ZA200209309B - Bidentate ligands useful in catalyst system. - Google Patents
Bidentate ligands useful in catalyst system. Download PDFInfo
- Publication number
- ZA200209309B ZA200209309B ZA200209309A ZA200209309A ZA200209309B ZA 200209309 B ZA200209309 B ZA 200209309B ZA 200209309 A ZA200209309 A ZA 200209309A ZA 200209309 A ZA200209309 A ZA 200209309A ZA 200209309 B ZA200209309 B ZA 200209309B
- Authority
- ZA
- South Africa
- Prior art keywords
- atoms
- bidentate ligand
- substituted
- group
- catalyst system
- Prior art date
Links
- 239000003446 ligand Substances 0.000 title claims abstract description 32
- 239000003054 catalyst Substances 0.000 title claims abstract description 24
- 125000001424 substituent group Chemical group 0.000 claims abstract description 22
- 238000006243 chemical reaction Methods 0.000 claims abstract description 20
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 19
- 238000005810 carbonylation reaction Methods 0.000 claims abstract description 18
- 150000001875 compounds Chemical class 0.000 claims abstract description 17
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 16
- 125000001931 aliphatic group Chemical group 0.000 claims abstract description 16
- 229910002091 carbon monoxide Inorganic materials 0.000 claims abstract description 16
- 150000001450 anions Chemical class 0.000 claims abstract description 15
- 230000006315 carbonylation Effects 0.000 claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 10
- 150000001768 cations Chemical class 0.000 claims abstract description 5
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 4
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 31
- 125000004429 atom Chemical group 0.000 claims description 20
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- 125000004437 phosphorous atom Chemical group 0.000 claims description 7
- 125000006413 ring segment Chemical group 0.000 claims description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 230000000269 nucleophilic effect Effects 0.000 claims description 3
- 125000002993 cycloalkylene group Chemical group 0.000 claims description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 18
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 17
- -1 l-butene Chemical compound 0.000 description 17
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 16
- 125000005842 heteroatom Chemical group 0.000 description 13
- 239000002253 acid Substances 0.000 description 12
- VURFVHCLMJOLKN-UHFFFAOYSA-N diphosphane Chemical compound PP VURFVHCLMJOLKN-UHFFFAOYSA-N 0.000 description 12
- 239000001273 butane Substances 0.000 description 11
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 8
- 125000004122 cyclic group Chemical group 0.000 description 8
- 125000001183 hydrocarbyl group Chemical group 0.000 description 8
- 229910052763 palladium Inorganic materials 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 8
- 150000007513 acids Chemical class 0.000 description 7
- 150000001336 alkenes Chemical class 0.000 description 7
- 150000001735 carboxylic acids Chemical class 0.000 description 7
- 238000007037 hydroformylation reaction Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 7
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 6
- 125000003118 aryl group Chemical group 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 239000005864 Sulphur Chemical group 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 4
- 150000001721 carbon Chemical group 0.000 description 4
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 4
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- HFZLSTDPRQSZCQ-UHFFFAOYSA-N 1-pyrrolidin-3-ylpyrrolidine Chemical compound C1CCCN1C1CNCC1 HFZLSTDPRQSZCQ-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 150000001345 alkine derivatives Chemical class 0.000 description 3
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 3
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000004978 cyclooctylene group Chemical group 0.000 description 3
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- FVZVCSNXTFCBQU-UHFFFAOYSA-N phosphanyl Chemical group [PH2] FVZVCSNXTFCBQU-UHFFFAOYSA-N 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 3
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 2
- KLFRPGNCEJNEKU-FDGPNNRMSA-L (z)-4-oxopent-2-en-2-olate;platinum(2+) Chemical compound [Pt+2].C\C([O-])=C\C(C)=O.C\C([O-])=C\C(C)=O KLFRPGNCEJNEKU-FDGPNNRMSA-L 0.000 description 2
- PYSYLSIPXHNEDK-UHFFFAOYSA-N 2-cyclononylphosphonane Chemical group C1CCCCCCCC1C1PCCCCCCC1 PYSYLSIPXHNEDK-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000002841 Lewis acid Substances 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 229960004132 diethyl ether Drugs 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000001030 gas--liquid chromatography Methods 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 150000004678 hydrides Chemical class 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 150000007517 lewis acids Chemical class 0.000 description 2
- 150000002641 lithium Chemical class 0.000 description 2
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- LXNAVEXFUKBNMK-UHFFFAOYSA-N palladium(II) acetate Substances [Pd].CC(O)=O.CC(O)=O LXNAVEXFUKBNMK-UHFFFAOYSA-N 0.000 description 2
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 2
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 2
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pentene-2 Natural products CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- XOJVVFBFDXDTEG-UHFFFAOYSA-N pristane Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 229930195734 saturated hydrocarbon Natural products 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 125000001174 sulfone group Chemical group 0.000 description 2
- 239000001117 sulphuric acid Chemical class 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- XLWCIHPMASUXPI-UHFFFAOYSA-N 1,1'-(propane-1,2-diyl)dibenzene Chemical compound C=1C=CC=CC=1C(C)CC1=CC=CC=C1 XLWCIHPMASUXPI-UHFFFAOYSA-N 0.000 description 1
- LVEYOSJUKRVCCF-UHFFFAOYSA-N 1,3-bis(diphenylphosphino)propane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)CCCP(C=1C=CC=CC=1)C1=CC=CC=C1 LVEYOSJUKRVCCF-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 125000004955 1,4-cyclohexylene group Chemical group [H]C1([H])C([H])([H])C([H])([*:1])C([H])([H])C([H])([H])C1([H])[*:2] 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- MUZPAIBPCRKATG-UHFFFAOYSA-N 1-cyclononylphosphonane Chemical compound C1CCCCCCCC1P1CCCCCCCC1 MUZPAIBPCRKATG-UHFFFAOYSA-N 0.000 description 1
- MBDUIEKYVPVZJH-UHFFFAOYSA-N 1-ethylsulfonylethane Chemical compound CCS(=O)(=O)CC MBDUIEKYVPVZJH-UHFFFAOYSA-N 0.000 description 1
- BSZXAFXFTLXUFV-UHFFFAOYSA-N 1-phenylethylbenzene Chemical compound C=1C=CC=CC=1C(C)C1=CC=CC=C1 BSZXAFXFTLXUFV-UHFFFAOYSA-N 0.000 description 1
- LXFQSRIDYRFTJW-UHFFFAOYSA-N 2,4,6-trimethylbenzenesulfonic acid Chemical compound CC1=CC(C)=C(S(O)(=O)=O)C(C)=C1 LXFQSRIDYRFTJW-UHFFFAOYSA-N 0.000 description 1
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 description 1
- LYXDHYMVSLPMTI-UHFFFAOYSA-N 2-[bis(2-methylpropyl)phosphanyl]pentan-3-yl-bis(2-methylpropyl)phosphane Chemical compound CC(C)CP(CC(C)C)C(CC)C(C)P(CC(C)C)CC(C)C LYXDHYMVSLPMTI-UHFFFAOYSA-N 0.000 description 1
- XCJGLBWDZKLQCY-UHFFFAOYSA-N 2-methylpropane-2-sulfonic acid Chemical compound CC(C)(C)S(O)(=O)=O XCJGLBWDZKLQCY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- QRPNDOFSVHOGCK-UHFFFAOYSA-N 3-di(propan-2-yl)phosphanylpropyl-di(propan-2-yl)phosphane Chemical compound CC(C)P(C(C)C)CCCP(C(C)C)C(C)C QRPNDOFSVHOGCK-UHFFFAOYSA-N 0.000 description 1
- UDQOBFJTYHSIPJ-UHFFFAOYSA-N 3-diethylphosphanylpropyl(diethyl)phosphane Chemical compound CCP(CC)CCCP(CC)CC UDQOBFJTYHSIPJ-UHFFFAOYSA-N 0.000 description 1
- NGCFVIRRWORSML-UHFFFAOYSA-N 3-phenylbutan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)C(C)C1=CC=CC=C1 NGCFVIRRWORSML-UHFFFAOYSA-N 0.000 description 1
- RRZPCBLAZBRYCL-UHFFFAOYSA-N 4-ethyl-2-methylthiolane 1,1-dioxide Chemical compound CCC1CC(C)S(=O)(=O)C1 RRZPCBLAZBRYCL-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical class O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000008064 anhydrides Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- BTMVHUNTONAYDX-UHFFFAOYSA-N butyl propionate Chemical class CCCCOC(=O)CC BTMVHUNTONAYDX-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 125000006165 cyclic alkyl group Chemical group 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- BEISXQDCAHBFEI-UHFFFAOYSA-N di(butan-2-yl)-[3-di(butan-2-yl)phosphanylpropyl]phosphane Chemical compound CCC(C)P(C(C)CC)CCCP(C(C)CC)C(C)CC BEISXQDCAHBFEI-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 1
- VWLJGGWLHQGOPT-UHFFFAOYSA-N ditert-butyl(2-ditert-butylphosphanylpentan-3-yl)phosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(CC)C(C)P(C(C)(C)C)C(C)(C)C VWLJGGWLHQGOPT-UHFFFAOYSA-N 0.000 description 1
- OHMWTHLWBISWII-UHFFFAOYSA-N ditert-butyl(3-ditert-butylphosphanylbut-1-en-2-yl)phosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)C(=C)P(C(C)(C)C)C(C)(C)C OHMWTHLWBISWII-UHFFFAOYSA-N 0.000 description 1
- UUQWCUBMMBBIGK-UHFFFAOYSA-N ditert-butyl(3-ditert-butylphosphanylbutan-2-yl)phosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)C(C)P(C(C)(C)C)C(C)(C)C UUQWCUBMMBBIGK-UHFFFAOYSA-N 0.000 description 1
- AMCBZAXVJIWQLI-UHFFFAOYSA-N ditert-butyl(4-ditert-butylphosphanylhexan-2-yl)phosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(CC)CC(C)P(C(C)(C)C)C(C)(C)C AMCBZAXVJIWQLI-UHFFFAOYSA-N 0.000 description 1
- RAXUFDRKPWXAQH-UHFFFAOYSA-N ditert-butyl(4-ditert-butylphosphanylhexan-3-yl)phosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(CC)C(CC)P(C(C)(C)C)C(C)(C)C RAXUFDRKPWXAQH-UHFFFAOYSA-N 0.000 description 1
- FKUZUFOPNKMYTE-UHFFFAOYSA-N ditert-butyl-(2-ditert-butylphosphanylcyclopentyl)phosphane Chemical compound CC(C)(C)P(C(C)(C)C)C1CCCC1P(C(C)(C)C)C(C)(C)C FKUZUFOPNKMYTE-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940052303 ethers for general anesthesia Drugs 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 235000019256 formaldehyde Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 229960004592 isopropanol Drugs 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N methyl heptene Natural products CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- KJALUUCEMMPKAC-UHFFFAOYSA-N methyl pent-3-enoate Chemical class COC(=O)CC=CC KJALUUCEMMPKAC-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000002941 palladium compounds Chemical class 0.000 description 1
- GTCCGKPBSJZVRZ-UHFFFAOYSA-N pentane-2,4-diol Chemical compound CC(O)CC(C)O GTCCGKPBSJZVRZ-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- IUGYQRQAERSCNH-UHFFFAOYSA-N pivalic acid Chemical compound CC(C)(C)C(O)=O IUGYQRQAERSCNH-UHFFFAOYSA-N 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-N sulfonic acid Chemical compound OS(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-N 0.000 description 1
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000007970 thio esters Chemical group 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 125000005490 tosylate group Chemical group 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/50—Organo-phosphines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6564—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
- C07F9/6571—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
- C07F9/657163—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/49—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
- C07C45/50—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/36—Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
- C07C67/38—Preparation of carboxylic acid esters by reaction with carbon monoxide or formates by addition to an unsaturated carbon-to-carbon bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/50—Organo-phosphines
- C07F9/5027—Polyphosphines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/547—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
- C07F9/6564—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
- C07F9/6568—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms
- C07F9/65683—Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus atoms as the only ring hetero atoms the ring phosphorus atom being part of a phosphine
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Bidentate ligand of formula II,wherein M<1 >and M<2 >are independently P, As or Sb; R<1>, R<2>, R<3 >and R<4 >independently represent tertiary alkyl groups, or R<1 >and R<2 >together and/or R<3 >and R<4 >together represent an optionally substituted bivalent cycloaliphatic group whereby the two free valencies are linked to M<1 >or M<2>, and R represents a bivalent aliphatic bridging group containing from 2 to 6 atoms in the bridge, which is substituted with two or more substituents. A catalyst system comprising:a) a source of group VIII metal cations;b) a source of such a bidentate ligand; andc) a source of anions, and use of such a catalyst system in a process for the carbonylation of optionally substituted ethylenically or acetylenically unsaturated compounds by reaction with carbon monoxide and a coreactant is provided.
Description
' . . BIDENTATE LIGANDS USEFUL IN CATALYST SYTEMS a
This invention relates to a bidentate ligand of formula TI, 0lo2vi-0-v29304 (1) wherein V1 and V2 are independently P, As or Sb; ol, 02, 03 and 04 represent hydrocarbyl groups and R represents a bivalent bridging group. The invention further relates to a catalyst system containing such a bidentate ligand, a source of group VIII metal cations and a source of anions. Moreover, the invention relates to a process for the carbonylation of optionally substituted ethylenically or acetylenically unsaturated compounds by reaction with carbon monoxide and a coreactant in the presence of such a catalyst system.
One commercially important carbonylation reaction using hydrogen as coreactant, is the hydroformylation of alkenes or alkynes, which are reacted with carbon monoxide and hydrogen in the presence of transition metal catalysts to form aldehydes and/or alcohols having one carbon atom more than the precursor alkene or alkyne.
Depending on catalyst, reaction conditions and substrates, the hydroformylation may proceed with varying selectivities to the several possible isomeric aldehydes or alcohols in varying yields, as side reactions occur to 4 a smaller or larger extent. Generally only one isomeric ' 25 product is preferred. For many applications the presence of branched aldehydes or alcohols is undesirable.
Moreover, in view of biological degradability, it is considered advantageous to obtain products having a high content of the linear isomer. The selectivity towards one ) 5 of several possible isomeric products is called regioselectivity. For hydroformylation a regioselectivity towards reaction at the primary carbon atom, resulting in a linear product, is desirable.
Another commercially important carbonylation reaction using an alkanol or water as coreactant, is the carbonylaticn of alkenes or alkynes, which are reacted with carbon monoxide and alkanol in the presence of Group
VIII metal catalysts to form esters, diesters or carboxylic acids. An example of such a carbonylation is the reaction of ethene with carbon monoxide and butanol to prepare butylpropionates.
CA-A-2086285 relates to the preparation of diphosphines, wherein an alkane, alkene or arene is vicinally disubstituted with two organophosphino groups.
The bidentate diphosphines are said to be useful in the preparation of catalysts for the preparation of polyketones. In example 13 the preparation of 2,3 bis (di- isobutylphosphino) pentane) is described.
WO 9505354 describes the hydroformylation of ethylenically unsaturated compounds by reaction with carbon monoxide and hydrogen in the presence of a catalyst system comprising a Group VIII metal cation, viz. cationic palladium, and a bidentate ligand, viz. a . diphosphine. In the examples several bidentate v 30 diphosphines are used. As is illustrated by examples 46 and 47 the hydroformylation of l-octene with a catalyst system containing a bidentate diphosphine results in acceptable selectivities towards the linear product. The results show that the use of a bidentate diphosphine having an unsubstituted bivalent organic bridging group, connecting both phosphorus atoms, i.e. ] 1,2-bis—-(1,4-cyclooctylenephosphino) ethane, results in higher selectivities towards the linear product than the use of a bidentate diphosphine having an monosubstituted bivalent organic bridging group, connecting both phosphorus atoms, i.e. 1,2-bis(1,4-cyclooctylene- phosphino) propane. Hence, this patent document teaches that non-substituted bridging groups are advantageous compared to substituted bridging groups.
Although good results with regard to this regio- selectivity towards the linear product are obtained in
WO 9505354, there is still room for improvement. This need especially exists with regard to smaller ethylenically unsaturated compounds, where side-reactions more readily occur.
Examples 28 to 36 of EP-A-0495547 describe a carbonylation of ethene with carbon monoxide and n-butanol in the presence of bidentate diphosphines having an unsubstituted bivalent organic bridging group, connecting both phosphorus atoms, i.e. 1,3-bis(di- isopropylphosphino) propane; 1,3-bis(di-ethylphosphino) propane; 1,3-bis(di-s-butylphosphino) propane, 1,3-bis- (di-phenylphosphino) propane. Selectivities of 98% and rates of conversion in the range from 100 to 1000 mol butylpropionate/mol Pd/hr are obtained.
Although good results with regard to selectivity and ] activity are obtained in EP-A-0495547, there is still w 30 room for improvement. : It has now surprisingly been found that when carbonylation is carried out in the presence of a catalyst system that is characterized by a specific choice of bidentate ligand containing a polysubstituted bridging group, unexpected advantages with regard to the regioselectivity and/or activity are obtained. ) Accordingly this invention provides a bidentate ligand of formula II, ~ RIRZM1-R-M2R3R4 (IT) wherein M1 and M2 are independently P, As or Sb; RI, RZ,
R3 and R4 independently represent tertiary alkyl groups, or Rl and RZ together and/or R3 and R4 together represent an optionally substituted bivalent cycloaliphatic group whereby the two free valencies are linked to M! or MZ, and R represents a bivalent aliphatic bridging group containing from 2 to 6 atoms in the bridge, which is substituted with two or more substituents.
Surprisingly it was found that a catalyst system comprising such a bidentate ligand having a polysubstituted bivalent aliphatic bridging group results in a high regioselectivity towards the linear product and/or a higher activity.
In the bidentate ligand of formula II, M1 and M2 are preferably the same and more preferably they both represent phosphorus atoms.
By “a bridge” is understood the shortest connection between the atoms M! and M?. This bridge can be saturated or non-saturated or can form part of an optionally substituted saturated or non-saturated aliphatic ring structure, comprising one or more rings. The bridge can . further contain heteroatoms such as nitrogen, sulphur, - silicon or oxygen atoms. Preferably at least the atoms in the bridge connected to Ml and M2 are carbon atoms, more preferably all atoms in the bridge are carbon atoms.
The bridge connecting M1 and M2 forms part of a bridging group R, which can be saturated or unsaturated and which can be an optionally substituted saturated or non-saturated aliphatic ring structure, such as for ] 5 example cyclohexane, cyclohexene, cyclopentane or cyclopentene. The bridging group can further contain heteroatoms such as nitrogen, sulphur, silicon or oxygen atoms. Unsaturated bonds and/or heteroatoms can be present in each part of the bridging group R, both within 10 and outside the bridge. If the bridging group R is a cycleoaliphatic ring structure, the ring may be interrupted by one or more heteroatoms such as nitrogen, sulphur, silicon or oxygen atoms. The aliphatic ring structure can further be substituted with any kind of 15 substituent, including heteroatoms, alkylgroups, cycloalkyl groups and aryl groups, both within as well as outside the bridge.
The bivalent aliphatic bridging group R, connecting the atoms Ml and M2 contains from 2 to 6 atoms in the 20 bridge, more preferably 2 to 4 atoms, and most preferably 2 to 3 atoms. Preferably the atoms in the bridge are carbon atoms. Bivalent aliphatic bridging groups R, containing 2 carbon atoms in the bridge are especially preferred. 25 The bridge is substituted with at least two substituents. Preferably the bridge is substituted with two to four substituents and more preferably with two to three substituents. Most preferably the bridge is : substituted with two substituents. The substituents can v 30 be substituted to any part of the bridge, but are preferably substituted on carbon atoms of the bridging group connected to M1 and M2. A preferred bridging group is thus a bridging group R having from 2 to 6 carbon atoms in the bridge, wherein the carbon atoms of the } bridging group connected to M1 and M2 are both substituted with at least one substituent. The carbon . 5 atoms of the bridging group connected to M1 and M2 are preferably substituted with only one substitutent, but they can be substituted with two substituents.
In addition to the carbon atoms connected to Ml and
MZ, the bridging group can be substituted at other parts, with any kind of substituent, including heteroatoms, alkylgroups, cycloalkyl groups and aryl groups.
In case the substituents are substituted at carbon atoms of the bridge connected to the atoms M1 and MZ, the bidentate ligand has chiral C-atoms and can have a R,R, 5,5 or R,S meso form or mixtures thereof. Both the meso form as well as racemic mixtures can be used.
The substituents on the bridge can be independent or connected. If the substituents are connected, the whole of the substituents and the bridge together can form a bridging group that is an aliphatic ring structure as described herein before. The substituents can further contain carbon atoms and/or hetero atoms.
Suitable substituents include groups containing hetero-atoms such as halides, sulphur, phosphorus, oxygen and nitrogen. Examples of such groups include chloride, bromide, iodide, thiol, and groups of the general formula
H-0-, Xl-0-, -s-x1, -co-xI, -mH,, -Nmxl, -Nx1x2, -co- . Nx1x2, -OH, -PO4, -NOy, -NOH, -CO, -SOp, -SOH, in which * xl and XZ, independently, represent aliphatic groups, preferably having from 1 to 10 carbon atoms, more preferably having from 1 to 4 carbon atoms, like methyl, ethyl, propyl and isopropyl.
Preferably the substituents are hydrocarbyl groups. ) The hydrocarbyl groups itself can be aromatic, aliphatic or cycloaliphatic. The hydrocarbyl groups can contain carbon atoms and hetero atoms. Suitable hydrocarbyl groups can further include groups containing hetero-atoms such as the ones mentioned hereinabove. The hydrocarbyl groups include straight-chain or branched saturated or non-saturated carbon containing groups.
Suitable aromatic hydrocarbyl groups include aryl groups such as phenyl groups or naphtyl groups, and alkyl phenyl groups such as tolyl groups. Of these, substitution with phenyl groups is preferred.
Preferably the hydrocarbyl groups are alkyl groups, preferably having from 1 to 10 carbon atoms, more preferably from 1 to 4 carbon atoms. Linear, branched or cyclic alkyl groups can be used. Suitable alkyl groups include, methyl, ethyl, propyl, iso-propyl, butyl and iso-butyl. More suitably methyl groups are used.
Most preferably the bridge is di-substituted, preferably with two alkyl groups, most preferably with two methyl groups. In an advantageous embodiment the substitution is vicinal.
Examples of bivalent aliphatic bridging groups that can be used include cyclopentane, cyclopentene, cyclohexane, cyclohexene, butane, l-butene, 2-butene, pentane, 2-pentene, diphenylethane, diethylether, . 1,2-diphenylpropane, 2,3-diphenylbutane. * 30 Rl, RZ, R3 and R% can independently represent a ) tertiary alkyl group. By a tertiary alkyl group is understood an alkyl group which is connected to the phosphorus atom by a tertiary carbon atom. The tertiary alkyl group preferably has from 4 to 20 carbon atoms, more preferably from 4 to 8 carbon atoms. Examples of suitable non-cyclic tertiary alkyl groups are tertiary butyl, Zz-(2-methyl)butyl, 2-(2-ethyl)butyl, 2-(2-methyl)pentyl and 2-(2-ethyl)pentyl groups.
Preferably the groups Rl to Rr4 represent the same tertiary alkyl groups, most preferably Rl to RY are tert- butyl groups.
Examples of possible ligands include 2, 3-bis(di- tertiarybutylphosphino)butane, 2,3-bis(di-tertiary- butylphosphino)butene, 2,4-bis(di-tertiarybutylphos- phino)pentane, 2,4-bis(di-tertiarybutylphosphinoc)pentene, 1,2-bis(di-tertiarybutylphosphino)cyclopentane, 1,2-bis(di~-tertiarybutylphosphino)pent-l-ene, 2,3-bis(di- tertiary-butylphosphino) pentane, 2,4-bis(di-tertiary- butylphosphino) hexane, 3,4-bis(di-tertiary-butyl- phosphino) hexane, 2,3~-bis[di-2-(2-methyl)butyl- phosphinolbutane, 2,3-bis[di-2-(2-ethyl)butyl- phosphino]butane. A very suitable bidentate diphosphine is 2,4-bis{(di-tertiarybutylphosphino) pentane.
Rl and RZ together and/or R3 and R% together can also represent an optionally substituted bivalent cyclo- aliphatic group.
A special class of bivalent cycloaliphatic groups include tertiary cyclic structures. For example Rl and RZ and/or R3 and R%4 can represent a bivalent radical that together with the phosphorus atom to which it is attached is an alkyl substituted 2-phosphatricyclo[3.3.1.1{3,7}]- decyl group or a derivative thereof in which one or more . 30 of the carbon atoms are replaced by heteroatoms.
Preferably the ligand comprising the alkyl substituted 2-phospha-~tricyclo[3.3.1.1{3,7}]decyl group is a compound according to Formula III, wherein R2 are alkyl groups of 1-6 carbon atoms, preferably methyl. : — R —
P
: RS P RS R® R®
Oo 0 ge
Oo
RS
RS
Examples of possible ligands include 2,3-P,P’-di(2- phospha-1, 3,5, 7-tetramethyl-6, 9, 10-trioxatricyclo- [3.3.1.1{3.7}decyl)butane and 2,4-P,P’-di (2-phospha- 1,3,5,7-tetramethyl-6,9,10-trioxatricyclo[3.3.1.1{3.7}- decyl)pentane. Such ligands can be prepared as described in more detail in WO-A-9842717.
In an especially preferred embodiment Rl and RZ together and/or R3 and R4 together represent an optionally substituted bivalent cycloaliphatic group.
More preferably both Rl and RZ together and R3 and R4 together represent such an optionally substituted bivalent cycloaliphatic group. This optionally substituted bivalent cycloaliphatic group preferably comprises at least 5 ring atoms and more preferably contains from 6 to 10 ring atoms. It is advantageous that the cycloaliphatic group is a cycloalkylene group, i.e. } forming with the atom Ml or M2 a bicyclic group.
Preferably Ml and M2 are both phosphorus and Rl, R2 and
M1 together and R3, R% and M2 together both represent a pPhosphabicylocalkyl group. In a highly preferred embodiment the cyclic group contains 8 ring atoms and forms a 9-phosphabicyclononyl group together with a } phosphorus atom. The 9-phosphabicyclononyl group can have several isomeric structures. For the purpose of the invention the [3,3,1] and [4,2,1] isomers are preferred.
Rl and RZ together and R3 and R4 together can have both the same or each a different isomeric structure.
Preferably both Rl and R? together and R3 and Rr together have the [3,3,1] structure. Compositions of bidentate diphosphines having a high amount of bidentate diphosphine ligand having the [3,3,1] structure for both phosphabicyclononyl groups can be prepared as described in non-pre-published European patent application
No. 01300866.9.
Substituents of the bivalent cycloaliphatic group formed by RI together with RZ or R3 together with R4, if any, can be alkyl groups having from 1 to 4 carbon atoms.
As a rule, all ring atoms are carbon atoms, but bivalent cyclic groups containing one or more heteroatoms in the ring, such as for example oxygen or nitrogen, atoms are not precluded. Examples of suitable bivalent cyclic groups are 1,4-cyclohexylene, 1,4-cycloheptylene, 1,3-cycloheptylene, 1,2-cyclooctylene, 1,3-cyclooctylene, 1,4-cyclooctylene, 1,5-cyclooctylene, 2-methyl-1,5-cyclo- octylene, 2,6-dimethyl-1,4-cyclooctylene and 2, 6- dimethyl-1, 5-cyclooctylene groups. Preferred bivalent cyclic groups are selected from 1,4-cyclo-octylene, ’ 1,5-cyclo-octylene, and methyl (di)substituted derivatives thereof.
Examples of preferred bidentate ligands include 2,3-PP' bis (9-phosphabicyclo[3, 3, 11nonyl) -butane,
2,3-PP'bis (9-phosphabicyclo (4,2, 1]lnonyl)-butane, 2,3-PP’ bis (9-phosphabicyclo[3, 3, 1l]lnonyl)-but-2-ene, 2,3-PP’ bis (9-phosphabicyclo[4, 2, l]nonyl)-but-2-ene, ’ 2,3-PP’ bis (S-phosphabicyclo (3,3, 1lnonyl) -pentane, 2,4-PP’ bis (9-phosphabicyclo[3, 3, 1lncnyl)-pentane, 2,3-PP’ bis (9-phosphabicyclo[4, 2, 11nonyl)-pentane, 2,4-PP’bis (9-phosphabicyclo[4,2,1]lnonyl)-pentane, 2,3-PP’'bis (9-phosphabicyclo[3, 3,1]lnonyl)-pent-2-ene, 2,3-PP’ bis (9-phosphabicyclo[4,2,l]lnonyl)-pent-2-ene, 1,2-PP’ bis (9-phosphabicyclo[3, 3, 1lnonyl)-cyclopentane, 1,2-PP"bis (9~-phosphabicyclo[4,2,1l]lnonyl)-cyclopentane, 1,2-PP’bis(9-phosphabicyclo[3, 3, 1lnonyl)-cyclohexane, 1,2-PP’' bis (9-phosphabicyclo[4,2, 1lnonyl)-cyclohexane and mixtures thereof.
These ligands can be prepared by reacting P-cyclo- octylene hydride (phosphabicyclononane hydride) and butyllithium to generate a lithium cyclo-octylene phosphide (lithiated phosphabicyclononane). The later phosphide is reacted with an aliphatic group substituted with suitable leaving groups, preferably tosylates or cyclic sulfates, in an appropriate manner. Preferred aliphatic groups are those having a cyclic sulfate structure as a leaving group, such as cyclic substituted or non-substituted alkane diol sulfate esters, also called cyclic alkyl sulfates. For example 2, 4-PP'bis(9- phosphabicyclo[3,3,1]nonyl)-pentane can be prepared by reacting phosphabicyclononane hydride and butyllithium to generate the corresponding lithium phosphide and i subsequently reacting this lithium phosphide, at for example 0 °C or ambient temperature (25 °C) in ‘ tetrahydrofuran, with 2,4 pentanediol di-p-tosylate ester. 2,3-PP’bis(9-phosphabicyclo[3,3,1llnonyl)-butane can for example be prepared by reacting phosphabicyclononane hydride and butyllithium to generate the corresponding lithium phosphide and subsequently reacting this lithium phosphide with 2,3-butanediol cyclic sulfate ester (IUPAC name cyclic Z,3-butyl sulfate), in for example tetrahydrofuran at a temperature varying in the range from 0 °C to reflux temperature.
The P-cyclo-octylene hydride (phoshabicyclononane hydride) may conveniently be prepared as described by
Elsner et al. (Chem. Abstr. 1978, vol. 89, 180154x).
The invention further provides a catalyst system including: (a) a source of group VIII metal cations; (b) a bidentate ligand as described above; and {c) a source of anions.
In the present specification the group VIII metals are defined as the metals rhodium, nickel, palladium and platinum. Of these, palladium and platinum are preferred.
Examples of suitable metal sources are platinum or palladium compounds such as salts of palladium or platinum and nitric acid, sulphuric acid or sulphonic acids, salts of platinum or palladium and carboxylic acids with up to 12 carbon atoms, palladium- or platinum complexes, e.g. with carbon monoxide or acetylacetonate, or palladium or platinum combined with a solid material such as an ion exchanger. Palladium(II) acetate and platinum (II) acetylacetonate are examples of preferred metal sources.
As anion source, any compound generating these anions . may be used. Suitably, acids, or salts thereof, are used as source of anions, for example any of the acids . mentioned above, which may also participate in the salts of the metals of the platinum group.
In the catalyst systems of the invention, preferably acids are used as anion source having a pKa value of less than 6, more preferably less than 5, measured in agueous ' solution at 18 °C.
Typical examples of suitable anions are anions of carboxylic acids, phosphoric acid, sulphuric acid, sulphonic acids and halogenated carboxylic acids such as trifluoroacetic acid.
Carboxylic acids that can be used include carboxylic acids with up to 12 carbon atoms, such as for example, pentanoic acid, pivalic acid, propionic acid and propenoic acid.
Sulphonic acids are in particular preferred, for example methanesulphonic acid, trifluoromethanesulphonic acid, tert-butane-sulphonic acid, p-toluenesulphonic acid and 2,4, 6-trimethylbenzene-sulphonic acid..
Also, complex anions are suitable, such as the anions generated by a combination of a Lewis acid such as BF3,
AlCl3z, SnFp, Sn(CF38013)2, SnCls or GeCly, with a protic acid, such as a sulphonic acid, e.g. CF3SO3H or CH3SO03H or a hydrohalogenic acid such as HF of HCl, or a combination of a Lewis acid with an alcohol. Examples of such complex anions are BF4-, SnCli3-, [SnCl,.CF3S0O3]- and
PFg—.
The invention further provides a process for the carbonylation of optionally substituted ethylenically or acetylenically unsaturated compounds by reaction with carbon monoxide and a coreactant in the presence of a catalyst system as described above.
The ethylenically or acetylenically unsaturated compound, used as starting material, is preferably an ethylenically or acetylenically unsaturated compound having from 2 to 20 carbon atoms per molecule, or a mixture thereof. They may comprise one or more unsaturated bonds per molecule. Preferred are compounds having from Z to 6 carbon atoms, or mixtures thereof. The ethylenically or acetylenically unsaturated compound can further comprise functional groups or heteroatoms, such as nitrogen, sulphur or oxide. Examples include unsaturated carboxylic acids, esters of such acids or alkene nitriles.
In a preferred embodiment the ethylenically or acetylenically unsaturated compound is an olefin or mixture of olefins. In a preferred process of the invention, such olefins can be converted by reaction with carbon monoxide and a coreactant with a high regioselectivity towards the linear product. Suitable ethylenically or acetylenically unsaturated compounds include for example acetylene, ethene, propene, butene, isobutene, pentene, pentene nitriles and methyl 3-pentenoates.
In the process of the invention, the unsaturated starting material and the formed product may act as reaction diluent. Hence, the use of a separate solvent is not necessary. Conveniently, however, the carbonylation reaction may be carried out in the additional presence of a solvent. As such, saturated hydrocarbons, e.g. paraffins and isoalkanes are recommended and furthermore alcohols, the saturated hydrocarbons and alcohols preferably having from 4 to 10 carbon atoms per molecule, such as butanol, ethylhexanol-1l, nonanol-1, or in general terms the alcohols formed as carbonylation product; : ethers such as 2,5,8-trioxanonane (diglyme), diethylether and anisole, and ketones, such as methylbutylketone.
Solvents, comprising or substantially consisting of sulphones are also preferred. Sulphones are in particular preferred, for example dialkylsulphones such as dimethyl- sulphone and diethylsulphone and cyclic sulphones, such ) as sulfolane {(tetrahydrothiophene-2,Z-dioxide), sulfolane, 2-methylsulfolane and 2-methyl-4-ethyl- sulfolane.
The quantity in which the catalyst system is used, is not critical and may vary within wide limits. Usually amounts in the range of 108 to 10-1, preferably in the range of 10” to 1072 mole atom of Group VIII metal per mole of ethylenically unsaturated compound are used. The amounts of the participants in the catalyst system are conveniently selected such that per mole atom of platinum group metal from 0.5 to 10, preferably from 1 to 6 moles of bidentate ligand are used, from 0.5 to 15, preferably from 1 to 8 moles of anion source or a complex anion source.
Furthermore the presence of a small amount of catalyst promoter comprising a source of halide anions, such as for example HI or HCl, can have a significant favourable effect in that the conversion reaction proceeds at high rate, even at moderate temperatures.
For hydroformylation the coreactant can be molecular hydrogen, or more generally a hydride source. The carbon monoxide and hydrogen may be supplied in equimolar or non-equimolar ratios, e.g. in a ratio within the range of 5:1 to 1:5, preferably 3:1 to 1:3. Preferably they are supplied in a ratio within the range of 2:1 to 1:2.
The carbonylation can be suitably carried out at moderate reaction conditions. Hence temperatures in the ’ range of 50 to 200 °C are recommended, preferred temperatures being in the range of 70 to 160 °C. Reaction pressures in the range of 5 to 100 bar are preferred, lower or higher pressures may be selected, but are not considered particularly advantageous. Moreover, higher pressures require special equipment provisions.
The claimed catalyst system can also be useful in conversion reactions other than hydroformylation. In general the coreactant can be represented by NuH, wherein
Nu represents the remnant nucleophilic moiety of the coreactant after removal of a hydrogen atom. The nature of the coreactant largely determines the type of product formed. Preferably the coreactant is a nucleophilic compound having a mobile hydrogen atom, such as an alcohol, an acid, an amine or water. For an alcohol XOH (X being the carbon containing part), the XO moiety is represented by Nu and accordingly the product is an ester.
Similarly, the use of an acid XCOOH (Nu = XCOO) will introduce an anhydride group in the product of the monc- carbonylation reaction; the use of ammonia (Nu = NH») or an amine XNHs (Nu = XNH) or XpNH (Nu = XpN) will introduce an amide group; the use of a thiol XSH (Nu = XS) will introduce a thioester group; and the use of water (Nu = OH) will introduce a carboxy group.
Preferred coreactants are water, alkanol and hydrogen.
Preferred alkanols are alkanols with 1 to 20, more preferably with 1 to 6 carbon atoms per molecule and alkanediols with 2-20, more preferably 2 to 6 carbon atoms per molecule. The alkanols can be aliphatic, cycloaliphatic or aromatic. Suitable alkanols in the process of the invention include methanol, ethanol, ethanediol, n-propanol, 1,3-propanediol, iso-propanol,
butanol, iso-butanol, tert.butanol, pentanol, hexanol, cyclohexanol and phenol.
The invention will be illustrated by the following non-limiting examples.
Example 1
Example 1 was carried out in a 250 ml magnetically stirred autoclave. The autoclave was charged with 10 ml of propene, 40 ml anisole and 10 ml sulfolane, 0.25 mmol of platinum(II) acetylacetonate, 0.3 mmol of meso (R,S) 2,3-bis[cyclo-octylene)phosphino]butane, 0.3 mmol SnCljp and 0.3 mmol HCl. After being flushed, the autoclave was pressurized with carbon monoxide and hydrogen to a partial pressure of 30 bar of each. Subsequently, the reactor was sealed and the contents were heated to 100 °C and maintained at that temperature until the reaction was substantially complete. Complete propene conversion occurred in 0.5 hr, the initial rate of carbonylation was 1000 mol CO/grams atom platinum/hour. The initial rate of carbonylation was defined as the mean rate of carbon monoxide consumption over the first 30% propene conversion. After cooling, a sample was taken from the contents of the reactor and analysed by Gas Liquid
Chromatography. The selectivity towards the linear product n-butyraldehyde was 99.0%.
Comparative example A
Example 1 was repeated, except that instead of 0.3 mmol meso 2,3 bis[(cyclo-octylene)phosphino] butane, 0.3 mmol ligand 1,2 bis[(cyclo-octylene)phosphino] ethane was used as ligand. A similar rate of reaction was observed. After analysis by Gas Liquid Chromatography it was found that the selectivity towards the linear product n-butyraldehyde was 095.5%.
Example 2
Example 2 was carried out in a 250 ml magnetically stirred autoclave. The autoclave was charged with 50 ml of butanol, 0.25 mmol of palladium(II) acetate, 0.33 mmol of meso (R,S) 2,3-PP’'bis (phosphabicyclo[3.3.1lnonyl)- butane, 0.75 ml priopionic acid, and 0.025 mmol HI. After being flushed, the autoclave was pressurized with carbon monoxide to a partial pressure of 15 bar and ethene to a partial pressure of 10 bar. Subsequently, the reactor was sealed and the contents were heated to 115 °C and maintained at that temperature during 1 hour. The initial rate of carbonylation was 1490 mol CO/grams atom palladium/hour. The initial rate of carbonylation was defined as the mean rate of carbon monoxide consumption over the first 30% ethene conversion. After cooling, a sample was taken from the contents of the reactor and analysed by Gas Liquid Chromatography. Conversion was essentially 100%. The selectivity towards butylpropionate was 99%.
Comparative example B
Example 2 was repeated, except that instead of 0.33 mmol of meso (R,S) 2,3-PP’'bis(phosphabicyclo(3.3.1]- nonyl)butane, 0.4 mmol 1,2~PP’bis(9-phosphabicyclononyl)- ethane) was used as ligand. The initial rate of carbonyl- ation was 840 mol CO/grams atom palladium/hour.
Conversion was essentially 100%. A similar selectivity towards butylpropionate was observed.
Example 3 : Example 3 was carried out in a 250 ml magnetically stirred autoclave. The autoclave was charged with 30 mil ' of butanol-1l, 0.25 mmol of platinum(IIl) acetylacetonate, 0.3 mmol of meso (R,S) 2,3-PP’'bis{(phosphabicyclo[3.3.1}- nonyl)butane, 30 ml diglyme, 0.3 mmol phosphoric acid.
Claims (13)
- ) 1. Bidentate ligand of formula II, RIRZMI-R-M2R3R4 (II) wherein M1 and M2 are independently P, As or Sb; Rl, RZ, R3 and rR4 independently represent tertiary alkyl groups, or Rl and RZ together and/or R3 and R%4 together represent an optionally substituted bivalent cycloaliphatic group whereby the two free valencies are linked to Ml or MZ, and R represents a bivalent aliphatic bridging group containing from 2 to 6 atoms in the bridge, which is substituted with two or more substituents.
- 2. A bidentate ligand as claimed in claim 1, wherein both Ml and M2 are phosphorus atoms.
- 3. A bidentate ligand as claimed in claim 1 or 2, wherein the bridging group contains from 2 to 4 carbon atoms in the bridge.
- 4. A bidentate ligand as claimed in any one of claims 1-3, wherein substituents are substituted at carbon-atoms of the bridging group connected with the atoms M1 and M2.
- 5. A bidentate ligand as claimed in any one of claims 1-4, wherein the substituents are alkyl groups.
- 6. A bidentate ligand as claimed in any one of claims 1-5, wherein Rl and R? and/or R3 and R% together represent a bivalent substituted or non-substituted , 25 cycloalkylene group having from 6 to and including 9 ring atoms, whereby the two free valencies are linked to Ml or : M2.
- 7. A catalyst system including: (a) a source of group VIII metal cations; (b) a bidentate ligand as claimed in any of the claims 1-6; and : (c) a source of anions. Co
- 8. A process for the carbonylation of optionally substituted ethylenically or acetylenically unsaturated compounds by reaction with carbon monoxide and a coreactant in the presence of a catalyst system as claimed in claim 7.
- 9. A process as claimed in claim 8, wherein hydrogen is used as coreactant.
- 10. A process as claimed in claim 8, wherein a nucleophilic compound having a mobile hydrogen atom is used as coreactant. :
- 11. A bidentate ligand as claimed in claim 1, substantially as herein described and exemplified.
- 12. A catalyst system as claimed in claim 7, substantially as herein described and exemplified.
- 13. A process as claimed in claim 8, substantially as herein described and exemplified. 21 AMENDED SHEET
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00304171 | 2000-05-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
ZA200209309B true ZA200209309B (en) | 2003-07-29 |
Family
ID=8172999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ZA200209309A ZA200209309B (en) | 2000-05-17 | 2002-11-15 | Bidentate ligands useful in catalyst system. |
Country Status (16)
Country | Link |
---|---|
US (1) | US6639091B2 (en) |
EP (1) | EP1282629B2 (en) |
JP (1) | JP5390734B2 (en) |
KR (1) | KR100744207B1 (en) |
CN (1) | CN1216889C (en) |
AT (1) | ATE258936T1 (en) |
AU (2) | AU2001274046B2 (en) |
BR (1) | BRPI0110882B1 (en) |
CA (1) | CA2408862C (en) |
DE (1) | DE60101963T3 (en) |
ES (1) | ES2210170T5 (en) |
MX (1) | MXPA02011237A (en) |
MY (1) | MY127093A (en) |
TW (1) | TWI287017B (en) |
WO (1) | WO2001087899A1 (en) |
ZA (1) | ZA200209309B (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6184431B1 (en) * | 1999-08-23 | 2001-02-06 | Shell Oil Company | Process for separating internal and alpha olefins from saturated compounds |
WO2002014248A2 (en) * | 2000-08-14 | 2002-02-21 | Sasol Technology (Proprietary) Limited | Bicyclic phosphin comprising hydroformylation catalyst and use thereof in production of oxygenated products |
AU2002254887A1 (en) * | 2001-01-31 | 2002-08-28 | Shell Internationale Research Maatschappij B.V. | Process for the carbonylation of ethylenically unsaturated compounds, bidentate diphosphine composition used in this process and processes for preparation of this bidentate diphosphine composition |
DE10148712A1 (en) * | 2001-10-02 | 2003-04-17 | Basf Ag | New 2-phosphatricyclodecane diphosphine derivatives useful as components of palladium catalysts for carbonylating conjugated dienes |
AU2002363378A1 (en) * | 2001-11-09 | 2003-05-19 | Shell Internationale Research Maatschappij B.V. | Bidentate ligands for the carbonylation of unsaturated compounds |
US6806391B2 (en) | 2002-07-31 | 2004-10-19 | Shell Oil Company | Process for the carbonylation of ethylenically unsaturated compounds and bidentate diphosphine composition used in this process |
US7084089B2 (en) | 2002-07-31 | 2006-08-01 | Shell Oil Company | Process for the carbonylation of ethylenically unsaturated compounds, bidentate diphosphine composition used in this process and a process for preparation of this bidentate diphosphine composition |
AU2003299066A1 (en) * | 2002-09-26 | 2004-04-19 | Shell Internationale Research Maatschappij B.V. | Process for the hydroformylation of an ethylenically unsaturated compound using a bidentate diphosphine composition with a bridging group comprising sp2 hybridized carbon atoms bound to the phosphorous atoms |
CA2500107A1 (en) | 2002-09-26 | 2004-04-08 | Shell Internationale Research Maatschappij B.V. | Process for the production of primary alcohols |
GB0403592D0 (en) | 2004-02-18 | 2004-03-24 | Lucite Int Uk Ltd | A catalyst system |
US7265242B2 (en) * | 2004-02-26 | 2007-09-04 | Shell Oil Company | Process for the carbonylation of ethylenically or acetylenically unsaturated compounds |
US7013601B2 (en) * | 2004-07-22 | 2006-03-21 | Coastal Planters, Llc | Plant container with hanger |
GB0516556D0 (en) * | 2005-08-12 | 2005-09-21 | Lucite Int Uk Ltd | Improved catalyst system |
EA025600B1 (en) | 2005-11-17 | 2017-01-30 | ЛУСАЙТ ИНТЕРНЕЙШНЛ Ю Кей ЛИМИТЕД | Process for carbonylation of ethylenically unsaturated compounds, catalyst system and bidentate ligand |
GB0607494D0 (en) * | 2006-04-13 | 2006-05-24 | Lucite Int Uk Ltd | Metal complexes |
GB2437930A (en) * | 2006-05-10 | 2007-11-14 | Lucite Int Uk Ltd | Mixing apparatus |
WO2008065448A1 (en) | 2006-12-02 | 2008-06-05 | Lucite International Uk Limited | Novel carbonylation ligands and their use in the carbonylation of ethylenically unsaturated compounds |
KR100985955B1 (en) * | 2008-03-25 | 2010-10-06 | 김경수 | Skin care apparatus |
GB0812297D0 (en) * | 2008-07-04 | 2008-08-13 | Lucite Int Uk Ltd | Novel carbonylation ligand sand thier use of in the carbonylation of ethylenically unsaturated compounds |
US20100069679A1 (en) * | 2008-09-12 | 2010-03-18 | Eastman Chemical Company | Acetylene tolerant hydroformylation catalysts |
EP2213645A1 (en) | 2009-01-28 | 2010-08-04 | Hexion Specialty Chemicals Research Belgium S.A. | Process for the preparation of an allyl aryl ether by catalytic o-allylation |
EP2213643A1 (en) | 2009-01-28 | 2010-08-04 | Hexion Specialty Chemicals Research Belgium S.A. | Process for the preparation of an allyl aryl ether by catalytic o-allylation |
EP2213644A1 (en) | 2009-01-28 | 2010-08-04 | Hexion Specialty Chemicals Research Belgium S.A. | Process for the preparation of an allyl alkyl ether by catalyic allylation |
GB201000078D0 (en) * | 2010-01-05 | 2010-02-17 | Lucite Int Uk Ltd | Process for the carbonylation of ethylenically unsaturated compounds, novel carbonylation ligands and catalyst systems incorporatng such ligands |
US9540440B2 (en) | 2013-10-30 | 2017-01-10 | Cytomx Therapeutics, Inc. | Activatable antibodies that bind epidermal growth factor receptor and methods of use thereof |
WO2015089283A1 (en) | 2013-12-11 | 2015-06-18 | Cytomx Therapeutics, Inc. | Antibodies that bind activatable antibodies and methods of use thereof |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2880222A (en) * | 1957-02-06 | 1959-03-31 | Ernst A H Friedheim | Organic dithiol derivatives |
US3035052A (en) * | 1959-03-02 | 1962-05-15 | Ernst A H Friedheim | Arsenic-containing derivatives of dimercapto-succinic acid |
GB1127965A (en) * | 1965-11-26 | 1968-09-25 | Shell Int Research | Ditertiary phosphines and application thereof as catalyst components for alcohol production |
JPS58103537A (en) * | 1981-12-15 | 1983-06-20 | Adeka Argus Chem Co Ltd | Stabilized synthetic resin composition |
DE4026406A1 (en) * | 1990-08-21 | 1992-02-27 | Basf Ag | RHODIUM HYDROFORMYLATION CATALYSTS WITH BIS-PHOSPHITE LIGANDS |
EP0495547B1 (en) * | 1991-01-15 | 1996-04-24 | Shell Internationale Researchmaatschappij B.V. | Carbonylation of olefins |
ES2077337T3 (en) * | 1991-01-15 | 1995-11-16 | Shell Int Research | PROCEDURE FOR THE CARBONILATION OF OLEPHINS. |
CA2086285A1 (en) * | 1992-12-24 | 1994-06-25 | Colleen Elizabeth Micklethwaite | Process for the preparation of vicinally-disubstituted bis(diorganophosphino) compounds |
DE69414578T2 (en) * | 1993-08-19 | 1999-05-20 | Shell Internationale Research Maatschappij B.V., Den Haag/S'gravenhage | HYDROFORMYLATION PROCESS |
GB9425911D0 (en) * | 1994-12-22 | 1995-02-22 | Ici Plc | Process for the carbonylation of olefins and catalyst system for use therein |
US5495041A (en) | 1995-02-22 | 1996-02-27 | Dsm N.W. | Process for the preparation of a pentenoate ester |
FR2761071B1 (en) † | 1997-03-20 | 1999-12-03 | Synthelabo | DERIVATIVES OF QUINOLEIN-2 (1H) -ONE AND DIHYDROQUINOLEIN-2 (1H) - ONE, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION |
US6156934A (en) * | 1997-03-26 | 2000-12-05 | Shell Oil Company | Diphosphines |
DE19840253A1 (en) | 1998-09-03 | 2000-03-09 | Basf Ag | Process for the preparation of cyanvaleric acid or esters |
-
2001
- 2001-05-15 MY MYPI20012269 patent/MY127093A/en unknown
- 2001-05-16 AT AT01940491T patent/ATE258936T1/en active
- 2001-05-16 WO PCT/EP2001/005625 patent/WO2001087899A1/en active IP Right Grant
- 2001-05-16 KR KR1020027015277A patent/KR100744207B1/en active IP Right Grant
- 2001-05-16 CA CA2408862A patent/CA2408862C/en not_active Expired - Lifetime
- 2001-05-16 DE DE60101963T patent/DE60101963T3/en not_active Expired - Lifetime
- 2001-05-16 MX MXPA02011237A patent/MXPA02011237A/en active IP Right Grant
- 2001-05-16 CN CN018095658A patent/CN1216889C/en not_active Expired - Lifetime
- 2001-05-16 AU AU2001274046A patent/AU2001274046B2/en not_active Ceased
- 2001-05-16 AU AU7404601A patent/AU7404601A/en active Pending
- 2001-05-16 ES ES01940491T patent/ES2210170T5/en not_active Expired - Lifetime
- 2001-05-16 BR BRPI0110882A patent/BRPI0110882B1/en not_active IP Right Cessation
- 2001-05-16 EP EP01940491A patent/EP1282629B2/en not_active Expired - Lifetime
- 2001-05-16 JP JP2001584292A patent/JP5390734B2/en not_active Expired - Fee Related
- 2001-05-17 US US09/860,015 patent/US6639091B2/en not_active Expired - Lifetime
- 2001-07-03 TW TW090116261A patent/TWI287017B/en not_active IP Right Cessation
-
2002
- 2002-11-15 ZA ZA200209309A patent/ZA200209309B/en unknown
Also Published As
Publication number | Publication date |
---|---|
CA2408862A1 (en) | 2001-11-22 |
EP1282629B2 (en) | 2007-04-11 |
ES2210170T5 (en) | 2007-11-01 |
KR100744207B1 (en) | 2007-07-30 |
AU2001274046B2 (en) | 2004-05-06 |
JP2003533534A (en) | 2003-11-11 |
ATE258936T1 (en) | 2004-02-15 |
DE60101963D1 (en) | 2004-03-11 |
BRPI0110882B1 (en) | 2015-12-22 |
JP5390734B2 (en) | 2014-01-15 |
DE60101963T3 (en) | 2007-10-18 |
WO2001087899A1 (en) | 2001-11-22 |
US20020016484A1 (en) | 2002-02-07 |
CN1216889C (en) | 2005-08-31 |
DE60101963T2 (en) | 2004-12-23 |
TWI287017B (en) | 2007-09-21 |
ES2210170T3 (en) | 2004-07-01 |
EP1282629A1 (en) | 2003-02-12 |
MY127093A (en) | 2006-11-30 |
CA2408862C (en) | 2010-02-16 |
KR20020094051A (en) | 2002-12-16 |
EP1282629B1 (en) | 2004-02-04 |
CN1429228A (en) | 2003-07-09 |
BR0110882A (en) | 2003-06-10 |
MXPA02011237A (en) | 2003-04-25 |
US6639091B2 (en) | 2003-10-28 |
AU7404601A (en) | 2001-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2408862C (en) | Bidentate ligands useful in catalyst system | |
AU2001274046A1 (en) | Bidentate ligands useful in catalyst system | |
US6156934A (en) | Diphosphines | |
JP4474419B2 (en) | Method for preparing glycolaldehyde | |
EP1478463B1 (en) | Process for the carbonylation of an ethylenically unsaturated compound and catalyst therefore | |
EP1000003A1 (en) | Hydrogenolysis of glycerol | |
US20070238892A1 (en) | Process for the hydroformylation of an ethylenically unsaturated compound | |
US5488174A (en) | Hydroformylation process | |
EP1444241B1 (en) | Bidendate ligands for the carbonylation of unsaturated compounds | |
CA2238758C (en) | Process for the carbonylation of acetylenically unsaturated compounds | |
EP0689529B1 (en) | Process for the carbonylation of acetylenically unsaturated compounds | |
US5364970A (en) | Process for the hydroformylation of unsaturated carbonyl compounds | |
EP0891321B1 (en) | Process for the carbonylation of acetylenically unsaturated compounds | |
US5952522A (en) | Process for the carbonylation of acetylenically unsaturated compounds | |
KR100285942B1 (en) | Method for preparing alkanedic acid derivatives | |
WO2004029014A1 (en) | Process for the production of primary alcohols |