [(1-Chloro-4-ethoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-1-methoxy-isoquinoline-3-carbonyl)-amino]-acetic acid, [(1-Ethoxy-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Acetoxy-1-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-1-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid, [(1-Ethoxy-4-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Chloro-4-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-1-methyl-isoquinoline-3-carbonyl)-amino]-acetic acid, [(4-Hydroxy-1-methoxymethyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Dimethylcarbamoyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-1-methyl-6-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy- 1-methyl-7-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Benzyloxy-1-methyl-7-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Ethoxy-1-methyl-7-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Dimethylcarbamoyl-4-hydroxy-7-phenoxy-isoquinoline-3-carbonyl)- amino]-acetic acid; [(4-Hydroxy- 1-methoxymethyl-7-phenoxy-isoquinoline-3-carbonyl)-amino]- acetic acid; Amended sheet 10/04/2007
[(4-Hydroxy-1-p-tolyl-isoquinoline-3-carbonyl)-amino]-acetic acid; {[7-(4-Fluoro-phenoxy)-4-hydroxy-1-methyl-isoquinoline-3-carbonyl]-
amino}-acetic acid; {[1-Chloro-4-hydroxy-7-(4-methoxy-phenoxy)-isoquinoline-3-carbonyl]- amino} -acetic acid; {(4-Hydroxy-7-(4-methoxy-phenoxy)-isoquinoline-3-carbonyl]-amino } -acetic acid, {[1-Chloro-4-hydroxy-6-(4-methoxy-phenoxy)-isoquinoline-3-carbonyl]- amino} -acetic acid, {[4-Hydroxy-6-(4-methoxy-phenoxy)-isoquinoline-3-carbonyl}-amino } -acetic acid; {[1-Chloro-4-hydroxy-7-(4-trifluoromethyl-phenoxy)-isoquinoline-3- carbonyl]-amino}-acetic acid; {[4-Hydroxy-7-(4-trifluoromethyl-phenoxy)-isoquinoline-3-carbonyl]- amino}-acetic acid; {{1-Chloro-4-hydroxy-6-(4-trifluoromethyl-phenoxy)-isoquinoline-3- carbonyl]-amino} -acetic acid; {[4-Hydroxy-6-(4-trifluoromethyl-phenoxy)-isoquinoline-3-carbonyl]- amino} -acetic acid; {[1-Chloro-7-(4-fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino}-acetic acid; {[7-(4-Fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl}-amino }-acetic acid; {[1-Chloro-6-(4-fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino}-acetic acid; {[6-(4-Fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino} -acetic acid; {[4-Hydroxy-7-(pyridin-4-ylsulfanyl)-isoquinoline-3-carbonyl]-amino } -acetic acid; {[4-Hydroxy-6-(pyridin-4-ylsulfanyl)-isoquinoline-3-carbonyl]-amino } -acetic acid; [(7-Benzenesulfinyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(7-Benzenesulfonyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; Amended sheet 10/04/2007
[(6-Benzenesulfinyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(6-Benzenesulfonyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(6-Amino-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; {[4-Hydroxy-7-(4-methoxy-benzenesulfonylamino)-isoquinoline-3-carbonyl]-
amino} -acetic acid; {[4-Hydroxy-7-(3-phenyl-ureido)-isoquinoline-3-carbonyl]-amino} -acetic acid; {[4-Hydroxy-6-(3-phenyl-ureido)-isoquinoline-3-carbonyl]-amino} -acetic acid; [(4-Hydroxy-1-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]-acetic acid; {[1-(4-Chloro-phenylsulfanyl)-4-hydroxy-isoquinoline-3-carbonyl}-amino}- acetic acid; [(4-Hydroxy-1-p-tolylsulfanyl-isoquinoline-3-carbonyl)-amino]-acetic acid; {[4-Hydroxy-1-(pyridin-2-ylsulfanyl)-isoquinoline-3-carbonyl]-amino} -acetic acid; {[4-Hydroxy-1-(3-methoxy-phenylsulfanyl)-isoquinoline-3-carbonyl]-amino}- acetic acid; {[4-Hydroxy-1-(2-methoxy-phenylsulfanyl)-isoquinoline-3-carbonyl]-amino} - acetic acid; {[4-Hydroxy-1-(naphthalen-2-ylsulfanyl)-isoquinoline-3-carbonyl]-amino}- acetic acid; [(1-Benzenesulfinyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Benzenesulfonyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; {[4-Hydroxy-7-(pyridin-2-ylsulfanyl)-isoquinoline-3-carbonyl]-amino} -acetic acid; {[4-Hydroxy-6-(pyridin-2-ylsulfanyl)-isoquinoline-3-carbonyl]-amino}-acetic acid, [(1-Chloro-4-hydroxy-6,7-diphenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-6,7-diphenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; ({4-Hydroxy-7-[4-(toluene-4-sulfonylamino)-phenoxy]-isoquinoline-3- carbonyl}-amino)-acetic acid; Amended sheet 10/04/2007
{[4-Hydroxy-7-(4-nitro-phenoxy)-isoquinoline-3-carbonyl]-amino } -acetic acid; [(4-Mercapto-7-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Mercapto-7-trifluoromethyl-isoquinoline-3-carbonyl)-amino]-acetic acid, {[7-(4-Benzenesulfonylamino-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino} -acetic acid; {[4-Hydroxy-7-(4-methanesulfonylamino-phenoxy)-isoquinoline-3-carbonyl]- amino} -acetic acid; {[7-(4-Chloro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino} -acetic acid; {[6-(4-Chloro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino} -acetic acid; {[6-(3-Fluoro-5-methoxy-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino} -acetic acid; {[7-(3-Fluoro-5-methoxy-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino} -acetic acid; {[7-(3,4-Difluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino} - acetic acid; {[6-(3,4-Difluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino} - acetic acid; {[4-Hydroxy-7-(4-trifluoromethoxy-phenoxy)-isoquinoline-3-carbonyl]- amino}-acetic acid; {[4-Hydroxy-6-(4-trifluoromethoxy-phenoxy)-isoquinoline-3-carbonyl]- amino}-acetic acid; 2-(S)- {[7-(4-Chloro-phenoxy)-4-hydrox y-isoquinoline-3-carbonyl]-amino}- propionic acid; 2-(S)- {[6-(4-Chloro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino}- propionic acid; 2-{[7-(3,4-Difluoro-phenoxy)-4-hydrox y-isoquinoline-3-carbonyl]-amino}- propionic acid; 2-(S)-[(4-Hydroxy-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]- propionic acid; Amended sheet 10/04/2007
2-(R)-[(4-Hydroxy-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]- propionic acid; 2-(R)-[(4-Hydroxy-7-phenoxy-isoquinoline-3-carbonyl)-amino]-propionic acid; 2-(S)- {[4-Hydroxy-7-(4-methoxy-phenoxy)-isoquinoline-3-carbonyl]-amino} - propionic acid, 2-(S)-[(7-Benzenesulfonyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]- propionic acid, (R)-2-[(4-Hydroxy-1-methoxymethyl-7-phenoxy-isoquinoline-3-carbonyl)- amino]-propionic acid; (S)-2-[(4-Hydroxy-1-methoxymethyl-7-phenoxy-isoquinoline-3-carbonyl)- amino]-propionic acid; (S)-2-[(4-Mercapto-7-phenoxy-isoquinoline-3-carbonyl)-amino]-propionic acid; (S)-2-{[1-(4-Chloro-phenylsulfanyl)-4-hydroxy-isoquinoline-3-carbonyl]- amino} -propionic acid; (R)-2-{[1-(4-Chloro-phenylsulfanyl)-4-hydroxy-isoquinoline-3-carbonyl]- amino} -propionic acid; [(4-Hydroxy-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-6-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Chloro-4-hydroxy-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]- acetic acid; [(1-Chloro-4-hydroxy-6-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]- acetic acid; [(1-Bromo-4-hydroxy-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]- acetic acid; [(1-Bromo-4-hydroxy-6-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]- acetic acid; [(4-Hydroxy-7-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-6-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Chloro-4-hydroxy-7-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; Amended sheet 10/04/2007
[(1-Chloro-4-hydroxy-6-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-4-hydroxy-7-phenoxy-isoquinoline-3-carbonyl)-amino}-acetic acid; [(1-Bromo-4-hydroxy-6-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; {[7-(2,6-Dimethyl-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino}- acetic acid; {[1-Chloro-7-(2,6-dimethyl-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino} -acetic acid; {[1-Bromo-7-(2,6-dimethyl-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino} -acetic acid, [(1-Bromo-7-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-6-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-4-hydroxy-7-trifluoromethyl-isoquinoline-3-carbonyl)-amino]- acetic acid; [(1-Bromo-4-hydroxy-6-trifluoromethyl-isoquinoline-3-carbonyl)-amino]- acetic acid; [(4-Hydroxy-1-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1,7-dibromo-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid, [(7-Bromo-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(6-Bromo-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-7-fluoro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(7-Fluoro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Chloro-7-fluoro-4-hydroxy-isoquinoline-3-carbonyl)-amino}-acetic acid; [(1-Chloro-4-hydroxy-benzo[glisoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-6-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-7-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid, [(1-Chloro-4-hydroxy-6-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Chloro-4-hydroxy-7-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-4-hydroxy-6-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-4-hydroxy-7-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; Amended sheet 10/04/2007
[(4-Hydroxy-5-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-8-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Chloro-4-hydroxy-5-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Chloro-4-hydroxy-8-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-4-hydroxy-5-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid, [(1-Bromo-4-hydroxy-8-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Ethylsulfanyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid, {[4-Hydroxy-1-(4-methoxy-phenylsulfanyl)-isoquinoline-3-carbonyl]-amino}-
acetic acid; [(1-Chloro-4-hydroxy-7-iodo-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Chloro-4-hydroxy-6-iodo-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-7-iodo-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-4-hydroxy-7-methyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-7-butoxy-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid, [(1-Bromo-6-butoxy-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(6-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-methyl-amino]- acetic acid; [(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-methyl-amino]-acetic acid, [(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-methyl-amino]- acetic acid; [(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-methyl-amino]- acetic acid; [Carboxymethyl-(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [Carboxymethyl-(1-chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)- amino]-acetic acid; 1-Chloro-4-hydroxy-isoquinoline-3-carboxylic acid (2-amino-ethyl)-amide (trifluoro-acetic acid salt); 1-Chloro-4-hydroxy-isoquinoline-3-carboxylic acid (2-methoxy-ethyl)-amide; 1-Chloro-4-hydroxy-isoquinoline-3-carboxylic acid (2-hydroxy-ethyl)-amide; 1-Chloro-4-hydroxy-isoquinoline-3-carboxylic acid (2-dimethylamino-ethyl)- amide; Amended sheet 10/04/2007
1-Chloro-4-hydroxy-isoquinoline-3-carboxylic acid (2-acetylamino-ethyl)- amide; 1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carboxylic acid (2-hydroxy- ethyl)-amide; 1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carboxylic acid (2-methoxy- ethyl)-amide; 1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carboxylic acid (2-amino- ethyl)-amide (trifluoro-acetic acid salt); 1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carboxylic acid (2- dimethylamino-ethyl)-amide; 1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carboxylic acid (2-amino- ethyl)-amide (trifluoro-acetic acid salt); 1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carboxylic acid (2-methoxy- ethyl)-amide; 1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carboxylic acid (2- dimethylamino-ethyl)-amide; 1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carboxylic acid (2-hydroxy- ethyl)-amide; (S)-2-[(6-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}- propionic acid; (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}-3-hydroxy- propionic acid; (S)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}-3-hydroxy- propionic acid; (R)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- hydroxy-propionic acid; (S)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino}-3- hydroxy-propionic acid; (R)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- hydroxy-propionic acid; (S)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- hydroxy-propionic acid; Amended sheet 10/04/2007
2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-2-methyl-propionic acid; 2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]-2- methyl-propionic acid; (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-(1 H-imidazol- 4-yl)-propionic acid (trifluoro-acetic acid salt); (S)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-(1H-imidazol- 4-yl)-propionic acid (trifluoro-acetic acid salt); (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-methyl- butyric acid; (S)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-methyl- butyric acid; (R)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- methyl-butyric acid; (S)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- methyl-butyric acid; (R)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- methyl-butyric acid; (S)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- methyl-butyric acid; (S)-2-[(6-Benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3- methyl-butyric acid; (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino}-3-phenyl- propionic acid; (S)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-phenyl- propionic acid; (R)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- phenyl-propionic acid; (S)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- phenyl-propionic acid; (R)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- phenyl-propionic acid, Amended sheet 10/04/2007
(S)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- phenyl-propionic acid; (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-(4-hydroxy- phenyl)-propionic acid; (S)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-3-(4-hydroxy- phenyl)-propionic acid; (R)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- (4-hydroxy-phenyl)-propionic acid; (S)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- (4-hydroxy-phenyl)-propionic acid; (R)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- (4-hydroxy-phenyl)-propionic acid, (S)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino]-3- (4-hydroxy-phenyl)-propionic acid; (R)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]- pentanoic acid; (S)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]- pentanoic acid; (R)-1-(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-pyrrolidine-2-carboxylic acid; (S)-1-(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-pyrrolidine-2-carboxylic acid; (R)-1-(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)- pyrrolidine-2-carboxylic acid, (S)-1-(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)- pyrrolidine-2-carboxylic acid; (R)-6-Amino-2-[(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]- hexanoic acid (trifluoro-acetic acid salt); (S)-6-Amino-2-[(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]- hexanoic acid (trifluoro-acetic acid salt); (R)-6-Amino-2-[(1-chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)- amino]-hexanoic acid; trifluoroacetic acid salt; Amended sheet 10/04/2007
(S)-6-Amino-2-[(1-chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)- amino]-hexanoic acid (trifluoro-acetic acid salt); (R)-6-Amino-2-[(1-chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)- amino]-hexanoic acid; trifluoroacetic acid salt; (S)-6-Amino-2-[(1-chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)- amino]-hexanoic acid (trifluoro-acetic acid salt); (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-succinic acid; (S)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-succinic acid; (R)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]- succinic acid; (S)-2-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]- succinic acid; (R)-2-[(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-amino]- succinic acid; 1-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]- cyclopropanecarboxylic acid; 1-[(1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carbonyl)-amino]- cyclopropanecarboxylic acid; Dideutero-[(1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; (R)-2-[(6-Benzyloxy-1-chloro-4-hydrox y-isoquinoline-3-carbonyl)-amino]- propionic acid; (S)-2-[(7-Benzyloxy-1-chloro-4-hydrox y-isoquinoline-3-carbonyl)-amino]- propionic acid; (R)-2-[(7-Benzyloxy-1-chloro-4-hydrox y-isoquinoline-3-carbonyl)-amino]- propionic acid; (S)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-propionic acid; (R)-2-[(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-propionic acid, (S)-2-[(6-Isopropoxy-1-chloro-4-hydrox y-isoquinoline-3-carbonyl)-amino]- propionic acid; (R)-2-[6-Isopropoxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]- propionic acid; (S)-2-[(7-Isopropoxy- 1-chloro-4-hydrox y-isoquinoline-3-carbonyl)-amino- propionic acid; Amended sheet 10/04/2007
(R)-2-[(7-Isopropoxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino] propionic acid; 1-Chloro-4-hydroxy-6-isopropoxy-isoquinoline-3-carboxylic acid (2-hydroxy- 1-hydroxymethyl-ethyl)-amide; 1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carboxylic acid (2-hydroxy- 1-hydroxymethyl-ethyl)-amide; 1-Chloro-4-hydroxy-isoquinoline-3-carboxylic acid (2-hydroxy-1- hydroxymethyl-ethyl)-amide; {[7-(3,5-Difluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino} - acetic acid; {[6-(3,5-Difluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino} - acetic acid; ({7-[4-(4-Fluoro-phenoxy)-phenoxy]-4-hydroxy-isoquinoline-3-carbonyl}- amino)-acetic acid; ({6-[4-(4-Fluoro-phenoxy)-phenoxy]-4-hydroxy-isoquinoline-3-carbonyl}- amino)-acetic acid, {[7-(3-Chloro-4-fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino} -acetic acid; {[6-(3-Chloro-4-fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino} -acetic acid; (S)- 2-{[7-(3-Fluoro-5-methoxy-phenoxy)-4-hydroxy-isoquinoline-3- carbonyl]-amino}-propionic acid; 2-(S)-[(7-Cyclohexyloxy-4-hydroxy-isoquinoline-3-carbonyl)-amino]- propionic acid; 2-(S)-{[7-(4-Fluoro-phenoxy)-4-hydroxy-1-methyl-isoquinoline-3-carbonyl]- amino} -propionic acid; 2-(8)-{[7-(4-Fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino} - propionic acid; 2-(S)-[(4-Hydroxy-1-methyl-7-phenoxy-isoquinoline-3-carbonyl)-amino]- propionic acid; 2-(S)-[(4-Hydroxy-1-methyl-7-phenylsulfanyl-isoquinoline-3-carbonyl)- amino]-propionic acid, Amended sheet 10/04/2007
2-(S)- {[4-Hydroxy-7-(4-trifluoromethyl-phenoxy)-isoquinoline-3-carbonyl]- amino} -propionic acid; {[7-(4-Chloro-phenoxy)-4-hydroxy-1-methyl-isoquinoline-3-carbonyl]- amino} -acetic acid; {[6-(4-Chloro-phenoxy)-4-hydroxy-1-methyl-isoquinoline-3-carbonyl]- amino} -acetic acid; {[7-(3,5-Difluoro-phenoxy)-4-hydroxy-1-methyl-isoquinoline-3-carbonyl]- amino} -acetic acid; {[4-Hydroxy-7-(4-methoxy-phenoxy)-1-methyl-isoquinoline-3-carbonyl]- amino} -acetic acid; {[4-Hydroxy-6-(4-methoxy-phenoxy)-1-methyl-isoquinoline-3-carbonyl]- amino}-acetic acid; [(6-Cyclohexyloxy-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(7-Cyclohexyloxy-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(7-Cyclohexyloxy-4-hydroxy-1-methyl-isoquinoline-3-carbonyl)-amino]- acetic acid; [(7-Cyclohexylsulfanyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(7-Cyclohexanesulfonyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-1-isobutyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-1-pyridin-2-yl-isoquinoline-3-carbonyl)-amino]-acetic acid, [(1-Ethyl-4-hydroxy-7-phenoxy-isoquinoline-3-carbonyl)-amino}-acetic acid; [(1-Dimethylaminomethyl-4-hydroxy-7-phenylsulfanyl-isoquinoline-3- carbonyl)-amino]-acetic acid; [(4-Hydroxy-1-methyl-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]- acetic acid; {[4-Hydroxy-1-methyl-7-(4-trifluoromethyl-phenoxy)-isoquinoline-3- carbonyl]-amino}-acetic acid; and pharmaceutically acceptable salts, esters and prodrugs thereof.
36. A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier or excipient. Amended sheet 10/04/2007
37. A pharmaceutical composition comprising a compound of claim 1 and pharmaceutically acceptable excipient or carrier with the proviso that the compound is not selected from the group consisting of: N-((1-chloro-4-hydroxy-7-(2-propyloxy) isoquinolin-3-yl)-carbonyl)-glycine, N-((1-chloro-4-hydroxy-6-(2-propyloxy) isoquinolin-3-yl)-carbonyl)-glycine, N-((1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino) acetic acid, N-((1-chloro-4-hydroxy-7-methoxyisoquinolin-3-yl)-carbonyl)-glycine, N-((1-chloro-4-hydroxy-6-methoxyisoquinolin-3-yl)-carbonyl)-glycine, N-((7-butyloxy-1-chloro-4-hydroxyisoquinolin-3-yl)-carbonyl)-glycine, N-((6-benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino)-acetic acid, N-((7-benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino)-acetic acid, N-((8-chloro-4-hydroxyisoquinolin-3-yl)-carbonyl)-glycine, N-((7-butoxy-4-hydroxy-isoquinoline-3-carbonyl)-amino) acetic acid, and ((7-benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)amino)acetic acid methyl ester, for use in a method of treating, preventing or pretreating a condition mediated at least in part by hypoxia inducible factor (HIF) and/or erythropoietin (EPO).
38. The pharmaceutical composition according to claim 37, wherein said condition is selected from the group consisting of anemic disorders; neurological disorders and/or injuries; including cases of stroke, trauma, epilepsy, neurodegenerative disease, myocardial infarction, liver ischemia, renal ischemia, and stroke; peripheral vascular disorders, ulcers, burns, and chronic wounds; pulmonary embolism; and ischemic-reperfusion injury.
39. A compound of claim 1 for use in a method of inhibiting the activity hydroxylase enzyme which modifies the alpha subunit of hypoxia inducible factor.
40. Use of a compound of claim 1 and pharmaceutically acceptable excipient or carrier with the proviso that the compound is not selected from the group consisting of: N-((1-chloro-4-hydroxy-7-(2-propyloxy) isoquinolin-3-yl)-carbonyl)-glycine, N-((1-chloro-4-hydroxy-6-(2-propyloxy) isoquinolin-3-yl)-carbonyl)-glycine, Amended sheet 10/04/2007
N-((1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino) acetic acid, N-((1-chloro-4-hydroxy-7-methoxyisoquinolin-3-yl)-carbonyl)-glycine, N-((1-chloro-4-hydroxy-6-methoxyisoquinolin-3-yl)-carbonyl)-glycine, N-((7-butyloxy- 1-chloro-4-hydroxyisoquinolin-3-yl)-carbonyl)-glycine, N-((6-benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino)-acetic acid, N-((7-benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino)-acetic acid, N-((8-chloro-4-hydroxyisoquinolin-3-yl)-carbonyl)-glycine, N-((7-butoxy-4-hydroxy-isoquinoline-3-carbonyl)-amino) acetic acid, and ((7-benzyloxy-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)amino)acetic acid methyl ester, in a method of manufacturing a medicament for use in a method of treating, preventing or pretreating a condition mediated at least in part by hypoxia inducible factor (HIF) and/or erythropoietin (EPO).
41. Use according to claim 40, wherein said condition is selected from the group consisting of anemic disorders; neurological disorders and/or injuries; including cases of stroke, trauma, epilepsy, neurodegenerative disease, myocardial infarction, liver ischemia, renal ischemia, and stroke; peripheral vascular disorders, ulcers, burns, and chronic wounds; pulmonary embolism; and ischemic-reperfusion injury.
42. Use of a compound of claim 1 in a method of manufacturing a medicament for use in a method of inhibiting the activity hydroxylase enzyme which modifies the alpha subunit of hypoxia inducible factor.
43. A composition comprising the compound of claim 1 or a mixture of compounds of claim 1 in combination with at least one additional therapeutic agent.
44. The composition of claim 43 wherein the additional therapeutic agent is erythropoietin.
45, A compound represented by formula: Amended sheet 10/04/2007
H O or NT cooH H _=N R2 Rr wherein
R' is selected from the group consisting of hydrogen, halo, alkyl, substituted alkyl, alkoxy, substituted alkoxy, amino, substituted amino, aminoacyl, aryl, substituted aryl, halo, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, and -XR® where X is oxygen, -S(O)n- or -NR’- where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl or aryl or, when X is -NR’-, then R’ and R®, together with the nitrogen atom to which they are bound, can be joined to form a heterocyclic or substituted heterocyclic group; and
R? is selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, halo, hydroxy, cyano, -S(0)a-N(R%)-R® where nis 0, 1, or 2, -NR®C(O)NR®R, -XR® where X is oxygen, -S(O),- or -NR’- where n is zero, one or two, each R® is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic provided that when X is —=SO- or -SO,-, then Rg is not hydrogen, and R’ is selected from the group consisting of hydrogen, alkyl, aryl, or R2, R? together with the carbon atom pendent thereto, form an aryl substituted aryl, heteroaryl, or substituted heteroaryl; and pharmaceutically acceptable salts, esters, prodrugs thereof;
with the proviso that at least one of the following occurs:
1) R! is fluoro, bromo, iodo, alkyl, substituted alkyl, alkoxy, aminoacyl, substituted alkoxy, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic, substituted heterocyclic, and -XR® where X is oxygen, -S(O),- or -NR’- where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and Ris hydrogen, alkyl or aryl; or
Amended sheet 10/04/2007
2) R? is substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, fluoro, bromo, iodo, cyano, -XR® where X is oxygen, -S(O),- or -NR’- where n is zero, one or two, R® is selected from the group consisting of alkyl, substituted alkyl, aryl, substituted aryl, heteroaryl, substituted heteroaryl, heterocyclic and substituted heterocyclic, and R’ is hydrogen, alkyl or aryl provided that: a) when R? is substituted alkyl such a substituent does not include trifluoromethyl; b) -XR® is not alkoxy; and c) when -XR® is substituted alkoxy such a substituent does not include benzyl or benzyl substituted by a substituent selected from the group consisting of (C,-Cs) alkyl and (C;-Cs) alkoxy or does not include a fluoroalkoxy substituent of the formula: -O-[CH.}-CHapr1-g)F where x is zero or one; fis an integer of from 1 to 5; and g is an integer of from 1to (2f + 1).
46. A compound as in claim 45, wherein R' is selected from the group consisting of hydrogen, alkyl, substituted alkyl, halo, alkoxy, aryloxy, substituted aryloxy, substituted aryl, alkylthio, aminoacyl, aryl, substituted amino, heteroaryl, heteroaryloxy, -S(O),-aryl, -S(O),-substituted aryl, -S(O),-heteroaryl, and -S(O),-substituted heteroaryl, where n is zero, one or two.
47. A compound as in claim 46, wherein R' is selected from the group consisting of: (4-methoxy)phenylsulfonylamino; 2,6-dimethylphenoxy; 3,4-difluorophenoxy; 3,5-difluorophenoxy; 3-chloro-4-fluorophenoxys; 3-methoxy-4-fluorophenoxy; 3-methoxy-5-fluorophenoxy; 4-(methylsulfonamido)phenoxy; 4-(phenylsulfonamido)phenoxy; 4-CF3-O-phenoxy; 4-CFi-phenoxy; Amended sheet 10/04/2007
4-chlorophenoxy; 4-fluorophenoxy; 4-(4-fluorophenoxy)phenoxy; 4-methoxyphenoxy;, 4-nitrophenoxy; benzyloxy; bromo; butoxy;
CFs;
chloro; cyclohexyloxy; cyclohexylsulfanyl; cyclohexylsulfonyl, fluoro;
hydrogen;
1odo;
1sopropoxy;
methyl;
phenoxy;
phenyl, phenylsulfanyl; phenylsulfinyl; phenylsulfonyl; phenylurea; pyridin-1-ylsulfanyl; pyridin-3-yloxy; and pyridin-4-ylsulfanyl.
:
48. A compound as in claim 45, wherein R? is selected from the group consisting of substituted amino, aryloxy, substituted aryloxy, alkoxy, substituted alkoxy, halo, hydrogen, alkyl, substituted alkyl, aryl, -S(O),-aryl, -S(O),-substituted aryl, -S(O),-cycloalkyl, where n is zero, one or two, aminocarbonylamino, heteroaryloxy, and cycloalkyloxy.
Amended sheet 10/04/2007
49. A compound as in claim 48, wherein R? is selected from the group consisting of: (4-methoxy)phenylsulfonylamino; 2,6-dimethylphenoxy; 3,4-difluorophenoxy; 3,5-difluorophenoxy; 3-chloro-4-fluorophenoxy; 3-methoxy-4-fluorophenoxy; 3-methoxy-5-fluorophenoxy; 4-(methylsulfonamido)phenoxy; 4-(phenylsulfonamido)phenoxy; 4-CF3-O-phenoxy; 4-CF;-phenoxy; 4-chlorophenoxy; 4-fluorophenoxy; 4-(4-fluorophenoxy)phenoxy; 4-methoxyphenoxy; 4-nitrophenoxy; benzyloxy; bromo; butoxy; CF3; chloro; cyclohexyloxy; cyclohexylsulfanyl; cyclohexylsulfonyl; fluoro; hydrogen; 10do; 1SOpropoxy; methyl; phenoxy; phenyl; phenylsulfanyl; Amended sheet 10/04/2007 phenylsulfinyl; phenylsulfonyl; phenylurea; pyridin-1-ylsulfanyl; pyridin-3-yloxy; and pyridin-4-ylsulfanyl.
50. A compound selected from the group consisting of: {[4-Hydroxy-1-(naphthalen-2-yloxy)-isoquinoline-3-carbonyl]-amino} -acetic acid; {[4-Hydroxy-1-(pyridin-3-yloxy)-isoquinoline-3-carbonyl]-amino} -acetic acid; {[4-Hydroxy-1-(4-methoxy-phenoxy)-isoquinoline-3-carbonyl]-amino}-acetic acid; {[4-Hydroxy-1-(3-methoxy-phenoxy)-isoquinoline-3-carbonyl]-amino} -acetic acid; {[1-(3-Fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino}-acetic acid; {[1-(4-Fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino}-acetic acid; {[1-(2-Fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino} -acetic acid; {[4-Hydroxy-1-(2-methoxy-phenoxy)-isoquinoline-3-carbonyl]-amino}-acetic acid; {[1-(4-Acetylamino-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino}- acetic acid; {{4-Hydroxy-1-(4-methanesulfonylamino-phenoxy)-isoquinoline-3-carbonyl}- amino} -acetic acid; [(4-Hydroxy-1-phenylamino-isoquinoline-3-carbonyl)-amino]-acetic acid, {[4-Hydroxy-7-(pyridin-3-yloxy)-isoquinoline-3-carbonyl]-amino}-acetic acid; [(4-Hydroxy-1-methoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Ethoxy-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; Amended sheet 10/04/2007
[(4-Hydroxy-1-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-1-methyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-1-methoxymethyl-isoquinoline-3-carbonyl)-amino]-acetic acid;
-[(1-Dimethylcarbamoyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-1-methyl-7-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Dimethylcarbamoyl-4-hydroxy-7-phenoxy-isoquinoline-3-carbonyl)- aminol-acetic acid, [(4-Hydroxy-1-methoxymethyl-7-phenoxy-isoquinoline-3-carbonyl)-amino]- acetic acid; ((4-Hydroxy-1-p-tolyl-isoquinoline-3-carbonyl)-amino]-acetic acid; {[7-(4-Fluoro-phenoxy)-4-hydroxy-1-methyl-isoquinoline-3-carbonyl]- amino}-acetic acid; {[1-Chloro-4-hydroxy-7-(4-methoxy-phenoxy)-isoquinoline-3-carbonyl]- amino} -acetic acid, {[4-Hydroxy-7-(4-methoxy-phenoxy)-isoquinoline-3-carbonyl]-amino}-acetic acid; {[1-Chloro-4-hydroxy-7-(4-trifluoromethyl-phenoxy)-isoquinoline-3- carbonyl]-amino}-acetic acid; {[4-Hydroxy-7-(4-trifluoromethyl-phenoxy)-isoquinoline-3-carbonyl}-a amino} -acetic acid; {[1-Chloro-7-(4-fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino} -acetic acid; {[7-(4-Fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl}-amino} -acetic acid; {[4-Hydroxy-7-(pyridin-4-ylsulfanyl)-isoquinoline-3-carbonyl]-amino}-acetic acid; [(7-Benzenesulfinyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(7-Benzenesulfonyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; {[4-Hydroxy-7-(4-methoxy-benzenesulfonylamino)-isoquinoline-3-carbonyl]- amino} -acetic acid; Amended sheet 10/04/2007
{[4-Hydroxy-7-(3-phenyl-ureido)-isoquinoline-3-carbonyl]-amino}-acetic acid; [(4-Hydroxy-1-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]-acetic acid, {[1-(4-Chloro-phenylsulfanyl)-4-hydroxy-isoquinoline-3-carbonyl]-amino}- acetic acid; [(4-Hydroxy-1-p-tolylsulfanyl-isoquinoline-3-carbonyl)-amino]-acetic acid; {[4-Hydroxy-1-(pyridin-2-ylsulfanyl)-isoquinoline-3-carbonyl]-amino} -acetic acid; {[4-Hydroxy-1-(3-methoxy-phenylsulfanyl)-isoquinoline-3-carbonyl]-amino}- acetic acid; {[4-Hydroxy-1-(2-methoxy-phenylsulfanyl)-isoquinoline-3-carbonyl]-amino}- acetic acid; {[4-Hydroxy-1-(naphthalen-2-ylsulfanyl)-isoquinoline-3-carbonyl]-amino}- acetic acid; [(1-Benzenesulfinyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Benzenesulfonyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; {[4-Hydroxy-7-(pyridin-2-ylsulfanyl)-isoquinoline-3-carbonyl]-amino } -acetic acid; ({4-Hydroxy-7-[4-(toluene-4-sulfonylamino)-phenoxy]-isoquinoline-3- carbonyl}-amino)-acetic acid; {[4-Hydroxy-7-(4-nitro-phenoxy)-isoquinoline-3-carbonyl]-amino}-acetic acid; {[7-(4-Benzenesulfonylamino-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino} -acetic acid, {[4-Hydroxy-7-(4-methanesulfonylamino-phenoxy)-isoquinoline-3-carbonyl]- amino} -acetic acid; {[7-(4-Chloro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino} -acetic acid; {[7-(3-Fluoro-5-methoxy-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl}- amino} -acetic acid; {[7-(3,4-Difluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino} - acetic acid; Amended sheet 10/04/2007
{[4-Hydroxy-7-(4-trifluoromethoxy-phenoxy)-isoquinoline-3-carbonyl]- amino} -acetic acid, [(4-Hydroxy-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Chloro-4-hydroxy-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]- acetic acid; [(1-Bromo-4-hydroxy-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]- acetic acid; [(4-Hydroxy-7-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Chloro-4-hydroxy-7-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-4-hydroxy-7-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; {[7-(2,6-Dimethyl-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino}- acetic acid; {[1-Chloro-7-(2,6-dimethyl-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino} -acetic acid, {[1-Bromo-7-(2,6-dimethyl-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino} -acetic acid, [(1-Bromo-7-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-4-hydroxy-7-trifluoromethyl-isoquinoline-3-carbonyl)-amino]- acetic acid; [(4-Hydroxy-1-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid, [(1,7-dibromo-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid, [(7-Bromo-1-chloro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-7-fluoro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(7-Fluoro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Chloro-7-fluoro-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-7-phenyl-isoquinoline-3-carbonyl)-amino}-acetic acid, [(1-Chloro-4-hydroxy-7-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-4-hydroxy-7-phenyl-isoquinoline-3-carbonyl)-amino]-acetic acid, [(1-Ethylsulfanyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid, Amended sheet 10/04/2007
{[4-Hydroxy-1-(4-methoxy-phenylsulfanyl)-isoquinoline-3-carbonyl]-amino} - acetic acid; [(1-Chloro-4-hydroxy-7-iodo-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-7-iodo-isoquinoline-3-carbonyl)-amino}-acetic acid; [(1-Bromo-4-hydroxy-7-methyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Bromo-7-butoxy-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Chloro-4-hydroxy-isoquinoline-3-carbonyl)-methyl-amino]-acetic acid, [(1-Chloro-4-hydroxy-7-isopropoxy-isoquinoline-3-carbonyl)-methyl-amino]- acetic acid; {[7-(3,5-Difluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]-amino}- acetic acid; ({7-[4-(4-Fluoro-phenoxy)-phenoxy]-4-hydroxy-isoquinoline-3-carbonyl}- amino)-acetic acid, {[7-(3-Chloro-4-fluoro-phenoxy)-4-hydroxy-isoquinoline-3-carbonyl]- amino} -acetic acid; {[7-(4-Chloro-phenoxy)-4-hydroxy-1-methyl-isoquinoline-3-carbonyl}- amino}-acetic acid; {[7-(3,5-Difluoro-phenoxy)-4-hydroxy- 1-methyl-isoquinoline-3-carbonyl]- amino} -acetic acid; {[4-Hydroxy-7-(4-methoxy-phenoxy)-1-methyl-isoquinoline-3-carbonyl]- amino} -acetic acid; [(7-Cyclohexyloxy-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(7-Cyclohexyloxy-4-hydroxy-1-methyl-isoquinoline-3-carbonyl)-amino}- acetic acid; [(7-Cyclohexylsulfanyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(7-Cyclohexanesulfonyl-4-hydroxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-1-isobutyl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(4-Hydroxy-1-pyridin-2-yl-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Ethyl-4-hydroxy-7-phenoxy-isoquinoline-3-carbonyl)-amino]-acetic acid; [(1-Dimethylaminomethyl-4-hydroxy-7-phenylsulfanyl-isoquinoline-3- carbonyl)-amino]-acetic acid; Amended sheet 10/04/2007
[(4-Hydroxy-1-methyl-7-phenylsulfanyl-isoquinoline-3-carbonyl)-amino]- acetic acid; and {[4-Hydroxy-1-methyl-7-(4-trifluoromethyl-phenoxy)-isoquinoline-3- carbonyl]-amino}-acetic acid.
51. A pharmaceutical composition comprising a compound of claim 45 and a pharmaceutically acceptable carrier or excipient.
52. A compound of formula: H 0 Nn >cooH F H ~N F F Cl and pharmaceutically acceptable salts, esters, prodrugs thereof.
53. A compound of formula: OH 0) oO geVesan. N o Z and pharmaceutically acceptable salts, esters, prodrugs thereof.
54. A compound of formula: OH O nN” coon 0 AN Cl and pharmaceutically acceptable salts, esters, prodrugs thereof.
SS. A compound of formula: Amended sheet 10/04/2007
OH JK oon ZN 0) and pharmaceutically acceptable salts, esters, prodrugs thereof.
56. A compound of formula: OH oO F QC N o = and pharmaceutically acceptable salts, esters, prodrugs thereof.
57. A compound of formula: H O N nN" coon 0 AN and pharmaceutically acceptable salts, esters, prodrugs thereof.
58. A compound of formula: H 0) F QC N 0 Z Cl and pharmaceutically acceptable salts, esters, prodrugs thereof.
59. A compound of formula: OH O 0 EN PS N COOH F AN and pharmaceutically acceptable salts, esters, prodrugs thereof. Amended sheet 10/04/2007
60. A compound of formula: OH O Cl CLOT N o = and pharmaceutically acceptable salts, esters, prodrugs thereof.
61. A compound of formula: OH O 0) jonco tay ~N Cl and pharmaceutically acceptable salts, esters, prodrugs thereof.
62. A compound of formula: 0” OH O OO N H F 0 ~ and pharmaceutically acceptable salts, esters, prodrugs thereof.
63. A compound of formula: Fu _F Fr OH © 0 FON 0} ~N and pharmaceutically acceptable salts, esters, prodrugs thereof.
64. A compound of formula: OH © 0) N N"cooH F ZN Cl Amended sheet 10/04/2007 and pharmaceutically acceptable salts, esters, prodrugs thereof.
65. A compound of formula: OH O Ci CLOT ZN O and pharmaceutically acceptable salts, esters, prodrugs thereof.
66. A compound of formula: OH O 0) EN NN JO N” “CcooH =N Cl and pharmaceutically acceptable salts, esters, prodrugs thereof.
67. A compound of formula: OH O oO EN PS Ir nN" “coon N ~ o = and pharmaceutically acceptable salts, esters, prodrugs thereof.
68. A compound of formula: F EF OH O F N N “coo 0 AN and pharmaceutically acceptable salts, esters, prodrugs thereof.
69. A compound of formula: Amended sheet 10/04/2007
OH O ~ N" > cooH H 0 N and pharmaceutically acceptable salts, esters, prodrugs thereof.
Amended sheet 10/04/2007
ZA200509142A 2003-06-06 2004-06-04 Nitrogen-containing heteroaryl compounds and their use in increasing endogenous erythropoietin ZA200509142B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US47642003P 2003-06-06 2003-06-06

Publications (1)

Publication Number Publication Date
ZA200509142B true ZA200509142B (en) 2007-04-25

Family

ID=40551778

Family Applications (1)

Application Number Title Priority Date Filing Date
ZA200509142A ZA200509142B (en) 2003-06-06 2004-06-04 Nitrogen-containing heteroaryl compounds and their use in increasing endogenous erythropoietin

Country Status (2)

Country Link
UA (1) UA86379C2 (en)
ZA (1) ZA200509142B (en)

Also Published As

Publication number Publication date
UA86379C2 (en) 2009-04-27

Similar Documents

Publication Publication Date Title
US11229637B2 (en) Nitrogen-containing heteroaryl compounds and methods of use thereof
US7928120B2 (en) Cyanoisoquinoline compounds and methods of use thereof
ZA200509142B (en) Nitrogen-containing heteroaryl compounds and their use in increasing endogenous erythropoietin
RU2379291C2 (en) Nitrogen-containing heteroaryl compounds and use thereof in increasing endogenous erythropoietin
MXPA05013116A (en) Nitrogen-containing heteroaryl compounds and their use in increasing endogenous erythropoietin