ZA200208445B - An electrical power generation unit. - Google Patents

An electrical power generation unit. Download PDF

Info

Publication number
ZA200208445B
ZA200208445B ZA200208445A ZA200208445A ZA200208445B ZA 200208445 B ZA200208445 B ZA 200208445B ZA 200208445 A ZA200208445 A ZA 200208445A ZA 200208445 A ZA200208445 A ZA 200208445A ZA 200208445 B ZA200208445 B ZA 200208445B
Authority
ZA
South Africa
Prior art keywords
generator
power generation
generation unit
electrical power
output
Prior art date
Application number
ZA200208445A
Inventor
Du Plessis Deon John
Du Plessis Jan Johannes
Original Assignee
Du Plessis Deon John
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Plessis Deon John filed Critical Du Plessis Deon John
Priority to ZA200208445A priority Critical patent/ZA200208445B/en
Publication of ZA200208445B publication Critical patent/ZA200208445B/en

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

AN ELECTRICAL POWER GENERATION UNIT
Field of the Invention
The Invention relates to an electrical power generation unit and to a portable welding unit.
Background to the Invention
The inventor has found that in conventional electrical generation units of the type having a generator which must be excited or energised to produce an electrical energy output, as soon as a loading is applied fo the output the electrical energy output drops. This problem is particularly acute in portable welding machines where the loading during welding is of such a nature that it can virtually _ shutdown the generator unless its drive means is substantially oversized.
Likewise this problem is also acute in any high current application where the generator unit is required to provide a sustained high current.
Summary of the Invention
According to a first aspect of the invention there Is provided an electrical power generation unit including ; drive moans for driving a drive shaft; a first electrical generator which is configured to be connected to and driven by the drive shaft in use; one or more secondary electrical generator which is configured to be connected to and driven by the drive shaft; and ] the total output of the first electrical generator being transformed by a transformer to an excitation voltage sufficient to excite or energise field coils of the one or more secondary generator to a voltage not exceeding the saturation voltage of the field coils of the one or more secondary generator, thereby to effect electromechanical feedback regulation of the output current from the one or more secondary generator to smooth out fluctuations in the output energy delivered by the one or more secondary generator under a sustained loading condition as well as to smooth out fluctuations in the output energy deliverad by the first generator.
The first electrical generator may be an AC generator also known as an alternator.
a WO 02/066196 PCT/ZA01/00021
The AC alternator may provide 110 V AC single phase, 220V AC single phase, 240 V AC single phase, 380V AC 3 phase or 550V AC 3 phase electrical power at 50 Hz, 60 Hz, or other desired frequency. The AC alternator may be of the self excited type having a residual magnetism which permits the alternator to be started without an external excitation voltage.
The transformer may be a torroidal transformer configured to provida an AC output of about 18 V peak-to-peak from a 220 V AC input, or any other required output voltage according to the weil known principles of the operation of transformers. The output of the transformer may be rectified to the excitation voltage of the one or more secondary generators field coils.
Typically, the AC generator is mounted on a free end of the drive shaft.
However, it may be mounted in any position and be driven by a belt and pulley system driven by the drive shaft, or a gear arrangement driven by the drive shalt.
The secondary electrical generator may be an AC alternator having field coils.
Typically, this AC alternator is a standard 3-phase vehicle alternator used as a welding alternator, such as those available from Bosch and having a 55 Amp, 80
Amp, or other current output as required but limited by the output power of the drive means.
The 3-phase welding altemator may be wired in delta configuration rather than the star configuration normally associated with such alternators.
Lo
WO 02/066196 PCT/ZA01/00021
The one or more secondary generators may be connected to the drive shaft by a belt and pulley system. The diameter of the pulley on the drive shaft may be selected so that, together with the operating characteristics of the first and secondary generators, a desired output current at a specified voltage is available from each of the one or more secondary generators.
Where the connection to the drive shaft is by means of a belt and pulley system, the belt may be kept in tension by a tensioner having an off-center axis and rotatable around that axis to alter the pulley belt perimeter length thereby to tension said belt. The belt is typically a multi-ply V-belt.
The first generator may be selected to be capable of supplying electrical power matching the power requirements of an electrical appliance to be energised. To this end one or more socket arrangements for accepting the plug ends of appliances may be provided, the one or more socket arrangements being in electrical communication with the output contacts of the first generator.
The drive means may be selected to be capable of supplying electrical power corresponding to the ratio of the aggregate maximum power characteristic of the one or more secondary generator divided by the calibrated efficiency factor of the one or more secondary generator.
SE
/ -N
WO 02/066196 PCT/ZA01/00021
The electrical power generation unit may include an output socket circuit connectable to permit electrical communication between any suitable tool and the power generation unit. Typically the output socket is a standard 3-pin type socket.
The electrical power generation unit may include a 3 phase rectifier and associated circuitry connectable to the one or more secondary generator to form a welding unit having its own electrical power generation means.
Several of the secondary generators may be wired in parallel to increase the output current for high current welding applications, and other high current demand applications.
Several of the secondary generators may be wired in series to increase the output voltage for gouging applications.
The output of the secondary generators may be configurable by selecting the number of secondary generators to operate in parallel or in series by means of a switching arrangement.
Further contro! over the output of the secondary generators may be effected by means of a voltage adjustment circuit located operationally between the transformer output and one or more of the secondary generators’ field coils whereby the excitation voltage to the field coils of one or more of the secondary
A generators may be varled independently of the loading on sald secondary generators.
The power generation unit may include a battery charger circuit connectable to the power generation unit, for charging a battery connected to the battery - charger or for boost starting an engine such as a vehicle engine when the battery usually employed for this purpose is inoperative.
The power generation unit may include a selector switch for selectively nominating between the circuits described above.
The electrical power generation unit may include a transportable mounting frame for facilitating the transportation of the unit. Typically, the mounting frame is a tubular cage having access openings for operator access to the power generation unit.
The mounting frame may however consist of a number of panels which form a housing for the power generation unit while also providing structural support for the unit. ’
The drive means may be a fuel powered motor connectable to the drive shaft.
The motor may be a petrol or diesel engine connectable to the drive shaft. The selection of petrol or diesel being an operational decision based on the surrounding circumstances such as fuel availability. In a specific embodiment the drive means may be an electric motor. p
The invention extends to a transportable welding unit including a power generation unit as described above. . The invention further extends lo a method of providing a substantially stable supply of electrical energy under sustained loading conditions including the steps of: connecting a first generator ta a drive shaft of a drive means; connecting one or more secondary generator to the drive shaft; transforming the total output voltage of the first generator to a voltage sufficient to excite the colls of the one or more secondary generator but below the saturation voltage of said one or more secondary generator; and electrically connecting the transformed output of the first generator to the second generator such that, in use, the output from the transformer is used to excite or energise field coils of the one or more secondary generator so that electromechanical feedback control of the output of the one or more secondary generator is effected. -
Description of the Drawings
The invention will now be described, by way of non-limiting example only with reference to the accompanying diagrammatic drawings.
In the drawings,
Figures 1 to 3 show, in exploded view, pictorial three dimensional views, of a portable welding unit having an electrical power generation unit in accordance , with the invention having one, two, and three secondary generators; and
Figure 4 shows a schematic representation of the circuit of the electrical power generation unit.
In Figures 1, 2 and 3, reference numeral 100 generally indicates a transportable ) welding unit, broadly in accordance with the invention. The welding unit 100 has mechanical drive means in the form of a diesel engine 16, an electrical power generation unit 8 operativiey connected to the engine 16 and having 3-pin 220 V
AC output sockets 28 and welding cable connector terminals 15, all mounted in a transportable mounting frame 110 in the form of a trolley type housing.
The petrol engine 16 has a drive shaft 112 driveable by the engine 16 and a first generator 8, in the form of a Leroy Somer Partner LSA 35 M7 “E’ alternator delivering 220V/380V, is mounted on the free end of the drive shaft 112 and coupled to the shaft 112 by means of a rubber coupling 18.
The first generator § has a transformer 24 connected to its output terminals for transforming the output voltage from 220V AC to a required voltage of 18V AC peak-to-peak. One (Figure 1), two (Figure 2) or three (Figure 3) secondary generators 20 in the form of standard vehicle 3-phase AC alternators of 90 AMP i output capability, such as available from Bosch, are mounted remotely from the ha WO 02/066196 PCT/ZA01/00021 shaft 112 and are driveable by the shaft 112 by means of a pulley system 2. The first generator 8 transformer output terminals are connected to a rectifier circuit where the transformer output of 18 V AC peak-to-peak is rectified to the excitation voltage of the one or more secondary generators field coils and the . rectifier circuit output terminals are connected to the secondary generators 20 field coil input terminals by means of electrical cables, such that the total transformed electrical power of the transformer 24, after being rectified, is used to excite or energise these field coils which in turn generates an electrical output at the output terminal diode banks 24 which is fed to the welding cable connector 1 terminals 15.
The pulley system comprises a 162 mm 2 belt pulley arrangement driven at 3000 rom and driving the generator 8 ta provide a 220 V output. This configuration provides a 160 A DC welding current from the Bosch 80 Amp welding alternator at a voltage of between 22V and 28V, having an open circuit voltage of between 65V and 70 V.
In use, the engine is started by a user thereby causing the drive shaft 112 to rotate at the speed of the engine crank shaft (not shown). As the drive shaft . rotates so the rotor of the first generator 8 is roteted thereby generating an output current at a potential difference of 220 V AC across the terminals at an engine speed of 3000 rpm (typical). The transformer 24 then transforms this ) output to 18 V AC peak-to-peak which is rectified to about 13.8 V DC and applied across the field coil input terminals of the secondary generators 20.
The rotor shaft of the secondary generators Is driven by the pulley system 2 In parallel {= the first nenerster 2, the speed of rotation being fixed by the diameter of the pulleys and the engine revolutions. As a current loading is applied to the output terminals 15 (diode banks 21) of the secondary generators 20 they initially exhibit a natural tendency to retard the rotation of the rotor shaft and thus drive shaft 112 due to magnetisation of the field coils and rotor.
This retardation causes the engine 16 speed to drop and thus the speed of rotation of the shaft 112 which in turn leads to a reduced voltage across the first generator 8 terminals and thus the transformer 24 output voltage to below 18V
AC peak-to-peak. The reduced voltage from the transformer 24 leads to a reduced voltage at the output terminals of the rectifier circuit, and thus the secondary generators 20 field coil input terminals, thereby reducing the excitation of these field coils and thus the output from the alternators 20 at output terminals 15 (diode banks 21). This reduced output in turn reduces the retardation on the drive shaft 112 permitting the engine speed 16 to stabilise at an operating point at which the output from welding terminals 15 and the excitation voltage at the filed coil terminals are in balance. :
An elactromechanical feedback loop for regulating the output from the secondary generators is thus established and will respond in a similar fashion to any subsequent changes in loading conditions.
The welding unit 100 has switches 13 which permit selection of the number of secondary generators 20 to operate in parallel or in series to provide either an increased current output or voltage at the terminal 15.
The welding unit 100 further has a variable control switch 14 which permits variation of the output voitage of the transformer 24 between OV and 18V AC peak-to-peak, and thus OV to 13.8V DC from the rectifier circuit, thereby to permit contro! over the output of the secondary generators 20 by varying the excitation voltage to tha field coils of one of the secondary generators.
Figure 4 shows a simplified circuit diagram of the welding unit 100 including the power output sockets 28 and the welding cable connecting terminals 15. The circuit diagram shows that the voltage output of the primary generator 8 is transformed by a torroidal transformer 24 from 220 V AC to 18 V AC peak-to- peak, whereafter this transformed output is rectified and applied across the terminals of the field coils of the secondary generators 20 for excitation of the these field colls. This voltage may be varied by the voltage adjustment circuit 14 to allow only a desired current output from the secondary generatars 20 by limiting the excitation voltage of the field coils to between OV and 13,8V DC.
Switches 13 are also provided to permit operation of some or all of the secondary generators 20 simultaneously. The outputs of the secondary generators 20 are wired in delta and rectified to provide the required output for welding. A separate 220 V AC supply circuit is connected to the first generator 8 output and is used to provide a 220 V output to the pair of switched sockets 28.
B 11
The Inventor believes that it is an advantage of the Invention, as lllustrated, that an electrical power generation unit having a true 100% duty cycle is provided without the need to substantially oversize the drive engine to provide for loading conditions. The Inventor believes that itis a further advantage of the invention, as illustrated, that a portable welding unit is provided, which has a 100% duty cycle, while being lighter and smaller than conventional equivalent duty cycle power generation units, and in addition having accessories which permit a user to power power tools therefrom.
Furthermore, the inventor believes that it is yet a further advantage of a multiple welding alternator embodiment that either several users may weld simultaneously, or it may supply an increased current or voltage output.

Claims (1)

  1. Claims
    1. An electrical power generation unit including drive means for driving a drive shaft; a first electrical generator which Is configured to be connected to and driven by the drive shaft in use; one or more secondary electrical generator which is configured to be connected to and driven by the drive shaft; and the total output of the first electrical generator being transformed by a transformer to an excitation voltage sufficient to excite or energise field coils of the one or more secondary generator to a voltage not exceeding the saturation voltage of the field coils of the one or more secondary generator, thereby to effect elactromechanical feedback regulation of the output current from the one or more secondary generator to smooth out fluctuations in the output energy delivered by the one or more secondary generator under a sustained loading condition as well as to smooth out fluctuations in the output energy delivered by the first generator.
    2. An electrical power generation unit as claimed in claim 1, wherein the first ) i electrical generator is an AC generator. h
    3. An electrical power generation unit as claimed in claim 2, wherein the AC generator is an AC altemator of the self starter type having a residual magnetism which permits the alternator to be started without an excitation voltage.
    4. An electrical power generation unit as claimed in any one of the preceding claims, wherein the transformer is a torroidal transformer configured to provide an output of about 18 V AC peak-to-peak from a 220 V AC input. .
    5. An electrical power generation unit as claimed in any one of the preceding claims, wherein the secondary electrical generator is an AC alternator having field coils and having its output wired in delta configuration.
    6. An electrical power generation unit as claimed in claim 1, wherein the one or more secondary generator is driven from the same shaft as the first generator by means of a belt and pulley system in which the belt is kept in tension by a tensioner having an off-center axis and rotatable around that axis to alter the pulley belt perimeter length thereby to tension said belt.
    7. An electrical power generation unit as claimed in claim 1, wherein the drive means is selected to be capable of supplying electrical power corresponding to the ratio of 1:2 aggregate maximum power characteristic of the one or more secondary generator divided by the calibrated efficiency factor of the one or more secondary generator.
    8. An electrical power generation unit as claimed in any one of the preceding claims, which includes a voltage regulator circuit connectable to a transformer on the output of the first generator for regulating the output voltage of the transformer at a predetermined voltage. g 14
    9. An electrical power generation unit as claimed in any one of the preceding claims, wherein the electrical power generation unit includes one or more 3-phase rectifier and associated circuitry connectable to the one or more secondary generator to form a welding unit having its own electrical power generation means.
    10. An electrical power generation unit as claimed in any one of the preceding claims, wherein two or more of the secondary generators are switchable for connection in parallel to increase the output current for high current welding applications, and other high current demand applications.
    11. An electrical power generation unit as claimed in any one of the preceding claims, wherein two or more of the secondary generators are switchable for connection in series to increase the output voltage for gouging applications.
    12. An electrical power generation unit as claimed in any one of claims 10 and 11, wherein the output of the secondary generators is configurable by selecting the number of secondary generators to operate in parallel or in series by means of a switching arrangement. :
    43. An electrical power generation unit as claimed in any one of claims 10 to 12, wherein control over the output of the secondary generators is effected by means of a voltage adjustment circuit located operationally between the transformer output and one or more of the secondary generators’ field coils whereby the excitation voltage to the field coils of one or more of the secondary generators may be varied independently of the loading on said secondary generators.
    14. An electrical power generation unit as claimed in any one of the preceding claims, wherein a mounting frame for the drive means, the first generator and the one or more second generator is provided which includes a number of panels which form a housing for the power generation unit while also providing structural support for the unit.
    15. An electrical power generation unit as claimed in any one of the preceding claims, wherein the drive means is a fuel powered motor connectable to the drive shaft.
    16. An electrical power generation unit as claimed in any one of claims 1 to 14, wherein the drive means is an electric motor.
    17. A transportable welding unit including a power generation unit as claimed in any one of the preceding claims.
    18. A method of providing a substantially stable supply of electrical energy under sustained loading conditions including the steps of: connecting a first generator to a drive shaft of a drive means; connecting one or more secondary generator to the drive shaft;
    transforming the total output voltage of the first generator to a voltage sufficient to excite the coils of the one or more secondary generator but below the saturation voltage of said one or more secondary generator, and ] electrically connecting the transformed output of the first generator to the second generator such that, in use, the output from the transformer is used to excite or energise field coils of the one or more secondary generator so that electromechanical feedback control of the output of the one or more secondary generator is effected.
    19. An electrical power generation unit, substantially as herein described and illustrated. :
    20. A transportable welding unit, substantially as herein described and illustrated.
    24. A method of providing a substantially stable supply of electrical energy under sustained loading conditions, substantially as ‘herein described and Illustrated. 22 A new electrical power generation unit, & new transportable welding unit, or a new method of providing a substantially stable supply of electrical energy under sustained loading conditions, substantially as here described.
ZA200208445A 2002-10-18 2002-10-18 An electrical power generation unit. ZA200208445B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA200208445A ZA200208445B (en) 2002-10-18 2002-10-18 An electrical power generation unit.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ZA200208445A ZA200208445B (en) 2002-10-18 2002-10-18 An electrical power generation unit.

Publications (1)

Publication Number Publication Date
ZA200208445B true ZA200208445B (en) 2003-10-29

Family

ID=30444571

Family Applications (1)

Application Number Title Priority Date Filing Date
ZA200208445A ZA200208445B (en) 2002-10-18 2002-10-18 An electrical power generation unit.

Country Status (1)

Country Link
ZA (1) ZA200208445B (en)

Similar Documents

Publication Publication Date Title
US6876096B2 (en) Electrical power generation unit
US6815934B2 (en) Induction generator power supply
RU2224352C2 (en) Power system for ac turbine/generator unit mounted on common shaft
US7514806B2 (en) Engine start system with quadrature AC excitation
US7053590B2 (en) Power generating system including a high-frequency alternator, a rectifier module, and an auxiliary power supply
US5581168A (en) Starter/generator system with DC link current control
KR0171435B1 (en) Plural generator for an electric hybrid automobile
US7327048B2 (en) Hybrid gas turbine engine starter-generator
EP0817367B1 (en) Generator system for internal combustion engine
US3676694A (en) Power output accessory unit
EP0237246A2 (en) Starter generator system
US20050146221A1 (en) [a variable frequency power system and method of use]
US7330016B2 (en) Induction generator power supply
US20180283294A1 (en) Engine generator
US3829652A (en) Arc welder and combined auxiliary power unit and method of arc welding
US4786853A (en) Brushless capacitor excited generator
US6590298B1 (en) Electrical power generation unit for welding including electromechanical feedback mode regulation
US4500828A (en) AC Generator
CN101847961B (en) Portable inverter power generation apparatus
CN201103463Y (en) Portable generator system
ZA200208445B (en) An electrical power generation unit.
AU2001250066A1 (en) An electrical power generation unit
JPS6325867Y2 (en)
US3098191A (en) Multiple purpose generator
US3424974A (en) Electric generating apparatus