ZA200509091B - Method and apparatus for desorbing material - Google Patents

Method and apparatus for desorbing material Download PDF

Info

Publication number
ZA200509091B
ZA200509091B ZA200509091A ZA200509091A ZA200509091B ZA 200509091 B ZA200509091 B ZA 200509091B ZA 200509091 A ZA200509091 A ZA 200509091A ZA 200509091 A ZA200509091 A ZA 200509091A ZA 200509091 B ZA200509091 B ZA 200509091B
Authority
ZA
South Africa
Prior art keywords
chamber
resin
chambers
desorption
impurities
Prior art date
Application number
ZA200509091A
Inventor
Nikolai Zontov
Original Assignee
Clean Teq Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clean Teq Pty Ltd filed Critical Clean Teq Pty Ltd
Publication of ZA200509091B publication Critical patent/ZA200509091B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

1 4 »
METHOD AND APPARATUS FOR DESORBING MATERIAL y FIELD OF THE INVENTION
The preszsnt invention relztezs te 2 method and * 5 apparatus for desorbing materiale from a loaded ion exchange rezin.
The ion exchange resin may be any suitable resin that can be loaded with target materials that include non- ferrons metals such as copper, nickel and cobalt; noble metals such as gold and silver; and refractory metals such as molybdenum and wolfram. The exchange resin may also be suitable for any other metal, non-metal, organic substances, non-organic substances and compounds thereof.
BACKGROUND OF THE INVENTION
There is at present a wide selection of technology that can be used for desorbing materials from resins.
Some technologies are better suited than others for particular applications and, therefore, selecting the most appropriate technology is an important factor in achieving a high desorption rate and cost effectiveness.
Generally speaking desorption processes for desorbing material from a resin may be carried out as either batch or continuous operations which usually corresponds to the apparatuses for carrying out processes having either so-called fixed-beds or moving-beds.
Apparatuses with fixed-beds are at present the most widely used in industry. For example, a text by
Abrams I.M. entitled "Type of ion-exchange systems" (Ion
Exchange for Pollution Control, eds. C. Calmon and H.Gold, . CRC Press, Boca Raton, vol.l, pp.71-850, 1979) describes that fixed-bed equipment items have been operated for more } than 25 years and are still presently in use for softening 1500 mega-litres/day of water at the Metropolitan Water }
District of Southern California.
t x
A text by Salem E. entitled "Equipment operation and design" (Ion Exchange for Pollution Control, eds. C.
Calmon and H. Gold, CRC Press, Boca Raton, vol. 1, pp. 87- ! 100, 1979) Qe=zcribes that the desorption cycle of moet fixed-bed apparatuses involves: firstly backwashing a bed : of full leaded or szturat=ad resin; gettling the bed; . feeding desorption solution through the bed; displacement of desorption solution (or slow rinse); and finally i rinsing the resin before supplying a pregnant solution to the bed again.
The backwashing stage removes suspended particles, which have accumulated within the resin bed and eliminates channels that, may have formed during the sorption stage.
Backwashing also helps to break up agglomerates formed ’ between suspended particles and the ion-exchange resin.
The settling stage follows the backwashing stage and is important to avoid channeling of fluid through the bed.
Desorption is accomplished by passing desorption solution through the bed to convert the resin to the desired form. After an adequate volume of desorption solution has made contact with the resin, displacement of desorption solution from the bed takes place.
Rinsing of the resin with demineralised water is normally used to remove the last residues of desorption solution from the bed.
Upon completion of the rinsing stage, the liquid phase containing targeted material to be sorbed into the resin during a sorption stage enters at the top of the column when the column is operated in co-current or at the bottom of the column when the column is operated in , countercurrent.
US patent 4,412,866 describes a modification of a batch-fixed bed process and in particular relates to a simulated moving-bed in which separate zones are defined, each of which include one or more discrete vessels. The zones correspond to the functions of the process;
t ; typically sorption, displacement, desorption and rinsing.
Booster pumps connected in series with the vessels ' maintain a desired pressure head for each zone. The functions of each zZon= =r2 rotatad in sequence, the : ¢ 5 sequence being timed in relation of the migration of the front between adjacent phases in the fluid loop circulating through the zones.
Another type of absorption/desorption processes is a continuous process. Generally speaking an 10 absorption/desorption process is classified as a : continuous process when sorption, rinsing and desorption are conducted simultaneously and the product flow is uninterrupted. The use of a moving bed of resin allows one to obtain continuous operation and the main advantage is 15 the high processing efficiency.
As with batch processes, continuous processes can be operated as either co-current or countercurrent.
Not all processes described as continuous are truly continuous processes. Truly continuous processes 20 operate without interruption of either resin or liquid flows. Semicontinuous processes are often characterised by a short residence period in which ion-exchange absorption occurs (i.e. the service mode) followed by a period when the resin bed is moved (the moving mode}. 25 However, because the periods for both modes are very short, the processes virtually behave as a continuous one.
More than a hundred semicontinuous processes are known, but only about six have any real industrial significance.
To our understanding the widest known process of 30 this type is the so-called Higgins Loop (and is described , in the text by Higgins, I.R. and Roberts, I.T. "A countercurrent solid-liguid contactor for continuous ion- exchange". Eng Prog. Symp. Ser., 50, 87-94, 1950). The
Higgins Loop is a continuous countercurrent ion-exchange process for liquid phase separations of ionic components using solid ion-exchange resin.
¢ )
The Higgins Loop comprises a vertical cylindrical vessel containing a packed-bed of ion-exchange resin that is separated into four operating zones by butterfly or ’ loop valves. Thess operating zones - adsorption, desorption, backwashing and pulsing - function like four : separate vessels.
The Higgins Loop treats liquids in the sorption zone with resin while the ions are removed from loaded resin in the desorption zone zimultancsounls.
Intermittently, a small portion of resin is removed from the respective zone and replaced with stripped or loaded regin at the opposite end of that zone. This is accomplished hydraulically by pulsation of the resin through the loop. The result is a continuous process that contacts liquid and resin in countercurrent flow.
It is an object of the present invention to provide an alternative method and apparatus for desorbing materials sorbed on a resin that is capable of producing a concentrated eluate stream.
SUMMARY OF THE INVENTION
According to the present invention there is provided an apparatus for desorbing substances from an ion exchange resin having impurities and targeted materials sorbed thereon, the apparatus including: first and second chambers that are adapted so that when in use, resin is supplied to the first chamber and conveyed from the first chamber to the second chamber, and a desorption solution is supplied to the second chamber and conveyed from the second chamber to the first chamber such that, i) impurities having less affinity for the resin than the targeted material can be desorbed from the resin and targeted material can be sorbed onto the resin from the ] desorption solution, and thereby create conditions whereby an impurity stream having a high concentration of impurities and a relatively low concentration of targeted
’ ' material can be discharged from the first chamber, and ii) targeted material can be desorbed from the resin : in the second chamber and create conditions whereby a rich stream having a low concentration of impurities and a : 5 relatively high concentration of targeted material can be dizcharged from lower regions of the first and/or second chambers.
In addition, when the apparatus is in use, it is ] preferred that the reocin flowe downwardly in the first chamber and upwardly in the second chamber, and that desorption solution flows in countercurrent to the direction of flow of resim in said chambers.
It is even more preferred that the impurities stream be discharged from an upper region of the first chamber.
It is preferred that the first and second chambers be connected in fluid communication such that the desorption solution can be conveyed from the second chamber to the first chamber.
According to the present invention there is also provided an apparatus for desorbing material from a loaded ion exchange resin, the apparatus including: first and second chambers that are adapted so that in use, resin can move downwardly in the first chamber and upwardly in the second chamber and desorption solution can flow in counter current to the resin; first and second inlets for supplying loaded resin to the first chamber and desorption solution to the second chamber respectively, and first and second outlets for discharging a liquid from the apparatus and stripped resin \ from the second chamber respectively; means for facilitating the transferal of resin from , the first chamber to the second chamber and conveying the resin upwardly in the second chamber; and ] in use, a first stream of desorption solution containing a relatively high concentration of impurities and a low concentration of targeted materials can be
. ' discharged from the first outlet, a second stream of desorption solution containing a relatively high concentration of targeted material and a low concentration - of impurities can be discharged viz the first outlet from lower regions of the first and/or second chambers and/or : taken from desorption solution passing from the second
Chamber to the first chamber, and a stripped resin can be discharged from the second outlet of the second chamber.
Advantagec provided by the present invention include: ii) impurities having less affinity for the resin than the targeted material are desorbed from the resin before the targeted material and thus the first stream of desorption solution has a higher concentration of impurities can be discharged from the first chamber where the desorption solution first comes into contact with the resin; iii) upon desorption of the impurities from the resin, the capacity of the resin to absorb targeted materials increases which allows the first chamber to have a zone for re-adsorbing targeted materials onto the resin; and iv) targeted materials desorbed from the resin passes into the desorption solution and thereby increases the density of the solution go that it tends to settle under gravity in the chambers and thus facilitate the second stream of desorption solution containing a relatively high concentration of targeted substances and a low concentration of impurities to be discharged from the lower region of the apparatus.
It is preferred that the desorption of impurities from the resin occurs in an upper zone of the first , chamber and thereby allows further targeted material to be sorbed onto the resin in the upper zone. In other words, . the upper zone forms re-adsorption zone. ]
It is preferred that the first and second chambers be connected in fluid communication such that the liquid
, ' head in the second chamber causes the desorption solution to flow upwardly in the first chamber.
It will be appreciated that as a result of the desorption solution being supplied inte ths second chamber, the predominant direction of flow of desorption selution is from the sscond chamber into the firet chamber. It will also be appreciated that the net upwardly ] flow of desorption solution in the first chamber will be substantizlly eguel to the rat: at which the first stream of desorption solution ig discharged from the first chamber,
It is preferred that the first outlet for ’ discharging the first stream of desorption solution be in an upper region of the first chamber. An advantage provided by this preferred feature is that the desorption sclution first comes into contact with the resin in the upper region of the first chamber and impurities having less affinity for the resin than the targeted material can be withdrawn from the upper end of the first chamber.
It is preferred that the second outlet for discharging stripped resin be located in the upper region of the second chamber. An advantage provided by this : preferred aspect is that the resin is progressively exposed to a desorption solution having lower concentrations of targeted materials as the resin moves upwardly in the second chamber and thereby creates a larger potential for desorption of targeted materials from the resin in the second chamber before the resin is discharged from the apparatus.
It is preferred that a passageway extend . downwardly from the second outlet for conveying stripped resin to an intermediate chamber before being discharged i from the apparatus.
It is preferred that the first and second inlets : for supplying resin and desorption solution into the first and second chambers respectively be located in the upper region of the chambers,
’ .
It is preferred that the apparatus have control means for controlling the rate of removal of resin from the second chamber. In use, the control means measures ! the liquid level of thes desorption solution in the first chamber to control the rate at which resin is removed form ! the ss=cond chamber.
It is preferred that the second chamber have another inlet for supplying a concentrated solution of targeted materiales into the second chamber. We have found that adding a concentrated solution into the second chamber further increases the concentration of the targeted materials in the second stream of desorption solution (ie an eluate stream) and decreases the concentration of impurities in the second stream.
The preferred features of two embodiments of the present invention will now be described.
It is preferred that the first and second chambers be interconnected by a passageway that extends from the first chamber to the second chamber, the passageway being adapted for conveying the resin and desorption between the chambers.
According to one embodiment of the invention, it is also preferred that the first and second chambers be interconnected in U-shape having a base and two arms whereby the first and second chambers form the arms of the
U-shape and the base provide the passageway.
It is preferred that the second stream of desorption solution containing a high concentration of desorbed material be discharged from the passageway extending between the first and second chambers. In the instance when the first and second chambers are . interconnected in a U-shape, the second stream of desorption solution having a high concentration of } targeted material is discharged from the base of the U- shape.
According to another embodiment of the invention, it is the preferred that the first and second chambers be
* . arranged such that one of the chambers is located inside the other chamber.
It is even more preferred that the second chamber be located concentrically within the firet chamber.
In the instance when the second chamber is located within the first chamber, it is preferr=d that the first chamber have an opening facing downwardly so that desorption solution from the second chamber can flow into the second chamber znd that tha regin from the second chamber enter the first chamber through the opening and be forced to move upwardly therein.
It is preferred the second stream of desorption solution be discharged from the first chamber at a location below the opening of the second chamber.
It is preferred that a bottom wall of the first chamber be declined toward an outlet for discharging the second stream of desorption solution having a high concentration of targeted substances.
According to the present invention there is provided a method for desorbing substances from an ion exchange resin having impurities and targeted materials sorbed thereon, the method including treating an ion exchange regin in an apparatus having first and second chambers, wherein the method includes the steps: a) desorbing impurities from the resin in the first chamber using a desorption solution so that targeted materials having more affinity for the resin than the impurities can be sorbed onto the resin from the desorption solution and thereby creating conditions whereby a stream having a high concentration of impurities . and a low concentration of targeted material can be discharged from the first chamber; and } b) desorbing targeted materials from the resin treated according to step a) in the second chamber using . the desorption solution and thereby create conditions whereby a stream having a high concentration of targeted
. . materials and a low concentration of the impurities can be discharged from the apparatus. : According to the present invention there is also ) provided a method for desorbing substances from a resin in an apparatus having first and second chambers connected in ! fluid communication, the methed including the steps of: a) supplying a loaded resin having targeted materials and impurities sorbed thereon to the first chamber and the rezin moving in a downward direction therein; b) conveying the resin from the first chamber to the second chamber and moving the resin in an upward direction therein; c) supplying a desorption solution to the second chamber such that the solution flows downwardly in the second chamber and upwardly in the first chamber in countercurrent flow to the resin; d) discharging stripped resin from the second chamber; e) discharging a first stream of desorption solution containing a high concentration of impurities and a low concentration of targeted substances from the first chamber; and a) discharging a second stream of desorption solution containing a relatively high concentration of targeted material and a relatively low concentration of impurities from a lower region of the first and/or second chambers and/or from the solution being conveyed between the chambers.
It is preferred that any two or more of steps a) to f) be carried out simultanecusly.
It is preferred that the impurities on the resin , have less affinity for the resin than the targeted materials so that when the resin is contacted by the desorption solution in the first chamber, the impurities ) tend to be desorbed from the resin before desorption of the targeted materials.
-~ 11 =~
It is preferred that the desorption of impurities from the resin occurs in an upper zone of the first ' chamber and thereby allows further targeted material to be gorbed inte the resin in the upper zone.
It is therefore preferred that the first stream discharged in step &) be discharging the upper region of the first chamber. i
It is preferred that targeted materials desorbed from the resin and dizzolved into solution increase Lhe density of the solution thus causing fractions of the solution having high concentrations of targeted solutions to settle under gravity toward the lower regions of the first and second chambers.
It is therefore preferred that the second stream discharged in step £) be discharged from the solution being conveyed between the chambers or from the lower regions of the first and/or second chambers.
It is preferred that the rate, at which resin is discharged in step d), be controlled by the liquid level in the first chamber.
It is preferred that the resin discharged in step d) be discharged from upper regions of the second chamber.
It is preferred that the method also include supplying a concentrated solution of targeted substances into the second chamber. We have found that adding a solution of concentrated solution into the second chamber further increases the concentration of the targeted substances in the second stream of desorption solution (ie an eluate stream) and decreases the concentration of impurities in the second stream. } It is preferred the temperature of the concentrated solution range from approximately 60 to 100°C. . It is preferred that the additional solution be supplied into the second chamber at a location between the upper and lower regions of the second chamber.
' , - 12 =
The method of the present invention may also include any one of the features of the apparatus described above. ’
BRIEF DESCRIPTION OF THE DRAWINGS :
Two preferred embodiments of the present invention will now be described with reference to the accompanying drawings, of which:
Figure 1 illustrates an apparatus for desorbing material from a resin according to one embodiment of the invention, wherein the apparatus includes two chambers one chamber ig located inside the other;
Figures 2 and 3 illustrate the embodiment shown in
Figure 1 with additional features;
Figure 4 illustrates an apparatus for desorbing material according to an alternative embodiment, wherein the apparatus includes two chambers interconnected in a U- shape; and
Figures 5 and 6 illustrate the embodiment shown in
Figure 4 with additional features.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
The two preferred embodiments have a number of features in common and the same reference numerals have been used to identify the same or alike features on both embodiments where possible.
The preferred embodiment illustrated in the Figure 1 comprises an apparatus having two chambers in which an inner chamber 1 is located concentrically within the outer chamber 2.
The inner chamber 1 has an inlet valve 14 for . supplying desorption solution to the inner chamber and an outlet for stripped resin. Extending from the outlet is a conduit that feeds stripped resin into an intermediate tank 7. The lower end of the inner chamber 1 has an opening facing downwardly so that desorption solution
« . flows downwardly in the inner 1 chamber and upwardly in the outer chamber 2 in the direction of the dashed arrows.
The liquid head of desorption solution in the inner chamber 1 causes the desorption solution to flow upwardly in the outer chamber 2.
The outer chamber 2 has = resin inlet or spiget B for supplying saturated resin into the outer chamber 2. ]
Resin in the outer chamber 2 moves downwardly in the dirasction of the arrows zhown in colid lines in countercurrent to the desorption solution. The resin is also forced through the opening in the inner chamber 1 and upwardly in the inner chamber 1 in the direction of the arrows shown in solid lines in countercurrent flow to the desorption solution.
In use, loaded resin enters through the spigot 5 and contacts the loaded resin in the top of the outer chamber 2. At first instance, impurities having less affinity for the resin than the targeted material are desorbed from the resin. As a result, a stream of desorption solution having a high concentration of impurities is discharged via outlet drain 3.
Upon desorption of the impurities form the resin, the capacity of the resin for sorbing targeted material may increase such that an upper region of the outer chamber 1 in which the impurities are desorbed may also form a re-adsorption zone for re-adsorbing the targeted material onto the resin. Normally. the re-adsorbing zone formed in the upper region of the first chamber 1 keeps the concentration of the targeted materials low in the stream of desorption solution discharged via the outlet . drain 3.
The loaded resin migrates down past the re- . adsorption zone and into the inner chamber 1 where targeted material is desorbed in a desorption zone of the apparatus.
Resin moves along the inner and outer chambers 1 and 2 using any suitable means such as resin pulsation.
In the case of the embodiment shown in Figures 1 to 3, resin pulsation ig carried out by opening valve 13 for discharging resin from apparatus, closing valve 14 so as ’ interrupted the zupply of desorption =zelution and pumping air into the column via the spigot 6 located on the top of ¢ the re-adsorptien zene.
Electrodes 9 and 10, which measure the level of desorption sclution in the outer chamber 2 of the ) apparatus control the ate at which resin is removed from the apparatus. Resin movement within the chambers 1 and 2 may take place periodically once every 0.5-3.0 hours and continue for about 0.5-2.0 minutes depending on the properties of the resin, the targeted material and the conditions of the desorption process.
Desorption solution is pumped into the inner chamber 1 via the spigot 4 and the valve 14. Desorption solution strips the target material from the oversaturated resin during its movement past desorption zone 1 downwardly to the bottom of the apparatus. A stream of desorption solution containing a high concentration of targeted material and a low concentration of the impurities is discharged from the bottom of the apparatus via the pipe 8. The flow of solution from the bottom of the apparatus is regulated using valve 15.
A screen 11 at the bottom of the apparatus retains the resin in the outer chamber 2 as solution is discharged.
Figures 2 and 3 illustrate the apparatus shown in
Figure 1 having an inlet 12 for supplying a concentrated solution of targeted materials into the middle of the inner chamber 1. We have found that the addition of a . concentrated solution toc the inner chamber 1 reduces the concentration of impurities and increases the concentration of targeted material discharged from the apparatus through valve 15,
Figure 3 illustrates the apparatus fitted with a heat exchange means for preheating the desorption solution
: . supplied into the inner chamber 1 via inlet 12 and valve 14 for aiding the desorption of material from resin to the ) desorption solution. The desorption solution is preferably heated to a temperature ranging from &§0°C to : d 5 100°.
The zpparatus is also includes external insulation : for maintaining the temperature of the desorption solution in the chambers 1 and 2.
Figurc 4 illustrates an alternative embodiment in which the chambers 1 and 2 are interconnected in a U- shape. Specifically, chambers extend upwardly from opposite ends of a horizontal passageway that interconnects the chambers. The diameter of the passageway is substantially the same as the diameter of the chambers 1 and 2 such that the resin can be conveyed from chamber 2 to chamber 1 using the pulsation techniques described above,
The passageway also provides fluid communication between the chambers 1 and 2 such that liquid head of desorption solution in chamber 1 causes desorption solution to flow upwardly in the outer chamber 2.
Moreover, the embodiment shown in Figures 4 to 6 includeg the same features as the embodiment shown in
Figures 1 to 3 and can be operated in the same manner.
The same reference numerals have been used on both embodiments to show the same features.
It is envisaged that the embodiments of the present invention can be operated so that the resin and desorption solution flow continuously and in countercurrent. However, it will appreciated by those . skilled in the art that the flow of desorption solution and the movement of resin may be intermittent and in . general terms, a continuous desorption process is one in which resin moves intermittently through a desorption apparatus. In particular, the movement of resin in a desorption apparatus normally involves an the resin being moved along the bed in intermitted increments whereby a slug of resin is discharged from an end of the bed and the rest of the resin moves in a direction along the bed.
The present invention will now be described with ) : reference to the following non-limiting examples. 5 .
EXAMPLE 1 ’ This example illustrates the desorption of copper from the resin that was saturated during the treatment of a wagte-water steam of a copper electroplating plant. The example was carried out using the apparatus design as shown on Fig. 4.
The copper concentration in the rinse water was about 50-80ppm and the resin loading capacity reached 28- 32 g/l. :
The desorption trial was performed in a 150L- plastic U-shape column in accordance with the embodiment shown in Figure 4. The loaded resin entered the column via the spigot 5 located on the lid of the column. After desorption the fully stripped resin was removed on an hourly basis from the column through the transfer pipe and the intermediate tank 7. The resin passed through the column at a rate of 20L/hr.
A 7% solution of sulphuric acid was used as the desorption solution. A desorption stream was pumped at a rate of about 22L/hr into the top of the desorption zome of the column via the spigot 4 with valve 14 in the open position.
A waste stream was removed via the drainage 3 at the rate of 11.51/hr- 12.51/hr. The copper concentration in the waste stream was less than 200ppm and was returned together with the rinse water to the sorption stage. .
An eluate stream was collected from the bottom of the column through screen 11 and pipe 8. The eluate } solution was discharged at a rate of 9.5-10.51/hr using } valve 15. The copper concentration reached 60g/1 in the eluate stream, very near to the maximum of the solubility of the copper sulphate (Cu SO; ' 5 Hz0) (bluestone). The eluate stream is analytically and economically suitable for the direct copper recovery using the well-known i methods such as copper electrowinning or cupric sulphate Co precipitation. ‘ 5 It is envisaged that an eluate stream formed by : the above exampls can be used dirsctly in a copper- : electroplating bath and the waste rinse water containing copper can be returned to the production circuit a copper ) electroplating plant. It ic aloe envicaged that the treated water may be returned to a water system of the copper electroplating plant.
EXAMPLE 2
This example illustrates desorption of nickel from the resin, which was loaded during the sorption recovery of nickel from high-pressure laterite leach slurry. The example was carried out using the apparatus shown in Fig. 4,
Elemental analysis for the loaded resin is shown in Table 2.1.
The desorption equipment consisted of a U-shape plastic laboratory column with volume 750ml. The resin flowed through the column at a rate of 100ml/hr.
A 10% solution of hydrochloric acid was used as a desorption liquor. The solution was pumped into the column via the spigot 4 and the valve 14 and flowed through the desorption and re-absorption zones at rate about 160ml/hr.
The flow of the desorption solution was divided to two unequal parts: i) The waste solution stream, which was collected . after desorption from the drainage 3 at volume about 100ml/hr and input to the sorption stage together with the . pregnant leach slurry. ii) The resulting eluate stream, which was collected } from the bottom of the column via the pipe 15 and the opened partly valve 8 at volume 60ml/hr. Rlemental analysis for the eluate and waste streams are set out below in Table 2.1.
Table 2.1.
Results of the elemental analysis of the starting and * resulting producte.
Elements | Loaded resin, | Eluate stream Waste stream, g/l ppm ; ppm 193 (wa | 236 | 7a | 2750 wg | 3e0 | 72 | ase0 0.27 69 0.08 (zn | 022 [aaa | es
Ca 0.35 396 0.02 ) 30 0.24
Cr 0.01 1.34 0.65
These results of the example show that the concentration of nickel in the eluate was about 60g/l, which we estimate to be approximately 60% greater than the loading capacity of the pregnant resin. It is also noted that the majority of impurities, for example magnesium and manganese were discharged in the waste solution dischaiyed via outlet 3 and as a result, the high concentrated eluate is suitable for nickel electrowinning recovery.
EXAMPLE 3 :
This example illustrates desorption of copper from a saturated resin, which was previously loaded during the . sorption copper recovery from the heap leaching liquor. -
The copper concentration was between 2g/1 to 6g/1l.
The loading capacity of the resin, involved in this copper trial, was 55-64g/l. During this test the : resin flowed through the desorption column at a rate of approzimatel; 100ml/hr. ‘ 5 The desorption trial was performed in a 750ml - borosilicate glese column in accordance with the apparatus shown in Figure 6. The U-shape column was fully insulated to keep the temperature within the column between 60-70°C.
A 10% @elution of sulphuric aeid woe uced ac 2 desorbent, which was preheated up to 60-70°C using an electric heater, on the inlet 4 of the desorption solution. The flow of the desorbent was maintained at rate of about 75ml/hr
In addition, a preheated mother liquor, after the : precipitation of the copper sulphate, was pumped into the middle of chamber 1 through the inlet tube 12 with a throughput of about 85ml/hr. In this mother liquor, the copper concentration was about 45g/l.
A waste stream was removed from chamber 2 through the drainage 3 at rate of ~60ml/hr and the copper concentration was less than 100ppm. This waste solution may be reused in the copper heap leaching process.
A saturated eluate stream was collected from the bottom of the apparatus via the pipe 8 and the adjusting “valve 15 at a rate of 100ml/hr, with a copper concentration of about 100g/1l and temperature ~65°C.
The eluate stream was cooled to 20°C with continuous mixing and approximately 234g of the copper sulphate crystals were precipitated from every litre of the eluate stream. After filtration of the copper sulphate , crystals, the mother liquor with the copper concentration about 45g/l was heated to ~70°C and reused to supply inlet . tube 12, :
EXAMPLE 4
This example illustrates the desorption of molybdenum from a loaded resin that was saturated during adsorption from molybdenum-containing solutions. The molybdenum concentration of these solutions was ~1g/l, so the equilibrium loading capacity of the resin was about : 1000/1.
A desorption trail was performed in a 30L column * in accordance with the apparatus shown in Figure 1. The loaded resin was placed into the outer chamber 2 of the column via the spigot 5. During this trail the reein flow ) was maintained at rate of ~31/hr.
A 10% ammoniac solution was used as a desorbent.
This solution was pumped into the inner chamber 1 of the column via the spigot 4 with valve 14 in the open position. The throughout was kept 41/br.
A waste solution stream with a molybdenum concentration of less than 200ppm was collected from drainage 3 at rate of about 21l/hr and returned with the pregnant solution on the sorption stage.
A saturated eluate stream was collected from the bottom of the column through the screen 11 and the pipe 8.
The volume of the removed eluate was regulated using the valve 15. The molybdenum concentration of the eluate stream was ~150g/1 and the main impurities concentrations were negligible. The solution is suitable for the economical recovery of the chemical grade ammonium paramolibdate.
EXAMPLE 5
This example illustrates a method of nickel desorption from a saturated resin with the nickel loading capacity of about 42g/l. The resin was loaded during the sorption nickel recovery from the atmospheric leach . laterite slurry.
A desorption equipment consisted of a 750ml column i in accordance with the embodiment shown in Figure 3. The i loaded resin was placed into the column through the spigot 5. The resin flow during this test was kept at rate of ~100ml/hr.
A 10% solution of sulphuric acid was used as the desorption solution. The throughout of the desorbent was ) regulated by the peristaltic pump and maintained at rate of ~ 75ml/hr. The desorbent was pumped inte ths top of the ’ 5 desorption zone of the column via the spigot 4 and the valve 14.
The solution after the nickel electrowinning process contained 43g/l and was pumped into the middle of the desorption sone of the eonlumn at rate of ~85ml /hr through the drainage 12.
A waste solution stream (about 60ml/hr) was removed from the column via the drainage 3. This solution contains about 200ppm of nickel may be reused in the leaching process.
An eluate stream was collected from the bottom of the column through the valve 15 and the pipe 8 at rate of about 100ml/hr and contained about 85g/l of nickel. This solution may be used for the nickel electrowinning.

Claims (41)

- 22 = THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:
1. An apparatus for desorbing substances from an ion : exchange resin having impurities and targeted materials sorbed thereon, the apparatus including: h firgt and second chambares that zre zdapted so that : when in use, resin is supplied to the first chamber and conveyed from the first chamber to the second chamber, and i a desorption solution ig supplied to the second chamber and conveyed from the second chamber to the first chamber such that, i) impurities having less affinity for the resin than the targeted material can be desorbed from the resin and targeted material can be sorbed onto the resin from the desorption solution in the first chamber, and thereby create conditions whereby an impurity stream having a high concentration of impurities and a relatively low concentration of targeted material can be discharged from the first chamber, and ii) targeted material can be desorbed from the resin in the second chamber and create conditions whereby a rich stream having a low concentration of impurities and a relatively high concentration of targeted material can be discharged from lower regions of the first and/or second chambers.
2. The apparatus according to claim 1, whereby in use, the resin moves downwardly in the first chamber and upwardly in the second chamber, and the desorption solution moves in countercurrent to the direction of the regin in said chambers. .
3. The apparatus according to claim 1 or 2, wherein the impurities stream is discharged from an upper region } of the first chamber.
4. The apparatus according to any one of claims 1 to
3, wherein the first and second chambers are connected in fluid communication such that the desorption solution can ) flow by gravity from the second chamber to the first chamber. : 5
5. An zpparatus for desorbing material from a loaded ion exchange resin, the apparatus including: Raving first and second chambers that are adapted so ) that in wae, resin can move downwardly in the first chamber and upwardly in the second chamber and desorption : solution can flow in counter current to the resin, first and second inlets for supplying loaded resin to the first chamber and desorption solution to the second chamber respectively, and first and second outlets for discharging a liquid from the apparatus and stripped resin from the second chamber respectively; means for facilitating the transferal of resin from the first chamber to the second chamber and conveying the resin upwardly in the second chamber; and whereby in use, a first stream of desorption solution containing a relatively high concentration of impurities and a low concentration of targeted materials can be discharged from the first outlet, a second stream of desorption solution containing a relatively high concentration of targeted material and a low concentration of impurities can be discharged via the first outlet from lower regions of the first and/or second chambers and/or taken from desorption solution passing from the second chamber to the first chamber, and a stripped resin can be discharged from the second outlet of the second chamber.
6. The apparatus according to claim 5, wherein the . first and second chambers are arranged and connected in fluid communication such that the liquid head of desorption solution in the second chamber causes the desorption solution to flow upwardly in the first chamber.
- 24 =
7. The apparatus according to claim 5 or 6, wherein the first outlet for discharging the first stream is located in an upper portion of the first chamber. :
8. The apparatus according to any one of claims 5 to . 7, wherein the second outlet for discharging stripped resin is located in the upper portion of the second chamber, )
9. The apparatus according to any one of claims 5 to 8, wherein the second outlet for conveying stripped resin from the second chamber is connected to an intermediate chamber in which stripped resin can be held.
10. The apparatus according to any one of claims S to 9 further including a control means for controlling the rate of removal of resin from the second chamber.
11. The apparatus according to claim 10, wherein the control means measures the liquid level of the desorption solution in the first chamber to control the rate at which resin ies removed form the second chamber.
12. The apparatus according to any one of claims 5 to 11, wherein the desorption of impurities from the resin occurs in an upper zone of the first chamber and thereby allows targeted material in the desorption solution to be sorbed into the resin in the upper zone.
13. The apparatus according to any one of the proceeding claims 5 to 12, wherein the desorption of . targeted materials occurs in an upper zone of the second chamber. .
14. The apparatus according to any one of claims 5 to 13, wherein the second chamber has another inlet for supplying a solution, which when supplied, will increase the concentration of targeted materials into the second chamber and thus reduce the concentration of impurities in ’ the second stream. ’ 5
15. The apparatus according to any one of claims 5 to 14, wherein the first and gecond chambers arse : interconnected by a passageway adapted for conveying the resin and desorption solution between the chambers. ]
16. The apparatus according to any one of claims 5 to : 15, wherein the first and second chambers are } interconnected in a U-shape configuration whereby the first and second chambers form arms of the U-shape and the base provides the passageway. 1
17. The apparatus according to claim 15 or 16, wherein the second stream of desorption solution containing a high concentration of desorbed material can be discharged from the passageway extending between the first and second chambers. }
18. The apparatus according to any one of claims 5 to 15, wherein the first and second chambers are arranged such that one of the chambers is located inside the other chamber.
19. The apparatus according to claim 18, wherein the second chamber is located concentrically within the first chamber such that the first chamber has an annular across section.
20. The apparatus according to claim 19, wherein the
. second chamber has a opening facing downwardly whereby desorption solution in the second chamber can flow } directly from the second chamber into the first chamber and resin from the first chamber can move through the opening upwardly in the second chamber.
21. The apparatus according to any one of claims 18 to 20, wherein the second stream is discharged from the first ’ chamber at = location below the cpening of the second chamber. h
22. A method for desorbing substances from an exchange resin having impurities and targeted materials sorbed thereon, the method including treating an ion exchange resin in an apparatus having first and second chambers, wherein the method includes the steps: a) desorbing impurities from the resin in the first chamber using a desorption solution so that targeted : materials having more affinity for the resin than the impurities can be sorbed onto the resin from the desorption solution and thereby creating conditions whereby a stream having a high concentration of impurities and a low concentration of targeted material can be discharged from the first chamber; and b) desorbing targeted materials from the resin treated according to step a) in the second chamber using the desorption solution and thereby create conditions whereby a stream having a high concentration of targeted materials and a low concentration of the impurities can be discharged from the apparatus,
23. A method for desorbing substances from a resin in an apparatus having first and second chambers connected in fluid communication, the method including the steps of: a) supplying a loaded resin having targeted materials and impurities sorbed thereon to the first chamber and the resin moving in a downward direction therein; b) conveying the resin from the first chamber to the ) second chamber and moving the resin in an upward direction } therein; c) supplying a desorption solution to the second chamber such that the solution flows downwardly in the second chamber and upwardly in the first chamber in countercurrent flow to the resin; ) d) discharging stripped resin from the second chamber; : ’ 5 e) discharging a first stream of desorption solution containing a high concentration of impurities and a low concentration of targeted substances from the first chamber; and ] £) diecharging » second stream of desorption solution containing a relatively high concentration of targeted material and a relatively low concentration of impurities from a lower region of the first and/or second chambers and/or from the solution being conveyed between the chambers.
24. The method according to claim 23, wherein any two or more of steps a) to f) are carried out simultaneously.
25. The method according to claim 23 or 24, wherein impurities having less affinity for the resin than the targeted materials are desorbed from the resin and targeted material can be sorbed onto the resin in the first chamber.
26. The method according to any one of claims 23 to 25, wherein the desorption of impurities from the resin substantially occurs in an upper zone of the first chamber and thereby allows further targeted material from the desorption solution to be sorbed onto the resin in the upper zone of the first chamber.
27. The method according to claim 26, wherein the . first stream discharged in step e) is discharged from the upper zone of the first chamber.
28. The method according to any one of claims 23 to 27, wherein the targeted materials desorbed from the resin increases the density of the desorption solution and thus causes higher concentrations of desorption solution to settle toward lower zones of the first and second ’ chambers, «
29, The method according to amy one of claims 23 to 28, wherein the rate at which resin is discharged in step d) is controlled by the liquid level in the first chamber. 20
30. The method according to any one of claims 23 to 29, wherein the resin discharged in step d) is discharged from an upper zone of the second chamber.
31. The method according to any one of claims 23 to 30 including a step of supplying a solution containing targeted substances to the second chamber and thereby reduce the concentration of impurities in the second chamber,
32. The method according to claim 31, wherein the temperature of the concentrated solution ranges from approximately 60 to 100°C.
33. The method according to claim 32, wherein the solution containing targeted materials is supplied to the : second chamber at a location between upper and lower zones of the second chamber.
34. The method according to any one of claims 23 to 33, wherein moving resin upwardly in the second chamber according to step b) involves using resin pulsation , techniques.
35. The method according to any one of claims 23 to 34, wherein the desorption solution flows upwardly in the first chamber in accordance with step c¢) as a result of liquid head in the second chamber.
36. The method according to any one of claims 23 to : 35, wherein the first and second chambers are interconnected in = U-ghape configuration whereby the o § first and second chambers form arms of the U-shape and the base provides the passageway through which resin and desorption solution can be conveyed.
37. The methed acceordinc to claim 36, wherein the second stream of desorption solution containing a high concentration of targeted material can be discharged from the passageway extending between the first and second chambers.
38. The method according to any one of claims 23 to 37, wherein the first and second chambers are arranged such that one of the chambers is located inside the other chamber.
38. The method according to claim 38, wherein the second chamber is located concentrically within the first chamber such that the first chamber has an annular across section.
40, The method according to claim 39, wherein the second chamber has a opening facing downwardly whereby desorption solution in the second chamber can flow directly from the second chamber into the first chamber and resin from the first chamber can move through the opening upwardly in the second chamber.
41. The method according to any one of the claims 38 to 40, wherein the second stream is discharged from the first chamber at a location below the opening of the ] second chamber.
ZA200509091A 2003-05-09 2005-11-10 Method and apparatus for desorbing material ZA200509091B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU2003902238A AU2003902238A0 (en) 2003-05-09 2003-05-09 Method and apparatus for the continuous desorption

Publications (1)

Publication Number Publication Date
ZA200509091B true ZA200509091B (en) 2006-07-26

Family

ID=31953588

Family Applications (1)

Application Number Title Priority Date Filing Date
ZA200509091A ZA200509091B (en) 2003-05-09 2005-11-10 Method and apparatus for desorbing material

Country Status (3)

Country Link
CN (1) CN1805794A (en)
AU (1) AU2003902238A0 (en)
ZA (1) ZA200509091B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103080018B (en) * 2010-05-13 2015-12-16 清洁技术有限公司 Water technology
JP2015502849A (en) * 2011-11-29 2015-01-29 クリーン テク ホールディングス リミテッド Process and plant for treating water
CN102903937B (en) * 2012-10-24 2014-09-17 大连交通大学 U type liquid phase reactor
CN103613207B (en) * 2013-12-12 2015-08-05 北京师范大学 The upper reaches adsorbent bed reactor of process nitrogen phosphorus disappearance organic chemical waste water
CN111056586A (en) * 2019-11-19 2020-04-24 南京大学盐城环保技术与工程研究院 Multi-stage adsorption and desorption device for removing organic impurities and nitrate nitrogen in wastewater
CN115010292B (en) * 2022-05-30 2023-10-03 金川集团镍盐有限公司 Method for removing Ca ions and Mg ions in nickel-containing wastewater

Also Published As

Publication number Publication date
AU2003902238A0 (en) 2003-05-22
CN1805794A (en) 2006-07-19

Similar Documents

Publication Publication Date Title
US8741146B2 (en) Method for the recovery of acids from hydrometallurgy process solutions
ZA200509091B (en) Method and apparatus for desorbing material
US7838454B2 (en) Method and apparatus for desorbing material
US20140144788A1 (en) System and process for the continuous recovery of metals
JPH0222123A (en) Fractionation of rare earth metal mixture by ion exchange
US7594951B2 (en) Process for engineered ion exchange recovery of copper and nickel
US20110195000A1 (en) Ion exchange cobalt recovery
US5427606A (en) Base metals recovery by adsorption of cyano complexes on activated carbon
AU2003242501B2 (en) Method and apparatus for desorbing material
KR20060055454A (en) A resin and process for extracting non-ferrous metals
Sheedy Case studies in applying recoflo ion-exchange technology
US20090031861A1 (en) Apparatus And Process For Recovery Of Values From A Value Bearing Material
Savov et al. DEVELOPMENT AND APPLICATIONS OF IONTECH ION EXCHANGE (IONTIX®) PROCESS
US20040194579A1 (en) Apparatus and process for recovery of metal values
Briggs Problems encountered during the commissioning of the carbon-in-pulp plant at Beisa Mine
Angelov et al. DEVELOPMENT AND APPLICATIONS OF IONTECH ION EXCHANGE (IONTIX®) PROCESS
Yannopoulos Recovery of Gold from Solutions
AU2002233583A1 (en) Sieve tray column and process for recovery of metal value
ZA200307369B (en) Apparatus and process for recovery of metal values.
Carr et al. 2010 A TECHNICAL EVALUATION OF ELUTION TECHNOLOGIES FOR URANIUM RECOVERY
BG109782A (en) Method and installation for selective extraction of metal cations from weak acid to weak basic solutions
AU2004235837A2 (en) A resin and process for extracting non-ferrous metals