ZA200408714B - 3-deoxyglucosone and skin - Google Patents

3-deoxyglucosone and skin Download PDF

Info

Publication number
ZA200408714B
ZA200408714B ZA200408714A ZA200408714A ZA200408714B ZA 200408714 B ZA200408714 B ZA 200408714B ZA 200408714 A ZA200408714 A ZA 200408714A ZA 200408714 A ZA200408714 A ZA 200408714A ZA 200408714 B ZA200408714 B ZA 200408714B
Authority
ZA
South Africa
Prior art keywords
group
skin
mammal
amino
compound
Prior art date
Application number
ZA200408714A
Inventor
Anette Tobia
Francis Kappler
Original Assignee
Dynamis Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamis Therapeutics Inc filed Critical Dynamis Therapeutics Inc
Publication of ZA200408714B publication Critical patent/ZA200408714B/en

Links

Description

@ 3-DEOXYGLUCOSONE AND SKIN :
BACKGROUND OF THE INVENTION
Two of the most dangerous substances to biological macromolecules are the same as those essential for life - oxygen and glucose.
Various harmful forms of oxygen are generated in the body; singlet . oxygen, superoxide radicals, hydrogen peroxide, and hydroxyl radicals all cause tissue damage. A catchall term for these and similar oxygen related species is “reactive oxygen species” (ROS). ROS damage tissue proteins, lipids, and nucleic acids (DNA) and are endpoints of many chronic and acute diseases such as cancer, atherosclerosis, diabetes, aging, rheumatoid arthritis, dementia, trauma, stroke, and infection.
ROS are also generated from glucose. One mechanism is through the formation of cytotoxic carbonyls, such as methylglyoxal (MG) and 3-deoxyglucosome (3DG) that are known precursors to the formation of Advanced Glycation End Products (AGEs).
An extremely important consequence of AGEs is their binding to receptors on many different types of cells. The best-known receptor is RAGE, which belongs to the immunoglobulin superfamily. The internalization of AGEs by their receptors lead to increased production of ROS in the cell and increases in cytokine, endothelium, thrombomodulin and other inflammatory factors. It should be noted that the number of
RAGE receptors are increased in hyperglycemia.
Recently, it has been demonstrated that the inhibition of AGE formation reduced the extent of nephropathy in diabetic rats [Ninomiya, T., et al., EF6555, A novel
AGE production inhibitor, prevents progression of diabetic nephropathy in STZ-induced rats. (Abstract). Diabetes, 2001. 50 Suppl. (2): p. A178-179.]. Therefore, substances that reduce AGE formation, such as inhibitors of 3DG, should limit the progression of disease and may offer new tools for therapeutic interventions [Bierhaus, A. et al., AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The ~
AGE concept. Cardiovasc Res, 1998. 37(3): p. 586-600], [Thomalley, P.J., Advanced 1797061 _1
* glycation and the development of diabetic complications. Unifying the involvement of glucose, methylglyoxal and oxidative stress. Endocrinol. Metab., 1996. 3: p. 149-166.).
MG production is the result of a mistake in glycolysis and, as such, cannot be controlled therapeutically. The body removes most MG via the glyoxylase pathway, which requires glutathione, a compound that also protects cells from ROS by direct interaction with ROS species. 3DG escapes detoxification by the glyoxylase pathway but is converted to 3-deoxyfructose, an inert metabolite by aldehyde reductase; however, 3DG can also compromise the activity of this enzyme.
Dy1:amis Therapeutics has developed several proprietary compounds that can regulate the concentration of 3-deoxyglusocone in vivo. Since 3DG induces the formation of AGEs, which induce ROS, and directly inactivates at least two key enzymes responsible for the regeneration of glutathione, an important antioxidant, Dynamis expects that compounds that inhibit the formation of 3DG should be effective treatments for diseases associated with ROS.
The schematic set forth in Figure 18 describes the various disease states affected by ROS. 3DG has many toxic effects on cells and is present at elevated concentrations in several disease states. Some of the harmful effects of 3DG are as follows: 3DG induces reactive oxygen species, which results in oxidative DNA damage [Shimoi, K., et al., Oxidative DNA damage induced by high glucose and its : suppression in human umbilical vein endothelial cells. Mutat Res, 2001. 480-481: p. 371- 8] ° 3DG inactivates some of the most important enzymes that protect cells from ROS. For example, glutathione peroxidase, a central antioxidant enzyme that uses glutathione to remove ROS, and glutathione reductase, which regenerates glutathione, are both inactivated by 3DG. [Vander Jagt, D.L., et al., Inactivation of glutathione reductase by 4-hydroxynonenal and other endogenous aldehydes. Biochem
Pharmacol, 1997. 53(8): p. 1133-40], [Niwa, T. and S. Tsukushi, 3-deoxyglucosone and 1797061_L 2 e AGEs in uremic complications: inactivation of glutathione peroxidase by 3- deoxyglucosone. Kidney Int Suppl, 2001. 78: p. S37-41]. ° 3DG inactivates aldehyde reductase [Takahashi, M., et al., In vivo glycation of aldehyde reductase, a major 3-deoxyglucosone reducing enzyme: identification of glycation sites. Biochemistry, 1995. 34(4): p. 1433-8]. This is important, since aldehyde reductase is the cellular enzyme that protects the body from 3DG.
Dynamis has supportive evidence that this detoxification of 3DG to 3-deoxyfructose (3DF) is impaired in diabetic humans since their ratio of urinary and plasma 3DG to 3DF differs significantly from non-diabetic individuals. [Lal, S., et al., Quantitation of 3- deoxyglucosone levels in human plasma. Arch Biochem Biophys, 1997. 342(2): p. 254- 60. . 3DG induced reactive oxygen species contribute to the development of diabetic complications. [Araki, A., [Oxidative stress and diabetes mellitus: a possible role of alpha- dicarbonyl compounds in free radical formation].
Nippon Ronen Igakkai Zasshi, 1997. 34(9): p. 716-20.]. Specifically, 3DG induces heparin-binding epidermal growth factor, a smooth muscle mitogen that is abundant in atherosclerotic plaques. This suggests that an increase in 3DG may trigger atherogenesis in diabetes. [Taniguchi, N., et al., Involvement of glycation and oxidative stress in . diabetic macroangiopathy. Diabetes, 1996. 45 Suppl 3: p. S81-3.], [Che, W,, et al,
Selective induction of heparin-binding epidermal growth factor-like growth factor by methylglyoxal and 3-deoxyglucosone in rat aortic smooth muscle cells. The involvement of reactive oxygen species formation and a possible implication for atherogenesis in diabetes. J Biol Chem, 1997. 272(29): p. 18453-9]. . 3DG is a teratogenic factor in diabetic embryopathy leading to embryo malformation [Eriksson, U.J., et al., Teratogenicity of 3-deoxyglucosone and diabetic embryopathy. Diabetes, 1998. 47(12): p. 1960-6.]. This appears to arise from 3DG accumulation, which leads to superoxide-mediated embryopathy. 1797061 _1 3
$ o 3DG induces apoptosis in macrophage-derived cell lines [Okado,
A, etal, Induction of apoptotic cell death by methylglyoxal and 3-deoxyglucosone in macrophage-derived cell lines. Biochem Biophys Res Commun, 1996. 225(1): p. 219-24] and is toxic to cultured cortical neurons {Kikuchi, S., et al., Neurotoxicity of methylglyoxal and 3-deoxyglucosone on cultured cortical neurons: synergism between glycation and oxidative stress, possibly involved in neurodegenerative diseases. J
Neurosci Res, 1999. 57(2): p. 280-9] and PCiZ ceiis {Suzuki, K., et ai., Overexpression of aldehyde reductase protects PC12 cells from the cytotoxicity of methylglyoxal or 3- deoxyglucosone. J Biochem (Tokyo), 1998. 123(2): p. 353-7]. A recent study on the cause of amyotropic lateral sclerosis, a form of motor neuron disease, has suggested that accumulation of 3DG can lead to neurotoxicity as a result of ROS generation [Shinpo, K., et al., Selective vulnerability of spinal motor neurons to reactive dicarbonyl compounds, intermediate products of glycation, in vitro: implication of inefficient glutathione system in spinal motor neurons. Brain Res, 2000. 861(1): p. 151-9]. ° AGEs have specific receptors on cells called RAGE. The activation of cellular RAGE on endothelium, mononuclear phagocytes, and lymphocytes triggers the generation of free radicals and the expression of inflammatory gene : mediators [Hofmann, M.A, et al., RAGE mediates a novel proinflammatory axis: a : central cell surface receptor for S100/calgranulin polypeptides. Cell, 1999. 97(7): p. 889- 901]. This increased oxidative stress leads to the activation of the transcription factor
NF-kB and promotes the expression of NF-kB genes that have been associated with atherosclerosis [Bierhaus, A., et al., AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res, 1998. 37(3): p- 586-600]. 30 . In relationship to cancer, blockage of RAGE activation inhibits several mechanisms linked to tumor proliferation and trans-endothelial migration of 1797061 _ 4
® tumor cells. This also decreases growth and metastases of both spontaneous and implanted tumors [Taguchi, A., et al, Blockade of RAGE-amphoterin signalling uppresses tumour growth and metastases. Nature, 2000. 405(6784): p. 354-60].
Oxygen
Various harmful forms of oxygen are generated in the body: singlet oxygen; superoxide radicals; hydrogen peroxide; and hydroxyl radicals all cause tissue damage. A catchall term for these and similar oxygen related species is reactive oxygen species (ROS). ROS damage, among other things, tissue proteins, lipids, and nucleic acids (e.g., DNA), and are endpoints of many chronic and acute diseases such as cancer, atherosclerosis, diabetes, aging, rheumatoid arthritis, dementia, trauma, stroke, and infection.
Glucose
Although glucose is the most important fuel for life, it also forms cytotoxic carbonyls, such as methylglyoxal (MG) and 3-deoxyglucosome (3DG), which lead to ROS. MG production is the result of a mistake in glycolysis and, as such, cannot be controlled therapeutically. The body removes most MG via the glyoxylase pathway, which requires glutathione, a compound that also protects cells from ROS by direct interaction with ROS species. Although, 3DG escapes detoxification by the glyoxylase pathway, its levels can be controlled since it arises from a non-essential enzymatic reaction which can be inhibited. Previously, this enzyme was isolated and characterized and has been termed “Amadorase”.
AGEs
In addition to forming ROS, 3DG is a precursor to Advanced Glycation
End Products (AGEs), which also have deleterious effects on the body and are involved in many inflammatory diseases. Non-enzymatic glycation of protein, in which reducing sugars are covalently attached to free amino groups of protein and uitimately form AGEs, : has been found to occur during normal aging and at accelerated rate in diabetes mellitus 1797061 _1 >
@® (Bierhaus et al., 1998, Cardiovasc. Res. 37:586-600). Protein glycation is the first step in a cascade of reactions that lead to reactive bifunctional compounds such as methylgiyoxal and 3DG that lead to formation of AGEs.
Enhanced formation and accumulation of AGEs has also been proposed to play a major role in the pathogenesis in additional diseases such as atherosclerosis and : Alzheimer’s disease since AGE formation and protein crosslinks are irreversible processes that alter the structural and functionai properties of proteins, lipid components, and nucleic acids. Id.
An extremely important indirect consequence of AGEs is their binding to receptors on many different types of cells. The best-known receptor is RAGE, which belongs to the immunoglobulin superfamily. The internalization of AGEs by their receptors lead to increased production of ROS in the cell and increases in cytokine, endothelium, thrombomodulin and other inflammatory factors. It should be noted that the number of RAGE receptors are increased in hyperglycemia.
Recently, it has been demonstrated that the inhibition of AGE formation reduced the extent of nephropathy in diabetic rats (Ninomiya et al., 2001, Diabetes 50:A178-A179). Therefore, substances that reduce AGE formation, such as inhibitors of 3DG, should limit the progression of disease and may offer new tools for therapeutic interventions (Bierhaus et al.; Thomalley, 1996, Endonicrol. Metab. 3:149-166). Without wishing to be bound by any particular theory, the schematic set forth as Figure 17 depicts the various disease states affected by ROS. 3-Deoxyglucosone is a Potent Protein Glycating Agent Associated with Protein
Crosslinking 3-deoxyglucosone (3DG) is a 1,2-dicarbonyl-3-deoxysugar which is a potent protein crosslinker, is teratogenic and/or mutagenic, causes apoptosis, mutations, and formation of active oxygen species, and is a precursor to the formation of Advanced
Glycation End product (AGE) modified proteins. As reviewed by Brownlee and shown in Figure 1, the previously generally accepted pathway for formation of 3DG comprises a reversible reaction between glucose and the e-NH; groups of lysine-containing proteins, forming a Schiff base (Brownlee et al., 1994, Diabetes 43:836-841). This Schiff base 1797061 _1 6
® then rearranges to form a more stable ketoamine known as fructose-lysine (FL) or the “Amadori product”. The dogma has been that 3DG production resulted exclusively from subsequent non-enzymatic rearrangement, dehydration, and fragmentation of the fructoselysine containing protein (Brownlee et al., 1994, Diabetes 43:836-841; Makita et al., 1992, Science 258:651-653) (see Figure 1). However, more recent work has shown that an enzymatic pathway for the production of 3DG exists as well (see Figures 1 and 2 and Brown et al., U.S. Patent No. 6,004,958). The disclosure provided by Brown et al (U.S. Patent No. 6,006,958) is incorporated by references as in recited in its entirety "herein.
A metabolic pathway was discovered which produces relatively high concentrations of 3DG in organs affected by diabetes (Brown et al, U.S. Patent No. 6,004,958). It was also found that a specific kinase converts fructose-lysine into fructose- lysine-3-phosphate (FL3P) in an ATP dependent reaction, and that FL3P then breaks down to form free lysine, inorganic phosphate, and 3DG. Id. Methods have also been described for assessing diabetic risk, based on measuring components of the 3DG pathway (International Publication No. WO 99/64561).
Brown et al., U.S. Patent No. 6,004,958, describe a class of compounds which inhibit the enzymatic conversion of fructose-lysine to FL3P and inhibit thereby formation of 3DG. Specific compounds which are representative of the class have also been described (Brown et al., International Publication No. WO 98/33492). For example, it was found that urinary or plasma 3DG can be reduced by meglumine, sorbitollysine, mannitollysine, and galactitollysine. Id. It was also found that diets high in glycated protein are harmful to the kidney and cause a decrease in birth rate. /d. It has also been disclosed that the fructose-lysine pathway is involved in kidney carcinogenesis. /d.
Further, previous studies demonstrate that diet and 3DG can play a role in carcinogenesis associated with this pathway (see Intemational Publication Nos. WO 00/24405; WO 00/62626; WO 98/33492).
Detoxification of 3DG 3DG can be detoxified in the body by at least two pathways. In one pathway, 3DG is reduced to 3-deoxyfructose (3DF) by aldehyde reductase, and the 3DF 1797061 _1 7
$ is then efficiently excreted in urine (Takahashi et al., 1995, Biochemistry 34:1433).
Another detoxification reaction oxidizes 3DG to 3-deoxy-2-ketogluconic acid (DGA) by oxoaldehyde dehydrogenase (Fujii et al., 1995, Biochem. Biophys. Res. Comm. 210:852).
Results of studies to date show that the efficiency of at least one of these enzymes, aldehyde reductase, is adversely affected in diabetes. When isolated from diabetic rat liver, this enzyme is giycated on iysine at positions 67, 84 and 140 and has a low catalytic efficiency when compared with the normal, unmodified enzyme (Takahashi et al., 1995, Biochemistry 34:1433). Since diabetic patients have higher ratios of glycated proteins than normoglycemic individuals they are likely to have both higher levels of 3DG and a reduced ability to detoxify this reactive molecule by reduction to 3DF. It has also been found that overexpression of aldehyde reductase protects PC12 cells from the cytotoxic effects of methylglyoxal or 3DG (Suzuki et al., 1998, J.
Biochem. 123:353-357).
The mechanism by which aldehyde reductase works has been studied.
These studies demonstrated that this important detoxification enzyme is inhibited by aldose reductase inhibitors (ARIs) (Barski et al., 1995, Biochemistry 34:11264). ARIs are currently under clinical investigation for their potential to reduce diabetic complications. These compounds, as a class, have shown some effect on short term diabetic complications. However, they lack clinical effect on long term diabetic complications and they worsen kidney function in rats fed a high protein diet. This : finding is consistent with the newly discovered metabolic pathway for lysine recovery.
Aminoguanidine, an agent which detoxifies 3DG pharmacologically via formation of rapidly excreted covalent derivatives (Hirsch et al., 1992, Carbohydr. Res. 232:125-130), has been shown to reduce AGE-associated retinal, neural, arterial, and renal pathologies in animal models (Brownlee et al., 1994, Diabetes 43:836-841;
Brownlee et al., 1986, Science 232:1629-1632; Ellis et al., 1991, Metabolism 40:1016- 1019; Soulis-Liparota et al., 1991, Diabetes 40:1328-1334; and Edelstein et al., 1992,
Diabetologia 35:96-97).
Role of 3DG in Diabetes and Other Diseases 1797061 1 8 ae Past studies have concentrated on the role of 3DG in diabetes. It has been demonstrated that diabetic humans have detectably elevated levels of 3DG and 3-deoxyfructose (3DF), 3DG's detoxification product, in plasma (Niwa et al., 1993,
Biochem. Biophys. Res. Commun. 196:837-843; Wells-Knecht et al., 1994, Diabetes. 43:1152-1156) and in urine (Wells-Knecht et al., 1994, Diabetes. 43:1152-1156), as compared with non-diabetic individuals. Furthermore, diabetics with nephropathy were found to have elevated plasma levels of 3DG compared to non-diabetics (Niwa et al, 1993, Biochem. Biophys. Res. Commun. 196:837-843).
A recent study comparing patients with insulin-dependent diabetes mellitus (IDDM) and noninsulin-dependent diabetes mellitus (NIDDM) confirmed that 3DG and 3DF levels were elevated in blood and urine from both types of patient populations (Lal et al., 1995, Arch. Biochem. Biophys. 318:191-199). It has even been shown that incubation of glucose and proteins in vitro under physiological conditions produces 3DG.
In turn, it has been demonstrated that 3DG glycates and crosslinks protein creating detectable AGE products (Baynes et al., 1984, Methods Enzymol. 106:88-98;
Dyer et al., 1991, J. Biol. Chem. 266:11654-11660).
The normal pathway for reductive detoxification of 3DG (conversion to 3DF) may be impaired in diabetic humans since their ratio of urinary and plasma 3DG to 3DF differs significantly from non-diabetic individuals (Lal et al., 1995, Arch Biochem.
Biophys. 318:191-199).
Furthermore, elevated levels of 3DG-modified proteins have been found in diabetic rat kidneys compared to control rat kidneys (Niwa et al., 1997, J. Clin. Invest. 99:1272-1280). It has been demonstrated that 3DG has the ability to inactivate enzymes such as glutathione reductase, a central antioxidant enzyme. It has also been shown that hemoglobin-AGE levels are elevated in diabetic individuals (Makita et al., 1992, Science 258:651-653) and other AGE proteins have been shown in experimental models to accumulate with time, increasing from 5-50 fold over periods of 5-20 weeks in the retina, lens and renal cortex of diabetic rats (Brownlee et al., 1994, Diabetes 43:836-841). In addition, it has been demonstrated that 3DG is a teratogenic factor in diabetic embryopathy (Eriksson et al., 1998, Diabetes 47:1960-1966). 1797061 _1 9
Nonenzymatic glycation, in which reducing sugars are covalently attached to free amino groups and ultimately form AGEs, has been found to occur during normal aging and to occur at an accelerated rate in diabetes mellitus (Bierhaus et al., 1998,
Cardiovasc. Res. 37:586-600). Crosslinking of proteins and the subsequent AGE formation are irreversible processes that alter the structural and functional properties of proteins, lipid components, and nucleic acids (Bierhaus et al., 1998, Cardiovasc. Res. 37:586-600). These processes have been postulated to contribute to the development of a range of diabetic complications including nephropathy, retinopathy, and neuropathy (Rahbar et al., 1999, Biochem. Biophys. Res. Commun. 262:651-660). :
Recently, it has been demonstrated that inhibition of AGE formation reduced the extent of nephropathy in diabetic rats (Ninomiya et al., 2001, Diabetes 50:178-179). Therefore, substances which inhibit AGE formation and/or oxidative stress appear to limit the progression of diabetes and its complications and may offer new tools for therapeutic interventions in the therapy of diabetes (Bierhaus et al., 1998, Cardiovasc.
Res. 37:586-600; Thomalley, 1996, Endocrinol. Metab. 3:149-166).
In sum, 3DG has numerous toxic effects on cells and is present in elevated levels in several disease states. The harmful effects of 3DG include, but are not limited to, the following.
It is known that 3DG induces reactive oxygen species in human umbilical vein endothelial cells, which results in oxidative DNA damage (Shimoi, 2001, Mutat.
Res. 480:371-378). :
It was previously demonstrated that 3DG inactivates some of the most important enzymes that protect cells from ROS. For example, glutathione peroxidase, a central antioxidant enzyme, and glutathione reductase, which are required to regenerate glutathione in cells, are both inactivated by 3DG (Vander Jagt, 1997, Biochem.
Pharmacol. 5§3:1133-1140; Niwa et al., 2001, Kidney Int. Suppl. 78:S37-841)
Prior studies indicate that 3DG inactivates aldehyde reductase (Takahashi et al., 1995, Biochemistry 34:1433-1438). This is important, since aldehyde reductase is the cellular enzyme that protects the body from 3DG. Dynamis has supportive evidence that this detoxification of 3DG to 3-deoxyfructose (3DF) is impaired in diabetic humans 1797061 _L 10
® since their ratio of urinary and plasma 3DG to 3DF differs significantly from non- diabetic individuals (Lal et al., 1997, Arch. Biochem. Biophys. 342:254-260).
Additionally, it has been demonstrated that 3DG induced reactive oxygen species contribute to the development of diabetic complications (Araki, 1997, Nippon
Ronen Igakkai Zasshi 34:716-720). Specifically, 3DG induces heparin-binding epidermal growth factor, a smooth muscle mitogen that is abundant in atherosclerotic plaques. This suggests that an increase in 3DG may trigger atherogenesis in diabetes (Taniguchi et al., 1996, Diabetes 45(Supp. 3):S81-S83; Che et al., 1997, J. Biol. Chem. 272:18453-18459).
Further, 3DG is a known teratogenic factor in diabetic embryopathy leading to embryo malformation (Eriksson et al., 1998, Diabetes 47:1960-1966). This appears to arise from 3DG accumulation, which leads to superoxide-mediated embryopathy.
More recently, it was demonstrated that 3DG induces apoptosis in macrophage-derived cell lines (Okado et al., 1996, Bichem. Biophys. Res. Commun. 225:219-224), and is toxic to cultured cortical neurons (Kikuchi et al., 1999, J. Neurosci.
Res. 57:280-289) and PC12 cells (Suzuki et al., 1998, J. Biochem. (Tokyo) 123:353-357).
A recent study on the cause of amyotropic lateral sclerosis, a form of motor neuron disease, has suggested that accumulation of 3DG can lead to neurotoxicity as a result of
ROS generation (Shinpo et al., 2000, Brain Res. 861:151-159).
Previous studies demonstarted that 3DG glycates and crosslinks protein leading to a complex mixture of compounds called advanced glycation end products (AGEs) (Baynes et al., Methods Enzymol. 106:88-98; Dyer et al, 1991, J. Biol. Chem. 266:11654-11660). AGEs have been implicated in most inflammatory diseases such as diabetes, atherosclerosis and dementia. They are most commonly formed on long-lived structural proteins such as collagen.
Hemoglobin-AGE levels are elevated in diabetic individuals (Makita et al., 1992, Science 258:651-653), and other AGE proteins have been shown in experimental models to accumulate with time, increasing from 5-50 fold over periods of 5-20 weeks in the retina, lens and renal cortex of diabetic rats (Brownlee et al., 1994,
Diabetes 43:836-841). 1797061 _! 1
AGEs have specific receptors on cells called RAGE. The activation of cellular RAGE on endothelium, mononuclear phagocytes, and lymphocytes triggers the generation of free radicals and the expression of inflammatory gene mediators (Hofmann et al., 1999, Cell 97:889-901). This increased oxidative stress leads to the activation of the transcription factor NF-kB and promotes the expression of NF-kB genes that have been associated with atherosclerosis (Bierhaus et al.).
In relationship to cancer, biockage of RAGE aciivdilon inhibiis severai mechanisms linked to tumor proliferation and trans-endothelial migration of tumor cells.
This also decreases growth and metastases of both spontaneous and implanted tumors (Taguchi et al., 2000, Nature 405:354-360).
Increasing the kidney concentration of 3DG in a rat model of renal cell carcinoma increased the rate of formation tumors and increased the total number of tumors 3-fold.
High concentrations of 3DG are present in human lymphomas and in
ERT retinoblastoma and neuroblastoma cells. Since many tumors synthesize ROS at an elevated rate and appear to be under persistent oxidative stress, 3DG or 3DG derived
AGEs may be involved.
Diabetic humans have elevated levels of 3DG and 3DF in plasma (Niwa et al., 1993, Biochem. Biophys. Res. Commun. 196:837-843; Wells-Knecht et al., 1994,
Diabetes 43:1152-1156) and urine (Wells-Knecht et al.), as compared with non-diabetic individuals. :
Diabetics with nephropathy were found to have elevated plasma levels of 3DG compared with other diabetics (Niwa et al., 1993, Biochem. Biophys. Res.
Commun. 196:837-843). Elevated levels of 3DG-modified proteins are found in diabetic versus control rat kidneys (Niwa et al., 1997, J. Clin. Invest. 99:1272-1280).
Skin
Human skin is a composite material comprising a superficial component, the epidermis, and a deep component, the dermis. The outermost layer of the epidermis is the stratum corneum. This layer is the stiffest layer of the skin, as well as the one most affected by the surrounding environment. Deep to the stratum corneum is the internal 1797061 _| 12
¢ portion of the epidermis. Deep to the epidermis, is the papillary layer of the dermis, which comprises relatively loose connective tissue which defines the micro-relief of the skin. The reticular dermis, deep to the papillary dermis, is dense connective tissue that is spatially organized. The reticular dermis is also associated with coarse wrinkles. Deep to the dermis is subcutaneous connective tissue and adipose tissue.
The principal functions of the skin include protection, excretion, secretion, absorption, thermoregulation, pigmentogenesis, accumulation, sensory perception, and regulation of immunological processes. These functions are detrimentally affected by the structural changes in the skin due to aging and various diseases and disorders of the skin.
The physiological changes associated with normal skin aging and photoaging include loss of elasticity, decreased collagen, collagen and elastin crosslinking, wrinkling, dry/rough texture, and mottled hyperpigmentation, for example.
The mechanical properties of the skin, such as elasticity, are controlled by the density of the network of collagen and elastic fibers coursing throughout. Damaged collagen and elastin proteins lose their contractile properties, resulting in such things as skin wrinkling and skin surface roughness. As skin ages or begins to deteriorate due to a disease or disorder, it acquires sags, stretch marks, bumps, or wrinkles, it roughens, it can become discolored, and it has reduced ability to synthesize vitamin D. Aged skin also becomes thinner and has a flattened dermoepidermal interface because of the alterations of collagen, elastin, and glycosaminoglycans.
The skin is a crucial organ and many disorders, diseases and conditions related to skin remain without effective therapeutics and/or diagnostics. Despite the fact that skin aging, wrinkling, and the like, are the subject of intense research, there remains a long felt need in the art for the development of new methods to treat these and other diseases, disorders or conditions relating to the skin. The present invention meets this need.
SUMMARY OF THE INVENTION
The present invention, as described in the disclosure provided herein, is based on the surprising discovery that 3DG is present in skin. The invention is further based on the discovery that there is present in the skin a metabolic pathway in which a 1797061 _1 13
@® specific kinase converts fructose-lysine into fructose-lysine-3-phosphate (FL3P) in an
ATP dependent reaction, and that FL3P then breaks down to form 3DG, inorganic phosphate, and free lysine. The invention therefore encompasses compositions and methods to inhibit enzymatically induced 3DG synthesis breakdown and accumulation in skin; compositions and methods to inhibit 3DG function or to remove 3DG from skin; as well as compositions and methods to increase the rate of detoxification and removal of 3DG from skin, based on ine metabolic pathways and composiiions and methods described herein, as well as on the surprising finding that 3DG and an enzymatic pathway that mediates its production: are present in the skin.
BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing summary, as well as the following detailed description of preferred embodiments of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings embodiments which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. In the drawings:
Figure 1 is a schematic diagram depicting the initial step invoived in the multi-step reaction leading to crosslinking of proteins.
Figure 2 is a schematic diagram which illustrates the reactions involved in the lysine recovery pathway. Fructose-lysine (FL) is phosphorylated by a fructosamine kinase such as amadorase to form fructoselysine 3-phosphate (FL3P). FL3P spontaneously decomposes into lysine, Pi, and 3DG (Brown et al., U.S. Patent No. 6,004,958).
Figure 3 is a graph representing a urinary profile showing the variation over time of 3DF, 3DG and FL from a single individual fed 2 grams of FL and followed for 24 hours.
Figure 4 is a graph representing 3DF excretion in urine over time from seven volunteers fed 2 grams of fructoselysine. 1797061 _1 14 od Figure 5 graphically compares 3DF and N-acetyl-B-glucosaminidase (NAG) levels in control animals and an experimental group maintained on feed containing 0.3% glycated protein (Brown et al.).
Figure 6 is a graph which demonstrates the linear relationship between 3DF and 3DG levels in urine of rats fed either a control diet or a diet enriched in glycated protein (Brown et al., U.S. Patent No. 6,004,958).
Figure 7, comprising Figure 7A and Figure 7B, graphically depicts fasting levels of urinary 3DG in normal subjects and in diabetic patients, plotted against the fasting level of 3DF. -
Figure 8, comprising Figure 8A and Figure 8B, depicts images of photomicrographs illustrating the effects of a diet containing high levels of glycated protein on the kidney. Periodic acid and Schiff (PAS) stained kidney sections were prepared from a rat fed a diet enriched in mildly glycated protein (Figure 8A) and a rat fed a normal diet (Figure 8B). In this experiment, non-diabetic rats were fed a diet containing 3% glycated protein for 8 months. This diet substantially elevated levels of
FL and its metabolites (>3-fold in the kidney). Figure 8A is an image of a photomicrograph of a glomerulus from a rat fed the glycated diet for 8 months. The glomerulus shows segmental sclerosis of the glomerular tuft with adhesion of the sclerotic area to Bowman's capsule (lower left). There is also tubular metaplasia of the parietal epithelia from approximately 9 to 3 o’clock. These sclerotic and metaplastic changes are reminiscent of the pathologies observed in diabetic kidney disease. Figure 8B is an image from a rat on the control diet for 8 months, comprising a histologically normal glomerulus.
Figure 9 is a graphic comparison of 3DG and 3DF levels in glomeruiar and tubular fractions from rat kidneys after FL feeding.
Figure 10 is an image depicting the nucleic acid sequence (SEQ ID NO:1) of human amadorase (fructosamine-3-kinase), NCBI accession number NM_022158.
The accession number for the human gene on chromosome 17 is NT_010663.
Figure 11 is an image depicting the amino acid sequence (SEQ ID NO:2) of human amadorase (fructosamine-3-kinase), NCBI accession number NP_071441. 1797061 _1 15
@
Figure 12 is an image of a polyacrylamide gel demonstrating the effects of 3DG on collagen crosslinking and the inhibition of 3DG induced crosslinking by arginine. Collagen type I was treated with 3DG in the presence or absence of arginine.
The samples were subjected to cyanogen bromide (CNBr) digestion, electrophoresed on a 16.5% SDS Tris-tricine gel, and then the gels were processed using silver stain techniques to visualize the proteins. Lane 1 contains molecular weight marker standards.
Lanes 2 and 5 contain 10 and 20 pl of the collagen mixture following CNBr digestion.
Lanes 3 and 6 contain the collagen mixture treated with 3DG and then digested with
CNBr, and loaded at 10 and 20 pl, respectively. Lanes 4 and 7 contain the mixture of collagen incubated with 5 mM 3DG and 10 mM arginine and then digested with CNBr, and loaded at 10 and 20 pl, respectively.
Figure 13 is an image of an agarose gel demonstrating that the mRNA for amadorase/fructosamine kinase is present in human skin. RT-PCR was utilized and published amadorase sequences were used as the basis for preparing templates for PCR. 1S Based on the primers used (see Examples) for the PCR reaction, the presence of a 519 bp fragment in the gel indicates the presence of amadorase mRNA. Expression of amadorase, as based on the presence of amadorase mRNA indicated by a 519 bp fragment, was found in the kidney (lane 1) and in the skin (lane 3). No 519 bp fragments were found in the control lanes, which contained primer but no template (lanes 2 and 4).
Lane 5 contained DNA molecular weight markers.
Figure 14 is a graphic illustration of the effects of DYN 12 (3-O- methylsorbitollysine) treatment on skin elasticity. Diabetic or normal rats were treated with DYN 12 (50 mg/kg daily) or saline for eight weeks and then subjected to skin elasticity tests. The four groups used included diabetic controls (saline injection; solid black bar), diabetics treated with DYN 12 (open bar), normal animal controls (saline injections; stippled bar), and normal animals treated with DYN 12 (cross-hatched bar).
Data are expressed in kilopascals (kPA).
Figure 15 is graphic illustration of the effects of DYN 12 (3-O- methylsorbitollysine) treatment on skin elasticity. Diabetic or normal rats were treated with DYN 12 (50 mg/kg daily) or saline for eight weeks and then subjected to skin elasticity tests. The four groups used included diabetic controls (saline injection; solid 1797061 _| 16
* black bar), diabetics treated with DYN 12 (open bar), normal animal controls (saline injections; stippled bar), and normal animals treated with DYN 12 (cross-hatched bar).
Data are expressed in kilopascals (kPA) and are shown as averages of the results obtained with each particular group of test subjects. Measurements were taken on the hind leg of the test subjects and were taken on an alert animal restrained by a technician.
Figure 16 is a schematic illustration of a novel metabolic pathway in the kidney. The formation of 3DG in the kidney occurs using either endogenous glycated protein or glycated protein derived from dietary sources. By way of the endogenous pathway, the chemical combination of glucose and lysine leads to glycated protein.
Alternatively, glycated protein may also be obtained from dietary sources. Catabolism of glycated proteins results in the production of fructoselysine, which is subsequently acted upon by Amadorase. Amadorase, a fructosamine-3-kinase, is part of both pathways.
Amadorase phosphorylates fructoselysine to form fructoselysine-3-phosphate, which may then be converted to 3-deoxyglucosone (3DG), producing byproducts of lysine and inorganic phosphate (A very small amount of fructoselysine (< 5% total fructoselysine) may be converted to 3DG by way of a non-enzymatic pathway). 3DG may then be detoxified by conversion to 3-deoxyfructose (3DF) or it may go on to produce reactive oxygen species (ROS) and advanced glycation end products (AGEs). As shown in Figure 16, DYN 12 (3-O-methylsorbitollysine) inhibits the action of Amadorase on fructoselysine, and DYN 100 (arginine) inhibits the 3DG-mediated production of ROS and AGEs.
Figure 17 is a schematic illustration of the disease states affected by reactive oxygen species (ROS). 3DG may produce ROS directly, or it may produce advanced glycation end products which go on to form ROS. The ROS are then responsible for advancing various disease states as shown in the figure.
Figure 18 is a schematic illustration of both adduct formation and inhibition of adduct formation according to embodiments of the present invention. 3DG can form an adduct with a primary amino group on a protein. Protein-3DG adduct formation creates a Schiff base, the equilibrium of which is depicted in Figure 18. The protein-3DG Schiff base adduct may go on to form a crosslinked protein, by formation of a second protein-3DG adduct by way of the 3DG molecule involved in the first protein- 1797061 _1 17
$ 3DG Schiff base adduct described above, thereby forming a “3DG bridge” between two primary amino groups of a single protein (pathway “A”). Altematively, such crosslinking may occur between two primary amino groups of separate proteins, forming a “3DG bridge” between two primary amino groups of two separate proteins, resulting in a crosslinked pair of protein molecules. The first protein-3DG Schiff base adduct may be prevented from going on to form such crosslinked proteins as depicted in pathway “A.”
For example, such protein crosslinking may be inhibited by nucleophilic agents such as glutathione or penicillamine, as illustrated in Figure 18 by pathway “B.” Such "nucleophilic agents react with the 3DG carbon atom responsible for forming the second
Schiff base, preventing that carbon atom from forming a Schiff base protein-3DG adduct and thereby preventing crosslinking of the protein.
DETAILED DESCRIPTION OF THE INVENTION
The invention relates generally the novel discovery that that 3DG, and pathway(s) for it production are present in skin. Moreover, 3DG level is greater in skin of diabetes than skin of non-diabetes, as well as that of of Scleroderma patients and non
Scleroderma patients. Therefore the invention encompasses methods to inhibit the production or function of 3DG in skin and to methods to remove 3DG from skin. Excess 3DG has been shown to be involved in the pathology of diabetes and other diseases, but until the present invention, the presence or absence of 3DG in the skin had not been determined. A role for 3DG in normal skin function and in skin diseases has also not been examined. The data disclosed herein demonstrate, for the first time, that 3DG is present in human skin and that the gene encoding the enzyme regulating the synthesis of 3DG is expressed in skin. It has been further discovered that the level of 3DG is greater in the skin of scleroderma patients . The present invention further discloses compounds that can inhibit 3DG from causing crosslinking and other problems associated with wrinkling, aging, diseases, and disorders of the skin.
Definitions-
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to 1797061 _1 18
® which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are described herein.
As used herein, each of the following terms has the meaning associated with it in this section.
The articles “a” and “‘an” are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.
The term “accumulation of 3DG” or “accumulation of alpha-dicarbonyl sugars” as used herein refers to an detectable increase in the level of 3DG and/or alpha- dicarbonyl sugar overtime. “Alpha-dicarbony! sugar,” as used herein, refers to a family of compounds, including 3-Deoxyglucosone, glyoxal, methyl glyoxal and glucosone. “Alpha-dicarbonyl sugar associated parameter of wrinkling, aging, disease or disorder of the skin,” as used herein, refers to the biological markers described herein, including 3DG levels, 3DF levels, fructosamine kinase levels, protein crosslinking, and other markers or parameters associated with alpha-dicarbonyl sugar associated wrinkling, aging, diseases or disorders of the skin. “3-Deoxyglucosone” or “3DG,” as used herein, refers to the 1,2- dicarbonyl-3-deoxysugar (also known as 3-deoxyhexulosone), which can be formed via an enzymatic pathway or can be formed via a nonenzymatic pathway. For purposes of the present description, the term 3-deoxyglucosone is an alpha-dicarbonyl sugar which can be formed by pathways including the nonenzymatic pathway described in Figure 1 and the enzymatic pathway resulting in breakdown of FL3P described in Figure 2.
Another source of 3DG is diet. 3DG is a member of the alpha-dicarbonyl sugar family, also known as 2-oxoaldehydes.
A “3DG associated” or “3DG related” disease or disorder as used herein, refers to a disease, condition, or disorder which is caused by indicated by or associated with 3DG, including defects related to enhanced synthesis, production, formation, and accumulation of 3DG, as well as those caused by medicated by or associated with decreased levels of degradation, detoxification, binding, and clearance of 3DG. 1797061 _! 19
® “A 3DG inhibiting amount” or an “alpha-dicarbonyl inhibiting amount” of a compound refers to that amount of compound which is sufficient to inhibit the function or process of interest, such as synthesis, formation accumulation and/or function of 3DG or another alpha-dicarbonyl sugar. “3-0-methyl sorbitollysine (3-O-Me-sorbitollysine),” is an inhibitor of fructosamine kinases, as described herein. It is used interchangeably with the term “DYN 127.
As used herein, “alleviating a disease or disorder symptom,” means reducing the severity of the symptom. -
The term “AGE-proteins” (Advanced Glycation End product modified proteins), as used herein, refers to a product of the reaction between sugars and proteins (Brownlee, 1992, Diabetes Care, 15: 1835; Niwa et al., 1995, Nephron, 69: 438. For example, the reaction between protein lysine residues and glucose, which does not stop with the formation of fructose-lysine (FL). FL can undergo multiple dehydration and rearrangement reactions to produce non-enzymatic 3DG, which reacts again with free amino groups, leading to cross-linking and browning of the protein involved. AGEs also include the products that form from the reaction of 3DG with other compounds, such as, but not limited to, as shown in Figure 16. “Amadorase,” as used herein, refers to a fructosamine kinase responsible for the production of 3-DG. More specifically it refers to a protein which can enzymatically convert FL to FL3P, as defined above, when additionally supplied with a source of high energy phosphate.
The term “Amadori product,” as used herein, refers to a ketoamine, such as, but not limited to, fructoselysine, comprising is a rearrangement product following glucose interaction with the £-NH; groups of lysine-containing proteins.
As used herein, “amino acids” are represented by the full name thereof, by the three-letter code corresponding thereto, or by the one-letter code corresponding thereto, as indicated in the following table:
Full Name Three-Letter Code One-Letter Code
Aspartic Acid Asp D 1797061_1 20
¢ Glutamic Acid Glu E
Lysine Lys K
Arginine Arg R
Histidine His H
Tyrosine Tyr Y
Cysteine Cys Cc
Asparagine Asn N
Glutamine Gin Q - Serine Ser S -
Threonine Thr T
Glycine Gly G
Alanine Ala A
Valine Val \
Leucine Leu L
Isoleucine Ile I
Methionine Met M
Proline Pro P
Phenylalanine Phe F
Tryptophan Trp w
The term “binding” refers to the adherence of molecules to one another, such as, but not limited to, enzymes to substrates, ligands to receptors, antibodies to antigens, DNA binding domains of proteins to DNA, and DNA or RNA strands to complementary strands. “Binding partner,” as used herein, refers to a molecule capable of binding to another molecule.
The term “biological sample,” as used herein, refers to samples obtained from a living organism, including skin, hair, tissue, blood, plasma, cells, sweat and urine.
The term “clearance,” as used herein refers to the physiological process of removing a compound or molecule, such as by diffusion, exfoliation, removal via the bloodstream, and excretion in urine, or via other sweat or other fluid. 1797061 _1 21
®
A "coding region" of a gene consists of the nucleotide residues of the coding strand of the gene and the nucleotides of the non-coding strand of the gene which are homologous with or complementary to, respectively, the coding region of an mRNA molecule which is produced by transcription of the gene. “Complementary” as used herein refers to the broad concept of subunit sequence complementarity between two nucleic acids, e.g., two DNA molecules. When a nucleotide position in boih of ile woiccules is occupied by nucleotides norinaily capable of base pairing with each other, then the nucleic acids are considered to be complementary to each other at this position. Thus, two nucleic acids are complementary to each other when a substantial number (at least 50%) of corresponding positions in each of the molecules are occupied by nucleotides which normally base pair with each other (e.g., A:T and G:C nucleotide pairs). Thus, it is known that an adenine residue of a first nucleic acid region is capable of forming specific hydrogen bonds ("base pairing") with a residue of a second nucleic acid region which is antiparallel to the first region if the residue is thymine or uracil. Similarly, it is known that a cytosine residue of a first nucleic acid strand is capable of base pairing with a residue of a second nucleic acid strand which is antiparaliel to the first strand if the residue is guanine. A first region of a nucleic acid is complementary to a second region of the same or a different nucieic acid if, when the two regions are arranged in an antiparallel fashion, at least one nucleotide residue of the first region is capable of base pairing with a residue of the second region.
Preferably, the first region comprises a first portion and the second region comprises a second portion, whereby, when the first and second portions are arranged in an antiparallel fashion, at least about 50%, and preferably at least about 75%, at least about 30%, or at least about 95% of the nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion. More preferably, all nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion.
A “compound,” as used herein, refers to any type of substance or agent that is commonly considered a drug, or a candidate for use as a drug, as well as combinations and mixtures of the above, or modified versions or derivatives of the compound. 1797061 _1 2
As used herein, the terms “conservative varnation” or “conservative substitution” refer to the replacement of an amino acid residue by another, biologically similar residue. Conservative variations or substitutions are not likely to significantly change the shape of the peptide chain. Examples of conservative variations, or substitutions, include the replacement of one hydrophobic residue such as isoleucine, valine, leucine or alanine for another, or the substitution of one charged amino acid for another, such as the substitution of arginine for lysine, glutamic for aspartic acid, or glutamine for asparagine, and the like. ; “Detoxification” of 3DG refers to the breakdown or conversion of 3DG io a form which does not allow it to perform its normal function. Detoxification can be brought about or stimulated by any composition or method, including “pharmacologic detoxification”, or metabolic pathway which can cause detoxification of 3DG. “Pharmacologic detoxification of “3DG” or other alpha-dicarbonyl sugars refers to a process in which a compound binds with or modifies 3DG, which in turn causes it to be become inactive or to be removed by metabolic processes such as, but not limited to, excretion.
A “disease” is a state of health of an animal wherein the animal cannot maintain homeostasis, and wherein if the disease is not ameliorated then the animal’s health continues to deteriorate. As used herein, normal aging is included as a disease.
A “disorder” in an animal is a state of health in which the animal is able to maintain homeostasis, but in which the animal's state of health is less favorable than it would be in the absence of the disorder. Left untreated, a disorder does not necessarily cause a further decrease in the animal’s state of health.
As used herein, the term “domain” refers to a part of a molecule or structure that shares common physicochemical features, such as, but not limited to, hydrophobic, polar, globular and helical domains or properties such as ligand binding, signal transduction, cell penetration and the like. Specific examples of binding domains include, but are not limited to, DNA binding domains and ATP binding domains.
An “effective amount” or “therapeutically effective amount” of a compound is that amount of compound which is sufficient to provide a beneficial effect - 1797061 _1 23
@® to the subject to which the compound is administered, or gives the appearance of providing a therapeutic effect as in a cosmetic.
As used herein, the term “effector domain” refers to a domain capable of directly interacting with an effector molecule, chemical, or structure in the cytoplasm which is capable of regulating a biochemical pathway. “Encoding” refers to the inherent property of specific sequences of nucleotides in a polynucieotide, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (i.e., IRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom. Thus, a gene encodes a protein if transcription and translation of mRNA corresponding to that gene produces the protein in a cell or other biological system. Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings, and the non-coding strand, used as the template for transcription of a gene or cDNA, can be referred to as encoding the protein or other product of that gene or cDNA. Unless otherwise specified, a “nucleotide sequence encoding an amino acid sequence” includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. Nucleotide sequences that encode proteins and RNA may include introns.
The term “floating,” as used herein, refers to bonds of a substituent to a ning structure, such that the substituent can be attached to the ring structure at any : available carbon juncture. A “fixed” bond means that a substituent is attached at a specific site.
The term “formation of 3DG” refers to 3DG which is not necessarily formed via a synthetic pathway, but can be formed via a pathway such as spontaneous or induced breakdown of a precursor.
As used herein, the term “fragment,” as applied to a protein or peptide, can ordinarily be at least about 3-15 amino acids in length, at least about 15-25 amino acids, at least about 25-50 amino acids in length, at least about 50-75 amino acids in length, at least about 75-100 amino acids in length, and greater than 100 amino acids in length. 1797061 24
@
As used herein, the term “fragment,” as applied to a nucleic acid, can ordinarily be at least about 20 nucleotides in length, typically, at least about 50 nucleotides, more typically, from about 50 to about 100 nucleotides, preferably, at least about 100 to about 200 nucleotides, even more preferably, at least about 200 nucleotides to about 300 nucleotides, yet even more preferably, at least about 300 to about 350, even more preferably, at least about 350 nucleotides to about 500 nucleotides, yet even more preferably, at least about 500 to about 600, even more preferably, at least about 600 nucleotides to about 620 nucleotides, yet even more preferably, at least about 620 to about 650, and most preferably, the nucleic acid fragment will be greater than about 650 nucleotides in length.
The term “fructose-lysine” (FL) is used herein to signify any glycated- lysine, whether incorporated in a protein/peptide or released from a protein/peptide by proteolytic digestion. This term is specifically not limited to the chemical structure commonly referred to as fructose-lysine, which is reported to form from the reaction of protein lysine residues and glucose. As noted above, lysine amino groups can react with a wide variety of sugars. Indeed, one report indicates that glucose is the least reactive sugar out of a group of sixteen (16) different sugars tested (Bunn et al., Science, 213: 222 (1981)). Thus, tagatose-lysine formed from galactose and lysine, analogously to glucose is included wherever the term fructose-lysine is mentioned in this description, as is the condensation product of all other sugars, whether naturally-occurring or not. It will be understood from the description herein that the reaction between protein-lysine residues and sugars involves multiple reaction steps. The final steps in this reaction sequence involve the crosslinking of proteins and the production of multimeric species, known as
AGE-proteins, some of which are fluorescent. Once an AGE protein forms, then proteolytic digestion of such AGE-proteins does not yield lysine covalently linked to a sugar molecule. Thus, these species are not included within the meaning of “fructose- lysine”, as that term is used herein.
The term “Fructose-lysine-3-phosphate,” as used herein, refers to a compound formed by the enzymatic transfer of a high energy phosphate group from ATP ] to FL. The term fructose-lysine-3-phosphate (FL3P), as used herein, is meant to include 1797061 _i 25 all phosphorylated fructose-lysine moieties that can be enzymatically formed whether ¢ free or protein-bound. “Fructose-lysine-3-phosphate kinase” (FL3K), as used herein, refers to one or more proteins, such as amadorasc, which can enzymatically convert FL to FL3P, as described herein, when supplied with a source of high energy phosphate. The term is used interchangeably with “fructose-lysine kinase (FLK)” and with “amadorase”.
The term “FL3FP Lysine Recovery Patliway,” as used herein, iefeis to a lysine recovery pathway which exists in human skin and kidney, and possibly other tissues, and which regenerates unmodified lysine as a free amino acid or as incorporated in a polypeptide chain.
The term “Glycated Diet,” as used herein, refers to any given diet in which a percentage of normal protein is replaced with glycated protein. The expressions “glycated diet” and “glycated protein diet” are used interchangeably herein. “Glycated lysine residues,” as used herein, refers to the modified lysine residue of a stable adduct produced by the reaction of a reducing sugar and a lysine- containing protein. . The majority of protein lysine residues are located on the surface of proteins as expected for a positively charged amino acid. Thus, iysine residues on proteins, which come in contact with serum, or other biological fluids, can freely react with sugar molecules in solution. This reaction occurs in multiple stages. The initial stage involves the formation of a Schiff base between the lysine free amino group and the sugar keto-group. This initial product then undergoes the Amadori rearrangement, to produce a stable ketoamine compound.
This series of reactions can occur with various sugars. When the sugar involved is glucose, the initial Schiff base product will involve imine formation between the aldehyde moiety on C-1 of the glucose and the lysine e-amino group. The Amadori rearrangement will result in formation of lysine coupled to the C-1 carbon of fructose, 1- deoxy-1-(g-aminolysine)-fructose, herein referred to as fructose-lysine or FL. Similar reactions will occur with other aldose sugars, for example galactose and ribose (Dills, 1993, Am. J. Clin. Nutr. 58:S779). For the purpose of the present invention, the early products of the reaction of any reducing sugar and the e-amino residue of protein lysine 1797061 1 26
® are included within the meaning of glycated-lysine residue, regardless of the exact structure of the modifying sugar molecule. "Homologous" as used herein, refers to the subunit sequence similarity between two polymeric molecules, e.g., between two nucleic acid molecules, e.g., two
DNA molecules or two RNA molecules, or between two polypeptide molecules. When a subunit position in both of the two molecules is occupied by the same monomeric subunit, e.g., if a position in each of two DNA molecules is occupied by adenine, then they are homologous at that position. The homology between two sequences is a direct function of the number of matching or homologous positions, e.g., if half (e.g., five positions in a polymer ten subunits in length) of the positions in two compound sequences are homologous then the two sequences are 50% homologous, if 90% of the positions, e.g., 9 of 10, are matched or homologous, the two sequences share 90% homology. By way of example, the DNA sequences 3'ATTGCCS' and 3 TATGGC share 50% homology.
As used herein, “homologous” or homology" are used synonymously with "identity". The determination of percent identity or homology between two nucleotide or amino acid sequences can be accomplished using a mathematical algorithm. For example, a mathematical algorithm useful for comparing two sequences is the algorithm of Karlin and Altschul (1990, Proc. Natl. Acad. Sci. USA 87:2264-2268), modified as in
Karlin and Altschul (1993, Proc. Natl. Acad. Sci. USA 90:5873-5877). This algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, et al. (1990, J. Mol.
Biol. 215:403-410), and can be accessed, for example at the National Center for
Biotechnology Information (NCBI) world wide web site. BLAST nucleotide searches can be performed with the NBLAST program (designated "blastn" at the NCBI web site), using the following parameters: gap penalty = 5; gap extension penalty = 2; mismatch penalty = 3; match reward = 1; expectation value 10.0; and word size = 11 to obtain nucleotide sequences homologous to a nucleic acid described herein. BLAST protein searches can be performed with the XBLAST program (designated "blastn" at the NCBI web site) or the NCBI "blastp" program, using the following parameters: expectation value 10.0, BLOSUMS62 scoring matrix to obtain amino acid sequences homologous to a protein molecule described herein. To obtain gapped alignments for comparison 1797061 _1 27 purposes, Gapped BLAST can be utilized as described in Altschul et al. (1997, Nucleic ¢
Acids Res. 25:3389-3402). Alternatively, PSI-Blast or PHI-Blast can be used to perform an iterated search which detects distant relationships between molecules (Id.) and relationships between molccules which share a common pattern. When utilizing BLAST,
Gapped BLAST, PSI-Blast, and PHI-Blast programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used.
The percent identity beiweein two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In + calculating percent identity, typically exact matches are counted. The term “induction of - 3DG” or “inducing 3DG,” as used herein, refers to methods or means which start or stimulate a pathway or event leading to the synthesis, production, or formation of 3DG or increase in its levels, or stimulate an increase in function of 3DG. Similarly, the phrase “induction of alpha-dicarbonyl sugars”, refers to induction of members of the alpha- dicarbonyl sugar family, including 3DG, glyoxal, methyl glyoxal, and glucosone. “Inhibiting 3DG” as described herein, refers to any method or technique which inhibits 3DG synthesis, production, formation, accumulation, or function, as well as methods of inhibiting the induction or stimulation of synthesis, formation, accumulation, or function of 3DG. It also refers to any metabolic pathway which can regulate 3DG function or induction. The term also refers to any composition or method for inhibiting 3DG function by detoxifying 3DG or causing the clearance of 3DG.
Inhibition can be direct or indirect. Induction refers to induction of synthesis of 3DG or. to induction of function. Similarly, the phrase “inhibiting alpha-dicarbonyl sugars”, refers to inhibiting members of the alpha-dicarbony! sugar family, including 3DG, glyoxal, methyl glyoxal, and glucosone.
The term “inhibiting accumulation of 3DG,” as used herein, refers to the use of any composition or method which decreases synthesis, increases degradation, or increases clearance, of 3DG such that the result is lower levels of 3DG or functional 3DG in the tissue being examined or treated, compared with the levels in tissue not treated with the composition or method. Similarly, the phrase “inhibiting accumulation of alpha- dicarbonyl sugars”, refers to inhibiting accumulation of members of the alpha-dicarbonyl 1797061 _1 28
® sugar family, including 3DG, glyoxal, methyl glyoxal, and glucosone, and intermediates thereof.
As used herein, an “instructional material” includes a publication, a recording, a diagram, or any other medium of expression which can be used to communicate the usefulness of the peptide of the invention in the kit for effecting alleviation of the various diseases or disorders recited herein. Optionally, or altemately, the instructional material can describe one or more methods of alleviating the diseases or disorders in a cell or a tissue of a mammal. The instructional material of the kit of the invention can, for example, be affixed to a container which contains the identified compound invention or be shipped together with a container which contains the identified compound. Alternatively, the instructional material can be shipped separately from the container with the intention that the instructional material and the compound be used cooperatively by the recipient.
An “isolated nucleic acid” refers to a nucleic acid segment or fragment which has been separated from sequences which flank it in a naturally occurring state, e.g., a DNA fragment which has been removed from the sequences which are normally adjacent to the fragment, e.g., the sequences adjacent to the fragment in a genome in which it naturally occurs. The term also applies to nucleic acids which have been substantially purified from other components which naturally accompany the nucleic acid, e.g., RNA or DNA or proteins, which naturally accompany it in the cell. The term therefore includes, for example, a recombinant DNA which is incorporated into a vector, into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote, or which exists as a separate molecule (e.g, asa cDNA ora genomic or cDNA fragment produced by PCR or restriction enzyme digestion) independent of other sequences. It also includes a recombinant DNA which is part of a hybrid gene encoding additional polypeptide sequence. “Modified” compound, as used herein, refers to a modification or derivation of a compound, which may be a chemical modification, such as in chemically altering a compound in order to increase or change its functional ability or activity. 29 1797061 _
@
The term “mutagenicity” refers to the ability of a compound to induce or increase the frequency of mutation. The term “nucleic acid” typically refers to large polynucleotides.
The term “oligonucleotide” typically refers to short polynucleotides, generally, no greater than about 50 nucleotides. It will be understood that when a nucleotide sequence is represented by a DNA sequences (i.c., A, T, G, C), this also includes an RNA sequence (i.e., A, U, G, C) in which “U” repiaces “T."
The term “peptide” typically refers to short polypeptides. “Permeation enhancement” and “permeation enhancers” as used herein relate to the process and added materials which bring about an increase in the permeability of skin to a poorly skin permeating pharmacologically active agent, i.e., so as to increase the rate at which the drug permeates through the skin and enters the bloodstream. “Permeation enhancer” is used interchangeably with “penetration enhancer”.
As used herein, the term *“pharmaceutically-acceptable carrier” means a chemical composition with which an appropriate compound or derivative can be combined and which, following the combination, can be used to administer the appropriate compound to a subject. '
As used herein, the term “physiologically acceptable” ester or salt means an ester or salt form of the active ingredient which is compatible with any other ingredients of the pharmaceutical composition, which is not deleterious to the subject to . which the composition is to be administered. “Polypeptide” refers to a polymer composed of amino acid residues, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof linked via peptide bonds, related naturally occurring structural variants, and synthetic non-naturally occurring analogs thereof.
A “polynucleotide” means a single strand or parallel and anti-parallel strands of a nucleic acid. Thus, a polynucleotide may be either a single-stranded or a double-stranded nucleic acid. “Primer” refers to a polynucleotide that is capable of specifically hybridizing to a designated polynucleotide template and providing a point of initiation for 1797061 _1 30
® synthesis of a complementary polynucleotide. Such synthesis occurs when the polynucleotide primer is placed under conditions in which synthesis is induced, i.e., in the presence of nucleotides, a complementary polynucleotide template, and an agent for polymerization such as DNA polymerase. A primer is typically single-stranded, but may be double-stranded. Primers are typically deoxyribonucleic acids, but a wide variety of synthetic and naturally occurring primers are useful for many applications. A primer is complementary to the template to which it is designed to hybridize to serve as a site for the initiation of synthesis, but need not reflect the exact sequence of the template. In such . a case, specific hybridization of the primer to the template depends on the stringency of the hybridization conditions. Primers can be labeled with, e.g., chromogenic, radioactive, or fluorescent moieties and used as detectable moieties.
As used herein, the term “promoter/regulatory sequence” means a nucleic acid sequence which is required for expression of a gene product operably linked to the promoter/regulator sequence. In some instances, this sequence may be the core promoter sequence and in other instances, this sequence may also include an enhancer sequence and other regulatory elements which are required for expression of the gene product. The promoter/regulatory sequence may, for example, be one which expresses the gene product in a tissue specific manner.
A “constitutive” promoter is a promoter which drives expression of a gene to which it is operably linked, in a constant manner in a cell. By way of example, promoters which drive expression of cellular housekeeping genes are considered to be constitutive promoters.
An “inducible” promoter is a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a living cell substantially only when an inducer which corresponds to the promoter is present in the cell.
A “tissue-specific” promoter is a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a living cell substantially only if the cell is a cell of the tissue type corresponding to the promoter. 1797061 _1 31
A “prophylactic” treatment is a treatment administered to a subject who ® does not exhibit signs of a disease or exhibits only early signs of the disease for the purpose of decreasing the risk of developing pathology associated with the disease.
The term “protein” typically refers to large polypeptides.
Reactive Oxygen Species Various harmful forms of oxygen are generated in the body; singlet oxygen, superoxide radicals, hydrogen peroxide, and hydroxyl radicais all cause tissue damage. A catchail tein for these aid similar oxygen relaied species is “reactive oxygen species” (ROS). The term also includes ROS formed by the : internalization of AGEs into cells and the ROS tha form therefrom “Removing 3-deoxyglucosone,” as used herein, refers to any composition or method, the use of which results in lower levels of 3-deoxyglucosone (3DG) or lower levels of functional 3DG when compared to the level of 3DG or the level of functional 3DG in the absence of the composition. Lower levels of 3DG can result from its decreased synthesis or formation, increased degradation, increased clearance, or any combination of thereof. Lower levels of functional 3DG can result from modifying the 3DG molecule such that it can function less efficient in the process of glycation or can result from binding of 3DG with another molecule which blocks inhibits the ability of 3DG to function. Lower levels of 3DG can aiso resuit from increased clearance and excretion in urine of 3DG. The term is also used interchangeably with “inhibiting accumulation of 3DG”. Similarly, the phrase “removing alpha-dicarbonyl sugars”, refers to removal of members of the alpha-dicarbonyl sugar family, including 3DG, glyoxal, . methyl glyoxal, and glucosone.
Also, the terms glycated-lysine residue, glycated protein and glycosylated protein or lysine residue are used interchangeably herein, is consistently with current usage in the art where such terms are art-recognized used interchangeably.
The term “skin,” as used herein, refers to the commonly used definition of skin, e.g., the epidermis and dermis, and the cells, glands, mucosa and connective tissue which comprise the skin.
The term “standard,” as used herein, refers to something used for comparison. For example, it can be a known standard agent or compound which is administered and used for comparing results when administering a test compound, or it 1797006! _I 32
® can be a standard parameter or function which is measured to obtain a control value when measuring an effect of an agent or compound on a parameter or function. “Standard” can also refer to an “internal standard”, such as an agent or compound which is added at known amounts to a sample and which is useful in determining such things as purification or recovery rates when a sample is processed or subjected to purification or extraction procedures before a marker of interest is measured. Internal standards are often but are not limited to, a purified marker of interest which has been labeled, such as with a radioactive isotope, allowing it to be distinguished from an endogenous substance in a sample. :
A “susceptible test animal,” as used herein, refers to a strain of laboratory animal which, due to for instance the presence of certain genetic mutations, have a higher propensity toward a disease disorder or condition of choice, such as diabetes, cancer, and the like. “Synthesis of 3DG”, as used herein refers to the formation or production : ~~ of 3DG. 3DG can be formed based on an enzyme dependent pathway or a non-enzyme dependent pathway. Similarly, the phrase “synthesis of alpha-dicarbonyl sugars”, refers to synthesis or spontaneous formation of members of the alpha-dicarbonyl sugar family, including 3DG, glyoxal, methyl glyoxal, and glucosone, and adducts as disclosed herein “Synthetic peptides or polypeptides” mean a non-naturally occurring peptide or polypeptide. Synthetic peptides or polypeptides can be synthesized, for example, using an automated polypeptide synthesizer. Those of skill in the art know of various solid phase peptide synthesis methods.
A “therapeutic” treatment is a treatment administered to a subject who exhibits signs of pathology, for the purpose of diminishing or eliminating those signs.
By “transdermal” delivery is intended both transdermal (or “percutaneous” and transmucosal administration, i.e., delivery by passage of a drug through the skin or mucosal tissue and into the bloodstream. Transdermal also refers to the skin as a portal for the administration of drugs or compounds by topical application of the drug or compound thereto. 1797061 _1 33
®
The term “topical application”, as used herein, refers to administration to a surface, such as the skin. This term is used interchangeably with “cutaneous application”.
The term to “treat,” as used herein, means reducing the frequency with which symptoms are experienced by a patient or subject or administering an agent or compound to reduce the frequency with which symptoms are experienced.
As used herein, “ireafing a disease or disorder” means reducing the frequency with which a symptom of the disease or disorder is experienced by a patient.
Disease and disorder are used interchangeably herein. -
As used herein, the term “wild-type” refers to the genotype and phenotype that is characteristic of most of the members of a species occurring naturally and contrasting with the genotype and phenotype of a mutant.
Methods of Inhibiting Synthesis, Formation, and Accumulation of 3DG and Other Alpha-dicarbonyl Sugars in Skin
It has been discovered in the present invention that an enzyme which is involved in the enzymatic synthetic pathway of 3DG production is present at high levels ’ in skin (see Example 20). Furthermore, it has also been discovered in the present invention that 3DG is present at high levels in skin (see Example 19). Accordingly, the invention includes compositions and methods which interfere with both enzymatic and nonenzymatic based synthesis or formation of 3DG in skin, and which also interfere with the function of 3DG in skin. 3DG is a member of a family of compounds called alpha- dicarbonyl sugars. Other members of the family include glyoxal, methyl! glyoxal, and glucosone. The present invention also relates to compositions and methods for inhibiting accumulation of 3DG and other alpha-dicarbony! sugars in skin and for inhibiting 3DG dependent or associated skin wrinkling, skin aging, or other skin diseases or disorders, as well as skin wrinkling, skin aging, or other skin diseases and disorders associated with other alpha-dicarbonyl sugars. The invention also includes inhibiting accumulation of 3DG in skin using compositions and methods for stimulating the pathways, or components of the pathways, leading to 3DG detoxification, degradation, or clearance from the skin. © 17970611 : 34
® It should be noted that 3DG is a member of the alpha-dicarbonyl sugar family of molecules. It should also be noted that other members of the alpha-dicarbonyl sugar family can perform functions similar to 3DG, as described herein, and that like 3DG functions, the functions of other members of the alpha-dicarbonyl sugar family are inhibitable as well. Thus, the invention should be construed to include methods of inhibiting synthesis, formation, and accumulation of other alpha-dicarbonyl sugars as well.
Inhibition of 3DG synthesis, formation, and accumulation in skin can be direct or indirect. For example, direct inhibition of 3DG synthesis refers to blocking an event that occurs immediately prior to or upstream in a pathway of 3DG synthesis or formation, such as blocking amadorase or the conversion of fructose-lysine-3-phosphate (FL3P) to 3DG, lysine, and inorganic phosphate. Indirect inhibition can include blocking or inhibiting upstream precursors, enzymes, or pathways, which lead to the synthesis of 3DG. Components of an upstream pathway, for example, include the amadorase gene and amadorase mRNA. The invention should not be construed to include inhibition of only the enzymatic and nonenzymatic pathways described herein, but should be construed to include methods of inhibiting other enzymatic and nonenzymatic pathways of 3DG synthesis, formation and accumulation in skin as well. The invention should also be construed to include the other members of the alpha-dicarbonyl sugar family, including glyoxal, methyl glyoxal, and glucosone where applicable.
Various assays described herein may be used to directly measure 3DG synthesis or levels of 3DG, or assays may be used which are correlative of 3DG synthesis or levels, such as measurement of its breakdown product, 3DF.
The present invention includes novel methods for the inhibition of 3DG synthesis in skin. Preferably, the skin is mammalian skin, and more preferably, the mammal skin is human skin.
In one aspect, the inhibitor inhibits an enzyme involved in the synthesis of 3DG. In one embodiment the enzyme is a fructosamine kinase. In yet another embodiment the fructosamine kinase is amadorase, as disclosed in U.S. Patent No 6,004,958. 3s 1797061 _1
®
In yet another aspect of the invention the inhibitor inhibits the nonenzymatic synthesis and formation of 3DG in the skin.
In one embodiment of the invention, the inhibitor inhibits the accumulation of 3DG in the skin. In one aspect, the 3DG is synthesized or formed in the skin. However, the inhibitor can also inhibit accumulation of 3DG in the skin, where the source of 3DG is other than the skin. In one aspect, the source of the 3DG is dietary, i.e., it is derived from an exicrnal source rather than an internal source, and then accwuulaies in the skin. Thus, this aspect of the invention includes the inhibition of 3DG synthesis or formation in the skin and/or inhibition of accumulation of 3DG in the skin. In the latter case, the source of 3DG may be enzymatic synthesis of 3DG directly in the skin, enzymatic synthesis of 3DG in a tissue other than skin, nonenzymatic synthesis or formation of 3DG in the skin or in a non-skin tissue, or the source of the 3DG may be external, such as, for example, dietary. The methods to be used for inhibiting accumulation of 3DG or other alpha-dicarbonyl sugars via any one of these pathways are more fully described elsewhere herein.
Methods of Removing 3DG from Skin
The present invention also relates to compositions and methods for removing 3DG and other alpha-dicarbonyi sugars from skin and for inhibiting 3DG dependent or associated skin wrinkling, skin aging, or other skin diseases or disorders, as well as skin wrinkling, skin aging, or other skin diseases and disorders associated with other alpha-dicarbonyl sugars. To this end, the invention includes compositions and methods for inhibiting the production, synthesis, formation, and accumulation of 3DG in skin. The invention also includes compositions and methods for stimulating the pathways, or components of the pathways, leading to 3DG detoxification, degradation, or clearance from the skin.
Using Antibodies to Inhibit 3DG Synthesis
In one aspect of the invention, the inhibitor of a fructosamine kinase is an antibody. The antibody can be an antibody that is known in the art or it can be an antibody prepared using known techniques and the published sequence of the - fructosamine kinase/amadorase (Accession No. NP_071441). The antibody may also be 1797061 _1 36
® one which is prepared against any of the precursors of 3DG or against molecules which regulate 3DG synthesis upstream from fructosamine kinase or the precursors of 3DG.
In one aspect, the antibody is selected from the group consisting of a polyclonal antibody, a monoclonal antibody, a humanized antibody, a chimeric antibody, and a synthetic antibody.
The invention includes a method by which an antibody inhibitor can be generated and used as an inhibitor of 3DG synthesis or function. Antibodies can be prepared against a fructosamine kinase or other proteins of the enzymatic pathway of 3DG synthesis or against other molecules which are part of the pathway, including precursors of 3DG. The preparation and use of antibodies to inhibit protein synthesis or function or to inhibit other molecules or their synthesis is well known to those skilled in the art, and is described for example in Harlow et al. (Harlow et al., 1988, Antibodies: A
Laboratory Manual, Cold Spring Harbor, New York; Harlow et al., 1999, Using
Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, NY).
Antibodies of the invention can also be used to detect proteins or other molecules which may be components of the 3DG pathway.
The generation of polyclonal antibodies is accomplished by inoculating the desired animal with the antigen and isolating antibodies which specifically bind the antigen therefrom.
Monoclonal antibodies can be used effectively intracellularly to avoid uptake problems by cloning the gene and then transfecting the gene encoding the antibody. Such a nucleic acid encoding the monoclonal antibody gene obtained using the procedures described herein may be cloned and sequenced using technology which is available in the art.
Monoclonal antibodies directed against full length or peptide fragments of a protein or peptide may be prepared using any well known monoclonal antibody preparation procedure. Quantities of the desired peptide may also be synthesized using chemical synthesis technology. Altematively, DNA encoding the desired peptide may be cloned and expressed from an appropriate promoter sequence in cells suitable for the generation of large quantities of peptide. Monoclonal antibodies directed against the peptide or other molecules are generated from mice immunized with the peptide using 1797061_) 37
® standard procedures as referenced herein. A nucleic acid encoding the monoclonal antibody obtained using the procedures described herein may be cloned and sequenced using technology which is available in the art, and is described, for example, in Wright et al. (1992, Critical Rev. Immunol. 12:125-168), and the references cited therein. Further, the antibody of the invention may be “humanized” using the existing technology described in, for example, Wright et al., id., and in the references cited therein, and in Gu ei al. (1997, Thrombosis and Hematocysi 77:755-759), and other meiitods of humanizing antibodies well-known in the art or to be developed.. Techniques are also well known in the art which allow such an antibody to be modified to remain in the cell. The invention encompasses administering a nucleic acid encoding the antibody, wherein the molecule further comprises an intracellular retention sequence. Such antibodies, frequently referred to as “intrabodies”, are well known in the art and are described in, for example,
Marasco et al. (U.S. Patent No. 6,004,490) and Beerli et al. (1996, Breast Cancer
Research and Treatment 38:11-17).
To generate a phage antibody library, a cDNA library is first obtained from mRNA which is isolated from cells, e.g., the hybridoma, which express the desired protein to be expressed on the phage surface, e.g., the desired antibody. cDNA copies of the mRNA are produced using reverse transcriptase. cDNA which specifies immunoglobulin fragments are obtained by PCR and the resulting DNA is cloned into a suitable bacteriophage vector to generate a bacteriophage DNA library comprising DNA specifying immunoglobulin genes. The procedures for making a bacteriophage library comprising heterologous DNA are well known in the art and are described, for example, in Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual, Cold Spring
Harbor, NY).
Bacteriophage which encode the desired antibody, may be engineered such that the protein is displayed on the surface thereof in such a manner that it is available for binding to its corresponding binding protein, e.g., the antigen against which the antibody is directed. Thus, when bacteriophage which express a specific antibody are incubated in the presence of a cell which expresses the corresponding antigen, the bacteriophage will bind to the cell. Bacteriophage which do not express the antibody will 1797061 _1 38
* not bind to the cell. Such panning techniques are well known in the art and are described for example, in Wright et al., (supra).
Processes such as those described above, have been developed for the production of human antibodies using M13 bacteriophage display (Burton et al., 1994, bY Adv. Immunol. §7:191-280). Essentially, a cDNA library is generated from mRNA obtained from a population of antibody-producing cells. The mRNA encodes rearranged immunoglobulin genes and thus, the cDNA encodes the same. Amplified cDNA is cloned into M13 expression vectors creating a library of phage which express human Fab fragments on their surface. Phage which display the a:tibody of interest are selected by antigen binding and are propagated in bacteria to produce soluble human Fab immunoglobulin. Thus, in contrast to conventional monoclonal antibody synthesis, this procedure immortalizes DNA encoding human immunoglobulin rather than cells which express human immunoglobulin.
The procedures just presented describe the generation of phage which encode the Fab portion of an antibody molecule. However, the invention should not be construed to be limited solely to the generation of phage encoding Fab antibodies.
Rather, phage which encode single chain antibodies (scFv/phage antibody libraries) are also included in the invention. Fab molecules comprise the entire Ig light chain, that 1s, they comprise both the variable and constant region of the light chain, but include only the variable region and first constant region domain (CH1) of the heavy chain. Single chain antibody molecules comprise a single chain of protein comprising the Ig Fv fragment. An Ig Fv fragment includes only the variable regions of the heavy and light chains of the antibody, having no constant region contained therein. Phage libraries comprising scFv DNA may be generated following the procedures described in Marks et al. (1991, J. Mol. Biol. 222:581-597). Panning of phage so generated for the isolation of a desired antibody is conducted in a manner similar to that described for phage libraries comprising Fab DNA.
The invention should also be construed to include synthetic phage display libraries in which the heavy and light chain variable regions may be synthesized such that they include nearly all possible specificities (Barbas, 1995, Nature Medicine 1:837-839; de Kruif et al. 1995, J. Mol. Biol. 248:97-105). 1797061 _1 39
®
By the term “synthetic antibody” as used herein, is meant an antibody which is generated using recombinant DNA technology, such as, for example, an antibody expressed by a bacteriophage as described herein. The term should also be construed to mean an antibody which has been generated by the synthesis of a DNA molecule encoding the antibody and which DNA molecule expresses an antibody protein, or an amino acid sequence specifying the antibody, wherein the DNA or amino acid sequence has been oviained using synthetic DNA or amino acid sequence iechnoiogy which is available and well known in the art.
In one embodiment, the antibodies are made against amadorase (SEQ ID
NO:2), or against derivatives or fragments thereof. In another embodiment, the antibody is made against 3DG. In another aspect of the invention, antibodies can be made against other components of the 3DG pathway. Such an antibody may be prepared to bind and inhibit function of its cognate antigen. In another embodiment, the antibodies will be made against the other members of the alpha-dicarbonyl sugar family of molecules.
Inhibiting 3DG Synthesis, Production, Accumulation and Function by
Inhibiting Fructosamine Kinase Function Using Antisense Techniques in one embodiment, antisense nucieic acids complementary to fructosamine kinase mRNA can be used to block the expression or translation of the corresponding mRNA (see SEQ ID NO:1) (see Examples 20 and 22). Antisense oligonucleotides as well as expression vectors comprising antisense nucleic acids : complementary to nucleic acids encoding a fructosamine kinase such as amadorase can be prepared and used based on techniques routinely performed by those of skill in the art, and described, for example, in Sambrook et al. (1989, Molecular Cloning: A Laboratory
Manual, Cold Spring Harbor Laboratory, New York), in Ausubel et al. (1997, Current
Protocols in Molecular Biology, John Wiley & Sons, New York), and in Gerhardt et al. (eds., 1994, Methods for General and Molecular Bacteriology, American Society for
Microbiology, Washington, DC). The antisense oligonucleotides of the invention include, but are not limited to, phosphorothioate oligonucleotides and other modifications of oligonucleotides. Methods for synthesizing oligonucleotides, phosphorothioate oligonucleotides, and otherwise modified oligonucleotides are well known in the art (U.S. 1797061 _1 40
® Patent No: 5,034,506; Nielsen et al., 1991, Science 254: 1497). Oligonucleotides which contain at least one phosphorothioate modification are known to confer upon the oligonucleotide enhanced resistance to nucleases. Specific examples of modified oligonucleotides include those which contain phosphorothioate, phosphotriester, methyl phosphonate, short chain alkyl or cycloalkyl intersugar linkages, or short chain heteroatomic or heterocyclic intersugar (“backbone”) linkages. In addition, oligonucleotides having morpholino backbone structures (U.S. Patent No: 5,034,506) or polyamide backbone structures (Nielsen et al., 1991, Science 254: 1497) may also be used. js | The examples of oligonucleotide modifications described herein are not exhaustive and it is understood that the invention includes additional modifications of the antisense oligonucleotides of the invention which modifications serve to enhance the therapeutic properties of the antisense oligonucleotide without appreciable alteration of the basic sequence of the antisense oligonucleotide.
Phosphorothioate oligonucleotides, which have very low sensitivity to nuclease degradation, may be used. Some oligonucleotides may be prepared lacking CG motifs, which should help reduce toxicity for in vivo use.
In another aspect, antisense nucleic acids complementary to fructosamine kinase mRNAs, such as amadorase mRNAs, can be used to block fructosamine kinase function, and subsequently 3DG synthesis and function, by inhibiting translation of a fructosamine kinase mRNA. This can be done by transfecting an appropriate antisense sequence. Fructosamine kinase genes have been sequenced and based on these data, antisense nucleic acids may be readily prepared using techniques known to those skilled in the art.
The antisense oligonucleotide inhibitors of fructosamine kinase may be used independently in the cell culture systems essentially as described herein (see
Examples 20-22) or administered to animals. In one embodiment of the invention, the inhibitor of fructosamine kinase is an oligonucleotide, preferably from 5 to 25 nucleotides in length. In another embodiment, the oligonucleotide is from 25 to 50 nucleotides in length. In yet another embodiment, the oligonucleotide is from 50 to 100 1797061 1 4l
® nucleotides in length. In a further embodiment, the oligonucleotide is 100-400 nucleotides in length. :
Phosphorothioate oligonucleotides enter cells readily without the need for transfection or electroporation, which avoids subjccting the cclls to nonspecific inducers of a stress response that might confound the experiment. The oligonucleotides may be administered using several techniques known to those of skill in the art and described lierein. Effective minbitory concenirations for piiospiviotinoaies range beiween 1 and 50
KM, so a titration curve for diminution of fructosamine kinase signal in western blots can t= done to establish effective concentrations for each oligonucleotide used. Once inside - the cells, the phosphorothioate-oligonucleotides hybridize with the nascent mRNA very close to the transcriptional start site, a site having maximum effect for antisense oligonucleotide inhibition.
The ability to selectively inhibit transcription of fructosamine kinase or other genes with specific antisense molecules is expected to also allow the inhibition of induction of increased fructosamine kinase synthesis or other proteins involved in the synthesis or induction of 3DG in skin diseases or disorders. Thus, the invention provides methods for the use of antisense oligonucleotides that will be effective at diminishing steady-state levels of the protein of interest. Furthermore, inhibition of fructosamine kinase or other important proteins will reduce steady-state synthesis of proteins involved in the synthesis, production, accumulation, or function of 3DG. The invention should be construed to include other members of the alpha-dicarbonyl sugar family of molecules as well, and not just 3DG.
The invention should not be construed to include only fructosamine kinase inhibition using antisense techniques, but should also be construed to include inhibition of other genes and their proteins which are involved in a 3DG synthetic pathway.
Furthermore, the invention should not be construed to include only these particular antisense methods described herein.
Using Compounds to Inhibit 3DG Synthesis
In one embodiment the invention includes a method of inhibiting 3DG synthesis in the skin of a mammal, said method comprising administering to a mammal 1797061 _1 42
® an effective amount of an inhibitor of 3DG synthesis, or a derivative or modification thereof, thereby inhibiting 3DG synthesis in the skin of a mammal. Preferably, the mammal is a human.
In one embodiment, the inhibitor comprises from about 0.0001 % to about 15% by weight of the pharmaceutical composition. In one aspect, the inhibitor is administered as a controlled-release formulation. In another aspect the pharmaceutical composition comprises a lotion, a cream, a gel, a liniment, an ointment, a paste, a toothpaste, a mouthwash, an oral rinse, a coating, a solution, a powder, and a suspension.
In yet another aspect, the composition further comprises a moisturizer, a humectant, a demulcent, oil, water, an emulsifier, a thickener, a thinner, a surface active agent, a fragrance, a preservative, an antioxidant, a hydrotropic agent, a chelating agent, a vitamin, a mineral, a permeation enhancer, a cosmetic adjuvant, a bleaching agent, a depigmentation agent, a foaming agent, a conditioner, a viscosifier, a buffering agent, and a sunscreen.
The invention should be construed to include various methods of administration, including topical, oral, intramuscular, and intravenous.
In one aspect of the invention, the inhibitor of 3DG synthesis is an inhibitor of fructosamine kinase/amadorase. The inhibitor of fructosamine kinase can be a compound such as those of the formula (Formula XIX): i i XIX 2—C—H
J wherein X is -NR’-, -S§(0)-, -S(0),-, or -O-, R’ being selected from the group consisting of H, and linear or branched chain alkyl group (C;-C,) and an unsubstituted or substituted aryl group (Cs-Cio) or aralkyl group (C7-Cio) or
CH,(CHOR,):CH;OR; with n = 1-5 or CH(CH,OR2)(CHOR,),CH;OR; withn = 1-4 1797061 _1 43
® where R; is H, alkyl (C,-C,) or an unsubstituted or substituted aryl group (Cs-C)) or araalkyl group (C+-Cio); R is a substituent selected from the group consisting of H, an amino acid residue, a polyaminoacid residue, a peptide chain, a linear or branched chain aliphatic group (C,-Cg), which is unsubstituted or substituted with at least one nitrogen- or oxygen-containing substituent, a linear or branched chain aliphatic group (C,-Cyg), which is unsubstituted or substituted with at least one nitrogen- or oxygen-containing substituent and interrupied by at ieast one -O-, -NH-, or -NK3- moiety, RK; being iinear or branched chain alkyl group (C,-Cs) and an unsubstituted or substituted aryl group (Cs-
Cho) or aialkyl group (C;-Cjp), with the proviso that when X represents ~NR,-, R and R;, = together with the nitrogen atom to which they are attached, may also representa substituted or unsubstituted heterocyclic ring having from S to 7 ring atoms, with at least one of nitrogen and oxygen being the only heteroatoms in said ring, said ary! group (Cs-
Cio) or aralkyl group (C;-Cjp) and said heterocyclic ring substituents being selected from the group consisting of H, alkyl (C,-Cs), halogen, CF3, CN, NO; and -O-alky! (C;-Cé).
Other appropriate reactants include without limitation unsubstituted or substituted aryl (Cs-Ci) compounds, wherein the substituent may be alkyl (C,-C3), alkoxy, carboxy, nitro or halogen groups, unsubstituted or substituted alkanes, wherein the substituent may be at least one alkoxy group; or unsubstituted or substituted nitrogen- containing heterocyclic compounds, wherein the substituents may be alkyl (C;-C;), aryl (Ce-Cho), alkoxy, carboxy, nitro or halogen groups. Illustrative examples of the last- mentioned group of reactants include m-methyl-, p-methyl-, m-methoxy-, o-methoxy- and m-nitro-aminobenzenes, o- and p-aminobenzoic acids; n-propylamine, n-butylamine, 3-methoxypropylamine; morpholine and piperdine.
In one aspect of the invention, representative inhibitor compounds having the above formula include galactitol lysine, 3-deoxy sorbitol lysine, 3-deoxy-3-fluoro- xylitol lysine, and 3-deoxy-3-cyano sorbitol lysine and 3-O-methyl sorbitollysine.
Examples of known compounds that may be used as inhibitors in practicing this invention include, without limitation, meglumine, sorbitol lysine, galactitol lysine, and mannitol lysine. A preferred inhibitor is 3-O-methy! sorbitollysine. 1797061 _1 a4
® The compounds of the invention may be administered to, for example, a cell, a tissue, or a subject by any of several methods described herein and by others which are known to those of skill in the art. . The invention should not be construed to include only the modifications, derivatives, or substitutions of Formula XIX and the representative compounds described herein. The invention should also be construed to include other modifications not described herein, as well as compounds not described herein which are representative of
Formula XIX.
In one aspect, an inhibitor of the invention which inhibits en~-ymatic synthesis of 3DG may be synthesized in vitro using techniques known in the art (see
Example 8).
Compounds and Methods Useful for Inhibiting 3DG Function
The invention, as disclosed herein, relates to the involvement of 3DG in causing various skin diseases and disorders and to methods of inhibiting the function of 3DG in order to alleviate or treat 3DG associated skin diseases and disorders. The invention also relates to the involvement of 3DG in other diseases and disorders, such as gum diseases and disorders. Such gingival diseases and disorders include, but are not limited to, gingivitis, receding gums, and other 3DG or other alpha-dicarbonyl sugar associated gingival diseases and disorders. As described above, inhibition of 3DG function can be direct or indirect. Therefore, 3DG function may be inhibited or caused to decrease using many approaches as described herein. Inhibition of 3DG function may be assayed or monitored using techniques described herein as well as others known to those of skill in the art. Function can be measured directly or it can be estimated using techniques to measure parameters which are known to be correlative of 3DG function.
For example, protein crosslinking and protein production can be measured directly using techniques such as electrophoretic analysis (see Figure 12 and Examples 7 and 18) as well as other techniques (see Examples 21-24). The invention should be construed to include not only compounds useful for preventing 3DG induced crosslinking of molecules such as collagen, elastin, and proteoglycans, but it should also be construed to include compounds which inhibit crosslinking of other molecules as well. The invention 1797061 _1 45
® should also be construed to include the use of compounds to modulate other 3DG functions as well, such as apoptosis and formation of reactive oxygen species. It is known that in macrophage-derived cells apoptotic cell death can be induced by methyiglyoxal and 3DG (Okado et al., 1996, Biochem. Biophys. Res. Commun. 225:219- 224). In yet another aspect of the invention, an inhibitor of 3DG inhibits an active oxygen species (Vander Jagt et al., 1997, Biochem. Pharmacol. 53:1133-1140). The invention shouid be construed to include other aipha-dicarbonyi sugars as well. 3DG and its detoxification product 3DF can be measured several ways using cell, tissue, blood, plasma, and urine samples (see Examples 4, 5, 6, 14, 15, and 17) and FL, a product produced during the synthesis of 3DG, can also be measured (see Examples §), as can a precursor, FL3P (see Figures 1 and 2 and Examples 1, 2, and 3).
The invention discloses methods which are useful for inhibiting 3DG function in the skin. Such a method includes administering an effective amount of one or more inhibitors of 3DG function, or modifications or derivatives thereof, in a pharmaceutical composition to a subject.
In one aspect of the invention the 3DG function inhibitor inhibits protein crosslinking. In another aspect, the inhibitor inhibits formation of advanced glycation end product modified proteins. In yet another aspect, the 3DG function inhibitor comprises a structure of one of structural formulas I-XIX or is arginine or a derivative or modification thereof.
The skilled artisan would appreciate, based upon the disclosure provided herein, that inhibitors of protein crosslinking would inhibit formation of a wide variety of adducts such as those exemplified, pictorially, in Figure 18. The present invention is not in any way limited to the adducts disclosed herein, but includes such adducts as would be apparent to one skilled in the art based upon the disclosure provided herein, and such adducts as are known in the future.
In one embodiment, the inhibitor comprises from about 0.0001% to about 15% by weight of the pharmaceutical composition. In one aspect, the inhibitor is administered as a controlled-release formulation. In another aspect the pharmaceutical composition comprises a lotion, a cream, a gel, a liniment, an ointment, a paste, a . toothpaste, a mouthwash, an oral rinse, a coating, a solution, a powder, and a suspension. 1797061 _1 46
® In yet another aspect, the composition further comprises a moisturizer, a humectant, a demulcent, oil, water, an emulsifier, a thickener, a thinner, a surface active agent, a fragrance, a preservative, an antioxidant, a hydrotropic agent, a chelating agent, a vitamin, a mineral, a permeation enhancer, a cosmetic adjuvant, a bleaching agent, a depigmentation agent, a foaming agent, a conditioner, a viscosifier, a buffering agent, and a sunscreen.
The invention should be construed to include various methods of administration, including topical, oral, intramuscular, and intravenous. - By way of example, an inhibitor of 3DG function may be an isolated . nucleic acid encoding a nucleic acid which is complementary to a fructosamine kinase mRNA and in an antisense orientation. Other inhibitors include an antisense oligonucleotide, an antibody, or other compounds or agents such as small molecules.
It should be understood that compositions and methods for inhibiting pathways, events, and precursors leading to the synthesis or production of 3DG, may inhibit not only 3DG synthesis, but also its accumulation, and ultimately its function.
The invention should be construed to include compositions and methods to inhibit all pathways and precursors leading to 3DG synthesis (see Figures 1 and 2).
In another embodiment of the invention, the disclosure provides methods for directly inhibiting function of 3DG which is associated with various skin diseases and disorders. In one aspect, the method of inhibiting 3DG function in skin includes inhibiting 3DG with compounds such as those comprising structural formulas [-X VIII described herein. Compounds comprising these formulas can bind to 3DG and/or inhibits its function, as described herein. In addition, the invention includes other molecules which can bind to and block 3DG function, such as antibodies.
The method of the invention includes use of the following compounds, as illustrated by their structural formulas, to inhibit or block 3DG function.
Compounds which may be used in the practice of this invention include one or more (i. e., combinations) of the following:
Formula I comprises a structure wherein R; and R; are independently hydrogen, lower alkyl, lower alkoxy or an aryl group, or together with the nitrogen atom form a heterocyclic ring containing from 1 to 2 heteroatoms and 2 to 6 carbon atoms, the 1797061 _1 47
® second of said heteroatoms being selected from the group consisting of nitrogen, oxygen and sulfur, and includes their biocompatible and pharmaceutically acceptable acid addition salts.
The lower alkyl groups in the compounds of Formula (I) contain 1-6 carbon atoms and include methyl, ethyl, propyl, butyl, pentyl, hexyl, and the corresponding branched chain isomers thereof. The lower alkoxy groups have 1- 6 carbon atoms and include methoxy, ethoxy, propoxy, butoxy, penthyioxy, and hexyioxy and branched chain isomers thereof. The aryl groups include both substituted and unsubstituted phenyl and pyridyl groups. Typical aryl group substituents are those such as lower alkyl groups, fluoro, chloro, bromo, and iodo atoms.
H cc, I
I, I.
Of the compounds encompassed by Formula I, certain combinations of substituents are preferred. For instance, when R, is a hydrogen atom, then R; is preferably hydrogen or an aryl group.
When R, and R; are both alkyl groups, then the compounds having identical R, and R; alkyl groups are preferable.
When R, and R; together with the nitrogen atom form a heterocyclic ring containing from 1 to 2 heteroatoms, said heteroatoms being selected from the group consisting of nitrogen, oxygen and sulfur, the preferred heterocyclic rings will be morpholino, piperazinyl, piperidinyl and thiomorpholino, with the morpholino being most preferred.
Representative of the compounds of formula (I) are:
N, N-dimethylimidodicarbonimidic diamide; imidodicarbonimidic diamide;
N-phenylimidodicarbonimidic diamide;
N- (aminoiminomethyl)-4-morpholinecarboximidamide;
N- (aminoiminomethyl)-4-thiomorpholinecarboximidamide; 1797061 _1 48
®
N- (aminoiminomethyl)-4-methyl-1-piperazinecarboximidamide;
N- (aminoiminomethyl)-1-piperidinecarboximidamide;
N- (aminoiminomethyl)-1-pyrrolidinecarboximidamide;
N-(aminoiminomethyl)-I-hexahydroazepinecarboximidamide;(aminoiminomethyl)-I- hexahydroazepinecarboximidamide
N-4-pyridylimidodicarbonimidic diamide;
N, N-di-n-hexylimidodicarbonimidic diamide;
N, N-di-n-pentylimidodicarbonimidic diamide;
N, N-d-n-butylimidodicarbonimidic diamide; :
N, N-dipropylimidodicarbonimidic diamide;
N, N-diethylimidodicarbonimidic diamide; and the pharmaceutically acceptable acid addition salts thereof.
Formula II comprises a structure wherein Z is N or CH--; X, Y and Q are each independently a hydrogen, amino, heterocyclo, amino lower alkyl, lower alkyl or hydroxy group, and R; is hydrogen or an amino group, their corresponding 3-oxides, and includes their biocompatible and pharmaceutically acceptable salts.
The compounds of Formula II, wherein the X, Y or Q substituent is on a nitrogen of the ring, exist as tautomers, i. e., 2-hydroxypyrimidine can exist also as 2 (1H)-pyrimidine. Both forms may be used in practicing this invention. ~~" t= Ju II
SK, AN
RyHN' 2
The lower alkyl! groups of the compounds of formula II contain 1-6 carbon atoms and include methyl, ethyl, propyl, butyl, pentyl, hexyl, and the corresponding branched chain isomers thereof. The heterocycylic groups of the compounds of formula
II contain from 3-6 carbon atoms and are exemplified by groups such as pyrrolidinyl, - methylpyrrolidinyl, piperidinol, 2-methylpiperidino morpholino, and hexamethyleneamino. 1797061 _1 a
®
The “floating” X, Y, Q and NHR; bonds in Formula I indicate that these variants can be attached to the ring structure at any available carbon juncture. The hydroxy vanant of X, Y and Q can also be present on a nitrogen atom.
Of the compounds encompassed by Formula II, certain combinations of substituents are preferred. For instance, compounds having Rj as hydrogen, as a CH group, and at least one of X, Y or Q as another amino group, are preferred. The group of compounds where R; is hydrogen, Z is a CH group and one of X or Y is an amino iower alkyl group are also preferred. Another preferred group of compounds is those where R is hydrogen and Z is N (nitrogen). Certain substitution patterns are preferred, i. e., the 6- position (TUPAC numbering, Z. dbd. CH) is preferably substituted, and most preferably by an amino or a nitro containing group. Also preferred are compounds where two or more of X, Y and Q are other than hydrogen.
Representative of the compounds of formula II are: 4,5-diaminopyrimidine; 4-amino-5-aminomethyl-2-methylpyrimidine; 6- (piperidino)-2,4-diaminopyrimidine 3-oxide; 4,6-diaminopyrimidine; 4,5,6- triaminopyrimidine; 4,5-diamino-6-hydroxy pyrimidine; 2,4,5-triamino-6- hydroxypyrimidine; 2,4,6-triaminopyrimidine; 4,5-diamino-2-methylpyrimidine; 4,5- diamino-2,6-dimethyipyrimidine; 4,5-diamino-2-hydroxy-pyrimidine; and 4,5-diamino-2- hydroxy-6-methylpyrimidine.
Formula III comprises a structure wherein Ry is hydrogen or acyl, Rs is hydrogen or lower alkyl, Xa is a substituent selected from the group consisting of lower - alkyl, carboxy, carboxymethyl, or a phenyl or pyridyl group, optionally substituted by halogen, lower alkyl, hydroxy lower alkyl, hydroxy, or acetylamino with the proviso that when X is a phenyl! or pyridyl group, optionally substituted, then Rs is hydrogen and includes their biocompatible and pharmaceutically acceptable acid addition salts.
The lower alkyl groups in the compounds of Formula III contain 1-6 carbon atoms and include methyl, ethyl, propyl, butyl, pentyl, hexyl, and the corresponding branched chain isomers thereof. The halo variants can be fluoro, chloro, bromo, or iodo substituents. 1797061 _1 50
® Rs H NH
FD SE II
Equivalent to the compounds of Formula III for the purpose of this invention are the biocompatible and pharmaceutically acceptable salts thereof.
Such salts can be derived from a variety of organic and inorganic acids including but not limited to methanesulfonic, hydrochloric, toluenesulfonic, sulfuric, maleic, acetic and phosphoric acids. : Of the compounds encompassed by Formula III, certain substituents are : preferred. For instance, Ry is preferably a methyl group and Xa is preferably a phenyl or substituted phenyl group.
Representative of the compounds of Formula III are:
N-acetyl-2-(phenylmethylene)hydrazinecarboximidamide; 2- (phenylmethylene)hydrazinecarboximidamide; 2-(2,6-dichlorophenylmethylene) hydrazinecarboximidamide pyridoxal guanylhydrazone; pyridoxal phosphate guanylhydrazone; 2-(1-methylethylidene)hydrazinecarboximidamide; pyruvic acid guanylhydrazone; 4-acetamidobenzaldehyde guanylhydrazone; 4-acetamidobenzaldehyde
N-acetylguanylhydrazone; acetoacetic acid guanylhydrazone; and the biocompatible and pharmaceutically acceptable salts thereof.
Formula IV comprises a structure wherein Rg is hydrogen or a lower alkyl group, or a phenyl group, optionally substituted by 1-3 halo, amino, hydroxy or lower alkyl groups, R; is hydrogen, a lower alkyl group, or an amino group and Rg is hydrogen or a lower alkyl group and includes their biocompatible and pharmaceutically acceptable acid addition salts.
The lower alkyl groups in the compounds of Formula IV contain 1-6 carbon atoms and include methyl, ethyl, propyl, butyl, pentyl, hexyl, and the corresponding branched chain isomers thereof. The halo variants can be fluoro, chloro, bromo, or iodo substituents. Where the phenyl ring is substituted, the point or points of substitution may be ortho meta or para to the point of attachment of the phenyl ning to the straight chain of the molecule. 1797061 _t >
@
Rs NR;
Iv
HoN——N——C ——NHRg
Representative of the compounds of Formula IV are: equival n- butanehydrazonic acid hydrazide; 4-methylbenzamidrazone; N- methylbenzenecarboximidic acid hydrazide; benzenecarboximidic acid 1- methyihydrazide; 3-chiorobenzamidrazone; 4-chiorobenzamidrazone; 2- fluorobenzamidrazone; 3-fluorobenzamidrazone; 4-fluorobenzamidrazone; 2- hydroxybenzamidrazone; 3-hydroxybcnzamidrazone, 4-hydroxybenzamidrazone: 2- aminobenzamidrazone; benzenecarbohydrazonic acid hydrazide; benzenecarbohydrazonic acid 1-methylhydrazide; and the biocompatible and pharmaceutically acceptable salts thereof.
Formula V comprises a structure wherein Rg and Ro are independently hydrogen, hydroxy, lower alkyl or lower alkoxy, with the proviso that the “floating” amino group is adjacent to the fixed amino group, and includes their biocompatible and pharmaceutically acceptable acid addition salts.
The lower alkyl groups of the compounds of Formula V contain 1-6 carbon atoms and include methyl, ethyl, propyl, butyl, pentyl, hexyl, and the corresponding branched chain isomers thereof. Likewise, the lower alkoxy groups of the compounds of formula V contain 1-6 carbon atoms and include methoxy, ethoxy, propoxy, butoxy pentoxy, hexoxy, and the corresponding branched chain isomers thereof.
Rio
HN Sa z Vv
H,N LU
Equivalent to the compounds of Formula V for the purpose of this : invention are the biocompatible and pharmaceutically acceptable salts thereof. 1797061 _1 32
®
Such salts can be derived from a variety of organic and inorganic acids including but not limited to methanesulfonic, hydrochloric, toluenesulfonic, sulfuric, maleic, acetic and phosphoric acids.
Of the compounds encompassed by Formula V, certain substituents are preferred. For instance, when Ry is hydrogen then Rg is preferably also hydrogen.
Representative of the compounds of Formula V are: 3,4-diaminopyridine; 2,3-diaminopyridine; 5-methyl-2,3-diaminopyridine; 4-methyl-2,3-diaminopyridine; 6- methyl-2,3-pyridinediamine; 4,6-dimethyl-2,3-pyridinediamine; 6-hydroxy-2,3-diaminopyridine; 6-ethoxy-2,3-diaminopyridine; 6-dimethylamino-2,3- diaminopyridine; diethyl 2-(2,3-diamino-6-pyridyl) malonate; 6 (4-methyl-1- pyperazinyl)-2,3-pyridinediamine; 6-(methylthio)-5 (trifluoromethyl)-2,3- pyridinediamine; 5-(trifluoromethyl)-2,3-pyridinediamine; 6-(2,2,2-trifluorethoxy)-5- (trifluoromethyl)-2,3-pyridinediamine; 6-chloro-5-(trifluoromethyl)-2, 3- pyridinediamine; 5-methoxy-6-(methylthio)-2, 3-pyridinediamine; 5-bromo-4-methyl- 2,3-pyridinediamine; 5-(trifluoromethyl-2,3-pyridinediamine; 6-bromo-4-methyl-2,3- pyridinedlamine; S-bromo-6-methyl-2,3-pyndinediamine; 6-methoxy-3,4- pyridinediamine; 2-methoxy-3,4-pyridinediamine; 5-methyl-3,4-pyridinediamine; 5- methoxy-3,4-pyridinediamine; S-bromo-3,4-pyridinediamine; 2,3,4-pyridinetriamine; 2,3,5-pyridinetriamine; 4-methyl-2,3,6-pyridinetriamine; 4-(methylthio)-2,3,6- pyridinetriamine; 4-ethoxy-2,3,6-pyridinetriamine; 2,3,6-pyridinetriamine; 3,4,5- pyridinetriamine; 4-methoxy-2,3-pyridinediamine; 5-methoxy-2,3-pyndinediamine; 6- methoxy-2,3-pyridinediamine; and the biocompatible and pharmaceutically acceptable salts thereof.
Formula VI comprises a structure wherein nis 1 or 2, Ry is an amino group or a hydroxyethyl group, and R,; is an amino, a hydroxyalkylamino, a lower alkyl group or a group of the formula alk-Ya wherein alk is a lower alkylene group and Ya is selected from the group consisting of hydroxy, lower alkoxy, lower alkylthio, lower alkylamino and heterocyclic groups containing 4-7 ring members and 1-3 heteroatoms; with the proviso that when R,; is a hydroxyethyl group then R, is an amino group; their biocompatible and pharmaceutically acceptable acid addition salts. 1797061 _I 33 :
®
EY
N
: ~ v
HN——R;,
The lower alley, lower alkylene and lower alkoxy grouns referred to herein contain 1-6 carbon atoms and include methyl, methylene, methoxy, ethyl, ethylene, ethoxy, propyl, propylene, propoxy, butyl, butylene, butoxy, pentyl, pentylene, pentyloxy, hexyl, hexylene, hexyloxy and the corresponding branched chain isomers thereof. The heterocyclic groups referred to herein include 4-7 member rings having at least one and up to 3 heteroatoms therein.
Representative heterocyclic groups are those such as morpholino, piperidino, piperazino, methylpiperazino, and hexamethylenimino.
Equivalent to the compounds of Formula VI for the purpose of this invention are the biocompatible and pharmaceutically acceptable salts thereof.
Such salts can be derived from a variety of organic and inorganic acids including but not limited to, methanesulfonic, hydrochloric, toluenesulfonic, sulfuric, maleic, acetic and phosphoric acids.
Of the compounds encompassed by Formula VI, certain combinations of substituents are preferred. For instance, when Ry is a hydroxyethyl group, then Ry; is an amino group. When R,; is an amino group, then R;; is preferably a hydroxy lower alkylamino, a lower alkyl group or a group of the formula alk-Y, wherein alk is a lower alkylene group and Y is selected from the group consisting of hydroxy, lower alkoxy, lower alkylthio, lower alkylamino and heterocyclic groups containing 4-7 ring members and 1-3 heteroatoms.
Representative of the compounds of Formula VI are: 1-amino-2-[2-(2-hydroxyethyl) hydrazino]-2-imidazoline; 1-amino-[2-(2- hydroxyethyl) hydrazino]-2-imidazoline; 1-amino-2-(2-hydroxyethylamino)-2- imidazoline; 1-(2-hydroxyethyl)-2-hydrazino-1 4,5,6-tetrahydropyrimidine; 1-(2- hydroxyethyl) 2-hydrazino-2-imidazoline; 1-amino-2-([2-(4-morpholino) ethylJamino) 1797061 _1 54
® imidazoline; ([2-(4-morpholino) ethyl] amino) imidazoline; 1-amino-2-([3- (4- morpholino) propyl] amino) imidazoline; 1-amino-2-([3-(4-methylpiperazin-1-yl) propyl}-amino) imidazoline; 1-amino-2-([3-(dimethylamino)propyl] amino)imidazoline; 1-amino-2-[ (3-ethoxypropyl) amino] imidazoline; 1-amino-2-([3-(1-imidazolyl)propyl] amino) imidazoline; 1-amino-2-(2-methoxyethylamino)-2-imidazoline; (2- methoxyethylamino)-2-imidazoline; 1-amino-2-(3-isopropoxypropylamino)-2- imidazoline; 1-amino-2-(3-methylthiopropylamino)-2-imidazoline; 1-amino-2 [3-(1- piperidino) propylamino) imidazoline; 1-amino-2-[2, 2-dimethyl-3-(dimethylamino) propylamino]-2-imidazoline; 1-amino-2-(neopentylamino)-2-imidazoline; and the biocompatible and pharmaceutically acceptable salts thereof.
Formula VII comprises a structure wherein Rj is a hydrogen or an amino group, R14 and Rs are independently an amino group, a hydrazino group, a lower alkyl group, or an aryl group with the proviso that one of R;3, Ri4 and Rs must be an amino or a hydrazino group, and includes their biologically or pharmaceutically acceptable acid or alkali addition salts.
The lower alkyl groups referred to above preferably contain 1-6 carbon atoms and include methyl, ethyl, propyl, butyl, pentyl, hexyl, and the corresponding branched-chain isomers thereof.
The aryl groups encompassed by the Formula VII are those containing 6- 10 carbon atoms, such as phenyl and lower alkyl substituted-phenyl, e. g. tolyl and xylyl, and phenyl substituted by 1-2 halo, hydroxy or lower alkoxy groups.
N
(Or vil
N——N Rij
The halo atoms in the Formula VII may be fluoro, chloro, bromo, or iodo.
The lower alkoxy groups contain 1-6, and preferably 1-3, carbon atoms and are illustrated by methoxy, ethoxy, n-propoxy, isopropoxy and the like.
For the purposes of this invention equivalent to the compounds of Formula
V1! are the biologically and pharmaceutically acceptable acid addition salts thereof. Such acid addition salts may be derived from a vanety of organic and inorganic acids such as 1797061 _1 33
@ sulfuric, phosphoric, hydrochloric, hydrobromic, sulfamic, citric, lactic, maleic, succinic, tartaric, cinnamic, acetic, benzoic, gluconic, ascorbic and related acids.
Of the compounds encompassed by Formula VII, certain combinations of substituents are preferred. For instance, when Ry; is hydrogen, then R4 is preferably an amino group. When Ry is a hydrazino group, then R is preferably an amino group.
Representative of the compounds of Formula VII are: 3,4-diamino-5-meihyi-1i,2,4-irazoie; 3,5-dimeinyl-4H-1,2,4-iriuc0i-4-amine; 4-iriazoi-4- amine; 4-triazol-4-amine; 4-triazol-4-amine; 2, 4-triazole-3,4-diamine; 5-(1-ethylpropyl)- 4H-1,2 4-triazole-3,4-diamine; 5-isopropyl-4H-1,2,4-triazc!e-3,4-diamine; 5-cyclohexyl- 4H-1,2,4-triazole-3,4-diamine; 5-methyl-4H-1,2,4-triazole-3,4-diamine; 5-phenyl-4H- 1,2,4-triazole-3,4-diamine; 5-propyl-4H-1,2,4-triazole-3,4-diamine; 5-cyclohexyl-4H- 1,2,4-triazole-3,4-diamine.
Formula VIII comprises a structure wherein Re is hydrogen or an amino group,
R;7 is an amino group or a guanidino group when R;¢ is hydrogen, or R;7 is an amino group when Rye is an amino group, Rs and Ry are independently hydrogen, hydroxy, a lower alkyl group, a lower alkoxy group, or an aryl group, and includes their biologically or pharmaceutically acceptable acid or alkali addition saits.
The lower alkyl groups in the compounds of Formula VIII preferably contain 1-6 carbon atoms and include methyl, ethyl, propyl, butyl, pentyl, hexyl, and the corresponding branched chain isomers thereof. The lower alkoxy groups likewise contain 1-6, and preferably 1-3, carbon atoms, and are illustrated by methoxy, ethoxy, n-. propoxy, isopropoxy and the like.
Rye
Ris NG [=~ vm pe
Rig 1797061 _| 56
_
The aryl groups encompassed by the above formula are those containing 6-10 carbon atoms, such as phenyl and lower alkyl substituted-phenyl, e. g., tolyl and xylyl, and phenyl substituted by 1-2 halo, hydroxy or lower alkoxy groups.
The halo atoms in the above Formula VIII may be fluoro, chloro, bromo or iodo.
The biologically or pharmaceutically acceptable salts of the compounds of
Formula VIII are those tolerated by the mammalian body and include acid addition salts derived from a variety of organic and inorganic acids such as sulfuric, phosphoric, hydrochloric, sulfamic, citric, lactic, maleic, succinic, tartaric, cinnamic, acetic, benzoic, gluconic, ascorbic and related acids. Of the compounds encompassed by Formula VIII, certain substituents are preferred. For instance, the compounds wherein R, is an amino group are preferred group.
Representative of the compounds of Formula VIII are: 2-guanidinobenzimidazole; 1,2-diaminobenzimidazole; 1,2-diaminobenzimidazole hydrochloride; 5-bromo-2-guanidinobenzimidazole; 5-methoxy-2- guanidinobenzimidazole; 5-methylbenzimidazole-1,2-diamine; S-chlorobenzimidazole- 1,2-diamine; and 2,5-diaminobenzimidazole;
Formula IX, comprising Ry0-CH- (NHR21)-COOH (IX), is a structural formula wherein Ry is selected from the group consisting of hydrogen; lower alkyl, optionally substituted by one or two hydroxyl, thiol, phenyl, hydroxyphenyl, lower alkylthiol, carboxy, aminocarboxy or amino groups and Rj), is selected from the group of hydrogen and an acyl group; and their biocompatible and pharmaceutically acceptable acid addition salts.
R,p-CH-(NHRZ,)-CO,H IX }
The lower alkyl groups of the compounds of Formula IX contain 1-6 carbon atoms and include methyl, ethyl, propyl, butyl, pentyl, hexyl and the corresponding branched chain isomers thereof.
The acyl groups referred to herein are residues of lower alkyl, aryl and heteroaryl carboxylic acids containing 2-10 carbon atoms. They are typified by acetyl, propionyl, butanoyl, valeryl, hexanoyl and the corresponding higher chain and branched 1797061 _| 37
® chain analogs thereof. The acyl radicals may also contain one or more double bonds and/or an additional acid functional group e. g., glutaryl or succinyl.
The amino acids utilized herein can possess either the L & D; stereochemical configuration or be utilized as mixtures thereof. However, the L- configuration is preferred.
Equivalent to the compounds of Formula IX for the purposes of this invention are the biocompatibie and pharmaceuticaiiy acceptable saiis thereof. Such saiis can be derived from a variety of inorganic and organic acids such as methanesulfonic, hydrochloric, toluenesulfonic, sulfuric, maleic, acetic, phosphoric and related acids.
Representative compounds of the compounds of Formula IX are: lysine; 2,3-diaminosuccinic acid; cysteine and the biocompatible and pharmaceutically acceptable salts thereof.
Formula X comprises a structure wherein R;; and R;; are independently hydrogen, an amino group or a mono-or di-amino lower alkyl group, R24 and Rs are independently hydrogen, a lower alkyl group, an aryl group, or an acyl group with the proviso one of Ry; and R,; must be an amino group or an mono-or diamino lower alkyl group, and includes their biologically or pharmaceutically acceptable acid or alkali addition salts.
The lower alkyl groups of the compounds of Formula X contain 1-6 carbon atoms and include methyl, ethyl, propyl, butyl, pentyl, hexyl, and the corresponding branched-chain isomers thereof. The mono-or di-amino alkyl groups are . lower alkyl groups substituted in the chain by one or two amino groups.
Raa _—N
TT Vi R24 X ret
Ras
The aryl groups referred to herein encompass those containing 6-10 carbon atoms, such as phenyl and lower alkyl substituted-phenyl, e. g., tolyl and xylyl, 1797061 _1 58
® and phenyl substituted by 1-2 halo, hydroxy and lower alkoxy groups. The acyl groups referred to herein are residues of lower alkyl, aryl and heteroaryl carboxylic acids containing 2-10 carbon atoms. They are typified by acetyl, propionyl, butanoyl, valeryl, hexanoyl and the corresponding higher chain and branched chain analogs thereof. The acyl radicals may also contain one or more double bonds and/or an additional acid functional group, e. g., glutaryl or succinyl.
The heteroaryl groups referred to above encompass aromatic heterocyclic groups containing 3-6 carbon atoms and one or more heteroatoms such as oxygen, nitrogen or sulfur. .
The halo atoms in the above Formula X may be fluoro, chloro, bromo and iodo. The lower alkoxy groups contain 1-6, and preferably 1-3, carbon atoms and are illustrated by methoxy, ethoxy, propoxy, isopropoxy and the like.
The term biologically or pharmaceutically acceptable salts refers to salts which are tolerated by the mammalian body and are exemplified by acid addition salts derived from a variety of organic and inorganic acids such as sulfuric, phosphoric, hydrochloric hydrobromic, hydroiodic, sulfamic, citric, lactic, maleic, succinic, tartaric, cinnamic, acetic, benzoic, gluconic, ascorbic and related acids.
Of the compounds encompassed by Formula X, certain combinations of substituents are preferred. For instance, when Rj; and Ry; are both amino groups, then
Raq and Rys are preferably both hydrogen atoms. When Ry; or R;; is amino group and one of Ry4 or Rys is an aryl group, the other of Rz4and R;sis preferably hydrogen.
Representative compounds of Formula X are: 1,2-diamino-4-phenyl(l
H}imidazole; 1,2-diaminoimidazole; 1-(2, 3-diaminopropyl) imidazole trihydrochloride; 4-(4-bromophenyl)imidazole-1,2-diamine; 4-(4-chlorophenyl)imidazole-1,2-diamine; 4- (4-hexylphenyl)imidazotle-1,2-diamine; 4-(4-methoxyphenyl)imidazole-1,2-diamine; 4- phenyl-5-propylimidazole-1,2-diamine; 1,2-diamino-4-methylimidazole; 1,2-diamino- 4,5-dimethylimidazole; and 1,2-diamino-4-methyl-5-acetylimidazole.
Formula XI comprises a structure wherein Rye is a hydroxy, lower alkoxy, amino, amino lower alkoxy, mono-lower alkylamino lower alkoxy, di-lower alkylamino lower alkoxy or hydrazino group, or a group of the formula--N Rpg R30, wherein Ry is hydrogen or lower alkyl, and Rs is an alkyl group of 1-20 carbon atoms, an aryl group, a 1797061 _1 59
® hydroxy lower alkyl group, a carboxy lower alkyl group, cyclo lower alkyl group or a heterocyclic group containing 4-7 ring members and 1-3 heteroatoms; or Ry9 and R3, together with the nitrogen form a morpholino, piperidinyl, or piperazinyl group; or when
Ry is hydrogen, then Rj can also be a hydroxy group; Ry7 is 0-3 amino or nitro groups, and/or a hydrazino group, a hydrazinosulfonyl group, a hydroxyethylamino or an amidino group; Rag is hydrogen or one or two fluoro, hydroxy, lower alkoxy, carboxy, lower alkylamino, di-lower alkylamino or a hydroxy lower alkylamino groups; with the proviso that when Ry is hydroxy or lower alkoxy, then Ry; is a non-hydrogen substituent; with the further proviso that when Ry is hydrazino, then there must be at least two non- hydrogen substituents on the phenyl ring; and with the further proviso that when Ry; is hydrogen, then Rjo can also be an aminoimino, guanidyl, aminoguanidinyl or diaminoguanidyl group, and includes their pharmaceutically acceptable salts and hydrates.
The lower alkyl groups of the compounds of Formula XI contain 1-6 carbon atoms and include methyl, ethyl, propyl, butyl, pentyl, hexyl, and the corresponding branched-chain isomers thereof. The cycloalkyl groups contain 4-7 carbon atoms and are exemplified by groups such as cyclobutyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl and cycloheptyl groups. @)
Raz \ XI
Ras
The heterocyclic groups of the compounds of Formula XI include 4-7 membered rings having at least one and up to 3 heteroatoms, e. g., oxygen, nitrogen, or sulfur, therein, and including various degrees of unsaturation.
Representatives of such heterocyclic groups are those such as morpholino, piperidine, homopiperidino, piperazino, methylpiperazino, hexamethylenimino, pyridyl, 1797061 _1 60
® methylpyridyl, imidazolyl, pyrrolidinyl, 2,6-dimethylmorpholino, furfural, 1,2,4- triazoylyl, thiazolyl, thiazolinyl, methylthiazolyl, and the like.
Equivalent to the compounds of Formula XI for the purposes of this invention are the biocompatible and pharmaceutically acceptable salts and hydrates thereof, Such salts can be derived from a variety of organic and inorganic acids, including, but not limited to, methanesuifonic, hydrochloric, hydrobromic, hydroiodic, toluenesulfonic, sulfuric, maleic, acetic and phosphoric acids.
When the compounds of Formula XI contain one or more asymmetric carbon atoms, mixtures of enantiomers, as well as the pure (R) or (S) enantiomeric form can be utilized in the practice of this invention.
In addition, compounds having a 3,4-diamino- or 2,3-diamino-35-fluoro substituent pattern on the phenyl ring are highly preferred.
Representative compounds of formula XI of the present invention are: 4- (cyclohexylamino-carbonyl)-o-phenylene diamine hydrochloride; 3,4-diaminobenzhydrazide; 4-(n-butylamino-carbonyl)-o-phenylene-diamine dihydrochloride; 4-(ethylamino-carbonyl)-o-phenylene-diamine dihydrochloride; 4-carbamoyl-o-phenyiene diamine hydrochloride; 4-(morpholino-carbonyl)-o-phenylene- diamine hydrochlonde; 4-[(4-morpholino)hydrazino-carbonyl]-o-phenylenediamine; 4. (1-piperidinylamino-carbonyl)-o-phenylenediamine dihydrochloride; 2,4-diamino-3- hydroxybenzoic acid; 4,5-diamino-2-hydroxybenzoic acid; 3,4-diaminobenzamide; 3,4- diaminobenzhydrazide; 3,4-diamino-N,N-bis ( 1-methylethyl) benzamide; 3,4-diamino-
N, N-diethylbenzamide; 3,4-diamino-N,N-dipropylbenzamide; 3,4-diamino-N-(2- furanylmethyl) benzamide 3,4-diamino-N-(2-methylpropyl) benzamide; benzamide; 3,4- diamino-N-(5-methyl-2-thiazolyl) benzamide; 3,4-diamino-N-(6-methoxy-2- benzothiazolyl)benzamide; 3,4-diamino-N- (6-methoxy-8-quinolinyl)benzamide; 3,4- diamino-N-(6-methyl-2-pyridinyl)benzamide; 3,4-diamino-N-(1H-benzimidazol-2- yDbenzamide; 3,4-diamino-N-(2-pyridinyl)benzamide; 3,4-diamino-N-(2-thiazolyl) benzamide; 3,4-diamino-N-(4-pyridinyl)benzamide; 3,4-diamino-N-[9H-pyrido(3,4- b)indol-6-yl] benzamide 3,4-diamino-N-butylbenzamide; 3,4-diamino-N- cyclohexylbenzamide; 3,4-diamino-N-cyclopentylbenzamide; 3,4-diamino-N- decylbenzamide; 3,4-diamino-N-dodecylbenzamide; 3,4-diamino-N-methylbenzamide; 1797061 _1 61
® 3,4-diamino-N-octylbenzamide; 3,4-diamino-N-pentylbenzamide; 3,4-diamino-N- phenylbenzamide; 4-(diethylamino-carbonyl)-o-phenylene diamine; 4-(tert-butylamino- carbonyl)-o-phenylene diamine; 4-isobutylamino-carbonyl)-o-phenylene diamine; 4- (neopentylamino-carbonyl)-o-phenylene diamine; 4-(dipropylamino-carbonyl)-o-
phenylene diamine; 4-(n-hexylamino-carbonyl)-o-phenylene diamine; 4-(n-decylamino- carbonyl)-o-phenylene diamine; 4-(n-dodecylamino-carbonyl)-o-phenylene diamine; 4- (1-hexadecylamino-carbonyl)-o-phenylene diamine; 4-(octadecylamino-carbonyl)-o- phenylene diamine;
: 4-(hydroxylamino-carbonyl)-o-phenylene diamine; 4-(2-hydroxyethylamino-cafbonyl)-o-
phenylene; 4-[(2-hydroxyethylamino)ethylamino-carbonyl]-o-phenylene diamine; 4-[(2- hydroxyethyloxy)ethylamino-carbonyl]-o-phenylene diamine; 4-(6-hydroxyhexylamino- carbonyl)-o-phenylene diamine; 4-(3-ethoxypropylamino-carbonyl)-o-phenylene diamine; 4-(3-isopropoxypropylamino-carbonyl)-o-phenylene diamine; 4-(3- dimethylaminopropylamino-carbonyl)-o-phenylene diamine; 4-{4-(2-
aminocthyl)morpholino-carbonyl]}-o-phenylene diamine; 4-[4-(3-aminopropyl) morpholino-carbonyl}-o-phenylene diamine; 4-N-(3-aminopropyl)pyrrolidino-carbonyl]- o-phenylene diamine; 4-[3-(N-piperidino)propylamino-carbonyl}-o-phenylene diamine; 4-[3-(4-methylpiperazinyl)propylamino-carbonyl}-o-phenylene diamine; 4-(3- imidazoylpropylamino-carbonyl)-o-phenylene diamine; 4-
(3-phenylpropylamino-carbonyl)-o-phenylenediamine; 4-[2-(N, N-diethylamino) ethylamino-carbonyl]-o-phenylene diamine; 4-(imidazolylamino-carbonyl!)-o-phenylene diamine; 4- (pyrrolidinyl-carbonyl)-o-phenylene diamine; 4- (piperidino-carbonyl)-o- phenylene diamine; 4-(1-methylpiperazinyl-carbonyl)-o-phenylene diamine; 4- (2,6- dimethylmorpholino-carbony!)-o-phenylenediamine; 4-(pyrrolidin-1-ylamino-carbonyl)-
o-phenylene diamine; 4-thomopiperidin-1-ylamino-carbonyl)-o-phenylene diamine; 4-(4- methylpiperazine-1-ylamino-carbonyl)-o-phenylene diamine; 4-(1,2,4-triazol-1-ylamino- carbonyl)-o-phenylene diamine; 4-(guanidinyl-carbonyl)-o-phenylene diamine; 4- (guanidinylamino-carbonyl)-o-phenylene diamine; 4-aminoguanidinylamino-carbony!)-o- phenylene diamine; 4-(diaminoguanidinylamino-carbonyl)-o-phenylene diamine; 3,4-
aminosalicylic acid 4-guanidinobenzoic acid,
1797061_t 62
® 3,4-diaminobenzohydroxamic acid; 3,4,5-triaminobenzoic acid; 2,3-diamino-5-fluoro- benzoic acid; and 3,4-diaminobenzoic acid; and their pharmaceutically acceptable salts and hydrates.
Formula XII comprises a structure wherein Rj, is hydrogen, a lower alkyl or hydroxy group; Rj; is hydrogen, hydroxy lower alkyl, a lower alkoxy group, a lower alkyl group, or an aryl group; Rs; is hydrogen or an amino group; and their biologically or pharmaceutically acceptable acid addition salts. .
The lower alkyl groups of the compounds of Formula XII contain 1-6 carbon atoms and include methyl, ethyl, propyl, butyl, pentyi, hexyl, and the corresponding branched-chain isomers thereof. Likewise, the lower alkoxy groups contain 1-6, and preferably 1-3, carbon atoms and include methoxy, ethoxy, isopropoxy, propoxy, and the like. The hydroxy lower alkyl groups include primary, secondary and tertiary alcohol substituent patterns.
Ras Nr wy
R32 T Io! Xa
N .
L,
The aryl groups of the compounds of Formula XII encompass those containing 6-10 carbon atoms, such as phenyl and lower alkyl substituted-phenyl, €. g., tolyl and xylyl, and phenyl substituted by 1-2 halo, hydroxy and lower alkoxy groups.
The halo atoms in the above Formula XII may be fluoro, chloro, bromo, and iodo.
The term biologically or pharmaceutically acceptable salts refers to salts which are tolerated by the mammalian body and are exemplified by acid addition salts derived from a variety of organic and inorganic acids such as sulfuric, phosphoric, hydrochloric hydrobromic, hydroiodic, sulfamic, citric, lactic, maleic, succinic, tartaric, cinnamic, acetic, benzoic, gluconic, ascorbic and related acids. : 1797061 _| 63
®
Of the compounds encompassed by Formula XII, certain substituents are preferred. For instance, the compounds wherein Rj; is hydroxy and Rj; is an amino group are preferred.
Representative of the compounds of Formula XII are: 3,4-diaminopyrazole; 3,4-diamino-5-hydroxypyrazole; 3,4-diamino-5-methylpyrazole . 3,4-diamino-5-methoxypyrazole; 3,4-diamino-5-phenylpyrazole; -methyl-3-hydroxy- : 4,5-diaminopyrazole; 1-(2-hydroxyethyl)-3-hydroxy-4,5-diaminopyrazole; 1- (2-hydroxyethyl)-3-phenyl-4,5-diaminopyrazole; 1-(2-hydroxyethyl)-3-methyi-4,5- diaminopyrazole; 1-(2-hydroxyethyl)-4,5-diaminopyrazole; 1-(2-hydroxypropyl)-3- ~ hydroxy-4,5-diaminopyrazole; 3-amino-5-hydroxypyrazole; and 1- (2-hydroxy-2- methylpropyl)-3-hydroxy-4,5-diaminopyrazole; and their biologically and pharmaceutically acceptable acid addition salts.
Formula XIII comprises a structure where n = 1-6, wherein X is -NR;-, -
S(O)-, -S(O);-, or -O-, R, being selected from the group consisting of H, linear chain alkyl group (C,-C¢) and branched chain alkyl group (C;-C¢). Y = -N-, -NH-, or —O- and
Z is selected from the group consisting of H, linear chain alkyl group (C;-C¢) and branched chain alkyl group (C,-Cs).
X—R
FRY. NA XI : \ I
For Formula XIV, wherein R37 is a lower alkyl group, or a group of the formula NR41NR42, wherein Ry, is hydrogen and Ry; is a lower alkyl group or a hydroxy (lower) alkyl group; or Rs; and Ry; together with the nitrogen atom are a heterocyclic group containing 4-6 carbon atoms and, in addition to the nitrogen atom, 0-1 oxygen, nitrogen or sulfur atoms; Rg is hydrogen or an amino group; Rj is hydrogen or an amino group; Ry is hydrogen or a lower alkyl group; with the proviso that at least one 1797061 _1 64
® of Riz, Ry, and Ryo is other than hydrogen; and with the further proviso that R;; and Rss cannot both be amino groups; and their pharmaceutically acceptable acid addition salts.
The lower alkyl groups of the compounds of Formula XIV contain 1-6 carbon atoms and include methyl, ethyl, propyl, butyl, pentyl, hexyl, and the corresponding branched-chain isomers thereof.
NH, ——N——C==N——nNR37R3s XIv
Ro H Rag
The heterocyclic groups formed by the NR41 Ry; greup are 4-7 membered rings having at 0-1 additional heteroatoms, e. g., oxygen, nitrogen, or sulfur, therein, and including various degrees of unsaturation. Representatives of such heterocyclic groups are those such as morpholino, piperidino, hexahydroazepino, piperazino, methylpiperazino, hexamethylenimino, pyridyl, methylpyridyl, imidazolyl, pyrrolidinyl, 2,6-dimethylmorpholino, 1,2,4-triazoylyl, thiazolyl, thiazolinyl, and the like.
Equivalent to the compounds of Formula XIV for the purposes of this invention are the biocompatible and pharmaceutically acceptable salts thereof. Such salts can be derived from a variety of organic and inorganic acids, including, but not limited to, methanesulfonic, hydrochloric, hydrobromic, hydroiodic, toluenesulfonic, sulfuric, maleic, acetic and phosphoric acids.
When the compounds of Formula XIV contain one or more asymmetric carbon atoms, mixtures of enantiomers, as well as the pure (R) or (S) enantiomeric form can be utilized in the practice of this invention.
Of the compounds encompassed by Formula XIV, certain combinations of substituents are preferred. For instance, compounds wherein Rj; is a heterocyclic group, and particularly a morpholino or a hexahydroazepino group, are highly preferred.
Representative of the compounds of Formula XIV are: 2-(2-hydroxy-2- methylpropyl)hydrazinecarboximidic hydrazide; N-(4- morpholino)hydrazinecarboximidamide; 1-methyl-N-(4- morpholino)hydrazinecarboximidamide; 1-methyl-N-(4-piperidino)hydrazinecarboximidamide; 1-(N-hexahydroazepino) hydrazinecarboximidamide; N,N-dimethylcarbonimidic dihydrazide; 1- 1797061 _! 65
® methylcarbonimidic dihydrazide; 2-(2-hydroxy-2-methylpropyl) carbohydrazonic dihydrazide; and N-ethylcarbonimidic dihydrazide.
Formula XV is a structure comprising (R43HN=) CR44-W-CR45 (=NHRA43) (XV); wherein Rg; is pyridyl, phenyl or a carboxylic acid substituted phenyl group of the formula; wherein Ry is hydrogen, lower alkyl or a water-solubilizing ester moiety; W is a carbon-carbon bond or an alkylene group of 1-3 carbon atoms, Ruy is a lower alkyl, aryi, or heteroaryi group and Rys is hydrogen, a iower aikyi, aryi or heteroaryl group; and it includes their biologically or pharmaceutically acceptable acid addition salts.
The lower alkyl groups of the compounds of Formula XV preferably contain 1-6 carbon atoms and include methyl, ethyl, propyl, butyl, pentyl, hexyl, and the corresponding branched-chain isomers thereof. These groups are optionally substituted by one or more halo, hydroxy, amino or lower alkylamino groups.
The alkylene groups of the compounds of Formula XV likewise can be straight or branched chain, and are thus exemplified by ethylene, propylene, butylene, pentylene, hexylene, and their corresponding branched chain isomers.
NHR 3=—=—C—W ——C=—=NHR; XV
Ras Rss
In the R groups which are a carboxylic acid substituted phenyl group of the formula: wherein Ry is hydrogen, lower alkyl! or a water-solubilizing ester moiety, the water solubilizing ester moiety can be selected from a variety of such esters known in the art. Typically, these esters are derived from dialkylene or trialkylene glycols or ethers thereof, dihydroxyalkyl groups, arylalkyl group, e. g., nitrophenylalkyl and pyridylalkyl groups, and carboxylic acid esters and phosphoric acid esters of hydroxy and carboxy- substituted alkyl groups. Particularly preferred water solubilizing ester moieties are those derived from 2,3-dihydroxypropane, and 2-hydroxyethylphosphate.
The aryl groups encompassed by the above Formula XV are those containing 6-10 carbon atoms, such as phenyl and lower alkyl substituted-phenyl, e. g., 1797061 _1 66
® tolyl and xylyl, and are optionally substituted by 1-2 halo, nitro, hydroxy or lower alkoxy groups.
Where the possibility exists for substitution of a phenyl or aryl ring, the position of the substituents may be ortho, meta, or para to the point of attachment of the phenyl or aryl ring to the nitrogen of the hydrazine group.
The halo atoms in the above Formula XV may be fluoro, chloro, bromo or iodo. The lower alkoxy groups contain 1-6, and preferably 1-3, carbon atoms and are illustrated by methoxy, ethoxy, n-propoxy, isopropoxy and the like.
The heteroaryl groups in the above Formula XV contain 1-2 heteroatoms, i. e., nitrogen, oxygen or sulfur, and are exemplified by furyl, pyrrolinyl, pyridyl, pyrimidinyl, thienyl, quinolyl, and the corresponding alkyl substituted compounds.
For the purposes of this invention equivalent to the compounds of Formula
XV are the biologically and pharmaceutically acceptable acid addition salts thereof.
Such acid addition salts may be derived from a variety of organic and inorganic acids such as sulfuric, phosphoric, hydrochloric, hydrobromic, sulfamic, citric, lactic, maleic, succinic, tartaric, cinnamic, acetic, benzoic, gluconic, ascorbic, methanesulfonic and related acids.
Of the compounds encompassed by Formula XV, certain substituents are preferred. For instance, the compounds wherein W is a carbon-carbon bond, Ras is a methyl group and Rus is hydrogen are preferred.
Representative of the compounds of Formula XV are: methylglyoxal bis- (2-hydrazino-benzoic acid)hydrazone; methylglyoxal bis-(dimethyl-2- hydrazinobenzoate)hydrazone; methylglyoxal bis-(phenylhydrazine)hydrazone; methyl glyoxal bis-(dimethyl-2-hydrazinobenzoate)hydrazone; methylglyoxal bis-(4- hydrazinobenzoic acid)hydrazone; methylglyoxal bis-(dimethyl-4-hydrazinobenzoate) hydrazone; methylglyoxal bis-(2-pyridyl)hydrazone; methylglyoxal bis-(diethyleneglycol methylether-2-hydrazinobenzoate)hydrazone; methylglyoxal bis-[1-(2, 3- dihydroxypropane)-2-hydrazinebenzoatehydrazone; methyl glyoxal bis-[1-(2- hydrox yethane)-2-hydrazinobenzoatejhydrazone; methylglyoxal bis-[(1-hydroxymethyl- 1-acetoxy))-2-hydrazino-2-benzoate]hydrazone; methylglyoxal bis-[(4-nitrophenyl)-2- hydrazinobenzoate]hydrazone; methylglyoxal bis-[(4-methylpyridyl)-2- 1797061 _1 67
® hydrazinobenzoate]hydrazone; methylglyoxal bis-(triethylene glycol 2- hydrazinobenzoate)hydrazone; and methylglyoxal bis-(2-hydroxyethylphosphate-2- hydrazinebenzoate)hydrazone.
Formula XVI comprises a structure wherein R47 and Ryg are each hydrogen or, together, are an alkylene group of 2-3 carbon atoms, or, when Ry; is hydrogen, then Ryg can be a group of the formula alk--N—Rso Rs;, wherein alk is a straight or branched chain alkylene group of 1-8 carbon atoms, and Rsg and Rs, are independently each a lower alkyl group of 1-6 carbon atoms, or together with the nitrogen atom form a morpholino, piperdinyl or methylpiperazinyl group; Rus is ‘ hydrogen, or when Ry; and Ry; are together an alkylene group of 2-3 carbon atoms, a hydroxyethyl group; W is a carbon-carbon bond or an alkylene group of 1-3 carbon atoms, and Rs; is a lower alkyl, aryl, or heteroaryl group and Rs; is hydrogen, a lower alkyl, aryl or heteroaryl group; with the proviso that when W is a carbon-carbon bond, then Rs; and Rs; together can also be a 1,4-butylene group; or Wis a 1,2-, 1,3-, or 1,4- phenylene group, optionally substituted by one or two lower alkyl or amino groups, a 2,3- naphthylene group; a 2,5-thiophenylene group; or a 2,6-pyridylene group; and Rs, and
Rs; are both hydrogen or both are lower alkyl groups; or W is an ethylene group and Rs; and Rs; together are an ethylene group; or W is an ethenylene group and Rs; and Rs; together are an ethenylene group; or W is a methylene group and Rs; and Rs; together are a group of the formula =C (-CH;)-N-(H;3C-) C= or-C-W-C-and Rs; and Rs; together form a bicyclo- (3,3,1)-nonane or a bicyclo-3,3,1-octane group and Ry; and Rug are together an alkylene group of 2-3 carbon atoms and Ry is hydrogen; and their biologically or pharmaceutically acceptable acid addition salts.
The lower alkyl groups of the compounds of Formula X V1 preferably contain 1-6 carbon atoms and include methyl, ethyl, propyl, butyl, pentyl, hexyl, and the corresponding branched-chain isomers thereof. These groups are optionally substituted by one or more halo hydroxy, amino or lower alkylamino groups. 1797061 _1 68
®
Rg =———C =—=N——C ——N——R4aRu9
EN
Ww NR; XVI od T==N——NH——C ——NRsRqo le.
The alkylene groups of the compounds of Formula XVI likewise can be straight or branched chain, and are thus exemplified by ethylene, propylene, butylene, pentylene, hexylene, and their corresponding branched chain isomers. :
The aryl groups encompassed by the above Formula XVI are those containing 6-10 carbon atoms, such as phenyl and lower alkyl substituted-phenyl, e. g. tolyl and xylyl, and are optionally substituted by 1-2 halo, hydroxy or lower alkoxy groups.
The halo atoms in the above Formula XVI may be fluoro, chloro, bromo oriodo. The lower alkoxy groups contain 1-6, and preferably 1-3, carbon atoms and are illustrated by methoxy, ethoxy, n-propoxy, isopropoxy and the like.
The heteroaryl groups in the above Formula XVI contain 1-2 heteroatoms, i. e. nitrogen, oxygen or sulfur, and are exemplified by be furyl, pyrrolinyl, pyridyl, pyrimidinyl, thienyl, quinolyl, and the corresponding alkyl substituted compounds.
For the purposes of this invention equivalent to the compounds of Formula
XVI are the biologically and pharmaceutically acceptable acid addition salts thereof.
Such acid addition salts may be derived from a variety of organic an inorganic acids such as sulfuric, phosphoric, hydrochloric, hydrobromic, sulfamic, citric, lactic, maleic, succinic, tartaric, cinnamic, acetic, benzoic, gluconic, ascorbic, methanesulfonic and related acids.
Of the compounds encompassed by Formula XVI, certain substituents are preferred. For instance, the compounds wherein Reg and Ryg are together an alkylene group of 2-3 carbon atoms are preferred. The compounds wherein Rs; and Rs; together are a butylene, ethylene, or an ethenylene group and those wherein Rs; and Rs; are both methy! or furyl groups are also highly preferred. 1797061 _! 69
®
Representative of the compounds of Formula XVI are: methyl glyoxal bis guanylhydrazone); methyl glyoxal bis(2-hydrazino-2-imidazoline-hydrazone); terephthaldicarboxaldehyde bis(2-hydrazino-2-imidazoline hydrazone); terephaldicarboxaldehyde bis(guanylhydrazone); phenylglyoxal bis(2-hydrazino-2- imidazoline hydrazone); furylglyoxal bis(2-hydrazino-2-imidazoline hydrazone); methyl glyoxal bis (1-(2-hydroxyethyl)-2-hydrazino-2-imidazoline hydrazone); methyl glyoxal bis(l-(2-hydroxyethyl)-2-hydrazino-1,4,5,6-tetrahydropyrimidine hydrazone); phenyl glyoxal bis (guanylhydrazone); phenyl glyoxal bis(1-(2-hydroxyethyl)-2-hydrazino-2- imidazoline hydrazone); furyl glyoxal bis(1-(2-hydroxyethyl)-2-hydrazino-2-imidazoline hydrazone); phenyl glyoxal bis(l- (2-hydroxyethyl)-2-hydrazino-1,4,5,6- tetrahydropyrimidine hydrazone); furyl glyoxal bis(1-(2-hydroxyethyl)-2-hydrazino- 1,4,5,6-tetrahydropyrimidine hydrazone); 2,3-butanedione bis (2-hydrazino-2- imidazoline hydrazone); 1,4-cyclohexanedione bis(2-hydrazino-2-imidazoline hydrazone); o-phthalic dicarboxaldehyde bis(2-hyd carboximidamide hydrazone); furylglyoxal bis(guanyl hydrazone)dihydrochloride dihydrate; 2,3-pentanedione bis(2- tetrahydropyrimidine)hydrazone dihydrobromide; 1,2-cyclohexanedione bis(2- tetrahydropyrimidine)hydrazone dihydrobromide; 2,3-hexanedione bis(2- tetrahydropyrimidine)hydrazone dihydrobromide; 1,3-diacetyl bis (2- tetrahydropyrimidine)hydrazone dihydrobromide; 2,3-butanedione bis(2- tetrahydropyrimidine)hydrazone dihydrobromide; 2,6-diacetylpyridine-bis-(2-hydrazino- 2-imidazoline hydrazone)dihydrobromide; 2,6-diacetylpyridine-bis-(guanyl hydrazone)dihydrochloride; 2,6-pyridine dicarboxaldehyde-bis-(2-hydrazino-2- imidazoline hydrazone)dihydrobromide trihydrate); 2,6-pyridine dicarboxaldehyde-bis (guany! hydrazone)dihydrochloride; 1,4-diacetyl benzene-bis-(2-hydrazino-2-imidazoline hydrazone)dihydrobromide dihydrate; 1,3-diacetyl benzene-bis-(2-hydrazino-2- imidazoline)hydrazone dihydrobromide; 1,3-diacetyl benzene-bis (guanyl)-hydrazone dihydrochloride; isophthalaldehyde-bis-(2-hydrazino-2-imidazoline) hydrazone dihydrobromide; isophthalaldehyde-bis-(guanyl)hydrazone dihydrochloride; 2,6- diacetylaniline bis-(guanyl)hydrazone dihydrochloride; 2,6-diacetyl aniline bis-(2- hydrazino-2-imidazoline)hydrazone dihydrobromide; 2,5-diacetylthiophene bis(guanyl)hydrazone dihydrochloride; 2,5-diacetylthiophene bis-(2-hydrazino-2- 1797061 _1 70
® imidazoline)hydrazone dihydrobromide; 1,4-cyclohexanedione bis(2- tetrahydropyrimidine)hydrazone dihydrobromide; 3,4-hexanedione bis(2- tetrahydropyrimidine)hydrazone dihydrobromide; methylglyoxal-bis-(4-amino-3- hydrazino-1,2,4-triazole)hydrazone dihydrochloride; methylglyoxal-bis-(4-amino-3- hydrazino-5-methyl-1,2,4-triazole)hydrazone dihydrochloride; 2,3-pentanedione-bis- (2- hydrazino-3-imidazoline)hydrazone dihydrobromide; 2,3-hexanedione-bis-(2-hydrazino- 2-imidazoline)hydrazone dihydrobromide; 3-ethyl-2,4-pentane dione-bis- (2-hydrazino- 2-imidazoline)hydrazone dihydrobromide; methylglyoxal-bis-(4-amino-3-hydrazino-5- ~ ethyl-1,2,4-triazole)hydrazone dihydrochloride; methylglyoxal-bis-(4-amino-3- hydrazino-5-isopropyl-1,2,4-triazole)hydrazone dihydrochloride; methyl glyoxal-bis-(4- amino-3-hydrazino-5-cyclopropyl-1,2,4-triazole)hydrazone dihydrochlorimethylglyoxal- bis-(4-amino-3-hydrazino-5-cyclobutyl-1 ,2,4-triazole) hydrazone dihydrochloride; 1,3- cyclohexanedione-bis-(2-hydrazino-2-imidazoline) hydrazone dihydrobromide; 6- dimethyl pyridine bis(guanyl)hydrazone dihydrochloride; 3,5-diacetyl-1,4-dihydro-2,6- dimethylpyridine bis-(2-hydrazino-2-imidazoline hydrazone dihydrobromide; bicyclo- (3,3, 1)nonane-3,7-dione bis- (2-hydrazino-2-imidazoline)hydrazone dihydrobromide; and cis-bicyclo-(3,3,1)octane-3,7-dione bis-(2-hydrazino-2-imidazoline)hydrazone dihydrobromide.
Figure XVII comprises a structure wherein Rss and Rss are independently selected from the group consisting of hydrogen, hydroxy (lower) alkyl, lower acyloxy (lower) alkyl, lower alkyl, or Rss and Rss together with their ring carbons may be an aromatic fused ring; Za is hydrogen or an amino group;
Ya is hydrogen, or a group of the formula-CH,C (=O)- Rs¢ wherein R is a lower alkyl, alkoxy, hydroxy, amino or aryl group; or a group of the formula --CHR’ wherein R’ is hydrogen, or a lower alkyl, lower alkynyl, or aryl group; and A is a halide, tosylate, methanesulfonate or mesitylenesulfonate ion.
The lower alkyl groups of the compounds of Formula XVII contain 1-6 carbon atoms and include methyl, ethyl, propyl, butyl, pentyl, hexyl, and the corresponding branched-chain isomers thereof. The lower alkynyl groups contain from 2 to 6 carbon atoms. Similarly, the lower alkoxy groups contain from 1 to 6 carbon atoms, and include methoxy, ethoxy, propoxy, butoxy, pentoxy, and hexoxy, and the 1797061 _1 7
® _ corresponding branched-chain isomers thereof. These groups are optionally substituted by one or more halo, hydroxy, amino or lower alkylamino groups.
Ya
Rs4 1. A
T , cor
J
Rss
The lower acyloxy (lower) alkyl groups encompassed by the above
Formula XVII include those wherein the acyloxy portion contain from 2 to 6 carbon atoms and the lower alkyl portion contains from 1 to 6 carbon atoms.
Typical acyloxy portions are those such as acetoxy or ethanoyloxy, propanoyloxy, butanoyloxy, pentanoyloxy, hexanoyloxy, and the corresponding branched chain isomers thereof. Typical lower alkyl portions are as described herein above. The aryl groups encompassed by the above formula are those containing 6-10 carbon atoms, such as phenyl and lower alkyl! substituted-phenyl, e. g., tolyl and xylyl, and are optionally substituted by 1-2 halo, hydroxy, lower alkoxy or di (lower) alkylamino groups. Preferred aryl groups are phenyl, methoxyphenyl and 4-bromophenyl groups.
The halo atoms in the above Formula XVII may be fluoro, chloro, bromo, or iodo.
For the purposes of this invention, the compounds of Formula XVII are formed as biologically and pharmaceutically acceptable salts. Useful salt forms are the halides, particularly the bromide and chloride, tosylate, methanesulfonate, and mesitylenesulfonate salts. Other related salts can be formed using similarly non-toxic, and biologically and pharmaceutically acceptable anions.
Of the compounds encompassed by Formula XVII, certain substituents are preferred. For instance, the compounds wherein Rss or Rss are lower alkyl groups are preferred. Also highly preferred are the compounds wherein Ya is a 2-phenyl-2-oxoethyl or a 2- [4’-bromophenyl]-2-oxoethy! group.
Representative of the compounds of Formula XVII are: 3- ~ aminothiazolium mesitylenesulfonate; 3-amino-4,5-dimethylaminothiazolium 1797061 _1 n
® mesitylenesulfonate; 2,3-diaminothiazolinium mesitylenesulfonate; 3-(2-methoxy-2- oxoethyl)-thiazolium bromide; 3-(2-methoxy-2-oxoethyl)-4,5-dimethylthiazolium bromide; 3-(2-methoxy-2-oxoethyl)-4-methylthiazolium bromide; 3-(2-phenyl-2- oxoethyl)-4-methylthizolium bromide; 3-(2-phenyl-2-oxoethyl)-4,5-dimethylthiazolium bromide; 3-amino-4-methylthiazolium mesitylenesulfonate; 3-(2-methoxy-2-oxoethyl)-5- methylthiazolium bromide; 3-(3-(2-phenyl-2-oxoethyl)-5-methylthiazolium bromide; 3- [2-(4’-bromophenyl)-2-oxoethyl] thiazolium bromide; 3- [2-(4’-bromophenyl)-2- oxoethyl]-4-methylthiazolium bromide; 3-[2-(4’-bromophenyl)-2-oxoethyl}-5- me:hylthiazolium bromide; 3-[2-(4’bromophenyl)-2-oxoethyl]-4,5-dimethylthiazolium bromide; 3-(2-methoxy-2-oxoethyl)-4-methyl-5-(2-hydroxyethyl) thiazolium bromide; 3- (2-phenyl-2-oxoethyl)-4-methyl-5-(2-hydroxyethyl) thiazolium bromide; 3-[2-(4’- bromophenyl)-2-oxoethyl]-4-methyl-5-(2-hydroxyethyl) thiazolium bromide; 3,4- dimethyl-5-(2-hydroxyethyl) thiazolium iodide; 3-ethyl-5-(2-hydroxyethyl)-4- methylthiazolium bromide; 3-benzyl-5-(2-hydroxyethyl)-4-methylthiazolium chloride; 3- (2-methoxy-2-oxoethyl)benzothiazolium bromide; 3-(2-phenyl-2- oxoethyl)benzothiazolium bromide; 3-[2-(4’bromophenyl)-2-oxoethyl] benzothiazolium bromide; 3-(carboxymethyl) benzothiazolium bromide; 2,3-(diamino) benzothiazolium mesitylenesulfonate; 3-(2-amino-2-oxoethyl) thiazolium bromide; 3-(2-amino-2- oxoethyl)-4-methylthiazolium bromide; 3-(2-amino-2-oxoethyl)-5-methylthiazolium bromide; 3-(2-amino-2-oxoethyl) 4,5-dimethylthiazolium bromide; 3-(2-amino-2- oxoethyl)benzothiazolium bromide; 3-(2-amino-2- oxoethyl) 4-methyl-5-(2- : hydroxyethyl)thiazolium bromide; 3-amino-5-(2-hydroxyethyl)-4-methylthiazolium mesitylenesulfonate; 3-(2-methyl-2-oxoethyl)thiazolium chloride; 3-amino-4-methyl-5- (2-acetoxyethyl)thiazolium mesitylenesulfonate; 3-(2-phenyl-2-oxoethyl)thiazolium bromide; 3-(2-methoxy-2-oxoethyl)-4-methyl-5-(2-acetoxyethyl) thiazoliumbromide; 3- (2-amino-2-oxoethyl)-4-methyl-5- (2-acetoxyethyl)thiazolium bromide; 2-amino-3- (2- methoxy-2-oxoethyl) thiazolium bromide; 2-amino-3-(2-methoxy-2-oxoethyl) benzothiazolium bromide; 2-amino-3-(2-amino-2-oxoethyl)thiazolium bromide; 2-amino- 3-(2-amino-2-oxoethyl)benzothiazolium bromide; 3-[2-(4’-methoxyphenyl)-2-oxoethyl]- thiazolinium bromide; 3-[2-(2°,4’-dimethoxyphenyl)-2-oxoethyl]-thiazolinium bromide; 3-[2-(4’-fluorophenyl)-2-oxoethyl]-thiazolinium bromide; 3-[2-(2’,4’-difluorophenyl)-2- 1797061 _1 73
® oxoethyl]-thiazolinium bromide; 3-[2-(4’-diethylaminophenyl)-2-oxoethyl]-thiazolinium bromide; 3-propargyl-thiazolinium bromide; 3-propargyl-4-methylthiazolinium bromide; 3-propargyl-5-methylthiazolinium bromide; 3-propargyl-4,5-dimethylthiazolinium bromide; and 3-propargyl-4-methyl-5-(2-hydroxyethyl)-thiazolinium bromide.
Formula XVII comprises a structure wherein, Rs; is OH,
NHCONCRG¢ Rez, or N=C(NR¢iRs2)2;
Re and Re; are each independently seiected from the group consisting of: hydrogen; Cy. alkyl, straight or branched chain; aryl C4 alkyl; and mono- or di- substituted aryl C,4 alkyl, whete the substituents are fluoro, chloro, bromo, iodo or C;.j9 alkyl, straight or branched chain; further wherein Rsg and Rs are each independently selected from the group consisting of hydrogen, amino, and mono- or di-substituted amino where the substituents are C,.; alkyl, straight or branched chain Cys, cycloalkyl; provided that Rss and Rse may not both be amino or substituted amino; and
Reo 1s hydrogen, trifluoromethyl; fluoro; chloro; bromo; or iodo; or a pharmaceutically acceptable salt thereof.
Rsg A _Rsg :
XVIII
Xx
Reo N 0]
In another aspect of the invention, the inhibitor of 3DG function can be a compound such as the amino acid arginine, which reacts irreversibly with 3DG to form a five membered ring called an imidazolone. Once the reaction occurs, 3DG cannot cause crosslinking because the active crosslinker has been removed. Thus, the binding of arginine with 3DG prevents protein crosslinking (see Example 18 and Figure 12). As described herein, treatment of collagen with 3DG causes the collagen to migrate electrophoretically as if it had a higher molecular weight, which is indicative of crosslinking. However, treatment of a sample of collagen with 3DG in the presence of 179706! _1 4
® arginine prevented the appearance of more slowly migrating proteins (Example 18 and
Figure 12). Arginine should be construed to inhibit other alpha-dicarbonyl sugars as well. The invention should be construed to include not just arginine, but it should also be construed to include derivatives and modifications thereof. In one aspect of the invention, arginine may be derivatized or modified to ensure greater efficiency of penetration or passage into the skin or other tissues or to ensure a more efficacious result.
The amino acid arginine has the structure:
OH
NH I, i
I Arginine
H,;N——C—N——C——C—C—CH
H Hy, Hy H,
NH, : In yet another aspect of the invention, the inhibitor of 3DG or other alpha- dicarbonyl sugar function may be L-cysteine or a derivative such as an a-amino-f,B- mercapto-f3,3-dimethyl-ethane, or a derivative or modification thereof. Members of the a-amino-f,B-mercapto-B,B-dimethyl-ethane family include, but are not limited to, compounds such as D-penicillamine, L-penicillamine, and D,L-penicillamine (see
Jacobson et al., WO 01/78718). The functions inhibited include, but are not limited to, the various functions described herein, such as inhibiting crosslinking of proteins and other molecules, as well as other functions which cause damage to molecules such as proteins, lipid and DNA. For example, damage to lipids may include lipid peroxidation and damage to DNA may include damage such as mutagenesis.
In one aspect of the invention, an a-amino-B,-mercapto-f,B-dimethyl- ethane may be derivatized or modified to ensure greater efficiency of penetration or passage into the skin or other tissues or to ensure greater efficiency in inhibiting the desired function of 3DG and other alpha-dicarbonyl sugars.
For example, the a-amino-f,3-mercapto-3,3-dimethyl-ethane denvative,
D-penicillamine, has the structure: 1797061 _1 75 i .
A —OH -Penicillamine
HyC — ——CH; D
SH
It should be understood that the compounds described herein are not the only compounds capable of inhibiting 3DG function or of treating a 3DG associated skin disease or disorder or diseases and disorders of other tissues and cells. It will be recognized by one of skill in the art that the various embodiments of the invention as described herein related to inhibition of 3DG function, also encompass other methods and compounds useful for inhibiting 3DG function. It will also be recognized by one of skill in the art that other compounds and techniques can be used to practice the invention. The invention should be construed to include compounds and methods useful not merely for the their ability to inhibit 3DG function and to treat a 3DG associated skin disease or disorder, but should be construed to alss include the ability to inhibit the function of other members of the alpha-dicarbonyl sugar family of compounds, including glyoxal, methyl glyoxal and glucosone. The invention should also be construed to include treating 3DG associated diseases and disorders other than those of skin, such as 3DG associated diseases and disorders of the gums.
Methods of Identifying Compounds Which Inhibit 3DG and Other Alpha- dicarbonyl Sugar Synthesis, Production, Accumulation, and Function
The invention includes various methods for the identification of additional compounds that are useful as 3DG inhibitors. Such methods include the use of test compounds in screening assays that are designed to measure the effects of the test compounds on 3DG synthesis, production, formation, accumulation, function and detoxification. 3DG synthesis, production, formation, accumulation, function and detoxification may be measured in the various assays described herein, and thus the effect 76 1797061 _1
® of a test compound on 3DG synthesis, production, formation, accumulation, function and detoxification may also be measured in these assays. Similarly, the ability of a test compound to affect the synthesis, production, formation, accumulation, function, and detoxification of other alpha-dicarbonyl sugars may be measured as well.
In one aspect, the method used for screening a potential inhibitor of 3DG synthesis includes the use of one or more assays for measuring fructosamine kinase/amadorase activity or amadorase mRNA levels (see Examples 17, 21, and 22). In another aspect, such an assay utilizes 3'p NMR analysis to measure the conversion of
FL3P to 3DG and FL (see Example 3). In yet another aspect, the method used for screening an inhibitor of 3DG synthesis includes a method for measuring the levels of 3DG in a sample or for measuring its degradation product, 3DF, in a sample. For example, 3DG obtained in a sample such as urine, saliva, plasma, blood, tissue, sweat, or cells can be measured using gas chromatography-mass spectroscopy and 3DF can be measured using HPLC, as described herein (see Examples 5, 14, and 15). FL can also be measured using HPLC. Assays to determine the levels of the various components described above can be performed on cells, tissues, blood, plasma, sweat, saliva, and urine samples obtained from an animal, preferably a human. In yet another embodiment, the invention includes the identification of compounds, including, but not limited to, small molecules, drugs or other agents, for their ability to disrupt 3DG function or the interactions of 3DG with other molecules to cause the formation of crosslinked proteins.
One assay is based on the ability of 3DG to induce the formation of crosslinked proteins.
The invention should be construed to include crosslinking of molecules such as collagen, elastin, and proteoglycans. In one aspect, the invention also includes the identification of compounds based on their ability to disrupt the function of other members of the alpha- dicarbonyl sugar family of compounds, including glyoxal, methyl glyoxal, and glucosone.
In one embodiment, the invention includes identification of compounds which inhibit a component of an enzymatic pathway of 3DG synthesis. Such compounds include those of structural formula XIX. In one aspect, the invention includes a method of identifying a compound which inhibits 3DG synthesis in the skin of a mammal. Such a method may comprise administering a test compound to said mammal and comparing 77 1797061 _}
® the level of 3DG synthesis in the skin of said mammal with the level of 3DG synthesis in the skin of an otherwise identical mammal which was not administered said test compound. A lower level of 3DG synthesis in the animal administered said test compound is an indication that said test compound inhibits 3DG synthesis. Preferably, a test compound inhibits 3DG synthesis by at least 20% compared to a control group which : receives no test compound. More preferably, a test compound inhibits 3DG synthesis by at least 50%.
In another embodiment, the invention includes the identification of compounds which bind to 3DG or directly block iis ability to cause the formation of advanced glycation end product modified proteins and crosslinked proteins, such as those compounds comprising the structural formulas I- XVIII.
In yet another embodiment, the invention includes the identification of compounds which inhibit a nonenzymatic pathway of 3DG synthesis.
In another embodiment of the invention, the invention includes the identification of compounds which inhibit accumulation and function of members of the alpha-dicarbonyl sugar family of compounds, including glyoxal, methyl glyoxal and glucosone. In yet another aspect of the invention, the invention includes the identification of compounds which inhibit an enzymatic pathway of alpha-dicarbony! sugar synthesis.
In general, methods for the identification of a compound which effects the ~~ - synthesis, production, accumulation or function of 3DG (or other alpha-dicarbonyl : sugars), include the following general steps:
The test compound is administered to a cell, tissue, sample, or subject, in which the measurements are to be taken. A control is a cell, tissue, sample, or subject in which the test compound has not been added. A higher or lower level of the indicator or parameter being tested, i.e., 3DG levels, synthesis, function, degradation, etc., in the presence of the test compound, compared with the levels of the indicator or parameter in the sample which was not treated with the test compound, is an indication that the test compound has an effect on the indicator or parameter being measured, and as such, 1s a candidate for inhibition of the desired activity. Test compounds may be added at varying doses and frequencies to determine the effective amount of the compound which should 1797061_1 8
_ be used and effective intervals in which it should be administered. In another aspect, a derivative or modification of the test compound may be used.
In one aspect of the invention the 3DG function inhibitor inhibits protein crosslinking. In another aspect, the inhibitor inhibits formation of advanced glycation
J end product modified proteins. In yet another aspect, the 3DG function inhibitor comprises a structure of one of structural formulas I-XIX or is arginine or a derivative or modification thereof.
In one embodiment, the inhibitor comprises from about 0.0001% to about 15% by weight of the pharmaceutical composition. In one aspect, the inhibitor is administered as a controlled-release formulation. In another aspect the pharmaceutical composition comprises a lotion, a cream, a gel, a liniment, an ointment, a paste, a toothpaste, a mouthwash, an oral rinse, a coating, a solution, a powder, and a suspension.
In yet another aspect, the composition further comprises a moisturizer, a humectant, a demulcent, oil, water, an emulsifier, a thickener, a thinner, a surface active agent, a fragrance, a preservative, an antioxidant, a hydrotropic agent, a chelating agent, a vitamin, a mineral, a permeation enhancer, a cosmetic adjuvant, a bleaching agent, a depigmentation agent, a foaming agent, a conditioner, a viscosifier, a buffering agent, and a sunscreen.
The invention should be construed to include various methods of administration, including topical, oral, intramuscular, and intravenous. -
Assays for Testing Inhibition of 3DG and Other Alpha-dicarbonyl Sugar
Synthesis, Formation, Accumulation, and Function
The present disclosure provides a series of assays for identifying inhibitors of 3DG synthesis, formation, accumulation, and function, as well as measunng the effects of the various inhibitors on 3DG synthesis, formation, accumuiation, and function. The assays also include those used to measure 3DG degradation, detoxification, and clearance. The assays of the invention include, but are not limited to, HPLC assays, electrophoretic assays, gas chromatographic-mass spectroscopic assays, amino acid analysis, enzyme activity assays, advanced glycation assays, protein crosslinking assays,
NMR analysis, ion exchange chromatography, vanous chemical analyses, vanous 1797061 _1 L }
® labeling techniques, surgical and gross dissection techniques, RNA isolation, RT-PCR, histologic techniques, various chemical, biochemical, and molecular synthesis techniques, teratogenicity, mutagenicity, and carcinogenicity assays, urine assays, excretion assays, and a variety of animal, tissue, blood, plasma, cell, biochemical, and molecular techniques. Synthetic techniques may be used to produce compounds, such as: chemical and enzymatic production of FL3P (Examples 1, 2 and 3); polyollysine (Example 4); 3-O-methyisorbitol lysine (Example 8); fructosyl spermine (Exampie 9); and glycated protein diet (Example 13). Other techniques may be used which are not described herein, but are known to those of skill in the art. -
In one embodiment of the invention, standards may be used when testing new agents or compounds or when measuring the various parameters described herein.
For example, fructose-lysine is a known modulator of 3DG and 3DF and it can be administered to a group or subject as a standard or control against which the effects of a test agent or compound can be compared. In addition, when measuring a parameter, measurement of a standard can include measuring parameters such as 3DG or 3DF concentrations in a tissue or fluid obtained from a subject before the subject is treated with a test compound and the same parameters can be measured after treatment with the test compound. In another aspect of the invention, a standard can be an exogenously added standard which is an agent or compound that is added to a sample and is useful as an internal control, especially where a sample is processed through several steps or procedures and the amount of recovery of a marker of interest at each step must be : determined. Such exogenously added intemal standards are often added in a labeled form, i.e., a radioactive isotope.
Methods for Diagnosing 3DG Associated Skin Diseases or Disorders
The present invention discloses the presence of 3DG in skin and methods for measuring 3DG levels in the skin and for measuring an enzyme responsible for 3DG synthesis in the skin (see Examples 19 and 20). The invention also encompasses methods which may be used to diagnose changes in 3DG levels in the skin which may be associated with wrinkling, aging, or various other skin diseases or disorders. The : invention should not be construed to include only methods for diagnosing 3DG 1797061 _1 80
® associated skin diseases and disorders, but should be construed to include methods for diagnosing skin diseases and disorders associated with other alpha-dicarbonyl sugars as well. The invention should also be construed to include methods for diagnosing 3DG associated diseases or disorders of other cells and tissues as well, including, but not limited to, gum diseases and disorders.
In one embodiment of the invention, a patient with skin wrinkling, skin aging, or another skin disease or disorder, may be subjected to a diagnostic test to determine, for example, the levels of 3DG, the functional activity of 3DG, the levels of 3DF, a 3DF/3DG ratio, the amount &:f amadorase protein or mRNA present, or the levels of amadorase activity in their skin. Such a test is based on the various methods and assays described herein, or known to those of skill in the art. A higher level of 3DG or amadorase, or their activities, or lower levels of 3DF, compared to a non-affected area of skin or to skin of a normal patient, would be an indication that the skin wrinkling, skin aging, or other skin disease or disorder, is associated with 3DG and that a 3DG inhibitor of the present invention would be an appropriate treatment for the problem. The invention should also be construed to include skin diseases and disorders associated with molecules of the alpha-dicarbonyl sugar family other than 3DG.
In one aspect of the invention, additional markers of 3DG associated skin diseases or disorders can be measured, including, but not limited to, measuring 3DF and
FL levels, crosslinked protein levels, as well as levels of other alpha-dicarbonyl sugars such as glyoxal, methyl glyoxal, and glucosone.
A multitude of assays for measuring 3DG levels and function, including measuring its precursors, are described throughout the present disclosure (see Examples 1-22). However, the invention should not be construed to include only the assays described herein, but should be construed to include other assays to measure 3DG levels or function, including assays or techniques which are indirect measures of 3DG levels or functional activity. For example, in one aspect of the invention, indirect measurement of 3DG levels and function can be determined by measuring such things as levels of 3DF, protein crosslinking, proteoglycan crosslinking, or any other assay shown to be correlative of 3DG levels. 1797061 _1 81
®
In one aspect of the invention, the sample to be used for measuring 3DG levels, etc., is a skin sample. Skin samples may be obtained by methods which include, but are not limited to, punch biopsies, scraping, and blistering techniques.
In another aspect of the invention, indirect assays for 3DG levels or function in the skin which are correlative of 3DG associated skin diseases or disorders may be used. The assays may include, but are not limited to, assays for measuring 3DG ievels or function in other tissues, sweai, biood, piasma, saiiva, or urine.
The invention discloses a method for diagnosing a 3DG or other alpha- dicarbonyl sugar associated skin disease or disorder comprising acquiring a biological sample from a test subject and comparing the level of 3DG or other alpha-dicarbonyl sugar associated parameter of wrinkling, aging, disease, or disorder of the skin with the level of the same parameter in an otherwise identical biological sample from a control subject. The control can be from an unaffected area of the same subject or from a subject not affected by a 3DG or other alpha-dicarbonyl sugar associated skin disease or disorder.
A higher level of the parameter in the test subject is an indication that the test subject has a 3DG or other alpha-dicarbonyl sugar associated wrinkling, aging, disease, or disorder of the skin. The parameters which can be measured are described herein or are known to those of skill in the art, and include, but are not limited to, 3DG, protein crosslinking, proteoglycan crosslinking, advanced glycation end product modified proteins, 3DF, fructosamine kinase/amadorase levels and activity, and fructosamine kinase/amadorase mRNA a changes in levels of reactive oxygen species. :
In yet another aspect of the invention, 3DG or other alpha-dicarbonyl sugars may be associated with skin diseases, disorders conditions and the appearance of these diseases, disorders and conditions selected from the group comprising skin aging, photoaging, skin wrinkling, skin cancer, hyperkeratosis, hyperplasia, acanthosis, papillomatosis, dermatosis, hyperpigmentation, rhinophyma, scleroderma, and rosacea.
In another aspect of the invention, 3DG is associated with functions including, but not limited to, protein crosslinking, mutagenicity, teratogenicity, apoptosis, oxidative damage caused by formation of reactive oxygen species, and cytotoxicity. It is understood that 3DG and other alpha-dicarbonyl sugars are associated with functions causing damage to not only proteins, but to lipids and DNA as well. In aspect of the invention, 3DG or 1797061_1 82
® other alpha-dicarbonyl sugars may also be associated with diseases and disorders of the skin (including, but not limited to the mucosa), including, but not limited to, gum diseases and disorders, vaginal and anal mucosa diseases, and the like.
In yet another aspect of the invention, the assays for measuring 3DG levels and function may be used in conjunction with other methods for measuring skin diseases and disorders, such as measuring the thickness or elasticity and/or moisture of the skin. Many of these assays are described herein. One of skill in the art will appreciate that other assays not described herein may be used in conjunction with the 3DG assays to form a complete diagnosis of the type of skin problem involved and whether or not it is a 3DG associated skin problem.
The invention should not be construed to include diagnosing a skin disease, condition or disorder merely by measuring levels of the alpha-dicarbonyl sugar 3DG, it should also be construed to include measuring levels of other members of the alpha-dicarbonyl sugar family as well, as well as their breakdown products, including, but not limited to, 3-deoxyfructose.
Thus, the use of a diagnostic assay to determine an association between 3DG and a skin disease or disorder will allow the selection of appropriate subjects before initiating treatment with an inhibitor of 3DG.
Methods for Inhibiting or Treating 3DG or Other Alpha-dicarbonyl Sugar
Associated Skin Wrinkling, Skin Aging, or Other Skin Disease, Disorder or Condition
The invention also discloses methods for inhibiting or treating 3DG related skin diseases or disorders. Some examples of 3DG associated diseases or disorders include, but are not limited to, skin cancer, psoriasis, aging, wrinkling, hyperkeratosis, hyperplasia, acanthosis, papillomatosis, dermatosis, rhinophyma, and rosacea. A cancer or other disease or disorder may belong to any of a group of cancers or other diseases or disorders, which have been described herein, as well as any other related cancer or other disease or disorder known to those of skill in the art.
The invention should not be construed as being limited solely to these examples, as other 3DG associated diseases or disorders which are at present unknown, - once known, may also be treatable using the methods of the invention. One of skill in the 1797061 _| 83
® art would appreciate that 3DG inhibitors may be used prophylactically for some diseases or disorders of the skin, wherein 3DG is known, or it becomes known, that 3DG is associated with a skin disease or disorder. For example, 3DG inhibitors may be applied to prevent wrinkling or other skin problems in subjects who are exposed to harsh environmental elements such as the sun (photoaging/photodamage), heat, chemicals, or cold. Such problems can be due to damage to proteins or other molecules such as lipids or nucleic acids caused by 3DG or aipha-dicarbonyl sugars.
One skilled in the art would appreciate, based upon the disclosure provided herein, that the present invention encompasses methods for prevention of the loss of microcirculation and/or neuro-innervation in the aging, sclerodermic and/or diabetic skin since 3DG increases oxidative stress and AGEs and they, in turn, are linked to neuropathy and circulatory dysfunction.
The present invention also encompasses methods for prevention of hair “loss associated with or mediated by loss of microcirculation and/or loss of neuro- innervation in populations of aging, sclerodermic and/or in diabetic individuals. This is because 3DG is a known precursor to the formation of AGEs which are known to be causally connected to the development of neuropathy. Preliminary data demonstrated that diabetic rats treated with DYN 12 and measured for muscle strength while alert had stronger muscle strength than diabetic rats not so treated. This supports the concept that maintenance of nerve conduction and microcirculation that supports nerve innervation is deleteriously affected not only by AGEs, but also 3DG. Similarly, where 3DG would cause blockage of the microcirculation that supports nerve innervation of the hair follicle, the hair follicle will atrophy and die, as is the case in neuropathy.Accordingly, the present invention includes methods for preventing hair loss, where such hair loss is associated with or mediated by the presence of 3DG in the skin proximal to a hair follicle/shaft.
Similarly, the invention includes methods for prevention of graying of hair. This is because, as discussed previously with regard to hair loss, inhibiting the presence and/or activity of 3DG in skin associated with a hair follicle or shaft can prevent the deleterious effect of 3DG on microcirculation affecting such hair and, in turn, preventing the graying of the hair due to such deleterious effect. 1797061 _1 84
C :
Thus, one skilled in the art would appreciate, based upon the disclosure provided herein, that the present invention encompasses methods and compositions relating to prevention of hair loss and/or hair graying, Such compositions and methods encompass, but are not limited to, shampoo or other composition that can be applied to hair and skin associated with a hair follicle to administer the compounds of the invention such that formation, accumulation and/or function of 3DG and/or amadorase is inhibited thereby. Based on the disclosure provided herein, the skilled artisan would understand that such compounds include, but are not limited to, meglumine. Further, the formulation of compositions to be applied to hair follicles and the cosage and treatment regimens therefor, are disclosed herein and are also well-known to those in the art.
The invention encompasses methods for treatment of skin wound healing.
This is because ROS are associated with the origination of wounds. Accordingly, the skilled artisan would appreciate, based upon the disclosure provided herein, that any inhibitor of ROS will positively effect wound healing. Given 3DG’s role in the originatin of ROS, inhibiting ROS by inhibiting the productin of 3DG can result in methods useful to prevent and treat wounds. Further support for use of 3DG inhibition in skin as a useful wound healing therapeutic is provided by studies demonstrating that diqaetics are especially prone to wound healing problems, since as previously discussed elsewhere herein, diabetics have elevated levels of 3DG and detoxify the 3DG less efficiently than non diabetics. Thus, the surprising finding that 3DG, as well as the enzyme responsible for its enzymatic synthesis, are present in skin makes possible, for the first time, the development of novel therapeutics for promotion of wound healing, especially for diabetics.
Since 3DG and the pathway for its formation, are present in skin, and are involved in the production of ROS and since ROS are, in turn, involved in inflammation, the skilled artisan would also appreciate that the invention encompasses methods for treating or ameliorating diseases, disorders or conditions associated with mucosal inflammation. Inhibition of 3DG formation, function, and/or accumulation in skin can inhibit mucosal inflammation such that conditions associated with inflammation of the mucosa (e.g., nasal passages, vagina, rectum, mouth cavity, and the like) can be inhibited by such inhibition. For instance, inhibition of 3DG can be used to modulate browning of 1797061 _1 85
® teeth, inflammation of the mouth, gingivitis, periodontal disease, herpes sores, and the like.
Further, because inhibiting 3DG can prevent mucosal inflammation and can induce wound healing, such inhibition can also provide a useful therapeutics for the prevention and /treatment of viral, bacterial or fungal infection where the infection is mediated by pathogenic infection via the skin and/or mucosa. Therefore, the present invention inciudes methods and compositions for prevention or treatment of fungal, viral and bacterial infection by providing an inactivator of amadorase and/or 3DG to a patient : in need of such treatment. -
The invention encompasses methods of treating or preventing gingivitis, periodontal diseases, yellowing of the teeth, and the like. This is because the data disclosed herein demonstrate that 3DG is present in saliva, and is present in skin, indicating that it is present in mucosa. Thus, one skilled in the art would appreciated, based upon the disclosure provided herein, that inhibition of 3DG associated with the mucosa in the mouth cavity can inhibit the deleterious effects associated with or mediated by the molecule, including, but not limited to, gingivitis, periodontal disease, and discoloration of the teeth. This is because oxidative stress and AGEs are associated with these conditions and 3DG induces oxidative stress and AGEs JFurther, the skilled artisan, armed with the teachings provided herein, would understand that the present invention encompasses methods of treating Wilson's disease, rheumatoid arthritis, progressive systemic sclerosis, fibrotic lung disease, Raynaud's phenomenon, joint contractures, :
Sjogren’s syndrome, and the like. This is because, 3DG causes the inducton of reactive oxygen species and reactive oxygen species cause inflammation, diseases associated with inflammation mediated by or associated with ROS can be prevented or treated by inhibition of 3DG. Therefore Wilson's disease, rheumatoid arthritis, progressive systemic sclerosis, fibrotic lung disease, Raynaud’s phenomenon, joint contractures,
Sjogren’s syndrome, and the like, can be treated according to the methods set forth herein relating to inhibiting 3DG and or amadorase.
The present invention includes methods of treating breast cancer. This is because, as more fully set forth elsewhere herein, the data disclosed herein demonstrate that 3DG is present in sweat. Because mammary glands are highly specialized sweat 1797061_1 86
® glands, the skilled artisan would appreciate, based upon the disclosure provided herein, that inhibition of 3DG in such tissue would provide a beneficial effect given the deleterious effects associated with or mediated by 3DG.
Inhibiting 3DG in skin, as appreciated by the skilled artisan based upon the disclosure provided herein, can provide useful therapeutics for treatment of breast cancer because 3DG causes oxidative stress and the formation of reactive oxygen and inhibits enzymes that combat oxidative stress. Thus, 3DG depletes the body’s defenses against inflammation, in particular, high levels of 3DG present in skin deleteriously depletes the defenses present in the skin and mucosa Thus, without wishing to be bound by any particular theory, the the effects of 3DG are primarily due to its effect on oxidative stress and, in turn, to the entire inflammatory cascade. That is important for breast cancer where it is believed that long term oxidative stress, and not a single point mutation, causes the disease.
Likewise, one of skill in the art, once armed with the teachings disclosed herein, would understand that where a bodily fluid, such as saliva, sweat, lymph, unne, semen, and blood, comprising 3DG, is produced by or associated with skin, a disease, disorder or condition mediated by the contact of such fluid with a cell, tissue or organ can be treated by inhibition of 3DG. Such disease, disorder or condition mediated by or associated with 3DG present in a bodily fluid includes, but is not limited to, non-
Hodgkins Lymphoma, where sweat comprising 3DG saturates the lymph glands.
Further, the invention includes methods of inhibiting formation of 3DG adducts, and/or iactivating these adducts, since these adducts will also contribute to disases, diorders or conditions associated with 3DG, including those disclosed elsewhere herein. That is, like prevention of formation, accumulation, and/or functioning of 3DG prevents the deleterious effects of the compound relating to aging and disease, and more specifically, to the deleterious effects of 3DG on skin as disclosed elsewhere herein, inhibiting the deleterious effects of 3DG adducts and/or intermediates wherever found will likewise prevent their deleterious effects. The skilled artisan, once armed with the teachings provided herein, would understand that such 3DG adducts/intermediates include, but are not limited to, those depicted in Figure 18, and that such intermediates/adducts that form from 3DG that will also contribute to aging and disease, wherever found. 1797061 _1 87
®
These adducts are heretofore unknown, and the skilled artisan would appreciate, based on their novel disclosure herein, that inhibiting such adducts will inhibit a disease process mediated by or associated therewith, in skin and wherever such adducts are present. Thus, the present invention encompasses inhibiting the synthesis, formation and accumulation of such 3DG adducts, wherever they are detected using detection methods disclosed herein, known in the art, or to be developed in the future.
The present invention encompasses methods for treating or ameliorating a wide plethora of diseases, which diseases are mediated by or associated with changes in skin due to the interactions of 3DG with proteins in skin, such as, e.g., collagen and " elastin, and with the induction of ROS and their subsequent reaction with components of skin. That is, the data disclosed herein demonstrate that 3DG in the skin mediates or is associated with collagen cross-linking and, in turn, with skin thickening, such that preventing the accumulation, formation, function, and/or increasing the clearance of 3DG and/or Amadorase, from the skin can provide a therapeutic benefit for a disease disorder or condition mediated by or associated with such thickening.
In addition, the present invention encompasses treating or ameliorating a disease, disorder or condition mediated by or associated with, oxidative stress. This is because 3DG induces oxidative stress. , i.e., 3DG induces oxidative stress either directly or through the formation of AGEs and therefore 3DG is involved in the inflammatory response. Thus, inhibiting 3DG will treat or prevent a disease, disorder or condition associated with inflammation. Such disease, disorder or condition includes, but isnot limited to, gingivitis, periodontal disease, browning/yellowing of teeth, herpes lesions, and scarring since these are mediated by, or associated with, ROS. Accordingly, preventing ROS, such as by, for instance, treatment of the teeth and /or oral tissue (e.g., gums, and the like) with an inhibitor of 3DG, e.g., meglumine, can reduce deleterious effects of ROS in the buccal cavity such as the aforementioned diseases, disorders or conditions.
The present invention further encompasses treatments that affect the appearance of skin based upon inhibition of 3DG, its adducts/intermediates, as well as inhibition of amadorase and the synthesis of 3DG. Thus, even where the condition, disorder or disease is not treated or ameliorated, the invention includes methods of 1797061 _1 88
® treatmenet that affect the appearance of the skin such that, at the very least, the condition, disorder or disease affects the appearance of the skin to a lesser degree than the in the absence of the treatment. These treatments are therefore cosmetic and can produce an improvement in physical appearance.
The present invention includes methods of treating skin aging related to the loss of skin elasticity. This is because, as more fully set forth elsewhere herein, the data disclosed herein demonstrate, for the first time, that 3DG and the enzyme associated with its synthesis, are present in skin and that inhibition of 3DG can prevent or reverse the loss of skin elasticity associated with its presence in skin. Accsrdingly, the skilled artisan would appreciate, once armed with the teachings provided herein, that inhibiting 3DG in skin can reduce skin aging such that the present invention provides useful therapeutics for inhibiting skin aging and loss of skin elasticity. The skilled artisan would further understand that skin aging therapeutics encompass, but are not limited, to various treatment procedures well-known in the dermatological and cosmetological arts including, but not limited to, skin wraps, exfoliants, masks, and the like, that can be used to effectuate the various treatments disclosed herein. : The invention encompasses methods of preventing the susceptibility to viral, fungal and bacterial infections especially in oral, rectal and vaginal routes by inhibiting Amadorase and/ or by inactivating 3DG. Specifically, susceptibility to infection by, e.g., HIV, papillomavirus and Epstein-Barr virus can be decreased because changes in skin affect receptivity to disease and 3DG induces the formation of ROS and
AGEs and also actively interacts with skin proteins, in particular collagen and elastin, therefore they affect the skin such that receptivitiy is altered.
One skilled in the art would understand, based upon the disclosure provided herein , that the present invention provides useful therapeutics for a wide plethora of diseases, disorders or conditions associated with 3DG in skin. This is because, inter alia, it is well-known in the art that 3DG mediates formation of ROS, which, in turn, are well-known to be involved in a wide variety of diseases, disorders or conditions as set forth herein. 1797061 _| 89
®
The invention also includes methods for inhibiting or treating skin diseases or disorders associated with members of the alpha-dicarbonyl sugar family of compounds other than 3DG.
In one aspect of the invention, various changes in the skin can be measured following treatment with inhibitors of 3DG. The skin topography can be defined by parameters such as: (a) number of wrinkles; (b) total area of wrinkles; (c) total length of wrinkles; (d) mean length of wrinkles; and (e¢) mean depth of wrinkies. The type of wrinkles can be determined on the basis of depth, length, and area. These properties can be used when evaluating the changes in skin due to disease or disorder or ~ the effects of a treatment on the skin. The effects of changes in 3DG levels and function on various skin qualities can be determined based on techniques known in the art.
Methods to measure skin quality include, but are not limited to, measuring viscoelastic properties with instruments such as a ballistometer, measuring the mechanical/vertical deformation properties of the skin with an instrument such as a cutometer, or measuring changes in skin capacitance resulting from changes in the degree of hydration using a cormneometer.
The invention relates to the administration of an identified compound in a pharmaceutical or cosmetic composition to practice the methods of the invention, the composition comprising the compound or an appropriate derivative or fragment of the compound and a pharmaceutically-acceptable carrier. For example, a chemical composition with which an appropriate inhibitor of enzyme dependent or nonenzyme dependent production of 3DG, or inhibitor of 3DG accumulation or function, or stimulator of 3DG removal, detoxification, or degradation, is combined, is used to administer the appropriate compound to an animal. The invention should be construed to include the use of one, or simultaneous use of more than one, inhibitor of 3DG or stimulator of 3DG removal, degradation, or detoxification. When more than one stimulator or inhibitor is used, they can be administered together or they can be administered separately.
In one embodiment, the pharmaceutical compositions useful for practicing the invention may be administered to deliver a dose of between 1 ng/kg/day and 100 mg/kg/day. In another embodiment, the pharmaceutical compositions useful for 1797061_1 90 practicing the invention may be administered to deliver a dose of between I ng/kg/day and 100 g/kg/day.
Pharmaceutically acceptable carriers which are useful include, but are not limited to, glycerol, water, saline, ethanol and other pharmaceutically acceptable salt solutions such as phosphates and salts of organic acids. Examples of these and other pharmaceutically acceptable carriers are described in Remington’s Pharmaceutical
Sciences (1991, Mack Publication Co., New Jersey).
The pharmaceutical compositions may be prepared, packaged, or sold in ) the form of a sterile injectable aqueous or oily suspension or solution. This suspeasion or solution may be formulated according to the known art, and may comprise, in addition to the active ingredient, additional ingredients such as the dispersing agents, wetting agents, or suspending agents described herein. Such sterile injectable formulations may be prepared using a non-toxic parenterally-acceptable diluent or solvent, such as water or 1,3-butane diol, for example. Other acceptable diluents and solvents include, but are not limited to, Ringer’s solution, isotonic sodium chloride solution, and fixed oils such as synthetic mono- or di-glycerides.
Pharmaceutical compositions that are useful in the methods of the invention may be administered, prepared, packaged, and/or sold in formulations suitable for oral, rectal, vaginal, parenteral, topical, pulmonary, intranasal, buccal, ophthalmic, or another route of administration. Other contemplated formulations include projected nanoparticles, liposomal preparations, resealed erythrocytes containing the active ingredient, and immunologically-based formulations.
The compositions of the invention may be administered via numerous routes, including, but not limited to, oral, rectal, vaginal, parenteral, topical, pulmonary, intranasal, buccal, or ophthalmic administration routes. The route(s) of administration will be readily apparent to the skilled artisan and will depend upon any number of factors including the type and severity of the disease being treated, the type and age of the veterinary or human patient being treated, and the like.
Pharmaceutical compositions that are useful in the methods of the invention may be administered systemically in oral solid formulations, ophthalmic, suppository, aerosol, topical or other similar formulations. In addition to the compound 1797061_1 9
® such as heparan sulfate, or a biological equivalent thereof, such pharmaceutical compositions may contain pharmaceutically-acceptable carriers and other ingredients known to enhance and facilitate drug administration. Other possible formulations, such as nanoparticles, liposomes, rescaled erythrocytes, and immunologically based systems may also be used to administer compounds according to the methods of the invention.
Compounds which are identified using any of the methods described herein may be formulated and administered to a mammal for treatment of skin aging, skin wrinkling, and various skin related diseases, disorders, or conditions described herein.
The invention encompasses the preparation and use of pharmaceutical compositions comprising a compound useful for treatment of various skin related diseases, disorders, or conditions described herein, including skin aging, photoaging, and wrinkling of the skin. The invention also encompasses 3DG associated diseases and disorders other than those of the skin, including, but not limited to, gum diseases and disorders. Such a pharmaceutical composition may consist of the active ingredient alone, in a form suitable for administration to a subject, or the pharmaceutical composition may comprise at least one active ingredient and one or more pharmaceutically acceptable carriers, one or more additional ingredients, or some combination of these. The active ingredient may be present in the pharmaceutical composition in the form of a physiologically acceptable ester or salt, such as in combination with a physiologically acceptable cation or anion, as is well known in the art.
An obstacle for topical administration of pharmaceuticals is the stratum comeum layer of the epidermis. The stratum corneum is a highly resistant layer comprised of protein, cholesterol, sphingolipids, free fatty acids and various other lipids, and includes cornified and living cells. One of the factors that limits the penetration rate (flux) of a compound through the stratum comeum is the amount of the active substance which can be loaded or applied onto the skin surface. The greater the amount of active substance which is applied per unit of area of the skin, the greater the concentration gradient between the skin surface and the lower layers of the skin, and in tum the greater the diffusion force of the active substance through the skin. Therefore, a formulation containing a greater concentration of the active substance is more likely to result in penetration of the active substance through the skin, and more of it, and at a more 1797061 _1 92
® consistent rate, than a formulation having a lesser concentration, all other things being equal.
The formulations of the pharmaceutical compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient into association with a carrier or one or more other accessory ingredients, and then, if necessary or desirable, shaping or packaging the product into a desired single- or multi-dose unit. 2 Although the descriptions of pharmaceutical compositions provided herein are principally directed to pharmaceutical compositions which are suitable for ethical administration to humans, it will be understood by the skilled artisan that such compositions are generally suitable for administration to animals of all sorts.
Modification of pharmaceutical compositions suitable for administration to humans in order to render the compositions suitable for administration to various animals is well understood, and the ordinarily skilled veterinary pharmacologist can design and perform such modification with merely ordinary, if any, experimentation.
Subjects to which administration of the pharmaceutical compositions of the invention is contemplated include, but are not limited to, humans and other primates, mammals including commercially relevant mammals such as cattle, pigs, horses, sheep, cats, and dogs.
Pharmaceutical compositions that are useful in the methods of the : invention may be prepared, packaged, or sold in formulations suitable for oral, rectal, vaginal, parenteral, topical, pulmonary, intranasal, buccal, ophthalmic, intrathecal or another route of administration. Other contemplated formulations include projected nanoparticles, liposomal preparations, resealed erythrocytes containing the active ingredient, and immunologically-based formulations.
A pharmaceutical composition of the invention may be prepared, packaged, or sold in bulk, as a single unit dose, or as a plurality of single unit doses. As used herein, a “unit dose” is a discrete amount of the pharmaceutical composition comprising a predetermined amount of the active ingredient. The amount of the active ingredient is generally equal to the dosage of the active ingredient which would be 1797061 _1 23
® administered to a subject or a convenient fraction of such a dosage such as, for example, one-half or one-third of such a dosage.
The relative amounts of the active ingredient, the pharmaceutically acceptable carrier, and any additional ingredients in a pharmaceutical composition of the invention will vary, depending upon the identity, size, and condition of the subject treated and further depending upon the route by which the composition is to be administered. By way otf example, the composition may comprise between 0.1% and 100% (w/w) active ingredient.
In addition: to the active ingredient, a pharmaceutical composition of the invention may further comprise one or more additional pharmaceutically active agents.
Particularly contemplated additional agents include anti-emetics and scavengers such as cyanide and cyanate scavengers.
Controlled- or sustained-release formulations of a pharmaceutical composition of the invention may be made using conventional technology.
Formulations suitable for topical administration include, but are not limited to, liquid or semi-liquid preparations such as liniments, lotions, oil-in-water or water-in-oil emulsions such as creams, ointments or pastes, and solutions or suspensions.
Topically-administrable formulations may, for example, comprise from about 1% to about 10% (w/w) active ingredient, although the concentration of the active ingredient may be as high as the solubility limit of the active ingredient in the solvent. Formulations for topical administration may further comprise one or more of the additional ingredients described herein.
Enhancers of permeation may be used. These materials increase the rate of penetration of drugs across the skin. Typical enhancers in the art include ethanol, glycerol monolaurate, PGML (polyethylene glycol monolaurate), dimethylsulfoxide, and the like. Other enhancers include oleic acid, oleyl alcohol, ethoxydiglycol, laurocapram, alkanecarboxylic acids, dimethylsulfoxide, polar lipids, or N-methyl-2-pyrrolidone.
One acceptable vehicle for topical delivery of some of the compositions of the invention may contain liposomes. The composition of the liposomes and their use are known in the art (for example, see Constanza, U.S. Patent No. 6,323,219). 1797061 _} 9
The source of active compound to be formulated will generally depend upon the particular form of the compound. Small organic molecules and peptidyl or oligo fragments can be chemically synthesized and provided in a pure form suitable for pharmaceutical/cosmetic usage. Products of natural extracts can be purified according to techniques known in the art. Recombinant sources of compounds are also available to those of ordinary skill in the art.
In alternative embodiments, the topically active pharmaceutical or cosmetic composition may be optionally combined with other ingredients such as moisturizers, cosmetic adjuvants, anti-oxidants, chelating agents, bleaching agents, tyrosinase inhibitors and other known depigmentation agents, surfactants, foaming agents, conditioners, humectants, wetting agents, emulsifying agents, fragrances, viscosifiers, buffering agents, preservatives, sunscreens and the like. In another embodiment, a permeation or penetration enhancer is included in the composition and is effective in improving the percutaneous penetration of the active ingredient into and through the stratum corneum with respect to a composition lacking the permeation enhancer. Various permeation enhancers, including oleic acid, oleyl alcohol, ethoxydiglycol, laurocapram, alkanecarboxylic acids, dimethylsulfoxide, polar lipids, or
N-methyl-2-pyrrolidone, are known to those of skill in the art. In another aspect, the composition may further comprise a hydrotropic agent, which functions to increase disorder in the structure of the stratum corneum, and thus allows increased transport across the stratum corneum. Various hydrotropic agents such as isopropyl alcohol, propylene glycol, or sodium xylene sulfonate, are known to those of skill in the art. The compositions of this invention may also contain active amounts of retinoids (i.e., compounds that bind to any members of the family of retinoid receptors), including, for example, tretinoin, retinol, esters of tretinoin and/or retinol and the like.
The topically active pharmaceutical or cosmetic composition should be applied in an amount effective to affect desired changes. As used herein “amount effective’ shall mean an amount sufficient to cover the region of skin surface where a change is desired. An active compound should be present in the amount of from about 0.0001% to about 15% by weight volume of the composition. More preferable, it should be present in an amount from about 0.0005% to about 5% of the composition; most 1797061 _I 93
® preferably, it should be present in an amount of from about 0.001% to about 1% of the composition. Such compounds may be synthetically-or naturally-derived.
Liquid derivatives and natural extracts made directly from biological sources may be employed in the compositions of this invention in a concentration (w/v) from about 1 to about 99%. Fractions of natural extracts and protease inhibitors may have a different preferred rage, from about 0.01% to about 20% and, more preferably, from about 1% to about 10% of the composition. Of course, mixtures of the active agents of this invention may be combined and used together in the same formulation, or in serial applications of different fomiulations.
The composition of the invention may comprise a preservative from about 0.005% to 2.0% by total weight of the composition. The preservative is used to prevent spoilage in the case of an aqueous gel because of repeated patient use when it is exposed to contaminants in the environment from, for example, exposure to air or the patient’s skin, including contact with the fingers used for applying a composition of the invention such as a therapeutic gel or cream. Examples of preservatives useful in accordance with the invention included but are not limited to those selected from the group consisting of benzyl alcohol, sorbic acid, parabens, imidurea and combinations thereof. A particularly preferred preservative is a combination of about 0.5% to 2.0% benzyl alcohol and 0.05% to 0.5% sorbic acid.
The composition preferably includes an antioxidant and a chelating agent which inhibit the degradation of the compound for use in the invention in the aqueous gel formulation. Preferred antioxidants for some compounds are BHT, BHA, alphatocopherol and ascorbic acid in the preferred range of about 0.01% to 0.3% and more preferably BHT in the range of 0.03% to 0.1% by weight by total weight of the composition. Preferably, the chelating agent is present in an amount of from 0.01% to 0.5% by weight by total weight of the composition. Particularly preferred chelating agents include edetate salts (e.g. disodium edetate) and citric acid in the weight range of about 0.01% to 0.20% and more preferably in the range of 0.02% to 0.10% by weight by total weight of the composition. The chelating agent is useful for chelating metal ions in the composition which may be detrimental to the shelf life of the formulation. While
BHT and disodium edetate are the particularly preferred antioxidant and chelating agent 1797061 _| 96
® respectively for some compounds, other suitable and equivalent antioxidants and chelating agents may be substituted therefor as would be known to those skilled in the art.
Controlled-release preparations may also be used and the methods for the use of such preparations are known to those of skill in the art.
In some cases, the dosage forms to be used can be provided as slow or controlled-release of one or more active ingredients therein using, for example, hydropropylmethyl cellulose, other polymer matrices, gels, permeable membranes, osmotic systems, multilayer coatings, microparticles, liposomes, or microspheres or a combination thereof to provide the desired release profile in varying proportions.
Suitable controlled-release formulations known to those of ordinary skill in the art, including those described herein, can be readily selected for use with the pharmaceutical compositions of the invention. Thus, single unit dosage forms suitable for oral administration, such as tablets, capsules, gelcaps, and caplets, that are adapted for controlled-release are encompassed by the present invention.
All controlled-release pharmaceutical products have a common goal of improving drug therapy over that achieved by their non-controlled counterparts. Ideally, the use of an optimally designed controlled-release preparation in medical treatment is characterized by a minimum of drug substance being employed to cure or control the condition in a minimum amount of time. Advantages of controlled-release formulations include extended activity of the drug, reduced dosage frequency, and increased patient compliance. In addition, controlled-release formulations can be used to affect the time of onset of action or other characteristics, such as blood level of the drug, and thus can affect the occurrence of side effects.
Most controlled-release formulations are designed to initially release an amount of drug that promptly produces the desired therapeutic effect, and gradually and continually release of other amounts of drug to maintain this level of therapeutic effect over an extended period of time. In order to maintain this constant level of drug in the body, the drug must be released from the dosage form at a rate that will replace the amount of drug being metabolized and excreted from the body.
Controlled-release of an active ingredient can be stimulated by various inducers, for example pH, temperature, enzymes, water, or other physiological conditions 1797061 _1 7
® or compounds. The term “controlled-release component” in the context of the present invention is defined herein as a compound or compounds, including, but not limited to, polymers, polymer matrices, gels, permeable membranes, liposomes, or microspheres or a combination thereof that facilitates the controlled-release of the active ingredient.
Liquid suspensions may be prepared using conventional methods to achieve suspension of the active ingredient in an aqueous or oily vehicle. Aqueous vehicles include, for exampie, water, and isotonic saline. Oily vehicles inciude, for example, almond oil, oily esters, ethyl alcohol, vegetable oils such as arachis, olive, sesame, or coconut oil, fractionated vegetable oils, and mineral oils such as liquid paraffin. Liquid suspensions may further comprise one or more additional ingredients including, but not limited to, suspending agents, dispersing or wetting agents, emulsifying agents, demulcents, preservatives, buffers, salts, flavorings, coloring agents, and sweetening agents. Oily suspensions may further comprise a thickening agent.
Known suspending agents include, but are not limited to, sorbitol syrup, hydrogenated edible fats, sodium alginate, polyvinylpyrrolidone, gum tragacanth, gum acacia, and cellulose derivatives such as sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose. Known dispersing or wetting agents include, but are not limited to, naturally-occurring phosphatides such as lecithin, condensation products of an alkylene oxide with a fatty acid, with a long chain aliphatic alcohol, with a partial ester derived from a fatty acid and a hexitol, or with a partial ester derived from a fatty acid and a hexitol anhydride (e.g., polyoxyethylene stearate, heptadecaethyleneoxycetanol, polyoxyethylene sorbitol monooleate, and polyoxyethylene sorbitan monooleate, respectively). Known emulsifying agents include, but are not limited to, lecithin, and acacia. Known preservatives include, but are not limited to, methyl, ethyl, or n- propyl-para- hydroxybenzoates, ascorbic acid, and sorbic acid. Known sweetening agents include, for example, glycerol, propylene glycol, sorbitol, sucrose, and saccharin.
Known thickening agents for oily suspensions include, for example, beeswax, hard paraffin, and cetyl alcohol.
Liquid solutions of the active ingredient in aqueous or oily solvents may be prepared in substantially the same manner as liquid suspensions, the primary difference being that the active ingredient is dissolved, rather than suspended in the 1797061 _1 98
@ solvent. Liquid solutions of the pharmaceutical composition of the invention may comprise each of the components described with regard to liquid suspensions, it being understood that suspending agents will not necessarily aid dissolution of the active ingredient in the solvent. Aqueous solvents include, for example, water, and isotonic saline. Oily solvents include, for example, almond oil, oily esters, ethyl alcohol, vegetable oils such as arachis, olive, sesame, or coconut oil, fractionated vegetable oils, and mineral oils such as liquid paraffin.
Powdered and granular formulations of a pharmaceutical preparation of the invention may ve prepared using known methods. Such formulations may be administered directly to a subject, used, for example, to form tablets, to fill capsules, or to prepare an aqueous or oily suspension or solution by addition of an aqueous or oily vehicle thereto. Each of these formulations may further comprise one or more of dispersing or wetting agent, a suspending agent, and a preservative. Additional excipients, such as fillers and sweetening, flavoring, or coloring agents, may also be included in these formulations.
A pharmaceutical composition of the invention may also be prepared, packaged, or sold in the form of oil-in-water emulsion or a water-in-oil emulsion. The oily phase may be a vegetable oil such as olive or arachis oil, a mineral oil such as liquid paraffin, or a combination of these. Such compositions may further comprise one or more emulsifying agents such as naturally occurring gums such as gum acacia or gum tragacanth, naturally-occurring phosphatides such as soybean or lecithin phosphatide, esters or partial esters derived from combinations of fatty acids and hexitol anhydrides such as sorbitan monooleate, and condensation products of such partial esters with ethylene oxide such as polyoxyethylene sorbitan monooleate. These emulsions may also contain additional ingredients including, for example, sweetening or flavoring agents.
As used herein, an “oily” liquid is one which comprises a carbon- containing liquid molecule and which exhibits a less polar character than water.
A formulation of a pharmaceutical composition of the invention suitable for oral administration may be prepared, packaged, or sold in the form of a discrete solid dose unit including, but not limited to, a tablet, a hard or soft capsule, a cachet, a troche, or a lozenge, each containing a predetermined amount of the active ingredient. Other 1797061 _! 9
® formulations suitable for oral administration include, but are not limited to, a powdered or granular formulation, an aqueous or oily suspension, an aqueous or oily solution, a paste, a gel, a toothpaste, a mouthwash, a coating, an oral rinse, or an emulsion. The terms oral rinse and mouthwash are used interchangeably herein.
A pharmaceutical composition of the invention may be prepared, packaged, or sold in a formulation suitable for oral or buccal administration. Such a formulation may comprise, but is not limited to, a gel, a liquid, a suspension, a paste, a toothpaste, a mouthwash or oral rinse, and a coating. For example, an oral rinse of the invention may comprise a compound of the invention at about 1.4 %, chlorhexidine gluconate (0.12%), ethanol (11.2%), sodium saccharin (0.15%), FD&C Blue No. 1 (0.001%), peppermint oil (0.5%), glycerine (10.0%), Tween 60 (0.3%), and water to 100%. In another embodiment, a toothpaste of the invention may comprise a compound of the invention at about 5.5%, sorbitol, 70% in water (25.0%), sodium saccharin (0.15%), sodium lauryl sulfate (1.75%), carbopol 934, 6% dispersion in (15%), oil of spearmint (1.0%), sodium hydroxide, 50% in water (0.76%), dibasic calcium phosphate dihydrate (45%), and water to 100%. The examples of formulations described herein are not exhaustive and it is understood that the invention includes additional modifications of these and other formulations not described herein, but which are known to those of skill in the art.
A tablet comprising the active ingredient may, for example, be made by compressing or molding the active ingredient, optionally with one or more additional ingredients. Compressed tablets may be prepared by compressing, in a suitable device, the active ingredient in a free-flowing form such as a powder or granular preparation, optionally mixed with one or more of a binder, a lubricant, an excipient, a surface active agent, and a dispersing agent. Molded tablets may be made by molding, in a suitable device, a mixture of the active ingredient, a pharmaceutically acceptable carrier, and at least sufficient liquid to moisten the mixture. Pharmaceutically acceptable excipients used in the manufacture of tablets include, but are not limited to, inert diluents, granulating and disintegrating agents, binding agents, and lubricating agents. Known dispersing agents include, but are not limited to, potato starch and sodium starch glycollate. Known surface-active agents include, but are not limited to, sodium lauryl 1797061_1 100
® sulphate. Known diluents include, but are not limited to, calcium carbonate, sodium carbonate, lactose, microcrystalline cellulose, calcium phosphate, calcium hydrogen phosphate, and sodium phosphate. Known granulating and disintegrating agents include, but are not limited to, corn starch and alginic acid. Known binding agents include, but are not limited to, gelatin, acacia, pre-gelatinized maize starch, polyvinylpyrrolidone, and hydroxypropyl methylcellulose. Known lubricating agents include, but are not limited to, magnesium stearate, stearic acid, silica, and talc.
Tablets may be non-coated or they may be coated using known methods to achieve delayed disiniegration in the gastrointestinal tract of a subject, thereby providing sustained release and absorption of the active ingredient. By way of example, a matenal such as glyceryl monostearate or glyceryl distearate may be used to coat tablets. Further by way of example, tablets may be coated using methods described in U.S. Patents numbers 4,256,108; 4,160,452; and 4,265,874 to form osmotically-controlled release tablets. Tablets may further comprise a sweetening agent, a flavoring agent, a coloring agent, a preservative, or some combination of these in order to provide for pharmaceutically elegant and palatable preparation.
Hard capsules comprising the active ingredient may be made using a physiologically degradable composition, such as gelatin. Such hard capsules comprise the active ingredient, and may further comprise additional ingredients including, for example, an inert solid diluent such as calcium carbonate, calcium phosphate, or kaolin.
Soft gelatin capsules comprising the active ingredient may be made using a physiologically degradable composition, such as gelatin. Such soft capsules comprise the active ingredient, which may be mixed with water or an oil medium such as peanut oil, liquid paraffin, or olive oil.
Liquid formulations of a pharmaceutical composition of the invention which are suitable for oral administration may be prepared, packaged, and sold either in liquid form or in the form of a dry product intended for reconstitution with water or another suitable vehicle prior to use.
A pharmaceutical composition of the invention may be prepared, packaged, or sold in a formulation suitable for rectal administration. Such a composition 179706! _1 101
® may be in the form of, for example, a suppository, a retention enema preparation, and a solution for rectal or colonic irrigation.
Suppository formulations may be made by combining the active ingredient with a non-irritating pharmaceutically acceptable excipient which is solid at ordinary room temperature (i.e., about 20°C) and which is liquid at the rectal temperature of the subject (i.e., about 37°C in a healthy human). Suitable pharmaceutically acceptable excipients include, but are not limited to, cocoa butter, polyethylene glycols, and various glycerides. Suppository formulations may further comprise various additional ingredients including, but not limited to, antioxidants, and preservatives.
Retention enema preparations or solutions for rectal or colonic irrigation may be made by combining the active ingredient with a pharmaceutically acceptable liquid carrier. As is well known in the art, enema preparations may be administered using, and may be packaged within, a delivery device adapted to the rectal anatomy of the subject. Enema preparations may further comprise various additional ingredients including, but not limited to, antioxidants, and preservatives.
A pharmaceutical composition of the invention may be prepared, packaged, or sold in a formulation suitable for vaginal administration. Sucha composition may be in the form of, for example, a suppository, an impregnated or coated vaginally-insertable matenal such as a tampon, a douche preparation, or gel or cream or a solution for vaginal irrigation.
Methods for impregnating or coating a material with a chemical composition are known in the art, and include, but are not limited to methods of depositing or binding a chemical composition onto a surface, methods of incorporating a chemical composition into the structure of a material during the synthesis of the material (i.e., such as with a physiologically degradable material), and methods of absorbing an aqueous or oily solution or suspension into an absorbent material, with or without subsequent drying.
Douche preparations or solutions for vaginal irrigation may be made by combining the active ingredient with a pharmaceutically acceptable liquid carrier. Asis well known in the art, douche preparations may be administered using, and may be ~ packaged within, a delivery device adapted to the vaginal anatomy of the subject. 1797061 _1 102
®
Douche preparations may further comprise various additional ingredients including, but not limited to, antioxidants, antibiotics, antifungal agents, and preservatives. As used herein, “parenteral administration” of a pharmaceutical composition includes any route of administration characterized by physical breaching of a tissue of a subject and administration of the pharmaceutical composition through the breach in the tissue. Parenteral administration thus includes, but is not limited to, administration of a pharmaceutical composition by injection of the composition, by application of the composition through a surgical incision, by application of the composition through a tissue-penetrating non-surgical wound, and the like. In particular, parenteral administration is contemplated to include, but is not limited to, subcutaneous, intraperitoneal, intramuscular, intrasternal injection, and kidney dialytic infusion techniques.
Formulations of a pharmaceutical composition suitable for parenteral administration comprise the active ingredient combined with a pharmaceutically acceptable carrier, such as sterile water or sterile isotonic saline. Such formulations may be prepared, packaged, or sold in a form suitable for bolus administration or for continuous administration. Injectable formulations may be prepared, packaged, or sold in unit dosage form, such as in ampules or in multi-dose containers containing a preservative. Formulations for parenteral administration include, but are not limited to, suspensions, solutions, emulsions in oily or aqueous vehicles, pastes, and implantable sustained-release or biodegradable formulations. Such formulations may further comprise one or more additional ingredients including, but not limited to, suspending, stabilizing, or dispersing agents. In one embodiment of a formulation for parenteral administration, the active ingredient is provided in dry (i.e., powder or granular) form for reconstitution with a suitable vehicle (e.g., sterile pyrogen-free water) prior to parenteral administration of the reconstituted composition.
The pharmaceutical compositions may be prepared, packaged, or sold in the form of a sterile injectable aqueous or oily suspension or solution. This suspension or solution may be formulated according to the known art, and may comprise, in addition to the active ingredient, additional ingredients such as the dispersing agents, wetting agents, or suspending agents described herein. Such sterile injectable formulations may be 1797061 _! 103
® prepared using a non-toxic parenterally-acceptable diluent or solvent, such as water or 1,3-butane diol, for example. Other acceptable diluents and solvents include, but are not limited to, Ringer's solution, isotonic sodium chloride solution, and fixed oils such as synthetic mono- or di-glycerides. Other parentally-administrable formulations which are useful include those which comprise the active ingredient in microcrystalline form, in a liposomal preparation, or as a component of a biodegradable polymer system.
Compositions for sustained release or implantation may comprise pharmaceutically acceptable polymeric or hydrophobic materials such as an emulsion, an ion exchange resin, a sparingly soluble polymer, or a sparingly soluble salt.
A pharmaceutical composition of the invention may be prepared, packaged, or sold in a formulation suitable for buccal administration. Such formulations may, for example, be in the form of tablets or lozenges made using conventional methods, and may, for example, 0.1 to 20% (w/w) active ingredient, the balance comprising an orally dissolvable or degradable composition and, optionally, one or more of the additional ingredients described herein. Alternately, formulations suitable for buccal administration may comprise a powder or an aerosolized or atomized solution or suspension comprising the active ingredient. Such powdered, aerosolized, or aerosolized formulations, when dispersed, preferably have an average particle or droplet size in the range from about 0.1 to about 200 nanometers, and may further comprise one or more of the additional ingredients described herein.
As used herein, “additional ingredients” include, but are not limited to, one or more of the following: excipients; surface active agents; dispersing agents; inert : diluents; granulating and disintegrating agents; binding agents; lubricating agents; sweetening agents; flavoring agents; coloring agents; preservatives; physiologically degradable compositions such as gelatin; aqueous vehicles and solvents; oily vehicles and solvents; suspending agents; dispersing or wetting agents; emulsifying agents, demulcents; buffers; salts; thickening agents; fillers; emulsifying agents; antioxidants; antibiotics; antifungal agents; stabilizing agents; and pharmaceutically acceptable } polymeric or hydrophobic materials. Other “additional ingredients” which may be included in the pharmaceutical compositions of the invention are known in the art and 1797061 _1 104
® described, for example in Genaro, ed. (1985, Remington’s Pharmaceutical Sciences,
Mack Publishing Co., Easton, PA), which is incorporated herein by reference.
Typically, dosages of the compound of the invention which may be administered to an animal, preferably a human, will vary depending upon any number of factors, including but not limited to, the type of animal and type of disease state being treated, the age of the animal and the route of administration.
The compound can be administered to an animal as frequently as several times daily, or it may be administered less frequently, such as once a day, once a week, once every two weeks, once a month, or.even lees frequently, such as once every several months or even once a year or less. The frequency of the dose will be readily apparent to the skilled artisan and will depend upon any number of factors, such as, but not limited h to, the type and severity of the disease being treated, the type and age of the animal, etc.
It will be recognized by one of skill in the art that the various embodiments of the invention as described above relating to methods of inhibiting 3DG or treating 3DG related diseases or conditions, includes other diseases and conditions not described herein. -
The present invention should be construed to include kits for inhibiting or stimulating 3DG, treating 3DG associated skin diseases and disorders, kits for measuring 3DG and 3DG related parameters, and kits for diagnosing 3DG associated skin diseases and disorders. The invention should be construed to include kits for alpha-dicarbonyl sugars other than 3DG as well.
The invention includes a kit comprising an inhibitor of 3DG or a compound identified in the invention, a standard, and an instructional material which describes administering the inhibitor or a composition comprising the inhibitor or compound to a cell or an animal. This should be construed to include other embodiments of kits that are known to those skilled in the art, such as a kit comprising a standard and a (preferably sterile) solvent suitable for dissolving or suspending the composition of the invention prior to administering the compound to a cell or an animal. Preferably the ) animal is a mammal. More preferably, the mammal is a human. 1797061 _1 105
_
The invention also includes a kit comprising a stimulator of 3DG degradation, detoxification, or clearance, or a such a stimulatory compound identified in the invention, a standard, and an instructional material which describes administering the stimulator or a composition comprising the stimulator or compound to a cell or an animal. This should be construed to include other embodiments of kits that are known to those skilled in the art, such as a kit comprising a standard and a (preferably sterile) solvent suitable for dissolving or suspending the composition of the invention prior to administering the compound to a cell or an animal.
In accordance with the present invention, as described above or as discussed in the Examples below, there can be employed conventional chemical, cellular, histochemical, biochemical, molecular biology, microbiology and recombinant DNA techniques which are known to those of skill in the art. Such techniques are explained fully in the literature. See for example, Sambrook et al., 1989 Molecular Cloning - a
Laboratory Manual, Cold Spring Harbor Press; Glover, (1985) DNA Cloning: a Practical
Approach; Gait, (1984) Oligonucleotide Synthesis; Harlow et al., 1988 Antibodies - a
Laboratory Manual, Cold Spring Harbor Press; Roe et al., 1996 DNA Isolation and
Sequencing: Essential Techniques, John Wiley; and Ausubel et al., 1995 Current
Protocols in Molecular Biology, Greene Publishing.
Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods. The following working examples therefore, specifically point out the preferred embodiments of the present invention, and are not to be construed as limiting in any way the remainder of the disclosure.
EXAMPLES
The invention is now described with reference to the following Examples.
These Examples are provided for the purpose of illustration only and the invention should in no way be construed as being limited to these Examples, but rather should be construed to encompass any and all variations which become evident as a result of the ] teaching provided herein. oo 1797061_1 106
_
Example 1
Isolation and identification of FL3P:
The following assays were performed in order to verify that fructose- lysine (FL) could be identified in its phosphorylated state, e.g., FL3P. A 3'P NMR analysis of a perchloric acid extract of diabetic rat kidneys was performed and showed a new sugar monophosphate resonance at 6.24 ppm which is not observed in non-kidney tissue and is present at greatly reduced levels in non-diabetic kidney. The compound responsible for the observed resonance was isolated by chromatography of the extract on a microcrystalline celiulose column using 1-butanol-acetic acid-water (5:2:3) as eluent.
The structure was determined by proton 2D COSY to be fructose-lysine 3-phosphate.
This was later confirmed by injecting animals with FL, prepared as previously described (Finot and Mauson, 1969, Helv. Chim. Acta, 52:1488), and showing direct phosphorylation to FL3P.
Using FL specifically deuterated in position-3 confirmed the position of the phosphate at carbon-3. This was performed by analyzing the 3'P NMR spectra, both coupled and decoupled. The normal P-O-C-H coupling produces a doublet in FL3P with a J value of 10.3 Hz; whereas P-O-C-D has no coupling and produces a singlet both coupled and decoupled, as was found for 3-deuterated FL3P. A unique property of FL3P is that when treated with sodium borohydride it is converted into two new resonances at 5.85 and 5.95 ppm, which correspond to mannitol and sorbitol-lysine 3-phosphates.
Example 2
Synthesis of FL3P: 1 mmol of dibenzyl-glucose 3-phosphate and 0.25 mmol of a- carbobenzoxy-lysine was refluxed in 50 ml of MeOH for 3 hours. The solution was diluted with 100 ml water and chromatographed on a Dow-50 column (2.5 x 20 cm) in the pyridinium form and eluted first with water (200 ml) and then with 600 ml buffer (0.1M pyridine and 0.3M acetic acid). The target compound eluted at the end of the water wash and the beginning of the buffer wash. The results demonstrated that removal : 1797061 _1 107 of the cbz and benzyl blocking groups with 5% Pd/C at 20 psi of hydrogen gave FL3P in 6% yield.
Example 3
Enzymatic production of FL3P from FL and ATP and assay for screening inhibitors:
Initially 3p NMR was nsed to demonstrate kinase activity in the kidney cortex. A 3 g sample of fresh pig kidney cortex was homogenized in 9 ml of 50 mM
Tris'-HCI containing 150 mM KCl, 5 mM DTT, 15 mM MgCl,, pH 7.5. This was centrifuged at 10,000 g for 30 minutes, and then the supernatant was centrifuged at 100,000 g for 60 minutes. Ammonium sulfate was added to 60% saturation. After 1 hour at 4°C the precipitate was collected by centrifugation and dissolved in 5 ml. of original buffer. A 2 ml aliquot of this solution was incubated with 10 mM ATP and 10 mM of FL (prepared as in Example 1, above) for 2 hours at 37°C. The reaction was quenched with 300 pl of perchloric acid, centrifuged to remove protein, and desalted on a | ~ column of Sephadex G 10 (5 x 10 cm). 3'p NMR analysis of the reaction mixture detected formation of FL3P.
Based on the proof of kinase activity thus obtaincd, a radioactive assay : was developed. This assay was designed to take advantage of the binding to Dow-50 cation exchange resin by FL3P. This characteristic of FL3P was discovered during efforts to isolate it. Since most phosphates do not bind to this resin, it was suspected that the bulk of all compounds that react with ATP as well as any excess ATP would not be bound. The first step was to determine the amount of resin required to remove the ATP in the assay. This was accomplished by pipetting the mixture into a suspension of 200 mg of Dow-1 in 0.9 ml H,0, vortexing, and centrifuging to pack the resin. From this 0.8 ml of supernatant was pipetted onto 200 mg of fresh dry resin, vortexed and centrifuged.
A 0.5 ml volume of supernatant was pipetted into 10 ml of Ecoscint A and counted. :
Residual counts were 85 cpm. This procedure was used for the assay. The precipitate : from 60% ammonium sulfate precipitation of the crude cortex homogenate was redissolved in the homogenate buffer at 4°C. The assay contains 10 mM y*P-ATP (40,000 cpm), 10 mM FL, 150 mM KCl, 15 mM MgCl,, 5 mM DTT in 0.1 ml of 50 mM 1797061 _| 108
®
Tris'HC, pH 7.5. The relationship between rates of FL3P production and enzyme concentration was determined using triplicate determinations with 1, 2, and 4 mg of protein for 30 minutes at 37 °C. Blanks run concurrently without FL were subtracted and the data recorded. The observed activity corresponds to an approximate FL3P synthesis rate of 20 nmols/hr/mg protein.
Example 4
Inhibition of the formation of 3-deoxyglucosone by meglumine and various polyollysines: a. General polyollysine synthesis:
The sugar (11 mmoles), a-carbobenzoxy-lysine (10 mmols) and
NaBH;CN (15 mmoles) were dissolved in 50 ml of MeOH-H20 (3:2) and stirred at 25°C for 18 hours. The solution was treated with an excess of Dow-50 (H) ion exchange resin to decompose excess NaBH3;CN. This mixture (liquid plus resin) was transferred onto a
Dow-50 (H) column (2.5 x 15 cm) and washed well with water to remove excess sugar and boric acid. The carbobenzoxy-polyollysine was eluted with 5% NH4OH. The residue obtained upon evaporation was dissolved in water-methanol (9: 1) and reduced with hydrogen gas (20 psi) using a 10% palladium on charcoal catalyst. Filtration and evaporation yields the polyollysine. b. Experimental protocol for reduction of urinary and plasma 3- deoxyglucosone by sorbitollysine, mannitollysine and galactitollysine:
Urine was collected from six rats for three hours. A plasma sample was also obtained. The animals were then given 10 pumols of either sorbitollysine, mannitollysine, or galactitollysine by intraperitoneal injection. Urine was collected for another three hours, and a plasma sample obtained at the end of the three hours. a. 3-deoxyglucosone was measured in the samples, as described in
Example 5, below, and variable volumes were normalized to creatinine. The average reduction of urinary 3-deoxyglucosone was 50% by sorbitollysine, 35% by mannitollysine and 35% by galactitollysine. Plasma 3-deoxyglucosone was reduced 40% by sorbitollysine, 58% by mannitollysine and 50% by galactitollysine. b. Use of meglumine to reduce urinary 3-deoxyglucosone: 1797061 _1 109
®
Three rats were treated as in b), immediately above, except meglumine (100 pmols) was injected intraperitoneally instead of the above-mentioned lysine derivatives. Three hours after the injection the average 3-deoxyglucosone concentrations in the urine were decreased 42%.
Example §
Elevation of nrinary FT., 3DG and 3DF in himans following ingestion of glycated protein: a. Preparation of glycated protein containing food product: 260 g of casein, 120 g of glucose and 720 ml of water were mixed to give a homogeneous mixture. This mixture was transferred to a metal plate and heated at 65°C for 68 hours. The resulting cake was then pulverized to a coarse powder.
This powder contained 60% protein as determined by the Kjeldahl procedure. b. Measurement of glycated lysine content:
One gram of the powder prepared as in step a., above, was hydrolyzed by refluxing with 6N HCl for 20 hours. The resulting solution was adjusted to pH 1.8 wiilt
NaOH solution and diluted to 100 ml. The fructoselysine content was measured on an amino acid analyzer as furosine, the product obtained from acid hydrolysis of fructoselysine. In this way, it was determined that the cake contained 5.5% (w/w) fructoselysine. c. Experimental protocol:
Volunteers spent two days on a fructoselysine-free diet and then consumed 22.5 g of the food product prepared as described herein, thus effectively receiving a 2 gram dose of fructoselysine. Urine was collected at 2 hour intervals for 14 hours and a final collection was made at 24 hours. d. Measurement of FL, 3DG and 3DF in urine: .
FL was measured by HPLC with a Waters 996 diode Array using a Waters :
C18 Free Amino Acid column at 46°C and a gradient elution system of acetonitrile- methyl alcohol-water (45:15:40) into acetonitrile-sodium acetate-water (6:2:92) at 1 ml/min. Quantitation employed an internal standard of meglumine. 1797061 _| 10
® 3DF was measured by HPLC after deionization of the sample. Analyses were performed on a Dionex DX-500 HPLC system employing a PA1 column (Dionex) and eluting with 32 mM sodium hydroxide at 1 ml/min. Quantitation was performed = from standard curves obtained daily with synthetic 3DF. 3DG was measured by GC-MS after deionization of the sample. 3DG was derivatized with a 10-fold excess of diaminonaphthalene in PBS. Ethyl acetate extraction gave a salt free fraction which was converted to the trimethyl silyl ethers with Tri-Sil (Pierce). Analysis was performed on a Hewlett-Packard 5890 selected ion monitoring
GC-MS system. GC was performed on a fused silica capillary coiumn (DB-5,25 mx.25 mm) using the following temperature program: injector port 250 °C, initial column temperature 150 °C which is held for 1 minute, then increased to 290 °C at 16 °C/minute and held for 15 minutes. Quantitation of 3DG employed selected ion monitoring using an internal standard of U-13C-3DG.
The results of the experiments described in this example are now presented.
The graph depicted in Figure 3 represents production of FL, 3DF, and 3DG in the urine of one volunteer after consuming the glycated protein. The rapid appearance of all three metabolites is clearly evident. Both 3DF and 3DG show a sli ght elevation even after twenty-four hours.
The graph shown in Figure 4 represents the formation of 3DF in each of the members of a seven-person test group. A similar pattern was seen in all cases. As demonstrated in Figure 4, 3DF excretion peaks about 4 hours after the FL bolus and a slight elevation of 3DF is noticeable even 24 h after the bolus.
Example 6
Effects of increased dietary uptake of glycated proteins:
N-acetyl-p-glucosaminidase (NAGase) is an enzyme excreted into the urine in elevated concentration in diabetics. It is thought to be an early marker of tubular damage, but the pathogenesis of increased NAGase in urine is not well understood. The increased urinary output of NAGase in diabetics has been proposed to be due to 1797061 _1 Hi
® activation of lysosomes in proximal tubules induced by diabetes with an increased output into the urine rather than destruction of cells.
Rats were fed a diet containing 0.3% glycated protein or control feed over several months. The urinary output of NAGase and 3DF were determined at various times, as indicated in Figure 5. The amount of 3DG excreted in urine was also ) determined.
The results obtained in this example demonstrate that in all comparisons 3DF and NAGase levels are elevated in the experimental group relative to the control.
Thus, animals fed glycated protein excrete excess NAGase into their urine, similar to - results obtained with diabetics. NAGase output increased by approximately 50% in the experimental group, compared with control animals. The experimental animals also had a five-fold increase in urine 3DF compared with controls. Urinary 3DF was found to correlate extremely well with 3DG, as can be seen in Figures 5 and 6.
Example 7
Electrophoretic analysis of kidney proteins:
Two rats were injected daily with 5 umols of either FL or mannite! (used as a control) for 5 days. The animals were sacrificed and the kidneys removed and dissected into the cortex and medulla. Tissues were homogenized in 5 volumes of 50 mM Tris-HCI containing 150 mM KCl, 15 mM MgCl; and 5 mM DTT, pH 7.5. Cellular debris was removed by centrifugation at 10,000 x g for 15 minutes, and the supernatant was then centrifuged at 150,000 x g for 70 minutes. The soluble proteins were analyzed by SDS PAGE on 12% polyacrylamide gels as well as on 4-15 and 10-20% gradient gels.
It was found that in all cases, lower molecular weight bands were missing or visually reduced from the kidney extract of the animal injected with FL when compared with the animal injected with mannitol.
Example 8
Synthesis of 3-O-methylsorbitollysine (Structure XIX) 3-OMe glucose (25 grams, 129 mmol) and a-Cbz-lysine (12 grams, 43 mmol) were dissolved in 200 ml of water-methanol (2:1). Sodium cyanoborohydride (10 1797061 _L 12 grams, 162 mmol) was added and the reaction stirred for 18 days at room temperature.
Reaction of a-Cbz-lysine was monitored by thin layer chromatography on silica gel employing 1-butanol-acetic acid-water (4:1:1) using ninhydrin for visualization. The reaction was complete when no a-Cbz-lysine remained. The solution was adjusted to pH 2 with HCI to decompose excess cyanoborohydride, neutralized and then applied to a column (5x50 cm) of Dowex-50 (H+) and the column washed well with water to remove excess 3-O-me-glucose. The target compound was eluted with 5% ammonium hydroxide. After evaporation the residue was dissolved in 50 ml of water-methanol (2:1) and 10% Pd/C (0.5 gram) was added. The mixture was shaken under 20 psi of hydrogen for 1 hr. The charcoal was filtered off and the filtrate evaporated to a white powder (10.7 gram, 77% yield based on a-Cbz-lysine) that was homogeneous when analyzed by reversed phase HPLC as the phenylisothiocyanate derivative. Elemental analysis:
Calculated for Ci3H,sN,07CH3;0H2 H,0 C, 42.86; H, 9.18; N, 7.14. Found: C, 42.94; H, 8.50; N, 6.95.
Other specific compounds having the structure of formula (XIX), above, may be made, e.g., by glycation of a selected nitrogen- or oxygen-containing starting material, which may be an amino acid, polyaminoacid, peptide or the like, with a glycating agent, such as fructose, which may be chemically modified, if desired, according to procedures well know to those skilled in the art.
Example 9
Additional assay for FL3P kinase activity: a. Preparation of Stock Solutions:
An assay buffer solution was prepared which was 100 mM HEPES pH 8.0, 10 mM ATP, 2 mM MgCl, 5 mM DTT, 0.5 mM PMSF. A fructosyl-spermine stock solution was prepared which was 2 mM fructosyl-spermine HCl. A spermine control solution was prepared which was 2 mM spermine HCl. b. Synthesis of Fructosyl-spermine:
Synthesis of fructosyl-spermine was performed by an adaptation of a known procedure (J. Hodge and B. Fisher, 1963, Methods Carbohydr. Chem., 2:99-107). :
A mixture of spermine (500 mg), glucose (500 mg), and sodium pyrosulfite (80 mg) was 1797061_1 13
® prepared in a molar ratio of 8:4:1 (spermine:glucose:pyrosulfite) in 50 ml of methanol- water (1:1) and refluxed for 12 hours. The product was diluted to 200 ml with water and loaded onto a DOW-50 column (5 x 90 cm). The unreacted glucose was removed by 2 column volumes of water and the product and unreacted spermine were removed with 0.1
M NH,OH. Pooled peak fractions of the product were lyophilized and concentration of fructosyl-spermine was determined by measuring the integral of the C-2 fructosyl peak in a quantitative °C NMR spectrum of the product (NMR data collected with a 45° pulse, a second relaxation delay and without NOE decoupling). c. Kinase Assay to Determine Purification: 10 An incubation mixture was prepared including 10 ul of the enzyme preparation, 10 pl of assay buffer, 1.0 uCi of **P ATP, 10 pl of fructosyl-spermine stock solution and 70 pl of water and incubated at 37°C for | hour. At the end of the incubation 90 ul (2 x 45 pl) of the sample was spotted onto two 2.5 cm diameter cellulose phosphate disks (Whatman P-81) and allowed to dry. The disks were washed extensively with water. After drying, the disks were placed in scintillation vials and counted.
Each enzyme fraction was assayed in duplicate with an appropriate spermine control.
Example 10
Kidney pathology observed in test animals on glycated protein diet:
Three rats were maintained on a glycated protein diet (20% total protein; 3% glycated) for 8 months and compared to 9 rats of the same age maintained on a control diet. The glycated protein diet consisted of a standard nutritious diet to which 3% glycated protein had been substituted for nonglycated protein. The glycated protein was made by mixing together casein and glucose (2:1), adding water (2X the weight of the dried material), and baking the mixture at 60°C for 72 hours. The control was prepared in the same way except that no water was used and the casein and glucose were not mixed prior to baking.
The primary finding was a substantial increase in damaged glomeruli in the animals on the glycated diet. Typical lesions observed in these animals were 1797061_! 14 segmental sclerosis of the glomerular tuft with adhesion to Bowman's capsule, tubular metaplasia of the parietal epithelium and interstitial fibrosis. All animals on the glycated protein diet, and only one of the animals on the control diet showed more than 13% damaged glomeruli. The probability of this happening by chance 1s less than 2%. In addition to the pathological changes observed in the glomeruli, a number of hyalinated casts within tubules were observed. More of these hyalinated casts were found in animals on the glycated diet, although these were not quantitated. Increased levels of
NAGase were also observed in the animals on the glycated diet.
Based on the results of this experiment, the glycated diet appeared to cause the test animals to develop a series of histological lesions similar to those seen in the diabetic kidney.
Example 12
Carcinogenic effects of fructoselysine pathway:
To investigate the carcinogenic potential of metabolites formed in the fructoselysine pathway, experiments were conducted on a strain of rats with a high susceptibility to kidney carcinomas.
Four rats were put on a glycated protein diet and three rats on a control diet. After ten weeks on the diet, the animals were sacrificed and their kidneys examined.
In all four animals on the diet, kidney carcinomas of size greater than 1 mm were found, whereas no lesions this large were found in the control animals. The probability of this happening by chance is less than 2%.
The data demonstrate that there are elevated 3DG levels, caused by the excess fructoselysine coming from the glycated protein in the diet, in the kidney tubular cells (known to be the cell of origin of most kidney carcinomas), and the 3DG can interact with the cellular DNA, leading to a variety of mutagenic and ultimately carcinogenic events. The possibility exists that this process is important in the development of human cancers in the kidney and elsewhere.
Example 13
Dietary effects of glycated protein diet on renal cell carcinoma in susceptible rats: 970611 115
®
In addition to the experiments described above, experiments were performed to assess the relationship between a glycated protein diet and renal cell carcinoma.
Twenty-eight rats with a mutation making them susceptible to the development of kidney carcinoma were divided into two cohorts. One cohort was fed a glycated protein diet and the other cohort was on a control diet. The glycated protein diet consisted ot a standard nutritious diet to which 3% glycated protein had been added. The glycated protein was made by mixing together casein and glucose (2:1), adding water (2X the weight of the dried material), and baking the mixture at 60°C for 72 hours. The control was prepared in the same way except that no water was used and the casein and glucose were not mixed prior to baking. Rats were placed on the diets immediately following weaning at three weeks of age and maintained on the diets ad libitum for the next 16 weeks. The animals were then sacrificed, the kidneys fixed, and hematoxylin and eosin sections were prepared.
The histological samples were examined by a pathologist. Four types of lesions were identified. These include: cysts; very small collections of tumor-like cells, typically less than 10 cells; small tumors, 0.5 mm or less; and tumors greater than 0.5 mm. For the four types of lesions, more lesions were observed in the animals on the glycated diet than on the control diet, as shown in the following table (Table A).
TABLE A. [CONTROL 12 [9 fo ~~ 13 ~~ J23 [GLYCATED [9 [21 [32 ~~ J6 ~~ [68
To summarize the results, the average number of lesions per kidney section was computed for each diet. These were 0.82 + 0.74 and 2.43 + 2.33 in the control and glycated diet, respectively. The likelihood of this happening by chance is about 2 in 100,000.
These results provide strong support for the premise that the effects of the lysine recovery pathway, the discovery of which underlies the present invention, extend to causing mutations, and thus produce a carcinogenic effect as well. These results 1797061 _ 16
® provide a basis for the development of therapeutic methods and agents to inhibit this pathway in order to reduce cancer in the kidney as well as in other organs where this pathway may have similar effects.
Example 14
Urinary excretion of 3-deoxy-fructose is indicative of progression to microalbuminuria in patients with type I diabetes:
As set forth herein, serum levels of the glycation intermediate, three deoxy-glucosone (3DG) and its reductive detoxification product, three deoxy-fructose (3DF), are elevated in diabetes. The relationship between baseline levels of these compounds and subsequent progression of microalbuminuria (MA) has been examined in a group of 39 individuals from a prospective cohort of patients at the Joslin Diabetes
Center with insulin-dependent diabetes mellitus (IDDM) and microalbuminuria (based on multiple measurements during the two years of baseline starting between 1990-1993) and not on ACE inhibitors.
Baseline levels of 3DF and 3DG in random spot urines were measured by
HPLC and GC-MS. Individuals that progressed to either a higher level of MA or proteinuria in the next four years (n=24) had significantly higher baseline levels of log 3DF/urinary creatinine ratios compared to non-progressors (n=15) (p=0.02).
Baseline levels determined in this study were approximately 0.24 pmole/mg of creatinine in the progressors vs. approximately 0.18 umole/mg of creatinine ratios in the non-progressors. Baseline 3DG/urine creatinine ratios did not differ between the groups. Adjustment of the baseline level of HgA, (the major fraction of glycosylated hemoglobin) did not substantially alter these findings. These results provide additional evidence of the association between urinary 3DF and progression of kidney complications on diabetes. a. Quantification of 3-deoxyfructose:
Samples were processed by passing a 0.3 ml aliquot of the test sample through an ion-exchange column containing 0.15 m1 of AG 1-X8 and 0.15 ml of AG 50W-X8 resins. The columns were then washed twice with 0.3 ml deionized water, aspirated to remove free liquid and filtered through a 0.45 mm Millipore filter. 1797061 _) 17
®
Injections (50 pl) of the treated samples were analyzed using a Dionex DX 500 chromatography system. A carbopac PA1 anion-exchange column was employed with an eluant consisting of 16% sodium hydroxide (200 mM) and 84% deionized water. 3DF was detected elcctrochemically using a pulsed amperometric detector. Standard 3DF solutions spanning the anticipated 3DF concentrations were run both before and after each unknown sample. b. Measurement of wie creatinine:
Urine creatinine concentrations were determined by the end-point colorimetric method (Sigma Diagnostic kit 555-A) modified for use with a plate reader.
Creatinine concentrations were assessed to normalize urine volumes for measuring metabolite levels present therein. ¢. Measurement of albumin in the urine:
To assess albumin levels in the urine of the test subjects, spot urines were collected and immunoephelometry performed on a BN 100 apparatus with the N-albumin kit (Behring). Anti-albumin antibodies are commercially available. Albumin levels in urine may be assessed by any suitable assay including but not limited to ELISA assays, radioimmunoassays, Westem, and dot blotting.
Based on the data obtained in the study of the Joslin Diabetes Center patients, it appears that elevated levels of urinary 3DF are associated with progression to microalbuminuria in diabetes. This observation provides a new diagnostic parameter for assessing the likelihood of progression to serious kidney complications in patients afflicted with diabetes.
Example 15 3-O-methyl sorbitollysine lowers systemic levels of 3DG in normal and diabetic rats:
A cohort of twelve diabetic rats was divided into two groups of six. The first group received saline-only injections, and the second received injections of 3-O- methyl sorbitollysine (50 mg/kg body weight) in saline solution. The same procedure was conducted on a cohort of twelve non-diabetic rats. 1797061 _1 118
As summarized in Table B, within one week, the 3-O-methyl sorbitollysine treatment significantly reduced plasma 3DG levels as compared to the respective saline controls in both diabetic and non-diabetic rats.
TABLE B. 3-O-Methyl sorbitollysine (3-OMe) reduces plasma 3DG levels in diabetic and non-diabetic rats.
Diabetic rats Non-diabetic rats
Saline only 0.94+0.28 uM 0.23+£0.07 uM n=~6 n==>6 3-OMe 0.44+0.10 uM 0.13+0.02 uM n=6 n=7 > = 0.0006 >= 0.0024
The ability of 3-O-methyl sorbitollysine to reduce systemic 3DG levels suggests that diabetic complications other than nephropathy (e.g., retinopathy and stiffening of the aorta) may also be controllable by amadorase inhibitor therapy.
Example 16
Locus of 3-O-methyl sorbitollysine uptake in vivo is the kidney:
Six rats were injected intraperitoneally with 13.5 nmoles (4.4 mg) of 3-O- methyl sorbitollysine. Urine was collected for 3 hours, after which the rats were sacrificed. The tissues to be analyzed were removed and freeze clamped in liquid nitrogen. Perchloric acid extracts of the tissues were used for metabolite analysis. The tissues examined were taken from the brain, heart, muscle, sciatic nerve, spleen, pancreas, liver, and kidney. Plasma was also analyzed.
The only tissue extract found to contain 3-O-methy! sorbitollysine was that of the kidney. The urine also contained 3-O-methyl sorbitollysine, but plasma did not. The percentage of the injected dose recovered from urine and kidney varied between 39 and 96%, as shown in Table C, below.
TABLE C. 119 1797061 _
R nmols Nmols nmols total % 30MeSL* [30MeSL ~~ [30MeSL ~~ [30MeSL [30MeSL
Injected [in urine in kidneys recovered [recovered 084 {13500 2940 10071 13011 96.4 i 085 13500 1675 6582 8257 61.2 13500 1778 5373 7151 2087 [13500 2360 4833 7193 13500 4200 8155 12355 13500 1355 3880 5235
EE NE US UN WA
*3-0-methy! sorbitollysine
Example 17
Amadorase/fructosamine kinase activity accounts for a majority of 3DG production:
S Enzymatic production of 3DG was demonstrated in an in vitro assay with various key components (10 mM Mg-ATP, partially purified amadorase, 2.6 mM FL) omitted from the reaction in order to assess their importance in 3DG production.
The results show that 3DG production is 20-fold higher in the presence of kidney extract containing amadorase and its substrates (compare Table D, reactions 1 and 3). Clearly, the vast majority of 3DG production is enzymatically mediated in the presence of amadorase.
TABLE D. Amadorase-dependent production of 3DG after 24 hours :
Reaction Amadorase ATP FL FL3P mM mM mM 1797061_1 120
_
I I
2 | + 1-1 26 | 0 | 008 sas [0] om 4 1 1-1 26 | 0 | 008 sv vo [oo 6 | T+ To [ oo | 0
Example 18
Effects of 3DG, and inhibition of 3DG, on collagen crosslinking:
Collagen is present at high levels in skin. To this end, it was determined what effect 3DG has on collagen crosslinking.
Collagen I was incubated in the presence or absence of 3DG in vitro. Calf skin collagen Type I (1.3 mg; Sigma) was incubated in 20 mM Na-phosphate buffer, pH 7.25, either alone, with 5 mM 3DG, or with 5 mM 3DG plus 10 mM arginine, in a total volume of 1 ml at 37°C for 24 hours and then frozen and lyophilized. The residue was dissolved in 0.5 ml of 70% formic acid and cyanogen bromide was added (20:1, w/w).
This solution was incubated at 30°C for 18 hours. Samples were dialyzed against 0.125
M Tris, pH 6.8, containing 2% SDS and 2% glycerol, in dialysis tubing with a molecular weight cutoff of 10,000. The samples were all adjusted to a volume of 1 ml. The extent of collagen crosslinking was determined by applying equal volumes of sample and analyzing by SDS-PAGE electrophoresis (16.5% Tris-tricine gel), as determined by the effects of 3DG on the migration of collagen.
It was found that treatment of collagen with 3DG caused the collagen to migrate as if it had a higher molecular weight, which is indicative of crosslinking. The image of the silver-stained gel in Figure 12 demonstrates that there are fewer high molecular bands in the groups containing collagen alone or collagen plus 3DG plus arginine. There are more high molecular weight bands in the group treated with 3DG, in the absence of a 3DG inhibitor. There appears to be more protein in the sample treated with 3DG alone. Because all three samples started with the same mount of protein, without being bound by theory, it can be concluded that during dialysis fewer peptides escaped from the 3DG treated sample because more crosslinks were produced and higher molecular weight proteins were retained. In other words, there appears to be less protein 1797061 _1 121
® in the control and 3DG plus arginine groups, because smaller molecular peptides diffused out during dialysis.
Example 19
Localization of 3DG in Skin:
The invention as described in the present disclosure identifies for the first time the presence of 3DG in skin, :
A mouse skin model was used. One centimeter (1 cm) squares of skin were prepared and subjected to extraction with perchloric acid. 3DG was measured as described above. Six mice were used and the average amount of 3DG detected in the skin was 1.46 +/- 0.3 pM. This value was substantially higher than the plasma concentrations of 3DG detected in the same animals (0.19 +/- 0.05 uM). These data, and the data described below in Example 20, suggest that the high levels of 3DG in the skin are due to production of 3DG in the skin.
Example 20
Localization of Amadorase mRNA in Skin:
Although high levels of 3DG were found in skin (see previous Example), it was not known whether the 3DG was formed locally and whether skin had the ability to produce 3DG enzymatically. The presence of amadorase mRNA was analyzed and was utilized as one measure of the ability of skin to produce the 3DG present in skin (see previous example).
PolyA+ messenger RNA isolated from human kidney and skin was purchased from Stratagene. The mRNA was used in RT-PCR procedures. Using the published sequence for amadorase (Delpierre et al., 2000, Diabetes 49:10:1627-1634;
Szwergold et al., 2001, Diabetes 50:2139-2147), a reverse primer to the 3’ terminal end of the gene (bp 930-912) was subjected to RT to create a cDNA template for PCR. This same primer was used along with a forward primer from the middle of the amadorase gene (bp 412-431) to amplify the amadorase gene from the cDNA template. The product : of the PCR should be a 519 bp fragment. Human skin and kidney samples were subjected to RT-PCR and analyzed by agarose gel electrophoresis, as were controls which contained no cDNA templates. 1797061 _1 122
®
The results demonstrate that skin does indeed express amadorase mRNA.
Subsequent expression of the protein would account for production of 3DG in skin. As expected, a 519 bp product was observed (see Figure 13). Not only was the 519 bp fragment found in kidney (lane 1), it was also found in skin (lane 3). The 519 bp fragment was not detected in the groups which received no cDNA template (lanes 2 and 4).
Example 21
Effects of Fructoselysine on kidney cells in vitro:
As described above, a diet high in glycated proteins, e.g., fructoselysine, has a profound effect on metabolism in vivo. Therefore, the effects of fructoselysine were tested directly on kidney cells in vitro.
The results demonstrate that fructoselysine administered to kidney cells in vitro causes an increase in type IV collagen levels in the cells. Type IV collagen production was measured in mouse mesangial cells. Controls (grown with 10% glucose) produced 300 ng of Type IV collagen per 10,000 cells, whereas fructoselysine treated cells (5 or 10 mM fructoselysine with 10 mM glucose) produced 560 and 1100 ng/10,000 cells.
Example 22
Inhibition of 3DG by inhibiting Amadorase mRNA and protein: 3DG synthesis may be inhibited by inhibiting the components of the enzymatic pathway leading to its synthesis. This can be done in several ways. For example, the enzyme which leads to the synthesis of 3DG, called amadorase herein (a fructosamine-3-kinase) can be inhibited from acting using a compound as described above, but it can also be inhibited by blocking the synthesis of its message or protein or by blocking the protein itself, other than with a compound, as described above.
Amadorase mRNA and protein synthesis and function may be inhibited using compounds or molecules such as transcription or translation inhibitors, antibodies, antisense messages or oligonucleotides, or competitive inhibitors.
Nucleic Acid and Protein Sequences 1797061 _1 123
®
The following represents the 988 bp mRNA-derived DNA sequence for amadorase (fructosamine-3-kinase), Accession No. NM_022158 (SEQ ID NO:1) (see
Figure 10): 1 cgtcaagctt ggeacgagge catggageag ctgetgegeg ccgagetgeg caccgegace 61 ctgegggect teggeggeee cggegeegge tgeatcageg agggecgage ctacgacacg 121 gacgcaggce cagtgttcgt caaagtcaac cgeaggacge aggeccggca gatgtttgag 181 ggggaggtgg ccagectgga ggeectecgg ageacgggec tggtgegggt geegaggece 241 atgaaggtca tcgacctgec gggaggtggg geegecetttg tgatggagea tttgaagatg 301 aagagcttga gcagtcaagc atcaaaactt gRagagcaga tggcagattt gcatctttac 361 aaccagaagc tcagggagaa gttgaaggag gaggagaaca cagtgggcecg aagaggtgag 421 ggtgctgage ctcagtatgt ggacaagttc ggettccaca cggtgacgtg ctgeggette 481 atcccgeagg tgaatgagtg gcaggatgac tggecgacct ttttcgeceg geaccggcetc 541 caggcgcagce tggacctcat tgagaaggac tatgetgace gagaggceacg agaactctgg 601 tcccggetac aggtgaagat cceggatctg ttttgtggee tagagattgt cceegegttg 661 ctccacgggg atctctggtc gggaaacgtg getgaggacg acgtggggcc cattatttac 721 gacccggctt cetictatgg ccaticegag tttgaactgg caatcgectt gatgtttgag 781 gggticeeea gateettett caccgectac caceggaaga tccccaagge tecgggette : 841 gaccagcgge tgetgetcta ccagetgttt aactacctga accactggaa ccacttcggg 901 cgggagtaca ggagcecttc cttgggeace atgcgaaggce tgctcaagta geggeeectg 961 cccetecctte cectgtecce gtececgt
The following represents the 309 amino acid residue sequence of human amadorase (fructosamine-3-kinase), Accession No. NP_071441 (SEQ ID NO:2) (see
Figure 11): 1 meqllraelr tatlrafggp gagcisegra ydtdagpvfv kvnrrtqarq mfegevasle 61 alrstglvrv prpmkvidlp gggaafvmeh lkmkslssqa skigeqmadi hlyngklrek 121 lkeeentvgr rgegaepqyv dkfgfhtvtc cgfipqgvnew qddwptffar hrigaqidhi 181 ekdyadrear elwsriqvki pdifcgleiv pallhgdiws gnvaeddvgp iiydpasfyg 241 hsefelaial mfggfprsff tayhrkipka pgfdqrilly qlfnylnhwn hfgreyrsps 301 lIgtmrrllk 1797061 _1 124
® The sequences identified above were submitted by Delpierre et al. (2000,
Diabetes 49:16227-1634). The sequence data of Szwergold et al. (2001, Diabetes 50:2139-2147) are in excellent agreement with those of Delpierre et al. For example; the protein sequence deduced by Szwergold et al. (2001, Diabetes 50:2139-2147) is identical with the cloned human fructosamine-3-kinase sequence of Delpierre et al. (2000,
Diabetes 49:16227-1634) in 307 of 309 amino acid residues. Thus, reliance on the published sequences of either group should not be a problem, however, to ensure that no problems arise when a sequence of the protein is to be used, only those portions of the sequence which are not diiferent between the two published sequences will be used.
Example 23
Presence of Alpha-Dicarbonyl Sugars in Sweat
As disclosed herein, alpha-dicarbonyl sugars are present in skin, but their presence in sweat had not been determined. One of the functions of skin is to act as an excretory organ, therefore, it was determined whether alpha-dicarbonyl! sugars are excreted in sweat.
Samples of human sweat were analyzed for the presence of 3DG, as described above. Samples from four subjects were obtained and 3DG was determined to be present at levels of 0.189, 2.8, 0.312, and 0.11 uM, respectively. Therefore, the results demonstrate the presence of 3DG in sweat.
Example 24
Effects of DYN 12 (3-O-methylsorbitollysine) on Skin Elasticity
Administration of DYN 12, a small molecule inhibitor of amadorase, reduces 3DG levels in the plasma of diabetic and non-diabetic animals (Kappler et al, 2002, Diabetes Technol. Ther., Winter 3:4:606-609).
Experiments were performed to determine the effects of DYN 12 on the loss of skin elasticity associated with diabetes. To this end, two groups of STZ-diabetic rats and two groups of normal rats were subjected to treatment with DYN 12 or saline.
One group of STZ-diabetic rats (n=9) received daily subcutaneous injections of DYN 12 at 50 mg/kg for eight weeks, as did one group of normal rats (n=6). A group of control 1797061 _1 125
® diabetic rats (n=10) and a group of normal rats (n=6) received saline instead of DYN 12.
One rat was removed from the diabetic DYN 12 group after 2 weeks because its blood glucose readings were inconsistent (too low) with other diabetic rats.
A non-invasive procedure based on CyberDERM, Inc. technology utilizing a skin elasticity measurement device was used to test the effects of DYN 12 treatment on skin elasticity. The procedure provides for non-invasive measurement of skin elasticity based upon the amount of vacuum pull required to displace skin. A suction cup probe is adhered to an area of shaved skin in order to form an airtight seal. Then, a vacuum is applied to the area of the skin inside the suction cup until the skin is displaced past a sensor located inside the probe. Accordingly, the more pressure that is required to displace the skin, the less elastic the skin is.
The data demonstrate that after eight weeks of treatment skin elasticity in diabetic rats treated with DYN 12 was greater than skin elasticity in diabetic animals which were treated with saline. As seen in Figure 14, the amount of pressure needed to displace the skin of diabetic rats treated with saline (7.2 +/- 3.0 kPA) was approximately 2 to 2.25 fold higher than the pressure needed to displace the skin of diabetic animals treated with DYN 12 (3.2 +/- 1.2 kPA). Also, the elasticity value observed in diabetic rats treated with DYN 12 was not statistically different from the value found in non- diabetic rats treated with saline (p = 0.39) (Table E). Thus, the result of treatment of diabetic animals with DYN 12, an indirect inhibitor of 3DG, was skin with greater elasticity than skin in diabetic animals which received only saline.
Table E. Statistical Analysis and Comparison of Cohort Groups.
Diabetic saline [Diabetic DYN 12 | p=0.001 1797061 _1 126
® The above data demonstrate that the administration of DYN 12 to diabetic rats prevents the loss of skin elasticity (e.g., sclerosis and thickening of the basement membrane of the skin) that is typically observed in untreated diabetic rats, which is evidence that the excess 3DG found in diabetics is the cause of the loss of elasticity. The data disclosed herein further indicate that reducing 3DG levels can also serve to maintain skin elasticity in normal individuals.
Skin elasticity measurements were also taken on the test subjects as described above, but without sedating the test animals before measurement. Figure 15 illustrates skin elasticity measurements taken on the hind leg of the test subjects while the subjects were alert and being restrained by a technician.
In these experiments, the animals were fiercely fighting restraint and the results are different. The diabetic animals without drug treatment showed less ability to “pull away” from the suction cup and therefore show less “resistance to pull”. On the other hand, both the diabetic animals receiving drug and the normal animals had a greater capacity to pull away from the suction cup, and both groups of animals demonstrated stiffness and greater muscle tension. This indicates that the inhibition of the enzyme, and most likely, inactivation of 3DG, results in the sparing of microcirculation deterioration and neuro-deterioration that typifies the diabetic condition.
Example 25
Level of 3DG in scleroderma skin
It has been determined, according to the methods disclosed previously elsewhere herein, that normal skin had the following concentrations of 3DG (data from several subjects): 0.9 uM, 0.7 uM, and 0.6 uM. Several samples of skin from several scleroderma patients were similarly assayed and had the following level of 3DG: 15 uM, 130 uM, and 3.5 pM. Accordingly, these data demonstrate that the level of 3DG in the skin of scleroderma patients is significantly elevated compared with the level of 3DG in the skin of normal humans.
The disclosures of each and every patent, patent application, and publication cited herein are hereby incorporated herein by reference in their entirety. 127 1797061 _1
While this invention has been disclosed with reference to specific embodiments, it is apparent that other embodiments and variations of this invention may be devised by others skilled in the art without departing from the true spirit and scope of the invention.
The appended claims are intended to be construed to include all such embodiments and equivalent variations. 128 1797061 _i

Claims (1)

  1. ’ PCT/US03/12003 ® ~ CLAIMS
    1. Use of an inhibitor of 3-Deoxyglucosone (3DG) synthesis, in the manufacture of a preparation for inhibiting 3-Deoxyglucosone (3DG) synthesis in the skin of a mammal.
    2. Use of claim 1, wherein said inhibitor of 3DG synthesis is administrable via a route selected from the group consisting of topical, oral, rectal, vaginal, intramuscular, and intravenous.
    3. Use of claim 2, wherein said inhibitor of 3DG synthesis is administrable via a topical route.
    4. Use of claim 1, wherein said inhibitor of 3DG synthesis is an enzyme inhibitor.
    5. Use of claim 4, wherein said enzyme inhibitor is an inhibitor of fructosamine kinase function.
    6. Use of claim 5, wherein said inhibitor of fructosamine kinase function inhibits amadorase.
    7. Use of claim 5, wherein said inhibitor of fructosamine kinase function binds with fructosamine kinase.
    8. Use of claim 7, wherein said inhibitor of fructosamine kinase function which binds with fructosamine kinase is an antibody.
    9. Use of claim 8, wherein said fructosamine kinase is amadorase.
    10. Use of claim 8, wherein said antibody binds with fructosamine Kinase or a fragment thereof. 129 AMENDED SHEET
    PCT/US03/12003 ® 11. Use of claim 10, wherein said antibody is selected from the group consisting of a polyclonal antibody, a monoclonal antibody, a humanized antibody, a chimeric antibody, and a synthetic antibody.
    12. A composition comprising an antibody that specifically binds with fructosamine kinase, or a fragment thereof, and a pharmaceutically-acceptable carrier.
    13. The composition of claim 12, wherein said fructosamine kinase shares at least 30% sequence identity with the amino acid sequence of SEQ ID NO:2.
    14. A composition comprising an isolated nucleic acid complementary to a nucleic acid encoding a fructosamine kinase, or a fragment thereof, said complementary nucleic acid being in an antisense orientation, and a pharmaceutically-acceptable carrier.
    15. Use of claim 5, wherein said inhibitor of fructosamine kinase function is a compound comprising the formula of formula XIX. (He X—R Y (XIX) Z~ i —H R,
    a. wherein X is -NR-, -5(0)-, -5(0),-, or -O-, R being selected from the group consisting of H, linear or branched chain alkyl group (C,-Cy), CH,(CHOR,),,CH,0R, wherein n = 1-5 and R, is H, alkyl (C,-C,) or an unsubstituted or substituted aryl group (Cg-Cyg) or araalkyl group (C4-C yg), CH(CH,OR,)(CHOR,),CH,0R, where n = 1-4 and R, is H, alkyl (C,-C,) or an 130 AMENDED SHEET
    PCT/US03/12003 ® unsubstituted or substituted aryl group (C¢-C |) or araalkyl group (C4-Cg), an unsubstituted or substituted aryl group (C4-C,4), and an unsubstituted or substituted aralkyl group (C4-C ps b. R is a substituent selected from the group consisting of H, an amino acid residue, a polyaminoacid residue, a peptide chain, a linear or branched chain aliphatic group (C,-Cg), which is unsubstituted or substituted with at least one nitrogen- or oxygen-containing substituent, a linear or branched chain aliphatic group (C,-Cg), which is unsubstituted or substituted with at least one nitrogen- or oxygen-containing substituent and interrupted by at least one -O-, -NH-, or -NR" - moiety;
    C. R" being linear or branched chain alkyl group (C,-Cg) and an unsubstituted or substituted aryl group (C4-Co) or aralkyl group (C4-C,(), with the proviso that when X represents -NR’-, R and R’, together with the nitrogen atom to which they are attached, may also represent a substituted or unsubstituted heterocyclic ring having from 5 to 7 ring atoms, with at least one of nitrogen and oxygen being the only heteroatoms in said ring, said aryl group (C4-C(y) or aralkyl group (C;-C,,) and said heterocyclic ring substituents being selected from the group consisting of H, alkyl (C,;-Cy), halogen, CF;, CN, NO, and -O-alkyl (C;-Cg); R, is a polyol moiety having 1 to 4 linear carbon atoms, Y is a hydroxymethylene moiety -CHOH-;
    d. Z is selected from the group consisting of -H, -O-alkyl (C,-Cy), - halogen -CF;, -CN, -COOH, and -SO5-H,, and optionally -OH; and e. the isomers and pharmaceutically acceptable salts of said compound, except that X-R in the above formula does not represent hydroxy! or thiol.
    16. Use of claim 15, wherein said compound comprising formula XIX is selected from the group consisting of galactitol lysine, 3-deoxy sorbitol lysine, 3- deoxy-3-fluoro-xylitol lysine, 3-deoxy-3-cyano sorbitol lysine, 3-O-methyl sorbitollysine, meglumine, sorbitol lysine and mannitol lysine.
    17. Use of claim 16, wherein said compound is 3-O-methyl sorbitollysine. 131 AMENDED SHEET
    PCT/US03/12003 ® 18. Use of claim 1, wherein said inhibitor of 3DG synthesis inhibits 3DG accumulation in said skin.
    19. Use of claim 1, wherein said inhibitor of 3DG synthesis inhibits induction of said 3DG synthesis.
    20. Use of claim 1, wherein said inhibitor of 3DG synthesis inhibits a precursor of said 3DG.
    21. Use of claim 20, wherein said precursor of 3DG is fructoselysine.
    22. Use of claim 1, wherein said mammal is a human.
    23. Use of claim 1, wherein said inhibitor of 3DG synthesis inhibits transcription of a fructosamine kinase mRNA.
    24. Use of claim 23, wherein said inhibitor inhibits transcription of a nucleic acid comprising SEG ID NO:1.
    25. Use of claim 23, wherein said fructosamine kinase mRNA encodes amadorase.
    26. Use of claim 23, wherein said inhibitor binds with a nucleic acid encoding fructosamine kinase mRNA.
    27. Use of claim 26, wherein said inhibitor is an antisense oligonucleotide.
    28. Use of claim 27, wherein the length of said oligonucleotide is selected from the group consisting of 5-25 nucleotides, 26-50 nucleotides, 51-100 i nucleotides, and 101-200 nucleotides. 132 AMENDED SHEET
    PCT/US03/12003 ® 29. Use of an isolated nucleic acid complementary to a nucleic acid encoding a fructosamine kinase protein, said complementary nucleic acid being in an antisense orientation, or a fragment thereof, wherein said fructosamine kinase is required for 3DG synthesis, in the manufacture of a preparation for inhibiting 3DG synthesis in a mammal.
    30. Use of claim 29, wherein said fructosamine kinase is amadorase.
    31. Use of claim 1, wherein said inhibitor of 3DG synthesis, inhibits translation of a fructosamine kinase.
    32. Use of claim 31, wherein said fructosamine kinase is amadorase.
    33. Use of claim 31, wherein said inhibitor binds with fructosamine kinase mRNA.
    34. Use of claim 33, wherein said inhibitor is an antisense oligonucleotide.
    35. Use of claim 31, wherein said inhibitor is an isolated nucleic acid complementary to a nucleic acid encoding a fructosamine kinase protein, or a fragment thereof, said complementary nucleic acid being in an antisense orientation.
    36. Use of claim 1, wherein said inhibitor of 3DG synthesis inhibits a nonenzymatic pathway of 3DG synthesis.
    37. A method of identifying a compound which inhibits 3DG synthesis in the skin of a mammal, said method comprising administering a test compound to said mammal and comparing the level of 3DG in said skin of said mammal with the level of 3DG in the skin of an otherwise identical mammal not administered said test compound, wherein a lower level of 3DG in said skin of said mammal administered said test compound, compared with said level of 3DG in said skin of 133 AMENDED SHEET
    PCT/US03/12003 [ an otherwise mammal not administered said test compound, is an indication that said test compound inhibits 3DG synthesis in said skin of said mammal, thereby identifying a compound which inhibits 3DG synthesis in the skin of a mammal.
    38. A compound identified by the method of claim 37.
    39. The method of claim 37, wherein said mammal is a human.
    40. A composition comprising a compound identified by the method of claim 1 and a pharmaceutically acceptable carrier.
    41. A method of identifying a compound which inhibits 3DG synthesis in a cell in vitro, said method comprising administering a test compound to said cell in vitro and comparing the level of 3DG in said cell in vitro with the level of 3DG in an otherwise identical cell in vitro not administered said test compound, wherein a lower level of said 3DG in said cell in vitro administered said test compound, compared with said level of 3DG in said cell in vitro not administered said test compound, is an indication that said test compound inhibits said 3DG synthesis in said cell in vitro, thereby identifying a compound which inhibits 3DG synthesis in said cell in vitro.
    42. A compound identified by the method of claim 41. 43, The method of claim 41, wherein said cell is a human cell.
    44. A composition comprising a compound identified by the method of claim 41 and a pharmaceutically acceptable carrier.
    45. The method of claim 41, wherein said cell in vitro is selected from the group consisting of a cell in a cell culture, on organ culture, and an isolated ) tissue sample. 134 AMENDED SHEET
    PCT/US03/12003 ® 46. The method of claim 45, wherein said cell in said cell culture is a skin cell.
    47. The method of claim 45, wherein said tissue sample is a skin sample.
    48. Use of an inhibitor of alpha-dicarbonyl sugar function, in the manufacture of a preparation for inhibiting alpha-dicarbonyl sugar function in the skin of a mammal.
    49. Use of claim 48, wherein said inhibitor of alpha-dicarbonyl sugar
    . function inhibits protein crosslinking.
    50. Use of claim 48, wherein said inhibitor of alpha-dicarbonyl sugar function inhibits formation of reactive oxygen species.
    51. Use of claim 48, wherein said inhibitor of alpha-dicarbonyl sugar function inhibits apoptosis.
    52. Use of claim 48, wherein said inhibitor of alpha-dicarbonyl sugar function inhibits mutagenicity.
    53. Use of claim 48, wherein said inhibitor of alpha-dicarbonyl sugar function inhibits formation of advanced glycation end product modified proteins.
    54. Use of claim 48, wherein said inhibitor of alpha-dicarbonyl sugar function inhibits 3DG function.
    55. Use of claim 48, wherein said alpha-dicarbonyl sugar is 3DG.
    56. Use of claim 55, wherein said inhibitor inhibits formation of advanced glycation end product modified proteins. 135 AMENDED SHEET
    PCT/US03/12003 ® 57. Use of claim 55, wherein said inhibitor is arginine or a derivative or modification thereof.
    58. Use of claim 57, wherein said inhibitor inhibits protein crosslinking.
    59. Use of claim 55, wherein said inhibitor is administrable in a pharmaceutical composition.
    60. Use of claim 59, wherein said inhibitor comprises from about
    0.0001 % to about 15% by weight of said pharmaceutical composition.
    61. Use of claim 59, wherein said inhibitor is administrable as a controlled-release formulation.
    62. Use of claim 59, wherein said pharmaceutical composition is selected from the group consisting of a lotion, a cream, a gel, a liniment, an ointment, a paste, a solution, a powder, and a suspension.
    63. Use of claim 62, wherein said composition further comprises a moisturizer, a humectant, a demulcent, oil, water, an emulsifier, a thickener, a thinner, a surface active agent, a fragrance, a preservative, an antioxidant, a hydrotropic agent, a chelating agent, a vitamin, a mineral, a permeation enhancer, a cosmetic adjuvant, a bleaching agent, a depigmentation agent, a foaming agent, a conditioner, a viscosifier, a buffering agent, and a sunscreen.
    64. Use of claim 55, wherein said inhibitor is administrable via a route selected from the group consisting of topical, oral, intramuscular, and intravenous.
    65. Use of claim 64, wherein inhibitor is administrable via a topical route.
    66. Use of claim 55, wherein said inhibitor is selected from the group 136 AMENDED SHEET
    PCT/US03/12003 ® consisting of structural formulas I-XVII and XVIII.
    67. Use of claim 66, wherein said structural formula is structural formula [: SA A I NH NH wherein R; and R, are independently selected from the group consisting of a hydrogen, a lower alkyl, a lower alkoxy and an aryl group; or wherein R| and said R, together with a nitrogen atom form a heterocyclic ring containing from 1 to 2 heteroatoms and 2 to 6 carbon atoms, the second of said heteroatoms comprising nitrogen, oxygen, or sulfur; further wherein said lower alkyl group is selected from the group consisting of 1 to 6 carbon atoms; wherein said lower alkoxy group is selected from the group consisting 1 to 6 carbon atoms; and wherein said aryl group comprises substituted and unsubstituted phenyl and pyridyl groups.
    68. Use of claim 67, wherein said compound is selected from the group consisting of N, N-dimethylimidodicarbonimidic diamide, imidodicarbonimidic _ diamide, N-phenylimidodicarbonimidic diamide, N-(aminoiminomethyl)-4- morpholinecarboximidamide, N-(aminoiminomethyl)-4- thiomorpholinecarboximidamide, N-(aminoiminomethyl)-4-methyl-1- piperazinecarboximidamide, N-(aminoiminomethyl)-1-piperidinecarboximidamide, N-(aminoiminomethyl)-1-pyrrolidinecarboximidamide, N-(aminoiminomethyl)-I- hexahydroazepinecarboximidamide, (aminoiminomethyl)-I- hexahydroazepinecarboximidamide, N-4-pyridylimidodicarbonimidic diamide, N, N- di-n-hexylimidodicarbonimidin diamide, N,N-di-n-pentylimidodicarbonimidic diamide, N,N-d-n-butylimidodicarbonimidic diamide, N ,N- dipropylimidodicarbonimidic diamide, and N,N-diethylimidodicarbonimidic diamide. 137 AMENDED SHEET
    PCT/US03/12003 ® 69. Use of claim 66, wherein said structural formula is structural formula II: . 2 a 4 TE . > N 4 vd
    REN. 2 wherein Z is N or CH; wherein X, Y, and Q each independently is selected from the group consisting of a hydrogen, an amino, a heterocyclo, an amino lower alkyl, a lower alkyl, and a hydroxy group; further wherein R; comprises a hydrogen or an amino group or their corresponding 3-oxides; wherein said lower alkyl group is selected from the group consisting 1 to 6 carbon atoms; wherein said heterocyclic group is selected from the group consisting of 3 to 6 carbon atoms; and wherein X, Y, and Q can each be present as a hydroxy variant on a nitrogen atom.
    70. Use of claim 69, wherein said compound is selected from the group consisting of 4,5-diaminopyrimidine, 4-amino-5-aminomethyl-2-methylpyrimidine, 6-(piperidino)-2,4-diaminopyrimidine 3-oxide, 4,6-diaminopyrimidine, 4,5,6- triaminopyrimidine, 4,5-diamino-6-hydroxy pyrimidine, 2,4,5-triamino-6- hydroxypyrimidine, 2,4,6-triaminopyrimidine, 4,5-diamino-2-methylpyrimidine, 4,5-diamino-2,6-dimethylpyrimidine, 4,5-diamino-2-hydroxy-pyrimidine, and 4,5- diamino-2-hydroxy-6-methylpyrimidine. :
    71. Use of claim 66, wherein said structural formula is structural formula I11: Lr Xa C=—N N—°C NHR, [1 138 AMENDED SHEET
    PCT/US03/12003 ® wherein R, is hydrogen or acyl, Rs is hydrogen or lower alkyl, Xa is a substituent selected from the group consisting of a lower alkyl, a carboxy, a carboxymethyl, an optionally substituted phenyl and an optionally substituted pyridyl group, wherein said optional substituent is selected from the group consisting of a halogen, a lower alkyl, a hydroxy lower alkyl, a hydroxy, and an acetylamino group; further wherein, when X is a phenyl or pyridyl group, optionally substituted, Rs is hydrogen; and wherein, said lower alkyl group is selected from the group consisting of 1 to 6 carbon atoms.
    72. Use of claim 71, wherein said compound is selected from the group consisting of N-acetyl-2-(phenylmethylene)hydrazinecarboximidamide, 2- (phenylmethylene)hydrazinecarboximidamide, 2-(2,6-dichlorophenylmethylene) hydrazinecarboximidamide pyridoxal guanylhydrazone, pyridoxal phosphate guanylhydrazone, 2-(1-methylethylidene)hydrazinecarboximidamide, pyruvic acid guanylhydrazone, 4-acetamidobenzaldehyde guanylhydrazone, 4- acetamidobenzaldehyde N-acetylguanylhydrazone, and acetoacetic acid ~ guanylhydrazone.
    73. Use of claim 66, wherein said structural formula is structural formula IV: Rs NR; v HoN——N——C——NHRg wherein Rg is selected from the group consisting of a hydrogen, a lower alkyl group, and a phenyl group; further wherein said phenyl group is optionally substituted by a structure selected from the group consisting of a 1-3 halo, an amino, a hydroxy, and a lower alkyl group, wherein when said phenyl group is . substituted, a point of said substitution is selected from the group consisting of an ortho, a meta, and a para point of attachment of said phenyl ring to a straight chain 139 AMENDED SHEET
    PCT/US03/12003 ® of said structural formula IV; R, is selected from the group consisting of a hydrogen, a lower alkyl group, and an amino group; Rg is hydrogen or a lower alkyl group; further wherein said lower alkyl group is selected from a lower alkyl group consisting of 1 to 6 carbon atoms.
    74. Use of claim 73, wherein said compound is selected from the group consisting of equival n-butanehydrazonic acid hydrazide, 4-methylbenzamidrazone, N-methylbenzenecarboximidic acid hydrazide, benzecarboximidic acid 1- methylhydrazide, 3-chlorobenzamidrazone, 4-chlorobenzamidrazone, 2- fluorobenzamidrazone, 3-fluorocbenzamidrazone, 4-fluorobenzamidrazone, 2- hydroxybenzamidrazone, 3-hydroxybenzamidrazone, 4-hydroxybenzamidrazone, 2- aminobenzamidrazone, benzenecarbohydrazonic acid hydrazide, and benzenecarbohydrazonic acid 1-methylhydrazide.
    75. Use of claim 66, wherein said structural formula is structural formula V: Rio HoN Rg XX \Y% H,N oN wherein Rg and Rj are independently selected from the group consisting of a hydrogen, a hydroxy, a lower alkyl, and a lower alkoxy, further wherein a "floating" amino group is adjacent to a fixed amino group; said lower alkyl group is selected from a lower alkyl group consisting of 1 to 6 carbon atoms; and said lower alkoxy group is selected from a lower alkoxy group consisting of 1 to 6 carbon atoms.
    76. Use of claim 75, wherein said compound is selected from the group N consisting of 3,4-diaminopyridine, 2,3-diaminopyridine, 5-methyl-2,3- diaminopyridine, 4-methyl-2,3-diaminopyridine, 6-methyl-2,3-pyridinediamine, 4,6- 140 AMENDED SHEET
    PCT/US03/12003 ® dimethyl-2,3-pyridinediamine, 6-hydroxy-2,3-diaminopyridine, 6-ethoxy-2,3- diaminopyridine, 6-dimethylamino-2,3-diaminopyridine, diethyl 2-(2,3-diamino-6- pyridyl) malonate, 6 (4-methyl-1-pyperazinyl)-2,3-pyridinediamine, 6-(methylthio)- S(trifluoromethyl)-2,3-pyridinediamine, 5-(trifluoromethyl)-2,3-pyridinediamine, 6- (2,2,2-trifluorethoxy)-5- (trifluoromethyl)-2,3-pyridinediamine, 6-chloro-5- (trifluoromethyl)-2, 3-pyridinediamine, 5-methoxy-6-(methylthio)-2, 3- pyridinediamine, 5-bromo-4-methyl-2,3-pyridinediamine, 5-(trifluoromethyl-2,3- pyridinediamine, 6-bromo-4-methyl-2,3-pyridinediamine, 5-bromo-6-methyl-2,3- pyridinediamine, 6-methoxy-3,4-pyridinediamine, 2-methoxy-3,4-pyridinediamine, 5-methyl-3,4-pyridinediamine, 5-methoxy-3,4-pyridinediamine, 5-bromo-3,4- pyridinediamine, 2,3,4-pyridinetriamine, 2,3,5-pyridinetriamine, 4-methyl-2,3,6- pyridinetriamine, 4-(methylthio)-2,3,6-pyridinetriamine, 4-ethoxy-2,3,6- pyridinetriamine, 2,3,6-pyridinetriamine, 3,4,5-pyridinetriamine, 4-methoxy-2,3- pyridinediamine, 5-methoxy-2,3-pyridinediamine, and 6-methoxy-2,3- pyridinediamine.
    77. Use of claim 66, wherein said structural formula is structural formula VI: — N Vi ~{ HN——R,, wherein n is 1 or 2, Ry; is an amino group or. a hydroxyethyl group, and R, is selected from the group consisting of amino group, a hydroxyalkylamino group, a lower alkyl group, and a group of the formula alk-Ya, further wherein alk is a lower alkylene group and Ya is selected from the group consisting of a : hydroxy, a lower alkoxy group, a lower alkylthio group, a lower alkylamino group, and a heterocyclic group, wherein said heterocyclic group contains 4 to 7 ring 141 AMENDED SHEET
    PCT/US03/12003 @® members and 1 to 3 heteroatoms; further wherein, when said R;, is a hydroxyethyl group then said R|, is an amino group; said lower alkyl group is selected from the group consisting of 1 to 6 carbon atoms, said lower alkylene group 1s selected from the group consisting of 1 to 6 carbon atoms, and said lower alkoxy group is selected from the group consisting of 1 to 6 carbon atoms.
    78. Use of claim 77, wherein said compound is selected from the group consisting of 1-amino-2-{2-(2-hydroxyethyl)hydrazino]-2-imidazoline, 1-amino-[2-(2- hydroxyethyl)hydrazino]-2-imidazoline, 1-amino-2-(2-hydroxyethylamino)-2- imidazoline, 1-(2-hydroxyethyl)-2-hydrazino-1,4,5,6-tetrahydropyrimidine, 1-(2- hydroxyethyl) 2-hydrazino-2-imidazoline, 1-amino-2-([2-(4- morpholino)ethyl]amino)imidazoline, ([2-(4-morpholino)ethyl]Jamino)imidazoline, 1- amino-2-([3-(4-morpholino) propy!Jamino)imidazoline, 1-amino-2-({3-4- methylpiperazin-1-yl)propyl]-amino)imidazoline; 1-amino-2-([3- (dimethylamino)propyl]amino)imidazoline, 1-amino-2-[{(3-ethoxypropyl)amino] imidazoline, 1-amino-2-([3-(1-imidazolyl)propyl]jamino)imidazoline, 1-amino-2-(2- methoxyethylamino)-2-imidazoline, (2-methoxyethylamino)-2-imidazoline, 1-amino- 2-(3-isopropoxypropylamino)-2-imidazole, 1-amino-2-(3-methylthiopropylamino)-2- imidazoline, 1-amino-2 [3-(1-piperidino)propylamino)imidazoline, 1-amino-2-[2,2- dimethy!l-3-(dimethylamino)propylamino]-2-imidazoline, and 1-amino-2- (neopentylamino)-2-imidazoline.
    79. Use of claim 66, wherein said structural formula is structural formula VII: N (Or vi N—~N Ris 142 AMENDED SHEET
    PCT/US03/12003 @® wherein, R 4 is selected from the group consisting of a hydrogen and an amino group, R,, and Rs are independently selected from the group consisting of an amino group, a hydrazino group, a lower alkyl group, and an aryl group, further wherein, one of said Ry3, R|4, and R;5 must be an amino group or a hydrazino group; wherein said aryl group is selected from the group consisting of 6 to 10 carbon atoms, and said lower alkoxy group is selected from the group consisting of 1 to 6 carbon atoms.
    80. Use of claim 79, wherein said compound is selected from the group consisting of 3,4-diamino-5-methyl-1,2,4-triazole, 3,5-dimethyl-4H-1,2,4-triazol-4- amine, 4-triazol-4-amine, 4-triazol-4-amine, 4-triazol-4-amine, 2,4-triazole-3,4- diamine, 5-(1-ethylpropyl)-4H-1,2,4-triazole-3,4-diamine, 5-isopropyl-4H-1,2,4- triazole-3,4-diamine, 5-cyclohexyl-4H-1,2,4-triazole-3,4-diamine, 5-methyl-4H- 1,2,4-triazole-3,4-diamine, 5-phenyl-4H-1,2,4-triazole-3,4-diamine, 5-propyl-4H- 1,2,4-triazole-3,4-diamine, and 5-cyclohexyl-4H-1,2,4-triazole-3,4-diamine.
    81. Use of claim 66, wherein the structural formula is structural formula VII: I" PN N ~ SK NS N Rig wherein, R¢ is selected from the group consisting of a hydrogen and an amino group; R 5 is selected from the group consisting of an amino group or a guanidino group, further wherein when said R ¢ is hydrogen, said R; is a guanidino group or an amino group; and when said R4 is an amino group, said Ry, is an amino group; Rg and Ry are independently selected from the group consisting of a hydrogen, a hydroxy, a lower alkyl group, a lower alkoxy group, 143 AMENDED SHEET
    PCT/US03/12003 ® and an aryl group; further wherein, said lower alkoxy group is selected from the group consisting of 1 to 6 carbon atoms, and said aryl group is selected from the group consisting of 6 to 10 carbon atoms,
    82. Use of claim 81, wherein said compound is selected from the group consisting of 2-guanidinobenzimidazole, 1,2-diaminobenzimidazole, 1,2- diaminobenzimidazole hydrochloride, 5-bromo-2-guanidinobenzimidazole, 5- methoxy-2-guanidinobenzimidazole, 5-methylbenzimidazole-1,2-diamine, 5- chlorobenzimidazole-1,2-diamine, and 2,5-diaminobenzimidazole.
    83. Use of claim 66, wherein said structural formula is structural formula IX: R,y-CH-(NHR, )-CO,H IX wherein, R,q is selected from the group consisting of a hydrogen, a lower alkyl group, a lower alkylthiol group, a carboxy group, an aminocarboxy group and an amino group; R,; is selected from the group consisting of a hydrogen and an acyl group; further wherein said lower alkyl group is selected from the group consisting of 1 to 6 carbon atoms and said acyl group is selected from the group consisting of 2 to 10 carbon atoms.
    84. Use of claim 83, wherein said compound is selected from the group consisting of lysine, 2,3-diaminosuccinic acid, and cysteine.
    . 85. Use of claim 66, wherein said compound is a compound comprising the formula of said structural formula X: R23 hl — X Raq 1) Vi ve . Ras 144 AMENDED SHEET
    PCT/US03/12003 o wherein R,, is selected from the group consisting of a hydrogen, an amino group, a mono-amino lower alkyl, and a di-amino lower alkyl group; R,; is selected from the group consisting of a hydrogen, an amino group, a mono-amino lower alkyl group, and a di-amino lower alkyl group; R,, is selected from the group consisting a hydrogen, a lower alkyl group, an aryl group and an acyl group; R,s is selected from the group consisting a hydrogen, a lower alkyl group, an aryl group and an acyl group; further wherein, one of said R,, and R,; must be an amino group, or a mono- or di-amino lower alkyl group; said lower alkyl group is selected from the lower alkyl group consisting of 1 to 6 carbon atom; said mono- or di-amino alkyl groups are lower alkyl groups substituted by one or two amino groups; said aryl group is selected from the aryl group consisting of 6 to 10 carbon atoms; said acyl group is selected from the group consisting of a lower alkyl group, an aryl group, and a heteroaryl carboxylic acid containing 2 to 10 carbon atoms; and lower alkoxy group is selected from the group consisting of 1 to 6 carbon atoms.
    86. Use of claim 85, wherein said compound is selected from the group consisting of 1,2,-diamino-4-phenyl[1H]imidazole, 1,2-diaminoimidazole, 1-(2,3- diaminopropyl)imidazole trihydrochloride, 4-(4-bromophenyl)imidazole-1,2-diamine, 4-(4-chlorophenyl)imidazole-1,2-diamine, 4-(4-hexylphenyl)imidazole-1,2-diamine, 4-(4-methoxyphenyl)imidazole-1,2-diamine, 4-pheny!-5-propylimidazole-1,2- diamine, 1,2-diamino-4-methylimidazole, 1,2-diamino-4,5-dimethylimidazole, and 1,2-diamino-4-methyl-5-acetylimidazole.
    87. Use of claim 66, wherein said structural formula is structural formula XI: 0 Ro? XI } Ras : 145 AMENDED SHEET
    PCT/US03/12003 ® wherein R,g is selected from the group consisting of a hydroxy, a lower alkoxy group, an amino group, an amino lower alkoxy group, a mono-lower alkylamino lower alkoxy group, a di-lower alkylamino lower alkoxy group, a hydrazino group, and the formula NR,gR3g; Ryg is selected from the group consisting of a hydrogen and a lower alkyl group; Rj, is selected from the group consisting of an alkyl group of 1 to 20 carbon atoms, an aryl group, a hydroxy lower alkyl group, a carboxy lower alkyl group, a cyclo lower alkyl group and a heterocyclic group containing 4 to 7 ring members and | to 3 heteroatoms; further wherein, said Ryg, Rs, and nitrogen form a structure selected from the group consisting of a morpholino, a piperidinyl, and a piperazinyl; R,; is selected froin the group consisting of 0 to 3 amino groups, 0 to 3 nitro groups, O to 1 hydrazino group, a hydrazinosulfonyl group, a hydroxyethylamino group, and an amidino group; Ryg is selected from the group consisting of a hydrogen, a one-fluoro, a two-fluoro, a hydroxy, a lower alkoxy, a carboxy, a lower alkylamino, a di-lower alkylamino and a hydroxy lower alkylamino group; further wherein; when said Ry4 is a hydroxy or a lower alkoxy, then said Ro; is a non-hydrogen substituent; further wherein, when R,, is hydrazino, there must be at least two non-hydrogen substituents on said formula XI's phenyl ring; when said R,g is hydrogen, said Ry, is selected from the group consisting of an alkyl group of 1 to 20 carbon atoms, an aryl group, a hydroxy lower alkyl group, a carboxy lower alkyl group, a cyclo lower alkyl group, a heterocyclic group containing 4 to 7 ring members and 1 to 3 heteroatoms, an aminoimino group, a guanidyl group, an aminoguanidyl group, and a diaminoguanidyl group; said lower alkyl group is selected form the group consisting of 1 to 6 carbon atoms; and said cycloalkyl group is selected from the group consisting ol 4 to 7 carbon atoms.
    88. Use of claim 87, wherein said compound is selected from the group consisting of 4-(cyclohexylamino-carbonyl)-o-phenylene diamine hydrochloride, 3,4- diaminobenzhydrazide, 4-(n-butylamino-carbonyl)-o-phenylene-diamine dihydrochloride, 4-(ethylamino-carbonyl)-o-phenylene-diamine didhydrochloride, 4- carbamoyl-o-phenylene diamine hydrochloride, 4-(morpholino-carbonyl)-o- phenylene-diamine hydrochloride, 4-[(4-morpholino)hydrazino-carbonyl]-o- 146 AMENDED SHEET
    PCT/US03/12003 ® phenylenediamine, 4-(1-piperidinylamino-carbonyl)-o-phenylenediamine dihydrochloride, 2,4-diamino-3-hydroxybenzoic acid, 4,5-diamino-2-hydroxybenzoic acid, 3,4-diaminobenzamide, 3,4-diaminobenzhydrazide, 3,4-diamino-N,N-bis(1- methylethyl)benzamide, 3,4-diamino-N,N-diethylbenzamide, 3,4-diamino-N,N- dipropylbenzamide, 3,4-diamino-N-(2-tfuranylmethyl)benzamide, 3,4-diamino-N-(2- methylpropyl)benzamide, 3,4-diamino-N-(5-methyl-2-thiazolyl)benzamide, 3,4- diamino-N-(6-methoxy-2-benzothiazolyl)benzamide, 3,4-diamino-N-(6-methoxy-8- quinolinyl)benzamide, 3,4-diamino-N-(6-methyl-2-pyridinyl)benzamide, 3,4- diamino-N-(1H-benzimidazol-2-yl)benzamide, 3,4-diamino-N-(2- pyridinyl)benzamide, 3,4-diamino-N-(2-thiazolyl)benzamide, 3,4-diamino-N-(4- pyridinyl)benzamide, 3,4-diamino-N-[9H-pyrido(3,4-b)indol-6-yl]benzamide, 3,4- diamino-N-butylbenzamide, 3,4-diamino-N-cyclohexylbenzamide, 3,4-diamino-N- cyclopentylbenzamide, 3,4-diamino-N-decylbenzamide, 3,4-diamino-N- dodecylbenzamide, 3,4-diamino-N-methylbenzamide, 3,4-diamino-N- octylbenzamide, 3,4-diamino-N-pentylbenzamide, 3,4-diamino-N-phenylbenzamide, 4-(diethylamino-carbonyl)-o-phenylene diamine, 4-(tert-butylamino-carbonyl)-o- phenylene diamine, 4-isobutylamino-carbonyl)-o-phenylene diamine, 4- (neopentylamino-carbonyl)-o-phenylene diamine, 4-(dipropylamino-carbonyl)-o- phenylene diamine, 4-(n-hexylamino-carbonyl)-o-phenylene diamine, 4-(n- decylamino-carbonyl)-o-phenylene diamine, 4-(n-dodecylamino-carbonyl)-o- phenylene diamine, 4-(i-hexadecylamino-carbonyl)-o-phenylene diamine, 4- (octadecylamino-carbonyl)-o-phenylene diamine, 4-(hydroxylamino-carbonyl)-o-phenylene diamine, 4-(2-hydroxyethylamino- carbonyl)-o-phenylene, 4-[(2-hydroxyethylamino)ethylamino-carbonyl]-o-phenylene diamine, 4-[(2-hydroxyethyloxy)ethylamino-carbonyl]-o-phenylene diamine, 4-(6- hydroxyhexylamino-carbonyl)-o-phenylene diamine, 4-(3-ethoxypropylamino- carbonyl)-o-phenylene diamine, 4,(3-isopropoxypropylamino-carbonyl)-o-phenylene diamine, 4-(3-dimethylaminopropylamino-carbonyl)-o-phenylene diamine, 4-{4-(2- aminoethyl)morpholino-carbonyl]-o-phenylene diamine, 4-[4-(3-aminopropyl) morpholino-carbonyl]-o-phenylene diamine, 4-N-(3-aminopropyl)pyrrolidino- carbonyl]-o-phenylene diamine, 4-{3-(N-piperidino)propylamino-carbonyl]-o- phenylene diamine, 4-[3-(4-methylpiperazinyl)propylamino-carbonyl]-o-phenylenc 147 AMENDED SHEET
    PCT/US03/12003 @ diamine, 4-(3-imidazoylpropylamino-carbonyl)-o-phenylene diamine, 4-(3- phenylpropylamino-carbonyl)-o-phenylenediamine, 4-[2-(N,N-diethylamino) ethylamino-carbonyl]-o-phenylene diamine, 4-(imidazolylamino-carbonyl)-o- phenylene diamine, 4-(pyrrolidinyl-carbonyl)-o-phenylene diamine, 4-(piperidino- carbonyl)-o-phenylene diamine, 4-(1-methylpiperazinyl-carbonyl)-o-phenylene diamine, 4-(2,6-dimethylmorpholino-carbonyl)-o-phenylenediamine, 4-(pyrrolidin-1- ylamino-carbonyl)-o-phenylene diamine, 4-(homopiperidin-]-ylamino-carbonyl)-o- phenylene diamine, 4-(4-methylpiperazine-1-ylamino-carbonyl)-o-phenylene diamine; 4-(1,2,4-triazol-1-ylamino-carbony!l)-o-phenylene diamine, 4-(guanidinyl- carbonyl)-o-phenylene diamine, 4-(guanidinylamino-carbonyl)-o-phenylene diamine, 4-(aminoguanidinylamino-carbonyl)-o-phenylene diamine, 4- (diaminoguanidinylamino-carbonyl)-o-phenylene diamine, 3,4-aminosalicylic acid 4- guanidinobenzoic acid, 3,4-diaminobenzodroxamic acid, 3,4,5-triaminobenzoic acid, 2,3-diamino-5-fluoro-benzoic acid, 3,4-diaminobenzoic acid.
    89. Use of claim 66, wherein said structural formula is structural formula X11: Ras Raa XG Xu I / . wherein Ry; is selected [rom the group consisting of a hydrogen, a lower alkyl group and a hydroxy group; Rj, is selected from the group consisting of a hydrogen, a hydroxy lower alkyl group, a lower alkoxy group, a lower alkyl group, and an aryl group; Rj; is selected from the group consisting of a hydrogen and an amino group; said lower alkyl group is selected from the group consisting of 1 to 6 ] carbon atoms; said lower alkoxy group is selected from the group consisting of 1 to 6 carbon atoms; said hydroxy lower alkyl group is selected from the group : 148 AMENDED SHEET
    PCT/US03/12003 ® consisting of primary, secondary and tertiary alcohol substituent patterns; said aryl group is selected from the group consisting of 6 to 10 carbon atoms; and a halo atom, wherein said halo atom is selected from the group consisting of a fluoro, a chloro, a bromo, and an iodo.
    90. Use of claim 89, wherein said compound is selected from the group consisting of 3,4-diaminopyrazole, 3,4-diamino-5-hydroxypyrazole, 3,4-diamino-5- methylpyrazole, 3,4-diamino-5-methoxypyrazole, 3,4-diamino-5-phenylpyrazole, 1- methyl-3-hydroxy-4,5-diaminopyrazole, 1-(2-hydroxyethyl)-3-hydroxy-4,5- diaminopyrazole, 1-(2-hydroxyethyl)-3-phenyl-4,5-diaminopyrazole, 1-(2- hydroxyethyl) -3-methyl-4,5-diaminopyrazole, 1-(2-hydroxyethyl)-4,5- diaminopyrazole, 1-(2-hydroxypropyl)-3-hydroxy-4,5-diaminopyrazole, 3-amino-5- hydroxypyrazole, and 1-(2-hydroxy-2-methylpropyl)-3-hydroxy-4,5- diaminopyrazole.
    91. Use of claim 66, wherein said structural formula is structural formula XII: HyN——C ——N——(CH,Jn ——CH—C——Y—Z Xin H NH 0 wherein n = 1-6; X is selected from the group consisting of -NR-, -S(O)-, -S(0),-, and -O-, further wherein R, is selected from the group consisting of H, linear chain alkyl group (C; and Cg) and and branched chain alkyl group (C; and Cg): Y is selected from the group consisting of -N-, -NH-, and -O-; Z is selected from the group consisting of H, linear chain alkyl group (C; and Cg), and branched chain alkyl group (C, and Cg).
    92. Use of claim 66, wherein said structural formula is structural formula XIV: 149 AMENDED SHEET
    PCT/US03/12003 ® NH; ——N——C =—=N——NR37R34 Xv Reo H Ry wherein Rj, is selected from the group consisting of a lower alkyl group and a group of the formula NR4|NR,,; further wherein Ry Ry, together are selected from the group consisting of R,, is hydrogen and Ry, 1s a lower alkyl group, Ry, is hydrogen and Ry, is a hydroxy (lower) alkyl group, and R,, and Ry, together with said nitrogen atom form a heterocyclic group, further wherein said heterocyclic group contains 4 to 6 carbon atoms and O to 1 additional atoms selected from the group consisting of oxygen, nitrogen and sulfur; Rag is selected from the group consisting of a hydrogen and amino group; Rs is selected from the group consisting of a hydrogen and amino group; Ry is selected from the group consisting of a hydrogen and a lower alkyl group; further wherein at least one of said Rqg, R39 and Ry, is other than hydrogen and one of said R,; and said Rqg cannot be an amino group; said lower alkyl group is selected from the group consisting of 1 to 6 carbon atoms; said heretocyclic group formed by the NR, NR, group is a 4 to 7 membered ring containing O to 1 additional heteroatoms.
    93. Use of claim 92, wherein said compound is selected from the group consisting of 2-(2-hydroxy-2-methylpropyl)hydrazinecarboximidic hydrazide, N-(4- morpholino)hydrazinecarboximidamide, 1-methyl-N-(4- morpholino)hydrazinecarboximidamide, 1-methyl-N-(4- piperidino)hydrazinecarboximidamide, 1-(N- hexahydroazepino)hydrazinecarboximidamide, N,N-dimethylcarbonimidic dihydrazide, 1-methylcarborumidic dihydrazide, 2-(2-hydroxy-2- methylpropyl)carbohydrazonic dihydrazide, and N-ethylcarbonimidic dihydrazide.
    94. Use of claim 66, wherein said structural formula is structural formula V: 150 AMENDED SHEET
    PCT/US03/12003 J NHR 43=——=C ——W ——C=——NHRy; XV Ras Rss wherein R45 is selected from the group consisting of pyridyl, a phenyl, and a carboxylic acid substituted phenyl group; wherein R44 1s selected {rom the group consisting of a hydrogen, a lower alky! group, and a water-solubilizing moiety; wherein W is selected from the group consisting of a carbon-carbon bond and an alkylene group of 1 to 3 carbon atoms; Ry, is selected from the group consisting of a lower alkyl group, an aryl group, and a heteroaryl group; Rys is selected from the group consisting of a hydrogen, a lower alkyl group, an aryl group, and a heteroaryl group; said lower alkyl group is selected from the group consisting 1 to 6 carbon atoms; said alkylene group is selected from the group consisting of a straight chain and a branched chain; said aryl group is selected from the group consisting of 6 to 10 carbon atoms; a halo atom is selected from the group consisting of a fluoro, a chloro, a bromo, and an iodo; said lower alkoxy group is selected from the group consisting of 1 to 6 carbon atoms; and said heteroaryl group is selected from the group consisting of 1 heteroatom and 2 heteroatoms.
    95. Use of claim 94, wherein said compound is selected from the group consisting of methylglyoxal bis-(2-hydrazino-benzoic acid)hydrazone, methylglyoxal bis-(dimethyl-2-nydrazinobenzoate)hydrazone, methylglyoxal bis- (phenylhydrazine)hydrazone, methyl giyoxal bis-(dimethyl-2- hydrazinobenzoate)hydrazone, methylglyoxal bis-(4-hydrazinobenzoic acid)hydrazone, methylglyoxal bis-)dimethy!-4-hydrazinobenzoate)hydrazone, methylglyoxal bis-(2-pyridyl)hydrazone, methylglyoxal bis-(-diethyleneglycol methylether-2-hydrazinobenzoate)hydrazone, methylglyoxal bis-[1-(2,3- dihydroxypropane)-2-hydrazinebenzoatehydrazone, methyl glyoxal bis-[1-(2- hydroxyethane)-2-hydrazinobenzoatelhydrazone, methylglyoxal bis-[(1- i hydroxymethyl-1-acetoxy)-2-hydrazino-2-benzoate]hydrazone, methylglyoxal bis-[(4- nitrophenyl)-2-hydrazinobenzoate]hydrazone, methylglyoxal bis-[(4-methylpyridyl)- 151 AMENDED SHEET
    PCT/US03/12003 ® 2-hydrazinobenzoate]hydrazone, methylglyoxal bis-(triethylene glycol 2- hydrazinobenzoate]hydrazone, methylglyoxal bis-(2-hydroxyethylphosphate-2- hydrazinebenzoate)hydrazone.
    96. Use of claim 66, wherein said structural formula is structural formula XVI: RoC =——=N——-=C—N—R45R4g I 1 NR4; XVI EE NR47 wherein R45 is selected from the group consisting of hydrogen and together with R4g an alkylene group of 2 to 3 carbon atoms; wherein Rg is selected from the group consisting of hydrogen and alk-N-R5051, when said Ry, is a hydrogen; further wherein, said alk is a straight or branched chain alkylene group of 1 to 8 carbon atoms, said Rg, and Rs; are independently each a lower alkyl group of 1 to 6 carbon atoms, or said Rs, and said Rs; together with said nitrogen atom form a group selected from the group consisting of a morpholino, a piperdinyl and a methylpiperazinyl; R,q is a hydrogen or said Rg is a hydroxyethyl when said Ry and said R,g are together an alkylene group of 2-3 carbon atoms; W is selected from the group consisting of a carbon-carbon bond, an alkylene group of 1 to 3 carbon atoms, a 1,2-, 1,3- or 1,4-phenylene group, a 2,3-naphthylene group, a 2,5- thiophenylene group, a 2,6-pyridylene group, an cthylene group, an ethenylene group, and a methylene group; Rs, is selected from the group consisting of a lower alkyl group, an aryl group, and a heteroaryl group; Rss is selected from the group consisting of a hydrogen, a lower alkyl group, an aryl group, and a heteroaryl group; further wherein, when W is a carbon-carbon bond, Rs, and Rs4 together can also be a 1,4-butylene group, or when W is a 1,2-, 1,3-, or 1,4-phenylene group, optionally substituted by one or two lower alkyl or amino groups, Rs, and Rs; are 152 AMENDED SHEET
    PCT/US03/12003 ® both hydrogen or a lower alkyl group; when W is an ethylene group, Rs, and Rs; together are an ethylene group; when W is a methylene group and Rs, and Rs; together are a group of the formula =C (-CH,;)-N-(H;3C-) C= or -C-W-C-, then Rs, and Rss together form a bicyclo-(3,3, 1)-nonane or a bicyclo-3,3,1 -octane group and Ry, and Rg are together an alkylene group of 2-3 carbon atoms and Ryg is hydrogen; said lower alkyl group is selected from the group consisting of 1 to 6 carbon atoms and said group may be optionally substituted by a halo hydroxy, an amino group or lower alkylamino group; said alkylene group is selected from the group consisting of straight and branched chain; said aryl group is selected from the group consisting of 6 to 10 carbon atoms; a halo atom, selected trom the group consisting of a fluoro, a chloro, a bromo and an iodo; said lower alkoxy group is sclecting from the group consisting of 1 to 6 carbon atoms, and said heteroaryl group is sclected from the group consisting of 1 to 2 heteroatoms.
    97. Use of claim 96, wherein said compound is selected from the group consisting of methyl glyoxal bis(guanylhydrazone), methyl glyoxal bis(2-hydrazino- 2-imidazoline-hydrazone), terephthaldicarboxaldehyde bis(2-hydrazino-2-imidazoline hydrazone), terephthaldicarboxaldehyde bis(guanylhydrazone), phenylglyoxal bis(2- hydrazino-2-imidazoline hydrazone), furylglyoxal bis(2-hydrazino-2-imidazoline hydrazone), methyl glyoxal bis (1-(2-hydroxyethyl)-2-hydrazino-2-imidazoline hydrazone), methyl glyoxal bis (1-(2-hydroxyethyl)-2-hydrazino-1,4,5,6- tetrahydropyrimidine hydrazone), phenyl glyoxal bis (guanylhydrazone), phenyl glyoxal bis (1-(2-hydroxyethyl)-2-hydrazino-2-imidazoline hydrazone), furyl glyoxal bis (1-(2-hydroxyethyl)-2-hydrazino-2-imidazoline hydrazone), phenyl glyoxal bis (1-(2-hydroxyethyl)-2-hydrazino-1,4,5,6-tetrahydropyrimidine hydrazone), furyl glyoxal bis (1-(2-hydroxyethyl)-2-hydrazino-1,4,5,6-tetrahydropyrimidine hydrazone), 2,3- butanedione bis (2-hydrazino-2-imidazoline hydrazone), 1,4- cyclohexanedione bis(2-hydrazino-2-imidazoline hydrazone), o-phthalic dicarboxaldehyde bis(2-hyd carboximidamide hydrazone), furylglyoxal bis(guanyl hydrazone)dihydrochloride dihydrate, 2,3-pentanedione bis(2- tetrahydropyrimidine)hydrazone dihydrobromide, 1,2-cyclohexanedione bis(2- tetrahydropyrimidine)hydrazone dihydrobromide, 2,3-hexanedione bis(2- 153 AMENDED SHEET
    PCT/US03/12003 ® tetrahydropyrimidine)hydrazone dihydrobromide, 1,3-diacetyl bis(2- tetrahydropyrimidine)hydrazone dihydrobromide, 2,3-butanedione bis(2- tetrahydropyrimidine)hydrazone dihydrobromide, 2,6-diacetylpyridine-bis-(2- hydrazino-2-imidazoline hydrazone)dihydrobromide; 2,6-diacetylpyridine-bis- (guanyl hydrazone) dihydrochloride, 2,6-pyridine dicarboxaldehyde-bis-(2- hydrazino-2-imidazoline hydrazone)dihydrobromide trihydrate), 2,6-pyridine dicarboxaldehyde-bis (guanyl hydrazone)dihydrochloride,; 1,4-diacetyl benzene-bis- (2-hydrazino-2-imidazoline hydrazone)dihydrobromide dihydrate, 1,3-diacetyl benzene-bis-(2-hydrazine-2-imidazoline)hydrazone dihydobromide, 1,3-diacetyl benzene-bis (guanyl)-hydrazone dihydrochloride, isophthalaldehyde-bis-(2- hydrazino-2-imidazoline)hydrazone dihydrobromide, isophthalaldehyde-bis- (guanyl)hydrazone dihydrochloride, 2,6-diacetylaniline bis-(guanyl)hydrazone dihydrochloride, 2,6-diacetyl aniline bis-(2-hydrazino-2-imidazoline)hydrazone dihydrobromide, 2,5-diacetylthiophene bis(guanyl)hydrazone dihydrochloride, 2,5- diacetylthiophene bis-(2-hydrazino-2-imidazoline)hydrazone dihydrobromide, 1,4- cyclohexanedione bis(2-tetrahydropyrimidine)hydrazone dihydrobromide, 3,4- hexanedione bis(2-tetrahydropyrimidine)hydrazone dihydrobromide, methylglyoxal- bis-(4-amino-3-hydrazino-1,2,4-triazole)hydrazone dihydrochloride, methylglyoxal- bis-(4-amino-3-hydrazino-5-methyl-1,2,4-triazole)hydrazone dihydrochloride, 2,3- pentanedione-bis-(2-hydrazino-3-imidazoline)hydrazone dihydrobromide, 2,3- hexanedione-bis-(2-hydrazino-2-imidazoline)hydrazone dihydrobromide, 3-ethyl-2,4- pentane dione-bis- (2-hydrazino-2-imidazoline)hydrazone dihydrobromide, methylglyoxal-bis-(4-amino-3-hydrazino-5-ethyl-1,2,4-triazole)hydrazone dihydrochloride, methyl glyoxal-bis-(4-amino-3-hydrazino-5S-isopropyl-1,2,4- triazole)hydrazone dihydrochloride, methyl glyoxal-bis-(4-amino-3-hydrazino-5- cyclopropyl-1,2,4-triazole)hydrazone dihydrochlorimethylglyoxal-bis-(4-amino-3- hydrazino-5-cyclobutyl-1,2,4-triazole-hydrazone dihydrochloride, 1,3- cyclohexanedione-bis-(2-hydrazino-2-imidazoline) hydrazone dihydrobromide, 6- dimethyl pyridine bis(guanyl)hydrazone dihydrochloride, 3,5-diacetyl-1,4-dihydro- 2,6-dimethylpyridine bis-(2-hydrazino-2-imidazoline hydrazone dihydrobromide, bicyclo-(3,3,1)nonane-3,7-dione bis- (2-hydrazino-2-imidazoline)hydrazone dihydrochloride, and cis-bicyclo-(3,3, 1)octane-3,7-dione bis-(2-hydrazino-2- 154 AMENDED SHEET
    PCT/US03/12003 @® imidazoline)hydrazone dihydrobromide.
    98. Use of claim 66, wherein said structural formula is structural formula XVII: / R R . NH A > XVII S Rss wherein Rs, is selected from the group consisting of a hydrogen, a hydroxy (lower) alkyl group, a lower acyloxy (lower) alkyl group, and a lower alkyl group; Rss is selected from the group consisting of a hydrogen, a hydroxy (lower) alkyl group, a lower acyloxy (lower) alkyl group, and a lower alkyl group; further wherein Rs, and Rss together with their ring carbons may be an aromatic fused ring; Za is hydrogen or an amino group; Ya is selected from the group consisting of a hydrogen, a group of the formula -CH,C(=0)- Rs, and a group of the formula -CHR’, further wherein, when said Ya is a group of said formula - CH,C(=0)- Rg, said R is selected from the group consisting of a lower alkyl group, an alkoxy group, a hydroxy, an amino group, and an aryl group; wherein when said Ya is a group of said formula -CHR’, said R’ is selected from the group consisting of a hydrogen, a lower alkyl group, a lower alkynyl group, and an aryl group; wherein A is selected from the group consisting of a halide, tosylate, a methanesulfonate, and a mesitylenesulfonate ion, said lower alkyl group is selected from the group consisting of 1-6 carbon atoms; said lower alkynyl group is selected from the group consisting of 2 to 6 carbon atoins; said lower alkoxy group is selected from the group consisting of 1 to 6 carbon atoms; said lower acyloxy (lower) alkyl group contains an acyloxy portion and a lower alkyl portion, further - wherein said acyloxy portion is selected from the group consisting of 2 to 6 carbon atoms and said lower alkyl portion is selected from the group consisting of 1 to 6 155 AMENDED SHEET
    PCT/US03/12003 ® carbon atoms; said aryl group is selected from the group consisting of 6 to 10 carbon atoms; and a halo atom of formula XVII is selected from the group consisting of a fluoro, a chloro, a bromo, and an iodo.
    99. Use of claim 98, wherein said compound is selected from the group consisting of 3-aminothiazolium mesitylenesulfonate, 3-amino-4,5- dimethylaminothiazolium mesitylenesulfonate, 2,3-diaminothiazolium mesitylenesulfonate, 3-(2-methoxy-2-oxoethyl)-thiazolium bromide, 3-(2-methoxy-2- oxoethyl)-4,5-dimethylthiazolium bromide) 3-(2-methoxy-2-oxoethyl)-4- methylthiazolium bromide, 3-(2-phenyl-2-oxoethy!)-4-methylthizolium bromide, 3- (2-phenyl-2-oxoethyl)-4,5-dimethylthiazolium bromide, 3-amino-4-methylthiazolium mesitylenesulfonate, 3-(2-methoxy-2-oxoethyl)-5-methylthiazolium bromide, 3-(3-(2- phenyl-2-oxoethyl)-5-methylthiazolium bromide, 3-[2-(4’-bromophenyl)-2-oxoethyl] thiazolium bromide, 3- [2-(4’-bromophenyl)-2-oxoethyl]-4-methylthiazolium bromide, 3-[2-(4’bromophenyl)-2-oxoethyl}-5-methylthiazolium bromide, 3-[2- (4’bromophenyl)-2-oxoethyl]-4,5-dimethylthiazolium bromide, 3-(2-methoxy-2- oxoethyl)-4-methyl-5-(2-hydroxyethyl) thiazolium bromide, 3-(2-phenyl-2-oxoethyl)- 4-methyl-5-(2-hydroxyethyl) thiazolium bromide, 3-[2-(4’-bromophenyl)-2- oxoethyl]4-methyl-5-(2-hydroxyethyl) thiazolium bromide, 3,4-dimethyl-5-(2- hydroxyethyl) thiazolium iodide, 3-ethyl-5-(2-hydroxyethyl)-4-methylthiazolium bromide, 3-benzyl-5-(2-hydroxyethyl)-4-methylthiazolium chloride, 3-(2-methoxy-2- oxoethyl)benzothiazolium bromide, 3-(2-phenyl-2-oxoethyl)benzothiazolium bromide, 3-[2-(4’bromophenyl)-2-oxoethyl]benzothiazolium bromide, 3- (carboxymethyl) benzothiazolium bromide, 2,3-(diamino)benzothiazolium mesitylenesulfonate, 3-(2-amino-2-oxoethyl) thiazolium bromide, 3-(2-amino-2- oxoethyl)-4-methylthiazolium bromide, 3-(2-amino-2-oxoethyl)-5-methylthiazolium bromide, 3-(2-amino-2-oxoethyl) 4,5-dimethylthiazolium bromide, 3-(2-amino-2- oxoethyl)benzothiazolium bromide, 3-(2-amino-2-oxoethyl) 4-methyl-5-(2- hydroxyethyl)thiazolium bromide, 3-amino-5-(2-hydroxyethyl)-4-methylthiazolium mesitylenesulfonate, 3-(methyl-2-oxoethyl)thiazolium chloride, 3-amino-4-methyl-5- (2-acetoxyethyl)thiazolium mesitylenesulfonate, 3-(2-phenyl-2-oxoethyl)thiazolium bromide, 3-(2-methoxy-2-oxoethyl)-4-methyl-5-(2-acetoxyethyl) thiazoliumbromide, 156 AMENDED SHEET
    PCT/US03/12003 ® 3-(2-amino-2-oxoethyl)-4-methyl-5- (2-acetoxyethyl)thiazolium bromide, 2-amino-3- (2-methoxy-2-oxoethyl) thiazolium bromide, 2-amino-3-(2-methoxy-2-oxoethyl) benzothiazolium bromide, 2-amino-3-(2-amino-2-oxoethyl)thiazolium bromide, 2- amino-3-(2-amino-2-oxoethyl)benzothiazolium bromide, 3-[2(4’-methoxyphenyl)-2- oxoethyl]-thiazolium bromide, 3-[2-(2’,4’-dimethoxyphenyl)-2-oxoethyl]}- thiazolinium bromide, 3-]2-(4’-fluorophenyl)-2-oxoethyl]thiazolium bromide, 3-{2- (2°,4’-difluorophenyl)-2-oxoethyl]-thiazolinium bromide, 3-[2-(4’- diethylaminophenyl)-2-oxoethyl]-thiazolinium bromide, 3-propargyl-thiazolintum bromide, 3-propagyl-4-methylthiazolinium bromide, 3-propargyl-5- methylthiazolinium bromide, 3-propargyl-4,5-dimethylthiazolinium bromide, and 3- propargyl-4-methyl-5-(2-hydroxyethyl)-thiazolinium bromide.
    100. Use of claim 66, wherein said structural formula is structural formula XVIII: Rsg A Rss XVIII Je Rs? Reo N ©) wherein Rs; is selected from the group consisting of a hydroxy, a NHCONCRg Rg,, and a N=C(NR¢,Rg)5; Rg; and Rg, are each independently selected {rom the group consisting of a hydrogen, a 1 to 10 carbon atom straight chain alkyl, a I to 10 carbon atom branched chain alkyl, an aryl 1 to 4 carbon atom alkyl, a mono-substituted aryl 1 to 4 carbon alkyl, and a di-substituted aryl 1 to 4 carbon atom alkyl, wherein said substituents are selected from the group consisting of a fluoro, a chloro, a bromo, an iodo, a 1 to 10 carbon atom alkyl straight chain and a 1 to 10 carbon atom alkyl branched chain; wherein Rgg is selected from the ] group consisting of a hydrogen, an amino, a mono-substituted amino and a di- substituted amino, and Rg is selected from the group consisting of a hydrogen, an 157 AMENDED SHEET
    PCT/US03/12003 ® amino, a mono-substituted amino and a di-substituted amino; further wherein, when Rg and Rg are not both amino or substituted amino, the substituents are selected from the group consisting of a 1 to 10 carbon atom straight chain alkyl, a 1 to 10 carbon atom branched chain alkyl, and a 3 to 8 carbon atom cycloalkyl; and wherein Ry, is selected from the group consisting of a hydrogen, a trifluoromethyl, a fluoro, a chloro, a bromo, and an iodo.
    101. Use of claim 55, wherein said compound which inhibits 3DG function, stimulates detoxification of 3DG.
    102. Use of claim 55, wherein said compound which inhibits 3DG function in the skin of a mammal binds with 3DG.
    103. Use of claim 102, wherein said compound which binds with 3DG is an antibody directed against 3DG.
    104. Use of claim 103, wherein said antibody is selected from the group consisting of a polyclonal antibody, a monoclonal antibody, a humanized antibody, a chimeric antibody, and a synthetic antibody.
    105. Use of claim 55, wherein said inhibitor of 3DG function stimulates clearance of 3DG from skin.
    106. Use of claim 105, wherein said clearance occurs via the bloodstream.
    107. Use of claim 105, wherein said clearance occurs via sweat.
    109. Use of claim 105, wherein said clearance occurs via exfoliation.
    110. A composition comprising an inhibitor of 3DG function in the skin and a pharmaceutically acceptable carrier. 158 AMENDED SHEET
    PCT/US03/12003 ® 111. Use of a stimulator of detoxification of alpha-dicarbonyl sugars in the skin of a mammal in the manufacture of a preparation for stimulating detoxification of alpha-dicarbonyl sugars in the skin of a mammal.
    112. Use of claim 111, wherein said detoxification occurs using an enzymatic detoxification pathway.
    113. Use of claim 112, wherein said enzymatic detoxification pathway is an aldehyde reductase detoxification pathway.
    114. Use of a stimulator of detoxification of 3DG in the skin of a mammal in the manufacture of a preparation for stimulating detoxification of 3DG in the skin of a mammal.
    115. Use of claim 114, wherein said detoxification occurs using an enzymatic detoxification pathway.
    116. Use of claim 115, wherein said enzymatic detoxification pathway is an aldchyde reductase detoxification pathway.
    117. Use of claim 116, wherein said stimulator stimulates aldehyde reductase activity.
    118. Use of claim 115, wherein said enzymatic detoxification pathway is an oxoaldehyde dehydrogenase pathway.
    119. Use of claim 118, wherein said stimulator stimulates oxoaldehyde dehydrogenase activity.
    120. Use of claim 114, wherein said detoxification of 3DG in the skin of a mammal is stimulated by a compound which detoxifies 3DG pharmacologically via formation of rapidly excreted derivatives. 159 AMENDED SHEET
    PCT/US03/12003 @® 121. Use of claim 120, wherein said compound binds with 3DG.
    122. Use of claim 114, wherein said detoxification comprises clearance of 3DG from skin.
    123. Use of claim 122, wherein said clearance of 3DG from the skin occurs via sweat.
    124. Use of claim 122, wherein said clearance of 3DG from the skin occurs via the blood stream.
    125. Use of claim 122, wherein said clearance of 3DG from the skin occurs via urine.
    126. A method of identifying a compound which inhibits alpha-dicarbonyl sugar function in the skin of a mammal, said method comprising administering a test compound to said mammal and comparing the level of alpha-dicarbonyl sugar function in said skin of a mammal administered said test compound with the level of alpha-dicarbonyl sugar function in the skin of an otherwise identical mammal not administered said test compound, wherein a lower level of said alpha-dicarbonyl sugar function in said skin of a mammal administered said test compound, compared with the level of alpha-carbonyl sugar function in the skin of said otherwise identical mammal not administered said test compound, is an indication that said test compound inhibits alpha-dicarbony! sugar function in said skin of a mammal, thereby identifying a compound which inhibits alpha-dicarbonyl sugar function in the skin of a mammal.
    127. A compound identified by the method of claim 126.
    128. A method of identifying a compound which inhibits alpha-carbonyl sugar function in the skin of a mammal, said method comprising administering a test compound to said mammal and comparing the level of alpha-carbonyl sugar 160 AMENDED SHEET
    PCT/US03/12003 ® function in said skin of said mammal administered said test compound with the level of alpha-carbonyl sugar function in said skin of said mammal before said test compound was administered, wherein a lower level of said alpha-dicarbony! sugar function in said skin of a mammal administered said test compound, compared with the level of alpha-carbonyl sugar function in said skin of said mammal before said test compound was administered, is an indication that said test compound inhibits alpha-carbonyl sugar function in said skin of said mammal, thereby identifying a compound which inhibits alpha-carbonyl sugar function in the skin of a mammal.
    129. A method of identifying a compound which inhibits 3DG function in the skin of a mammal, said method comprising administering a test compound to said mammal and comparing the level of 3DG function in said skin of a mammal administered said test compound with the level of 3DG function in the skin of an otherwise identical mammal not administered said test compound, wherein a lower leve of said 3DG function in said skin of a mammal administered said test compound, compared with the level of 3DG function in the skin of an otherwise identical mammal not administered said test compound, is an indication that said test compound inhibits 3DG function in said skin of a mammal, thereby identifying a compound which inhibits 3DG function in the skin of a mammal.
    130. A compound identified by the method of claim 129.
    131. The method of claim 129, wherein said mammal is a human.
    132. The method of claim 129, wherein said compound inhibits advanced glycation end product modified protein formation.
    133. The method claim 129, wherein said compound inhibits a function selected from the group consisting of protein crosslinking, apoptosis, formation of reactive oxygen species, and mutagenesis.
    134. The method of claim 129, wherein said compound stimulates 3DG 161 AMENDED SHEET
    PCT/US03/12003 ® detoxification.
    135. The method of claim 129, wherein said compound stimulates 3DG clearance.
    136. A method of identifying a compound which inhibits 3DG function in the skin of a mammal, said method comprising administering a test compound to said mammal and comparing the level of 3DG function in said skin of said mammal administered said test compound with the level of 3DG function in said skin of said marmunal before said test compound was administered, wherein a lower level of said 3DG function in said skin of a mammal administered said test compound, compared with the level of 3DG function in said skin of said mammal before said test compound was administered, is an indication that said test compound inhibits 3DG function in said skin of said mammal, thereby identifying a compound which inhibits 3DG function in the skin of a mammal.
    137. Use of a compound which inhibits an alpha-carbonyl sugar associated skin disease or disorder in the manufacture of a preparation for treating an alpha- carbonyl sugar associated skin disease or disorder of a mammal.
    138. Use if claim 137, wherein said alpha-carbonyl sugar associated skin disease or disorder comprises a disease or disorder associated with a function selected from the group consisting of protein crosslinking, apoptosis, mutagenesis, and formation of reactive oxygen species.
    139. Use of claim 137, wherein said alpha-dicarbony! sugar associated skin disease or disorder comprises a disease or disorder associated with advanced glycation end product modified protein formation.
    140. Use of claim 137, wherein said disease or disorder is selected {from the group consisting of skin cancer, psoriasis, skin aging, skin wrinkling, hyperkeratosis, hyperplasia, acanthosis, papillomatosis, dermatosis, rhinophyma, 162 AMENDED SHEET
    PCT/US03/12003 @ scleroderma, and rosacea.
    141. Use of claim 139, wherein said disease or disorder is selected from the group consisting of skin cancer, psoriasis, skin aging, skin wrinkling, hyperkeratosis, hyperplasia, acanthosis, papillomatosis, dermatosis, rhinophyma, and rosacea.
    142. Use of a compound which inhibits a 3DG associated skin disease or disorder, in the manufacture of a preparation for treating a 3DG associated skin disease or disorder in a mammal.
    143. Use of claim 142, wherein said 3DG associated skin discase or disorder comprises a disease or disorder associated with a function selected from the group consisting of protein crosslinking, apoptosis, mutagenesis, and formation of reactive oxygen species.
    144. Use of claim 142, wherein said 3DG associated skin disease or disorder comprises a disease or disorder associated with advanced glycation end product modified protein formation.
    145. Use of claim 142, wherein said disease or disorder is selected from the group consisting of skin cancer, psoriasis, skin aging, skin wrinkling, hyperkeratosis, hyperplasia, acanthosis, papillomatosis, dermatosis, rhinophyma, scleroderma, and rosacea.
    146. Use of claim 144, wherein said disease or disease is selected from the group consisting skin cancer, psoriasis, skin aging, skin wrinkling, hyperkeratosis, hyperplasia, acanthosis, papillomatosis, dermatosis, rhinophyma, scleroderma, and rosacea.
    147. Use of claim 142, wherein said mammal is a human. 163 AMENDED SHEET
    PCT/US03/12003 Qo 148. Use of claim 142, when said compound inhibits 3DG synthesis.
    149. Use of claim 148 wherein said compound is an enzyme inhibitor.
    150. Use of claim 149, wherein said enzyme inhibitor inhibits fructosamine kinase.
    151. Use of claim 150, wherein said inhibitor is a compound comprising the formula of formula XIX: CH,—X—R Y (XIX) Z- T —H R,
    a. wherein X is -NR-, -5(0)-, -5(0),-, or -O-, R being sciected from the group consisting of H, and linear or branched chain alkyl group (C,;-C,) and an unsubstituted or substituted aryl group (C¢-C,q) or aralkyl group (C;-C,q).
    b. R is a substituent selected from the group consisting of H, an amino acid residue, a polyaminoacid residue, a peptide chain, a linear or branched chain aliphatic group (C,-Cg), which is unsubstituted or substituted with at least one nitrogen- or oxygen-containing substituent, a linear or branched chain aliphatic group (C,-Cy), which is unsubstituted or substituted with at least one nitrogen- or oxygen-containing substituent and interrupted by at least one -O-, -NH-, or -NR"- moiety;
    C. R" being linear or branched chain alkyl group (C,-C) and an ) unsubstituted or substituted aryl group (C4-Cq) or aralkyl group (C4-C,q), with the proviso that when X represents -NR-’, R and R’, together with the nitrogen atom to 164 AMENDED SHEET
    PCT/US03/12003 [ which they are attached, may also represent a substituted or unsubstituted heterocyclic ring having from 5 to 7 ring atoms, with at least one of nitrogen and oxygen being the only heteroatoms in said ring, said aryl group (Cg-C,q) or aralkyl group (C;-C,q) and said heterocyclic ring substituents being selected from the group consisting of H, alkyl (C,-C¢), halogen, CF5, CN, NO, and -O-alkyl (C,-Cy); R; is a polyol moiety having 1 to 4 linear carbon atoms, Y is a hydroxymethylene moiety -CHOH-;
    d. Z is selected from the group consisting of -H, -O-alkyl (C,-C), - halogen, -CF3, -CN, -COOH, and -SO;},, and optionally -OH; and e. the isomers and pharmaceutically acceptable salts of said compound, except that X-R in the above formula does not represent hydroxyl or thiol.
    152. Use of claim 151, wherein said compound is 3-O-methy! sorbitollysine.
    153. Use of claim 142, wherein said compound inhibits 3DG function.
    154. Use of claim 153, wherein said inhibitor of 3DG function is selected from the group consisting of structural formulas [-XIX and arginine.
    155. Use of claim 153, wherein said inhibitor is arginine.
    156. Use of claim 153, wherein said inhibitor of 3DG function binds with
    3DG.
    157. Use of claim 153, wherein said compound inhibits advanced glycation end product modified protein formation.
    158. Use of claim 153, wherein said compound inhibits a function selected from the group consisting of protein crosslinking, apoptosis, mutagenesis, and ) formation of a reactive oxygen species. L165 AMENDED SHEET
    PCT/US03/12003 ® 159. Use of claim 142, wherein said compound is administrable via a route selected from the group consisting of topical, oral, intramuscular, and intravenous.
    160. Use of claim 159, wherein said compound is administrable via a topical route.
    161. Use of claim 160, wherein said compound inhibits 3DG synthesis.
    162. Use of claim 160, wherein said compound inhibits 3DG function.
    163. Use of claim 162, wherein said compound stimulates 3DG detoxification.
    164. Use of claim 159, wherein said inhibitor is administrable in a pharmaceutical composition.
    165. Use of claim 164, wherein said composition is selected from the group consisting of a lotion, a cream, a gel, a liniment, an ointment, a paste, a solution, a powder, and a suspension.
    166. Use of claim 165, wherein said composition further comprises a moisturizer, a humectant, a demulcent, oil, water, an emulsifier, a thickener, a thinner, a surface active agent, a fragrance, a preservative, an antioxidant, a hydrotropic agent, a chelating agent, a vitamin, a mineral, a permeation enhancer, a cosmetic adjuvant, a bleaching agent, a depigmentation agent, a foaming agent, a conditioner, a viscosifier, a buffering agent, and a sunscreen.
    167. Use of claim 159, wherein said inhibitor is administrable at a frequency selected from the group consisting of once a day, twice a day, three times a day, four times a day, once a week, twice a week, once a month, and twice a month. 166 AMENDED SHEET
    PCT/US03/12003 ® 168. Use of claim 159, wherein said inhibitor is administrable at a dosage ranging from about 1 ng/kg/application to about 100 g/kg/application.
    169. Use of claim 159, wherein said inhibitor is administrable at a dosage ranging from about 1 ng/kg/application to about 100 mg/kg/application.
    170. Use of claim 159, wherein said inhibitor is administrable as a controlled-release formulation.
    171. Use of claim 170, wherein said inhibitor comprises from about
    0.0001 % to about 15% by weight of the composition.
    172. A kit of administering a compound which inhibits alpha-dicarbonyl sugar synthesis in the skin of a mammal, said kit comprising a compound which inhibits alpha-dicarbonyl sugar synthesis, a standard, an applicator, and an instructional material for the use thereof.
    173. A kit for administering a compound which inhibits alpha-dicarbonyl sugar function in the skin of a mammal, said kit comprising a compound which inhibits alpha-dicarbonyl sugar function, a standard, an applicator, and an instructional material for the use thereof.
    174. A kit for inhibiting alpha-dicarbony! sugar associated protein crosslinking in the skin of a mammal, said kit comprising an inhibitor of said alpha- dicarbonyl sugar associated protein cross-linking, a standard, an applicator, and an instructional material for the use thereof.
    175. A kit for treating an alpha-dicarbonyl sugar associated disease or disorder in the skin of a mammal, said kit comprising an inhibitor of said alpha- dicarbonyl sugar, a standard, an applicator, and an instructional material for the use thereof. 167 AMENDED SHEET
    PCT/US03/12003 ® 176. A kit for administering a compound which inhibits 3DG synthesis in the skin of a mammal, said kit comprising a compound which inhibits 3DG synthesis, a standard, an applicator, and an instructional material for the use thereof.
    177. The kit of claim 176, wherein said mammal is human.
    178. A Kit for administering a compound which inhibits 3DG function in the skin of a mammal, said kit comprising a compound which inhibits 3DG function, a standard, an applicator, and an instructional material for the use thereof.
    179. The kit of claim 178, wherein said mammal is a human.
    180. A kit for inhibiting 3DG associated protein crosslinking in the skin of a mammal, said kit comprising an inhibitor of said 3DG associated protein cross- linking, a standard, an applicator, and an instructional material for the use thereof.
    181. The kit of claim 180, wherein said mammal is a human.
    182. A kit for treating a 3DG associated disease or disorder in the skin of a mammal, said kit comprising an inhibitor of said 3DG, a standard, an applicator, and an instructional material for the use thereof.
    183. The kit of claim 182, wherein said inhibitor inhibits 3DG synthesis.
    184. ‘The kit of claim 182, wherein said inhibitor inhibits 3DG function.
    185. The kit of claim 182, wherein said inhibitor inhibits 3DG accumulation.
    186. The kit of claim [82, wherein said inhibitor causes detoxification of
    3DG. 168 AMENDED SIIEET
    PCT/US03/12003 ® 187. the kit of claim 182, wherein said mammal is a human.
    188. A method for diagnosing an alpha-dicarbonyl sugar associated wrinkling, aging, discase, or disorder of the skin in a test subject, said method comprising acquiring a biological sample from said test subject, and comparing the level of an alpha-dicarbonyl sugar associated parameter of wrinkling, aging, disease, or disorder of the skin, in said biological sample with the level of said alpha-dicarbonyl associated parameter from an otherwise identical biological sample from a control subject with no alpha-dicarbonyl sugar associated wrinkling, aging, disease, or disorder of the skin, wherein a higher level of said parameter in said test subject, compared with the level of said parameter in said biological sample from said control subject, is an indication that said test subject has an alpha-dicarbonyl sugar associated wrinkling, aging, disease, or disorder of the skin, thereby diagnosing an alpha-dicarbony! sugar associated wrinkling, aging, disease, or disorder of the skin.
    189. The method of claim 188, wherein said alpha-dicarbonyl sugar is
    3DG.
    190. The method of claim 188, wherein said parameter is selected from the group consisting of 3DG, protein crosslinking, advanced glycation end product modified proteins, 3DF, fructosamine kinase/amadorase levels, fructosamine kinase/amadorase activity, and fructosamine kinase/amadorase mRNA.
    191. The method of claim 188, wherein said biological sample is selected from the group consisting of skin, tissue, urine, saliva, blood, plasma, and sweal.
    192. A method for diagnosing an alpha-dicarbonyl sugar associated wrinkling, aging, disease, or disorder of the skin in a subject, said method comprising acquiring a test sample of wrinkling, aging, disease or disorder affected skin from said subject, comparing the level of an alpha-dicarbonyl sugar parameter associated with a wrinkling, aging, disease, or disorder of the skin in said test 169 AMENDED SHEET
    PCT/US03/12003 @® sample of affected skin with the level of said alpha-dicarbony! associated parameter from a sample of unaffected skin from said subject, wherein a higher level of said parameter in said test sample of affected skin, compared with the level of said parameter in said sample of unaffected skin, is an indication that said test sample of affected skin has an alpha-dicarbonyl sugar associated wrinkling, aging, disease, or disorder of the skin, thereby diagnosing an alpha-dicarbonyl sugar associated wrinkling, aging, disease, or disorder of the skin.
    193. Use of an a-amino-3,3-mercapto-3,6-dimethyl-ethane or a modification or derivative thereof in the manufacture of a preparation for inhibiting the function of an alpha-dicarbonyl sugar in a mammal.
    194. Use of claim 193, wherein said alpha-dicarbonyl sugar is 3DG.
    195. Use of claim 193, wherein said «-amino-(,3-mercapto-3,3-dimethyl- ethane derivative or a modification or derivative thereof is selected from the group consisting of D-penicillamine, L-penicillamine, and D,L-penicillamine.
    196. Use of claim 193, wherein said function is selected form the group consisting of protein crosslinking, formation of reactive oxygen species, lipid peroxidation, formation of advanced glycation end product modified proteins, mutagenicity, induction of DNA photodamage, and induction of apoptosis.
    197. Use of claim 193, wherein said mammal is a human.
    198. Use of claim 193, wherein said a-amino-g3,3-mercapto-3,5-dimethyl- ethane or a modification or derivative thereof is administrable as a controlled- release formulation.
    199. Use of claim 193, wherein said preparation is administrable in a form selected from the group consisting of a lotion, a cream, a gel, a liniment, an 170 AMENDED SHEET
    PCT/US03/12003 C ointment, a paste, a solution, a powder, and a suspension.
    200. Use of claim 199, wherein said preparation further comprises a moisturiser, a humectant, a demulcent, oil, water, an emulsifier, a thickener, a thinner, a surface active agent, a fragrance, a preservative, an antioxidant, a hydrotropic agent, a chelating agent, a vitamin, a mineral, a permeation enhancer, a cosmetic adjuvant, a bleaching agent, a depigmentation agent, a foaming agent, a conditioner, a viscosifier, a buffering agent, and a sunscreen.
    201. Use of claim 193, wherein said a-amino-3,8-mercapto-3,3-dimethyl- ethane or a modification or derivative thereof is administrable via a route selected from the group consisting of topical, oral, intramuscular, and intravenous.
    202. Use of claim 201, wherein said a-amino-8,3-mercapto-G,5-dimethyl- ethane or a modification or derivative thereof is administrable via a topical route.
    203. Use of claim 193, wherein said a-amino-3,3-mercapto-f3,3-dimethyl- ethane or a modification or derivative thereof comprises the structural formula of D-penicillamine: I HoN——CH—C ——OH D-Penicillamine A
    SH .
    204. Use of an a-amino-B,3-mercapto-3,5-dimethyl-ethane or a modification or derivative thereof, in the manufacture of a preparation for treating - an alpha-dicarbony! sugar associated skin disease or disorder of a mammal. 171 AMENDED SHEET
    PCT/US03/12003 & 205. A kit for treating an alpha-dicarbonyl sugar associated disease or disorder in the skin of a mammal, said kit comprising an effective amount of an o- amino-3, $-mercapto-3,5-dimethyl-ethane or a modification or derivative thereof, a standard, an applicator, and an instructional material for the use thereof.
    206. A method for diagnosing an alpha-dicarbonyl sugar associated aging, disease, or disorder of the gums in a test subject, said method comprising acquiring a biological sample from said test subject, and comparing the level of an alpha- dicarbony! sugar associated parameter of aging, disease, or disorder of the gums, in said biological sample with the level of said alpha-dicarbonyl associated parameter from an otherwise identical biological sample from a control subject with no alpha- dicarbonyl sugar associated aging, disease, or disorder of the gums, wherein a higher level of said parameter in said test subject, compared with the level of said parameter in said biological sample from said control subject, is an indication that said subject has an alpha-dicarbonyl sugar associated aging, disease, or disorder of the gums, thereby diagnosing an alpha-dicarbonyl sugar associated aging, disease, or disease of the gums.
    207. The method of claim 206, wherein said alpha-dicarbonyl sugar is
    3DG.
    208. The method of claim 206, wherein said parameter is selected from the group consisting of 3DG, protein crosslinking, advanced glycation end product modified proteins, 3DF, fructosamine kinase/amadorase levels, fructosamine kinase/amadorase activity, and fructosamine kinase/amadorase mRNA.
    209. The method of claim 206, wherein said biological sample is selected from the group consisting of skin, tissue, urine, saliva, blood, plasma, and sweat.
    210. Use of a compound which inhibits an alpha-dicarbonyl sugar associated gum disease or disorder, in the manufacture of a preparation for treating an alpha-dicarbonyl associated gum disease or disorder. 172 AMENDED SHEET
    PCT/US03/12003
    211. Use of claim 210, wherein said alpha-dicarbonyl sugar associated gum disease or disorder is selected from the group consisting of gingivitis and receding gums.
    212. Use of claim 210, wherein said alpha-dicarbonyl sugar is 3DG.
    213. Use of claim 210, wherein said compound is selected {rom the group consisting of the structural formulas I-XVIII and XIX.
    214. Use of claim 210, wherein said compound is selected from the group consisting of arginine or a modification or derivative thereof, and an a-amino-3,06- mercapto-(,5-dimethyl-ethane or a modification or derivative thercof.
    215. Use of claim 210, wherein said preparation is administrable in a form selected from the group consisting of a paste, a gel, a toothpaste, a mouthwash, a solution, an oral rinse, a suspension, an ointment, a cream, and a coating.
    216. Use of claim 210, wherein said mammal is a human.
    217. Use of an inhibitor of 3DG synthesis in the manufacture of a preparation to prevent induction of a reactive oxygen species (ROS) thereby preventing inflammation mediated by said ROS, thereby treating a disease associated with inflammation mediated by oxidative stress in a mammal.
    218. Use of claim 217, wherein said disease is selected from the group consisting of gingivitis, periodontal disease, breast cancer, non-Hodgkins Lymphoma, hair loss, hair graying, yellowing of teeth, scarring, wounds, rheumatoid arthritis, Wilson's disease, Raynaud’s phenomenon, Sjogren's syndrome, progressive systematic sclerosis, fibrotic lung disease, and joint contractures.
    219. A substance or composition for use in a method of inhibiting 3- 173 AMENDED SHEET
    PCT/US03/12003 A Deoxyglucosone (3DG) synthesis in the skin of a mammal, said substance or composition comprising an inhibitor of 3DG synthesis, and said method comprising administering an effective amount of said substance or composition to said mammal.
    220. A substance or composition for use in a method of inhibiting 3DG synthesis in a mammal, said substance or composition comprising an isolated nucleic acid complementary to a nucleic acid encoding a fructosamine kinase protein, or a fragment thereof, wherein said fructosamine kinase is required for said 3DG synthesis, said complementary nucleic acid being in an antisense orientation, and said method comprising administering said substance or composition to said mammal.
    221. A substance or composition for use in a method of inhibiting alpha- dicarbonyl sugar function in the skin of a mammal, said substance or composition comprising an inhibitor of alpha-dicarbonyl sugar function, and said method comprising administering an effective amount of said substance or composition to said mammal.
    222. A substance or composition for use in a method of stimulating detoxification of alpha-dicarbonyl sugars in the skin of a mammal, said substance or composition comprising a stimulator of detoxification of alpha-dicarbonyl sugars in the skin of a mammal, and said method comprising administering an effective amount of said substance or composition to said mammal.
    223. A substance or composition for use in a method of stimulating detoxification of 3DG in the skin of a mammal, said substance or composition comprising a stimulator of detoxification of 3DG in the skin of a mammal, and said method comprising administering an effective amount of said substance or composition to said mammal.
    224. A substance or composition for use in a method of treating and alpha- dicarbonyl sugar associated skin disease or disorder in a mammal, said substance or 174 AMENDED SHEET
    PCT/US03/12003 A composition comprising a compound which inhibits an alpha-dicarbonyl sugar associated skin disease or disorder, and said method comprising administering an alpha-dicarbonyl sugar inhibiting amount of said substance or composition to said mammal.
    225. A substance or composition for use in a method of treating a 3DG associated skin disease or disorder in a mammal, said substance or composition comprising a compound which inhibits a 3DG associated skin disease or disorder, and said method comprising administering a 3DG inhibiting amount of said substance or composition to said mammal.
    226. A substance or composition for in a method of inhibiting a function of an alpha-dicarbonyl sugar in the skin of a mammal, said substance or composition comprising an «-amino-3,3-mercapto-3,3-dimethyl-ethane or a modification or derivative thereof, and said method comprising administering an effective amount of said substance or composition to said mammal.
    227. A substance or composition for use in a method of treating an alpha- dicarbonyl sugar associated skin disease or disorder in a mammal, said substance or composition comprising an «-amino-3,3-mercapto-3,8-dimethyl-ethane or a modification or derivative thereof, and said method comprising administering said substance or composition to said mammal.
    228. A substance or composition for use in a method of treating an alpha- dicarbonyl sugar associated gum disease or disorder in a mammal, said substance or composition comprising a compound which inhibits said alpha-dicarbony! sugar associated gum disease or disorder, and said method comprising administering said substance or composition to said mammal.
    229. A substance or composition for use in a method of treating a disease associated with inflammation mediated by oxidative stress in a mammal, said substance or composition comprising an inhibitor of 3DG synthesis, and said 175 AMENDED SHEET
    PCT/US03/12003 A method comprising administering an effective amount of said substance or composition to said mammal to prevent induction of a reactive oxygen species (ROS) thereby preventing inflammation mediated by said ROS, thereby treating said disease associated with inflammation mediated by oxidative stress in said mammal.
    230. A method of inhibiting 3-Deoxyglucosone (3DG) synthesis in the skin of a mammal, said method comprising administering to said mammal an effective amount of an inhibitor of 3DG synthesis, thereby inhibiting 3DG synthesis in the skin of a mammal.
    231. A method of inhibiting 3DG synthesis in a mammal, said method comprising administering to said mammal a 3DG synthesis inhibiting amount of an isolated nucleic acid complementary to a nucleic acid encoding a fructosamine kinase protein, or a fragment thereof, wherein said fructosamine kinase is required for said 3DG synthesis, said complementary nucleic acid being in an antisense orientation, thereby inhibiting 3DG synthesis in said mammal.
    232. A method of inhibiting alpha-dicarbonyl sugar function in the skin of a mammal, said method comprising administering to said mammal an effective amount of an inhibitor of alpha-dicarbonyl sugar function, thereby inhibiting alpha- dicarbonyl sugar function in the skin of a mammal.
    233. A method of stimulating detoxification of alpha-dicarbonyl sugars in the skin of a mammal, said method comprising administering to said mammal an effective amount of a stimulator of detoxilication of alpha-dicarbonyl sugars in the skin of a mammal, thereby stimulating detoxification of alpha-dicarbonyl sugars in the skin of a mammal.
    234. A method of stimulating detoxification of 3DG in the skin of a mammal, said method comprising administering to said mammal an effective amount of a stimulator of detoxification of 3DG in the skin of a mammal, thereby stimulating detoxification of 3DG in the skin of a mammal. 176 AMENDED SHEET
    PCT/US03/12003 L 235. A method of inhibiting a function of an alpha-dicarbonyl sugar in the skin of a mammal, said method comprising administering to said mammal a pharmaceutical compound comprising an effective amount of said e-amino-f3,3- mercapto-£,3-dimethyl-ethane or a modification or derivative thereof, thereby inhibiting the function of an alpha-dicarbonyl sugar in a mammal.
    236. Use of any one of claims 1, 29, 48, 111, 114, 137, 193, 204, 210, or 217, substantially as herein described and illustrated.
    237. A composition of any one of claims 12, 14, 40, 44 or 110, substantially as herein described and illustrated.
    238. A method of any one of claims 37, 41, 126, 128, 129, or 136, substantially as herein described and illustrated.
    239. A compound of any one of claims 38, 42, 127, or 205, substantially as herein described and illustrated.
    240. A kit of any one of claims 172 to 176, 178, 180, 182, or 205, substantially as herein described and illustrated.
    241. A method of any one of claims 188, 192, or 206, substantially as herein described and illustrated.
    242. A substance or composition for use in a method of treatment of any one of claims 219 to 229, substantially as herein described and illustrated.
    243. A method of any one of claims 230 to 235, substantially as herein described and illustrated.
    244. A new use of an inhibitor of 3DG synthesis, a new use of an isolated nucleic acid complementary to a nucleic acid encoding a fructosamine kinase 177 AMENDED SHEET
    PCT/US03/12003 protein, or a fragment thereof, a new use of an inhibitor of alpha-dicarbonyl sugar function, a new use of a stimulator of detoxification of alpha-dicarbonyl sugars in the skin of a mammal, a new use of a stimulator of detoxification of 3DG in the skin of a mammal, a new use of a compound which inhibits an alpha-dicarbonyl sugar associated skin disease or disorder, a new use of an a-amino-f3,3-mercapto- 8,8-dimethyl-ethane or a modification or derivative thereof, a new composition, a new method of identifying a compound, a new compound, a new kit, a new method of diagnosis, a substance or composition for a new use in a method of treatment, or a new non-therapeutic method of treatment, substantially as herein described.
    178 AMENDED SHEET
ZA200408714A 2002-04-17 2004-10-27 3-deoxyglucosone and skin ZA200408714B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US37310302P 2002-04-17 2002-04-17

Publications (1)

Publication Number Publication Date
ZA200408714B true ZA200408714B (en) 2006-08-30

Family

ID=38293441

Family Applications (1)

Application Number Title Priority Date Filing Date
ZA200408714A ZA200408714B (en) 2002-04-17 2004-10-27 3-deoxyglucosone and skin

Country Status (2)

Country Link
CN (1) CN101084235B (en)
ZA (1) ZA200408714B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099049B (en) * 2008-05-30 2015-05-27 戴纳米斯制药公司 Natrual inhibitor of the enzymatic production of 3-deoxy-glucosone
CN111795960B (en) * 2020-08-10 2022-08-09 齐齐哈尔大学 Molecular platform for detecting different forms of iodine by spectrometry and colorimetry, and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064326A (en) * 1998-03-30 2000-05-16 Silicon Laboratories, Inc. Analog-to-digital conversion overload detection and suppression

Also Published As

Publication number Publication date
CN101084235A (en) 2007-12-05
CN101084235B (en) 2012-10-17

Similar Documents

Publication Publication Date Title
CA2482705C (en) Use of meglumine for inhibiting 3-deoxyglucosone synthesis in the skin
US20070065443A1 (en) Fructoseamine 3 kinase and the formation of collagen and elastin
US20100297046A1 (en) Compositions and Methods Related to Fructosamine-3-Kinase Inhibitors
CA2612508A1 (en) Treatment of inflammatory conditions
KR100654261B1 (en) Compounds and methods for therapeutic intervention in preventing diabetic complications
US20020055527A1 (en) Thiazolium compounds and treatments of disorders associated with protein aging
JPH07500811A (en) Amino-substituted pyrimidines, derivatives thereof and methods of use thereof
ZA200408714B (en) 3-deoxyglucosone and skin
MXPA01010489A (en) Method for reducing a susceptibility to tumor formation induced by 3-deoxyglucosone and precursors thereof.
JP2002528419A (en) Compounds for diabetic complications and their therapeutic use