ZA200107761B - Stabilized telecommunication cable insulation composition. - Google Patents
Stabilized telecommunication cable insulation composition. Download PDFInfo
- Publication number
- ZA200107761B ZA200107761B ZA200107761A ZA200107761A ZA200107761B ZA 200107761 B ZA200107761 B ZA 200107761B ZA 200107761 A ZA200107761 A ZA 200107761A ZA 200107761 A ZA200107761 A ZA 200107761A ZA 200107761 B ZA200107761 B ZA 200107761B
- Authority
- ZA
- South Africa
- Prior art keywords
- component
- cable
- construction according
- polyolefin
- cable construction
- Prior art date
Links
- 238000009413 insulation Methods 0.000 title claims description 21
- 239000000203 mixture Substances 0.000 title claims description 14
- 229920000098 polyolefin Polymers 0.000 claims description 26
- -1 2-(3,5-di-tert-butyl-4-hydroxyhydrocinnamoyloxy)ethyl Chemical group 0.000 claims description 22
- 239000004519 grease Substances 0.000 claims description 21
- 125000004432 carbon atom Chemical group C* 0.000 claims description 12
- 239000006078 metal deactivator Substances 0.000 claims description 12
- HCILJBJJZALOAL-UHFFFAOYSA-N 3-(3,5-ditert-butyl-4-hydroxyphenyl)-n'-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyl]propanehydrazide Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)NNC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 HCILJBJJZALOAL-UHFFFAOYSA-N 0.000 claims description 11
- 238000010276 construction Methods 0.000 claims description 11
- 239000000945 filler Substances 0.000 claims description 11
- 150000002430 hydrocarbons Chemical class 0.000 claims description 10
- 239000004215 Carbon black (E152) Substances 0.000 claims description 9
- 229930195733 hydrocarbon Natural products 0.000 claims description 9
- 239000004743 Polypropylene Substances 0.000 claims description 6
- 239000003963 antioxidant agent Substances 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- 239000004698 Polyethylene Substances 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 5
- VNQNXQYZMPJLQX-UHFFFAOYSA-N 1,3,5-tris[(3,5-ditert-butyl-4-hydroxyphenyl)methyl]-1,3,5-triazinane-2,4,6-trione Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CN2C(N(CC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)C(=O)N(CC=3C=C(C(O)=C(C=3)C(C)(C)C)C(C)(C)C)C2=O)=O)=C1 VNQNXQYZMPJLQX-UHFFFAOYSA-N 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- OKOBUGCCXMIKDM-UHFFFAOYSA-N Irganox 1098 Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)NCCCCCCNC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 OKOBUGCCXMIKDM-UHFFFAOYSA-N 0.000 claims description 3
- 239000007983 Tris buffer Substances 0.000 claims description 3
- 150000002429 hydrazines Chemical class 0.000 claims description 3
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 claims description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 125000001589 carboacyl group Chemical group 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims 2
- 229920001577 copolymer Polymers 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 229920001519 homopolymer Polymers 0.000 description 10
- 150000001412 amines Chemical class 0.000 description 9
- 239000003381 stabilizer Substances 0.000 description 9
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 238000011049 filling Methods 0.000 description 8
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 7
- 239000005977 Ethylene Substances 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 7
- 230000006641 stabilisation Effects 0.000 description 7
- 238000011105 stabilization Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 229910000077 silane Inorganic materials 0.000 description 5
- 239000004711 α-olefin Substances 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 125000003342 alkenyl group Chemical group 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000002939 deleterious effect Effects 0.000 description 3
- CGPRUXZTHGTMKW-UHFFFAOYSA-N ethene;ethyl prop-2-enoate Chemical compound C=C.CCOC(=O)C=C CGPRUXZTHGTMKW-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000002530 phenolic antioxidant Substances 0.000 description 3
- 150000002989 phenols Chemical class 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 229920001897 terpolymer Polymers 0.000 description 3
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 150000001993 dienes Chemical class 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 150000001451 organic peroxides Chemical class 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229920005606 polypropylene copolymer Polymers 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- AHAREKHAZNPPMI-AATRIKPKSA-N (3e)-hexa-1,3-diene Chemical compound CC\C=C\C=C AHAREKHAZNPPMI-AATRIKPKSA-N 0.000 description 1
- HYBLFDUGSBOMPI-BQYQJAHWSA-N (4e)-octa-1,4-diene Chemical compound CCC\C=C\CC=C HYBLFDUGSBOMPI-BQYQJAHWSA-N 0.000 description 1
- OJOWICOBYCXEKR-KRXBUXKQSA-N (5e)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C/C)/CC1C=C2 OJOWICOBYCXEKR-KRXBUXKQSA-N 0.000 description 1
- PRBHEGAFLDMLAL-UHFFFAOYSA-N 1,5-Hexadiene Natural products CC=CCC=C PRBHEGAFLDMLAL-UHFFFAOYSA-N 0.000 description 1
- KTZVZZJJVJQZHV-UHFFFAOYSA-N 1-chloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1 KTZVZZJJVJQZHV-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- OYUNTGBISCIYPW-UHFFFAOYSA-N 2-chloroprop-2-enenitrile Chemical compound ClC(=C)C#N OYUNTGBISCIYPW-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical class [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000012963 UV stabilizer Substances 0.000 description 1
- BGYHLZZASRKEJE-UHFFFAOYSA-N [3-[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxy]-2,2-bis[3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoyloxymethyl]propyl] 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CCC(=O)OCC(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)(COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)COC(=O)CCC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 BGYHLZZASRKEJE-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- PZGVVCOOWYSSGB-UHFFFAOYSA-L but-2-enedioate;dioctyltin(2+) Chemical compound CCCCCCCC[Sn]1(CCCCCCCC)OC(=O)C=CC(=O)O1 PZGVVCOOWYSSGB-UHFFFAOYSA-L 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- PNOXNTGLSKTMQO-UHFFFAOYSA-L diacetyloxytin Chemical compound CC(=O)O[Sn]OC(C)=O PNOXNTGLSKTMQO-UHFFFAOYSA-L 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical group [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- MABAWBWRUSBLKQ-UHFFFAOYSA-N ethenyl-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)C=C MABAWBWRUSBLKQ-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- PBZROIMXDZTJDF-UHFFFAOYSA-N hepta-1,6-dien-4-one Chemical compound C=CCC(=O)CC=C PBZROIMXDZTJDF-UHFFFAOYSA-N 0.000 description 1
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical compound C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- GIWKOZXJDKMGQC-UHFFFAOYSA-L lead(2+);naphthalene-2-carboxylate Chemical compound [Pb+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 GIWKOZXJDKMGQC-UHFFFAOYSA-L 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- QYZLKGVUSQXAMU-UHFFFAOYSA-N penta-1,4-diene Chemical compound C=CCC=C QYZLKGVUSQXAMU-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- FUSUHKVFWTUUBE-UHFFFAOYSA-N vinyl methyl ketone Natural products CC(=O)C=C FUSUHKVFWTUUBE-UHFFFAOYSA-N 0.000 description 1
- CHJMFFKHPHCQIJ-UHFFFAOYSA-L zinc;octanoate Chemical compound [Zn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O CHJMFFKHPHCQIJ-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Description
’ gy.
Stabilized Telecommunication Cable Insulation Composition
The present invention pertains to a polyolefin composition for use as insulation for wire and cable that has improved resistance to the deleterious effects of heat, oxygen and moisture. The stabilized compositions are suitable for use as telecommunications (telecom) cable.
A typical telecom cable is constructed of twisted pairs of polyolefin-insulated copper wire which are bundled together and protected by a cable sheath. The cable sheath is composed of a metal foil and/or armor in combination with a polymeric jacketing material. The entire system is referred to as “telecom cable”.
To reduce the risk of water penetration into the cable system and to minimize the : deleterious effects of moisture on the polyolefin insulation, the system is made water-tight by filling the voids in the cable with a hydrophobic grease. Cable systems of this type are described for example in U.S. Patent Nos. 3,888,709, 4,044,200, 4,218,577, 5,502,288 and
European patent application 565,868 A2, and the references therein. The cable filler grease is known to extract stabilizers incorporated into the wire insulation. This is discussed for example in "Plastics Additives Handbook", 3" Edition, R. Gachter, H. Muller, Eds., Hanser
Publishers, pages 116-119 (1990)].
Junctions of two or more telecom cables are often required and this is accomplished in an outdoor enclosure known as a pedestal or an interconnection box. Inside the pedestal, the cable sheathing is removed, the cable filler grease is wiped off, and the transmission wires are joined as necessary. The exposed insulated wires are now subject to the adverse conditions of heat, oxygen and moisture. The polyolefin insulation, having lost a portion of its stabilizer additives to extraction by the filler grease, is especially vuinerable to these environmental conditions and may exhibit premature oxidative failure. This failure exhibits itself in the loss of physical properties of the insulation which ultimately results in a loss of electrical transmission performance.
The stabilization of polyolefin wire insulation in telecom applications with hindered phenolic antioxidants is known. A state of the art stabilizer system includes the use of a hindered phenol together with a metal deactivator such as Irganox® MD 1024, 1,2 -bis(3,5-di-
-2. N tert-butyl-4-hydroxyhydrocinnamoyl)hydrazine or Naugard® XL-1, 2,2’-oxalyldiamido-bis- [ethyl 3-(3,5-di-tert-butyl-4-hydroxylphenyl)propionate]. A typical stabilizer package includes, as the primary antioxidant, Irganox® 1010, pentaerythritol tetrakis [3-(3,5-di-tert-buty!-4- hydroxyphenyl) propionate), and as the metal deactivator, irganox® MD 1024. This system is disclosed in European patent application 565,868 A2 and U.S. Patent Nos. 4,044,200, 5,380,591 and 5,575,952. Irganox®is a protected trade name of Ciba Specialty Chemicals
Corp., Naugard® is a protected trade name of Uniroyal.
U.S. Patent No. 4,044,200 discloses the stabilization of polyethylene wire insulation in the presence of a moisture barrier filler with a combination of an alkylhydroxyphenylalkanoyl hydrazide and/or a substituted amido triazole together with a high molecular weight hindered phenolic antioxidant. Specifically disclosed is the combination of irganox® MD 1024 and
Irganox® 1010.
U.S. Patent No. 4,812,500 discloses a polyolefin composition having improved resistance to deterioration when exposed to hot oxygenated water, chlorinated water, and :
UV radiation. The composition comprises a hindered amine UV stabilizer, a hindered phenolic thermal stabilizer and a chelating (metal deactivating) agent. The hindered phenolic is selected from a specific group including Irganox® 1010, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate), and Irganox® 3114, tris(3,5-di-tert-butyl-4- hydroxybenzyl) isocyanurate. The chelating agent is selected from a group including
Irganox® MD 1024, 1,2 -bis(3,5-di-tert-butyl-4-hydroxyhydrocinnamoyl)hydrazine. Irganox® is a trademark of Ciba Specialty Chemicals Corp. Itis contemplated that the invention may be used for various systems where water or moisture are present, including wire and cable coatings. There is no mention of grease filled cable systems where the potential for extraction of the additives exists.
U.S. Patent Nos. 5,380,591, 5,453,322, 5,575,952, 5,766,761 and 5,807,635 disclose the stabilization of hydrocarbon grease filled telephone cables with the combination of a mixture of an alkylhydroxyphenylalkanoyl hydrazine with a functionalized hindered amine. irganox® MD 1024 is specifically disclosed as the hydrazine in each case.
r -3-
U.S. Patent No. 5,474,847 teaches the stabilization of polyolefin wire insulation in grease filled telephone cables with the reaction products of hydrazide derivatives of hindered phenols or hindered amines or amino derivatives of hindered amines with a quinone.
U.S. Patent No. 5,502,288 discloses the stabilization of polyolefin wire insulation in telephone cables with the use of Irganox® MD 1024 or Naugard® XL-1 or mixtures thereof with selected antioxidants.
European patent application 565,868 A2 teaches the stabilization of polyolefin wire insulation compositions exposed to water-blocking cable fillers with a combination of divalent metal salts of phenolic carboxylic or phosphonic acids together with a metal deactivator.
Specifically named metal deactivators are irganox® MD 1024 and Naugard® XL-1. A preferred composition also includes the use of irganox® 1010.
WO 93/24935 teaches the use of the reaction products of an anhydride of an unsaturated aliphatic diacid with one or more functionalized hindered amines and/or functionalized hindered phenols for the stabilization of polyolefin wire insulation in grease filled telephone cables.
WO 93/24938 discloses a grease filled cable construction in which the polyolefin wire insulation which has bonded to it, through an anhydride of an aliphatic diacid, one or more functionalized hindered amines and/or functionalized hindered phenols.
In order to protect the polyolefin wire insulation that is exposed to environmental conditions in the interconnection box, and to counteract the extraction of stabilizers by the cable filler grease, it has been suggested that high loadings of the stabilizer system be employed. There is a need to find more efficient primary antioxidant/metal deactivator combinations than those that are the state of the art in order to reduce the high cost associated with the use of these levels of stabilizers. Stabilizer efficiency in this context is the combined ability of the stabilizer system to resist extraction from the polyolefin wire insulation into the cable filler grease and to provide the polyolefin with resistance to the deleterious effects of heat, oxygen and moisture.
“,
Surprisingly, it has been found that the combination of one or more primary phenolic antioxidants selected from Irganox® 1098, N,N'-hexane-1 ,6-diylbis-(3-(3,5-di-tert-butyl-4- hydroxyphenylpropionamide)), rganox® 3114, tris(3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, and Irganox® 3125, tris(2-(3,5-di-tert-butyl-4-hydroxyhydrocinnamoyloxy)ethyl) isocyanurate, together with one or more alkythydroxyphenylalkanoyl hydrazine metal deactivators is especially effective towards providing oxidative stability for polyolefin wire insulation in grease filled telecom cables. Irganox® is a trademark of Ciba Specialty
Chemicals Corp.
The present invention pertains to a novel hydrocarbon grease filled cable construction wherein the polyolefin wire insulation has improved oxidative stability.
More particularly, the novel cable construction of this invention comprises ' (i) a plurality of insulated electrical conductors having interstices therebetween, : said insulation comprising (a) one or more polyolefins, and (b) one or more primary antioxidants selected from the group of N,N’-hexane-1,6- diylbis-(3-(3,5-di-tert-butyl-4-hydroxyphenylpropionamide)), tris(3,5-di-tert-butyl-4- hydroxybenzyl) isocyanurate and tris(2-(3,5-di-tert-butyl-4-hydroxyhydrocinnamoyloxy)ethy!) isocyanurate, and (c) one or more metal deactivators selected from the alkylhydroxyphenylalkanoy! hydrazines, and (it) hydrocarbon cable filler grease within the interstices, and (iii) a sheath surrounding components (i) and (ii).
~ -5-
The polyolefins of component (a) are generally thermoplastic resins, which are crosslinkable. They can be homopolymers or copolymers produced from two or more comonomers, or a blend of two or more of these polymers, conventionally used in film, sheet, and tubing, and as jacketing and/or insulating materials in wire and cable applications.
The monomers useful in the production of these homopolymers and copolymers can have 2 to 20 carbon atoms, and preferably have 2 to 12 carbon atoms. Examples of these monomers are alpha-olefins such as ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1- pentene, and 1-octene; unsaturated esters such as vinyl acetate, ethyl acrylate, methyl acrylate, methyl methacrylate, t-butyl acrylate, n-butyl acrylate, n-butyl methacrylate, 2- ethylhexyl acrylate, and other alkyl acrylates; diolefins such as 1,4-pentadiene, 1,3- hexadiene, 1,5-hexadiene, 1,4-octadiene, and ethylidene norbornene, commonly the third monomer in a terpolymer; other monomers such as styrene, p-methyl styrene, alpha-methy! styrene, p-chlorostyrene, vinyl naphthalene, and similar aryl olefins; nitriles such as } acrylonitrile, methacrylonitrile, and alpha-chloroacrylonitrile; vinyl methyl ketone, vinyl methyl ether, vinylidene chloride, maleic anhydride, vinyl chioride, vinylidene chloride, vinyl alcohol, tetrafluoroethylene, and chorotrifiuoroethylene; and acrylic acid, methacrylic acid, and other similar unsaturated acids.
The homopolymers and copolymers referred to can be non-halogenated, or halogenated in a conventional manner, generally with chorine or bromine. Examples of halogenated polymers are polyvinyl chloride, polyvinylidene chloride, and polytetrafluoroethylene. The homopolymers and copolymers of ethylene and propylene are preferred, both in the non-halogenated and halogenated form. Included in this preferred group are terpolymers such as ethylene/propylene/diene monomer rubbers.
Other examples of ethylene polymers are as follows: a high pressure homopolymer of ethylene; a copolymer of ethylene and one or more alpha-olefins having 3 to 12 carbon atoms; a homopolymer or copolymer of ethylene having a hydrolyzable silane grafted to their backbones; a copolymer of ethylene and alkenyl trialkyloxy silane such as trimethoxy vinyl silane; or a copolymer of an alpha-olefin having 2 to 12 carbon atoms and an unsaturated ester having 4 to 20 carbon atoms, e.g., an ethylene/ethyl acrylate or vinyl acetate copolymer; an ethylene/ethyl acrylate or vinyl acetate/hydrolyzable silane terpolymer; and ethylene/ethyl acrylate or vinyl acetate copolymers having a hydrolyzable silane grafted to their backbones.
w,
With respect to polypropylene: Homopolymers and copolymers of propylene and one or more other alpha-olefins wherein the portion of the copolymer based on propylene is at least about 60 percent by weight based on the weight of the copolymer can be used to provide the polyolefin of the invention. Preferred polypropylene alpha-olefin comonomers are those having 2 or 4 to 12 carbon atoms.
Polyolefins, i.e. the polymers of monoolefins exemplified above, for example polyethylene and polypropylene, can be prepared by different, and especially by the following, methods: 1) radical polymerization (normally under high pressure and at elevated temperature). 2) catalytic polymerization using a catalyst that normally contains one or more than one ’ metal of groups IVb, Vb, Vib or VIII of the Periodic Table. These metals usually have one or more than one ligand, typically oxides, halides, alcoholates, esters, ethers, amines, alkyls, alkenyls and/or aryls that may be either p- or s-coordinated. These metal complexes may be in the free form or fixed on substrates, typically on activated magnesium chloride, titanium(l) chloride, alumina or silicon oxide. These catalysts may be soluble or insoluble in the polymerization medium. The catalysts can be used by themselves in the polymerization or further activators may be used, typically metal alkyls, metal hydrides, metal alkyl halides, metal alkyl oxides or metal alkyloxanes, said metals being elements of groups la, lla and/or lla of the Periodic Table. The activators may be modified conveniently with further ester, ether, amine or silyl ether groups. These catalyst systems are usually termed Phillips,
Standard Oil Indiana, Ziegler (-Natta), TNZ (DuPont), metallocene or single site catalysts (SSC).
The homopolymer or copolymers can be crosslinked or cured with an organic peroxide, or to make them hydrolyzable, they can be grafted with alkeny! trialkoxy silane in the presence of an organic peroxide which acts as a free radical generator or catalyst. Useful alkenyl! trialkoxy silanes include the vinyl trialkoxy silanes such as vinyl trimethoxy silane, vinyl triethoxy silane, and vinyl triisopropoxy silane. The alkenyl and alkoxy radicals can have 1 to 30 carbon atoms and preferably have 1 to 12 carbon atoms. The hydrolyzable polymers can be moisture cured in the presence of a silanol condensation catalyst such as
~ 7. dibutyl tin dilaurate, dioctyl tin maleate, stannous acetate, stannous octoate, lead naphthenate, zinc octoate, iron 2-ethyl hexoate, and other metal carboxylates.
The homopolymers or copolymers of ethylene wherein ethylene is the primary comonomer and the homopolymers and copolymers of propylene wherein propylene is the primary comonomer may be referred to herein as polyethylene and polypropylene, respectively.
The polyolefins of component a) are preferably polyethylene or polypropylene or mixtures thereof.
The alkylhydroxyphenylatkanoy! hydrazines of component (c) are described in U.S.
Patent Nos. 3,660,438 and 3,773,722. Preferably the compounds of component (c) are of . the following structure:
H
: \
R, 0 NTR, be \
Ly (CH), H
R, wherein n is 0 or an integer from t to 5;
R; is a straight or branched chain alkyl having 1 to 6 carbon atoms:
R. is hydrogen or Ry; and
Rs is hydrogen, an alkanoyl having 2 to 18 carbon atoms, or a group of the formula hb. N
R, 0]
LL - (CH,),
R, wherein n, R; and R; independently have the same definitions as above.
The radical R; is preferably in the ortho-position to the OH group.
Preferably, the metal deactivator of component (c) is Irganox® MD 1024, 1,2 -bis(3,5-di- tert-butyl-4-hydroxyhydrocinnamoyl)hydrazine, Ciba Specialty Chemicals Corp.
The hydrocarbon cable filler grease of component (ii) is a mixture of hydrocarbon compounds, which is semisolid at use temperatures. It is known industrially as “cable filling compound.” A typical requirement of cable filling compounds is that the grease has minimal leakage from the cut end of a cable at a 60° C or higher temperature rating. Another typical requirement is that the grease resist water leakage through a short length of cut cable when water pressure is applied at one end. Among other typical requirements are cost competitiveness; minimal detrimental effect on signal transmission: minimal detrimental effect on the physical characteristics of the polymeric insulation and cable sheathing materials; thermal and oxidative stability; and cable fabrication processability.
Cable fabrication can be accomplished by heating the cable filling compound to a temperature of approximately 100° C. This liquefies the filling compound so that it can be pumped into the multiconductor cable core to fully impregnate the interstices and eliminate all air space. Alternatively, thixotropic cable filling compounds using shear induced flow can be processed at reduced temperatures in the same manner. A cross section of a typical finished grease filled cable transmission core is made up of about 52 percent insulated wire and about 48 percent interstices in terms of the areas of the total cross section. Since the interstices are completely filled with cable filling compound, a filled cable core typically contains about 48 percent by volume of cable filling compound.
Claims (8)
1. A stabilized cable construction, which comprises (i) a plurality of insulated electrical conductors having interstices therebetween, said insulation comprising (a) one or more polyolefins, and (b) one or more primary antioxidants selected from the group of N,N'-hexane-1,6- diylbis-(3-(3,5-di-tert-butyl-4-hydroxyphenylpropionamide)), tris(3,5-di-tert-butyl-4- hydroxybenzyl) isocyanurate and tris(2-(3,5-di-tert-butyl-4-hydroxyhydrocinnamoyloxy)ethyl) isocyanurate, and (c) one or more metal deactivators selected from the alkylhydroxyphenylalkanoyl hydrazines, and (ii) hydrocarbon cable filler grease within the interstices, and (iii) a sheath surrounding components (i) and (ii).
2. A cable construction according to claim 1 wherein said polyolefins of component (a) are polyethylene or polypropylene or mixtures thereof.
3. A cable construction according to claim 1 in which the metal deactivators of component (c) are of the formula
H \ R, 0 NTR, N no—¢ \ (CH), H R, wherein n is 0 or an integer from 1 to 5;
R. is a straight or branched chain alkyl having 1 to 6 carbon atoms:
R. is hydrogen or Ry; and Ra is hydrogen, an alkanoyl having 2 to 18 carbon atoms, or a group of the formula R, O Ly (CH,), R, wherein n, R, and R; independently have the same definitions as above.
4. A cable construction according to claim 1 in which the metal deactivator of component (c) is 1,2 -bis(3,5-di-tert-butyl-4-hydroxyhydrocinnamoyl)hydrazine.
5. A cable construction according to claim 1 in which said antioxidants of component (b), in total, are present in the range from about 0.05 weight percent to about 1.0 weight percent based on the weight of the polyolefin of component (a).
6. A cable construction according to claim 1 in which said metal deactivators of component (c), in total, are present in the range from about 0.1 weight percent to about 2.0 weight percent based on the weight of the polyolefin of component (a).
7. A cable construction according to claim 1 in which the hydrocarbon cable filler grease of component (ii) or one or more of the hydrocarbon constituents thereof is present in the polyolefin of component (a).
8. A cable construction according to claim 1 in which the hydrocarbon cable filier grease of component (ii) or one or more of the hydrocarbon constituents thereof, in total, is present in the polyolefin of component (a) in the range of about 3 to about 30 weight percent based on the weight of component (a).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12610099P | 1999-03-25 | 1999-03-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
ZA200107761B true ZA200107761B (en) | 2002-05-22 |
Family
ID=22423002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ZA200107761A ZA200107761B (en) | 1999-03-25 | 2001-09-20 | Stabilized telecommunication cable insulation composition. |
Country Status (3)
Country | Link |
---|---|
PL (1) | PL204096B1 (en) |
RU (1) | RU2251170C2 (en) |
ZA (1) | ZA200107761B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8790553B2 (en) | 2009-07-07 | 2014-07-29 | 3M Innovative Properties Company | Electrical equipment containing erucic acid dielectric oil |
BR112012022455A2 (en) * | 2010-03-08 | 2016-07-12 | Borealis Ag | polyolefin composition, master batch, cable, use of a polyolefin composition, use of a master batch, and use of a benzyl derivative |
RU2459300C1 (en) * | 2011-05-12 | 2012-08-20 | Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный технический университет" | Electric insulating filling compound |
RU2473994C1 (en) * | 2011-11-24 | 2013-01-27 | Закрытое акционерное общество "Группа Компаний Системной Консолидации" | Method of producing radiation cross-linked fluoropolymer composition |
RU2638441C2 (en) * | 2012-08-01 | 2017-12-15 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Composition of cable filler |
EP2886595B1 (en) | 2013-12-20 | 2016-04-20 | Borealis AG | Polyolefin composition for medium/high/extra high voltage cables comprising benzil-type voltage stabiliser |
-
2000
- 2000-02-21 PL PL350770A patent/PL204096B1/en unknown
- 2000-02-21 RU RU2001128668/09A patent/RU2251170C2/en not_active IP Right Cessation
-
2001
- 2001-09-20 ZA ZA200107761A patent/ZA200107761B/en unknown
Also Published As
Publication number | Publication date |
---|---|
PL350770A1 (en) | 2003-01-27 |
RU2251170C2 (en) | 2005-04-27 |
PL204096B1 (en) | 2009-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10163545B2 (en) | Polymeric compositions with voltage stabilizer additive | |
US8501864B2 (en) | Insulating composition for an electric power cable | |
CA2278558C (en) | Telephone cables | |
AU578095B2 (en) | Insulation composition for cables | |
KR0165904B1 (en) | Telephone cables | |
US5453322A (en) | Telephone cables | |
US20080093103A1 (en) | Low Voltage Power Cable With Insulation Layer Comprising Polyolefin Having Polar Groups, Hydrolysable Silane Groups and Which Includes Silanol Condensation | |
ZA200107761B (en) | Stabilized telecommunication cable insulation composition. | |
WO1993024938A1 (en) | Telephone cables | |
EP0675506B1 (en) | Telephone cables | |
US5474847A (en) | Telephone cables | |
US5766761A (en) | Telephone cables | |
US5357020A (en) | Polysiloxane with chromanol moiety | |
US6120897A (en) | Telephone cables | |
US6007913A (en) | Telephone cables | |
JPH03239762A (en) | Antproof cable | |
MXPA01008863A (en) | Stabilized telecommunication cable insulation composition |