ZA200507399B - Tool insert - Google Patents
Tool insert Download PDFInfo
- Publication number
- ZA200507399B ZA200507399B ZA200507399A ZA200507399A ZA200507399B ZA 200507399 B ZA200507399 B ZA 200507399B ZA 200507399 A ZA200507399 A ZA 200507399A ZA 200507399 A ZA200507399 A ZA 200507399A ZA 200507399 B ZA200507399 B ZA 200507399B
- Authority
- ZA
- South Africa
- Prior art keywords
- region
- tool component
- component according
- pcd
- particles
- Prior art date
Links
- 239000002245 particle Substances 0.000 claims description 40
- 239000000463 material Substances 0.000 claims description 26
- 229910003460 diamond Inorganic materials 0.000 claims description 16
- 239000010432 diamond Substances 0.000 claims description 16
- 239000003054 catalyst Substances 0.000 claims description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 12
- 239000002904 solvent Substances 0.000 claims description 12
- 238000005245 sintering Methods 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052723 transition metal Inorganic materials 0.000 claims description 6
- 150000003624 transition metals Chemical class 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 230000001010 compromised effect Effects 0.000 claims description 2
- 239000003112 inhibitor Substances 0.000 claims description 2
- 238000004901 spalling Methods 0.000 description 10
- 230000006399 behavior Effects 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 238000005553 drilling Methods 0.000 description 4
- 238000005755 formation reaction Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- -1 nickel Chemical class 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B10/00—Drill bits
- E21B10/46—Drill bits characterised by wear resisting parts, e.g. diamond inserts
- E21B10/56—Button-type inserts
- E21B10/567—Button-type inserts with preformed cutting elements mounted on a distinct support, e.g. polycrystalline inserts
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Description
-1- oo
TOOL INSERT
This invention relates to tool inserts and more particularly to cutting tool inserts for use in drilling and coring holes in subterranean formations.
A commonly used cutting tool insert for drill bits is one which comprises a layer of polycrystalline diamond (PCD) bonded to a cemented carbide substrate. The layer of PCD presents a working face and a cutting edge around a portion of the periphery of the working surface.
Polycrystalline diamond, also known as a diamond abrasive compact, comprises a mass of diamond particles containing a substantial amount of direct diamond-to-diamond bonding. Polycrystalline diamond will generally have a second phase which contains a diamond catalyst/solvent such as cobalt, nickel, iron or an alloy containing one or more such metals.
In drilling operations, such a cutting tool insert is subjected to heavy loads and high temperatures at various stages of its life. In the early stages of. drilling, when the sharp cutting edge of the insert contacts the subterranean formation, the cutting tool is subjected to large contact pressures. This results in the possibility of a number ‘of fracture processes being activated . such as the initiation of fatigue cracks, high energy impacts, in the normal direction, resulting in spalling of the PCD layer, and high energy impacts in the cutting direction, resulting in chipping of the PCD layer.
As the cutting edge of the insert wears, the contact pressure decreases and is generally too low to cause high energy failures. However, this pressure can still propagate cracks initiated under high contact pressures, and will eventually result in spalling-type failures.
CONFIRMATION COPY
Spalling failures are particularly damaging in that these failures represent a mechanism for the rapid removal of wear resistant material and consequently reduce the life of the cutting tool insert. Localised spalling ' leads to a localised thinning of the PCD table which in turn gives rise to a grooving type of wear. This wear phenomenon redistributes the loading on the wearflat and can result in an increase in the contact pressure. As the grooving wear continues, the contact pressure will continue to increase, eventually initiating new spalling type failures from the high contact ) pressure areas. In a worst case scenario, this becomes a self-sustaining wear mode that will lead to the premature failure of the cutting tool due to the rapid removal of the PCD layer by a spalling mechanism.
United States 5,135,061 describes a cutting tool insert for use in rotary drill bits of the kind generally described above. The cutting element has a layer of superhard material such as PCD bonded to a cemented carbide substrate. The layer of superhard material has a front layer at the cutting face and a second layer behind the front layer. The front layer comprises a form of superhard material which is less wear-resistant than the super-hard material forming the second layer. Generally, a plurality of further layers are stacked behind the second layer, the further layers being of reducing wear-resistance as they extend away from the second layer towards the substrate.
US 6,290,008 discloses a PCD enhanced insert which includes a body portion adapted for attachment to an earth-boring bit and a top portion for . contacting an earthen formation. The top portion of the insert is provided © with two different compositions of polycrystalline diamond. In the primary surface of the top portion, a tougher or less wear-resistant polycrystalline diamond layer is provided, whereas a more wear-resistant polycrystalline diamond layer is provided in the remaining region of the top portion. In addition to polycrystalline diamond, polycrystalline boron nitride and other superhard materials may also be used.
US 6,443,248 describes a cutter element for use in a drill bit, comprising a substrate and a plurality of layers thereon. The substrate comprises a grip portion and an extending portion. The layers are applied to the extending portion such that at least one of the layers is harder than at least one of the layers above it. The layers can include-one or more layers of polycrystalline diamond and can include a layer in which the composition of the material changes with distance from the substrate.
According to the present irivention, a tool insert comprises a working layer of ultra-hard abrasive, particularly PCD, bonded to a substrate along an interface, the working layer presenting a working surface and a periphery : around the working surface which provides a cutting edge for the insert, the working layer of ultra-hard abrasive having a first region extending into the working layer from the working surface, and a second region in contact with the first region, the wear resistance of the first region being less than that of the second region, wherein the wear resistance of the first region is between 50% and 95% of that of the second region, preferably between 60% and 90%, most preferably between 70% and 89%.
Generally, the first and second regions will comprise layers, typically successive layers, extending from the working face into the working layer.
Lo The regions, or at least one of the. regions, may comprise .an'annulus . extending inwards from a periphery of the layer of ultra-hard abrasive. In some cases, the thickness of the first, thin region may be non-uniform across the diameter of the cutter; so that the interface between the first and second regions may be specifically designed for optimal behaviour.
A tool component of the invention comprises a layer of ultra-hard abrasive that has a first region which is less wear resistant than a second region thereof. Accordingly, essential to the invention is that the first region differs in material characteristics fo that of the second region leading to a : controlled and reduced spalling and reduced fatigue in the layer of ultra- hard abrasive. The first region will generally be relatively thin and extend to a depth of about 750 microns, preferably no more than about 500 microns, and most preferably about 50 to 250 microns, for a wear ratio of between 50% and 95%, from the working surface.
In the tool component of the invention, there is a relationship between the wear resistances of the two regions to achieve a minimising of the failure problems of prior art tool inserts described above. The first region preferably has a wear resistance of between 50% and 95%, more preferably between 60% and 90%, and most preferably between 70% and 89% of the wear resistance of the second region. An example of such a tool component, in one embodiment of the invention, is one in which the first region comprises a composite structure of two or more materials. The materials may be uniformly distributed throughout the region or randomly distributed. For example, the one material may be the same material as that of the second region and this will be combined with another material which provides that first region with a wear resistance lower than that of the oo second region.. Lo CL
This type of arrangement can also be obtained in a number of other ways.
For instance, the tool component in a further embodiment of the invention can be designed such that the first and second regions are both regions of
PCD and contain catalyst/solvent, the amount of catalyst/solvent in the first region being higher than that in the second region. Alternatively, the tool component in yet a further embodiment of the invention can be designed : such that the first region has ultra-hard abrasive particles of a unimodal particle size distribution only, and the second region has ultra-hard abrasive particles which have a multimodal particle size distribution.
In both these cases, it is preferable that the average grain or particle sizes in the two regions are similar. In other words, the range of particle sizes in the second region will not differ materially from the range of particle sizes of the ultra-hard abrasive in the first region.
In a further alternative embodiment of the invention, the tool component is one in which both the first and second regions comprise ultra-hard abrasive particles of more than one particle size, the size distribution of the particles in the first region being coarser than that of the second region. In such a case, the ultra-hard abrasive in the first region is preferably made from a mass which comprises at least 25% by mass particles having an average particle size in the range 10 to 100 microns and consisting of particles having three different average particle sizes and at least 4% by mass of the particles having an average particle size of less than 10 microns. Further, the ultra-hard abrasive in the second region preferably is made from a mass of particles which has an average particle size of less than 20 microns and consists of particles having at least three different average particle sizes.
In another embodiment of the invention, the ultra-hard abrasive is PCD and the thermal stability of the PCD in the first region is less than that of the
CL PCD in the second region. A metal or other material which has thermal expansion properties significantly different to that of PCD may be provided in the first region. Also, the first region may have a second phase which includes in it a metal such as iron or manganese which can react with the diamond under high temperature.
In a further embodiment of the invention, the ultra-hard abrasive is PCD and sinter quality of the PCD in the first region is compromised by the introduction of a material such as a sintering agent in small quantities, which is not introduced into the second region. The compromising material will generally not be present in quantities sufficient for the mechanical or thermal properties of the material itself to affect the properties of the first region. The role of the compromising material is to influence the diamond sintering process during synthesis. This may be achieved in one of two ways. First, the material may act as an inhibitor/poison where the agent interferes with the sintering. Second, the material may be more catalytic, for example where the presence of the material encourages sintering, but at a too rapid rate, producing a less well-sintered structure. Further examples of compromising the quality. of the PCD is by treatment of the diamond particle surface or the introduction of additional carbon material into the first region.
In another embodiment of the invention, where both the first and second regions are regions of PCD containing a catalyst/solvent in a second phase, the catalyst/solvent in the first region is cobalt with another transition metal such as nickel, or the other transition metal; and the catalyst/solvent in the second region is essentially cobalt. The nickel will tend to increase the thermal stability of the PCD in the first region. However, the sintering action of the nickel is less effective than another transition metal such as cobalt. Thus, the presence of nickel in the PCD in the first region, where the other catalyst/solvent is cobalt, will have the effect of reducing the overall strength of the sintered PCD in the first region and hence rendering it less wear resistant. _ The invention will now be described in more detail, by way of example only, with reference to the following non-limiting examples.
Example 1
A number of tool inserts as generally described above (A1, B1 and C1) were manufactured with respective first PCD abrasive regions or top layers each 150pm in depth from their respective working surface. The respective top layers of the tool inserts had different wear resistances relative to their respective second regions of PCD abrasive as follows:
i) Al - 0.94 (94%) wear resistance ratio; ii) B1 - 0.91 (91%) wear resistance ratio; and iii) C1 - 0.88 (88%) wear resistance ratio.
These were then tested in a vertical borer test against a base PCD product
X1, and the results of these tests are depicted schematically in Figure 1 of the accompanying drawings. In a vertical borer test, the wearflat area is measured as a function of the number of passes (or the total distance bored) of the cutter element boring into the workpiece, which in this case was SW granite. It will be noted that the wear behaviour improved as the wear ratio moved away from 1 at the 150pm depth for the respective top layers. Referring to the base PCD product X1, the “deviations” from the curve are due to instances of spalling behaviour.
In the vertical borer test, data was collected in the range of 0 — 100 passes.
Example 2
A number of tool inserts (42, B2, C2 and D2) were manufactured with a wear ratio of the respective first regions or top layers to the respective second regions or top layers of 0.91 (91%). The respective tool inserts had different depths of the top layers from their working surfaces as follows: i) A2 - 750um depth of first region; . Co ii) B2 - 500um depth of first region; iii) C2 - 250um depth of first region; and iv) D2 - 150um depth of first region.
These were again tested in a vertical borer test against a base PCD product X2, and the results of these tests are depicted schematically in
Figure 2 of the accompanying drawings. It will be noted that at a wear ratio of 0.91, wear behaviour improved as the top layer become thinner.
In the vertical borer test, data was collected in the range of 0 ~ 100 passes.
From the above Examples, the following observations can be made.
As the thickness of the top layer is increased, spalling behaviour will be reduced, but this can be at the cost of cutting efficiency. At the extreme, the wear resistance of the top layer will dominate the overall wear resistance of the cutter. Hence a thinner top layer is desirable for achieving most benefit from the more wear resistant underlying PCD. Where the wear ratio is close to 1, thinner layers will not yield the desired stress- reducing behaviours because of inadequate “rounding” of this layer. : Maximum cutting efficiency will be achieved by optimising the thickness of the top layer and the wear ratio between the top layer and the underlying
PCD. The top layer must be thick enough to reduce contact pressures on the cutting edge, but still thin enough that it does not negatively impact on the overall wear resistance of the cutter. The closer that the wear ratio is to 1, the less efficient this optimisation will be. In the case of lower wear ratios, the top layer will yield the required reduction in spalling behaviour, in an appropriate thickness region which still allows optimal cutter performance.
However, it is believed that this behaviour is not just a function of the relative wear ratio of the two layers and the top layer thickness, but will also : be decided by the absolute strength of the material. Where this approach ©. is applied to PCD material ‘of lower strength, which is therefore less prone to spalling type failure, maximum benefit is unlikely to be realised.
The invention has particular application to tool inserts wherein the ultra- hard abrasive is PCD and, more particularly, to such inserts which are intended to be used as cutting inserts for drill bits in the drilling or coring of drill holes or the like in subterranean formations.
Claims (20)
1. A tool component comprising a working layer of ultra-hard abrasive bonded to a substrate along an interface, the working layer presenting a working surface and a periphery around the working : surface which provides a cutting edge for the insert, the working layer of ultra-hard abrasive having a first region extending into the working layer from the working surface, and a second region in contact with the first region, the wear resistance of the first region being less than that of the second region, wherein the wear resistance of the first region is between 50% and 95% of that of the second region.
2. A tool component according to claim 1, wherein the wear resistance of the first region is between 60% and 90% of that of the second region.
3. A tool component according to claim 2, wherein the wear resistance of the first region is between 70% and 89% of that of the second region.
4. A too! component according to any one of the preceding claims, wherein the first and second regions comprise successive layers extending from the working surface into the working layer.
5. A tool component. according to claim 4, wherein the first region extends to a depth no more than about 750 microns from the working surface.
6. A tool component according to claim 5, wherein the first region extends to a depth no more than about 500 microns from the working surface.
7. A tool component according to claim 6, wherein the first region extends to a depth of about 50 to about 250 microns from the working surface.
8. A tool component according to any one of claims 1 to 7, wherein the first and second regions are both regions of PCD and contain catalyst/solvent, the amount of catalyst/solvent in the first region being higher than that in the second region.
9. A tool component according to any one of claims 1 to 7, wherein the first region has ultra-hard abrasive particles of a unimodal particle size distribution only, and the second region has ultra-hard abrasive particles which have a multimodal size distribution.
10. A tool component according to claim 8 or claim 9, wherein the second region has a range of particle sizes that does not differ materially from the range of particle sizes in the first region.
11. A tool component according to any one of claims 1 to 7, wherein both the first and second regions comprise ultra-hard abrasive particles of more than one particle size, the size distribution of the particles in the first region being coarser than that of the particles in the second region.
12. A tool component according to claim 11, wherein the ultra-hard. . abrasive in the first region is made from a mass which comprises at least 25% by mass particles having an average particles size in the range 10 to 100 microns and consisting of particles having three different average particle sizes and at least 4% by mass of the particles. :
13. A tool component according to claim 11 or claim 12, wherein the ultra-hard abrasive in the second region is made from a mass of particles which has an average particle size of 20 microns and consists of particles having at least three different average particle sizes.
14. A tool component according to any one of claims 1 to 7, wherein the ‘ultra-hard abrasive is PCD and the thermal stability of the PCD in the first region is less than that of the PCD in the second region.
15. A tool component according to claim 14, wherein a metal or other material which has thermal expansion properties significantly different to that of PCD is provided in the first region.
16. A tool component according to claim 14, wherein the first region has : a second phase which includes in it a metal which can react with the diamond under high temperature.
17. A tool component according to any one of claims 1 to 7, wherein the ultra-hard abrasive is PCD and sinter quality of the PCD in the first region is compromised by the introduction of a compromising material which is not introduced into the second region.
18. A tool component according to claim 17, wherein the compromising material is an agent that acts as an inhibitor that interferes with the sintering of the first region or as a catalyst that encourages sintering, but at a too rapid rate, to compromise the sintering of the . first region. Lo oo SL
19. A tool component according to any one of claims 1 to 7, wherein both the first and second regions are regions of PCD containing a catalyst/solvent in a second phase, wherein the catalyst/solvent in the first region is cobalt with another transition metal, or the other transition metal; and the catalyst/solvent in the second region is . essentially cobalt.
20. A tool component according to claim 19, wherein the other transition metal is nickel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA200507399A ZA200507399B (en) | 2003-03-14 | 2004-03-12 | Tool insert |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA200302083 | 2003-03-14 | ||
ZA200507399A ZA200507399B (en) | 2003-03-14 | 2004-03-12 | Tool insert |
Publications (1)
Publication Number | Publication Date |
---|---|
ZA200507399B true ZA200507399B (en) | 2006-11-29 |
Family
ID=32991533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ZA200507399A ZA200507399B (en) | 2003-03-14 | 2004-03-12 | Tool insert |
Country Status (6)
Country | Link |
---|---|
US (1) | US20060260850A1 (en) |
EP (1) | EP1606489A1 (en) |
AU (1) | AU2004219847B2 (en) |
CA (1) | CA2518946A1 (en) |
WO (1) | WO2004081336A1 (en) |
ZA (1) | ZA200507399B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004106004A1 (en) * | 2003-05-27 | 2004-12-09 | Element Six (Pty) Ltd | Polycrystalline diamond abrasive elements |
MXPA06013149A (en) * | 2004-05-12 | 2007-02-14 | Element Six Pty Ltd | Cutting tool insert. |
GB0423597D0 (en) * | 2004-10-23 | 2004-11-24 | Reedhycalog Uk Ltd | Dual-edge working surfaces for polycrystalline diamond cutting elements |
WO2008015629A1 (en) * | 2006-07-31 | 2008-02-07 | Element Six (Production) (Pty) Ltd | Abrasive compacts |
EP2180972A1 (en) * | 2007-08-31 | 2010-05-05 | Element Six (Production) (Pty) Ltd. | Polycrystalline diamond composites |
US8277722B2 (en) * | 2009-09-29 | 2012-10-02 | Baker Hughes Incorporated | Production of reduced catalyst PDC via gradient driven reactivity |
SA111320374B1 (en) | 2010-04-14 | 2015-08-10 | بيكر هوغيس انكوبوريتد | Method Of Forming Polycrystalline Diamond From Derivatized Nanodiamond |
EP2564010A4 (en) * | 2010-04-28 | 2016-07-06 | Baker Hughes Inc | Polycrystalline diamond compacts, cutting elements and earth-boring tools including such compacts, and methods of forming such compacts and earth-boring tools |
MX2013000232A (en) | 2010-06-24 | 2013-02-07 | Baker Hughes Inc | Cutting elements for earth-boring tools, earth-boring tools including such cutting elements, and methods of forming cutting elements for earth-boring tools. |
US9140072B2 (en) | 2013-02-28 | 2015-09-22 | Baker Hughes Incorporated | Cutting elements including non-planar interfaces, earth-boring tools including such cutting elements, and methods of forming cutting elements |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4694918A (en) * | 1985-04-29 | 1987-09-22 | Smith International, Inc. | Rock bit with diamond tip inserts |
GB2234542B (en) * | 1989-08-04 | 1993-03-31 | Reed Tool Co | Improvements in or relating to cutting elements for rotary drill bits |
ZA943645B (en) * | 1993-05-27 | 1995-01-27 | De Beers Ind Diamond | A method of making an abrasive compact |
ZA943646B (en) * | 1993-05-27 | 1995-01-27 | De Beers Ind Diamond | A method of making an abrasive compact |
US6315065B1 (en) * | 1999-04-16 | 2001-11-13 | Smith International, Inc. | Drill bit inserts with interruption in gradient of properties |
US6290008B1 (en) * | 1998-12-07 | 2001-09-18 | Smith International, Inc. | Inserts for earth-boring bits |
US7082939B2 (en) * | 2002-12-10 | 2006-08-01 | Diamond Innovations, Inc. | Frame saw for cutting granite and method to improve performance of frame saw for cutting granite |
-
2004
- 2004-03-12 EP EP04720105A patent/EP1606489A1/en not_active Withdrawn
- 2004-03-12 AU AU2004219847A patent/AU2004219847B2/en not_active Ceased
- 2004-03-12 US US10/549,393 patent/US20060260850A1/en not_active Abandoned
- 2004-03-12 WO PCT/IB2004/000706 patent/WO2004081336A1/en active Application Filing
- 2004-03-12 CA CA002518946A patent/CA2518946A1/en not_active Abandoned
- 2004-03-12 ZA ZA200507399A patent/ZA200507399B/en unknown
Also Published As
Publication number | Publication date |
---|---|
AU2004219847B2 (en) | 2010-02-18 |
US20060260850A1 (en) | 2006-11-23 |
WO2004081336A1 (en) | 2004-09-23 |
CA2518946A1 (en) | 2004-09-23 |
AU2004219847A1 (en) | 2004-09-23 |
EP1606489A1 (en) | 2005-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200149353A1 (en) | Polycrystalline Diamond Cutting Element | |
KR100963710B1 (en) | Composite abrasive compact | |
US5264283A (en) | Diamond tools for rock drilling, metal cutting and wear part applications | |
US7074247B2 (en) | Method of making a composite abrasive compact | |
CN105422014B (en) | Cutting element | |
US7647992B2 (en) | Polycrystalline diamond carbide composites | |
US8327958B2 (en) | Abrasive compact of superhard material and chromium and cutting element including same | |
US20100236837A1 (en) | Cutting tool insert and drill bit so equipped | |
AU2002212567A1 (en) | A method of making a composite abrasive compact | |
WO2004106004A1 (en) | Polycrystalline diamond abrasive elements | |
CN101506459A (en) | PCD cutters with enhanced working surfaces adjacent a cavity | |
US20060260850A1 (en) | Tool insert | |
JP5394261B2 (en) | Substrate processing method | |
US8789627B1 (en) | Polycrystalline diamond cutter with improved abrasion and impact resistance and method of making the same | |
KR20110134392A (en) | Abrasive inserts | |
US20030183426A1 (en) | Polycrystalline Material Element with Improved Wear Resistance And Methods of Manufacture Thereof | |
GB2398797A (en) | Composite material | |
ZA200302444B (en) | A method of making a composite abrasive compact. |