ZA200100681B - Human anti-factor IX/IXA antibodies. - Google Patents
Human anti-factor IX/IXA antibodies. Download PDFInfo
- Publication number
- ZA200100681B ZA200100681B ZA200100681A ZA200100681A ZA200100681B ZA 200100681 B ZA200100681 B ZA 200100681B ZA 200100681 A ZA200100681 A ZA 200100681A ZA 200100681 A ZA200100681 A ZA 200100681A ZA 200100681 B ZA200100681 B ZA 200100681B
- Authority
- ZA
- South Africa
- Prior art keywords
- seq
- antibody
- chain variable
- composition
- fix
- Prior art date
Links
- 241000282414 Homo sapiens Species 0.000 title claims description 69
- 229960004222 factor ix Drugs 0.000 title claims description 12
- 108010048049 Factor IXa Proteins 0.000 claims description 70
- 238000000034 method Methods 0.000 claims description 66
- 108010021625 Immunoglobulin Fragments Proteins 0.000 claims description 65
- 102000008394 Immunoglobulin Fragments Human genes 0.000 claims description 65
- 230000027455 binding Effects 0.000 claims description 52
- 239000000203 mixture Substances 0.000 claims description 48
- 239000013598 vector Substances 0.000 claims description 42
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 38
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 29
- 150000007523 nucleic acids Chemical class 0.000 claims description 16
- 201000010099 disease Diseases 0.000 claims description 15
- 108020004707 nucleic acids Proteins 0.000 claims description 14
- 102000039446 nucleic acids Human genes 0.000 claims description 14
- 208000035475 disorder Diseases 0.000 claims description 13
- 108010076282 Factor IX Proteins 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 102100022641 Coagulation factor IX Human genes 0.000 claims description 10
- 206010053567 Coagulopathies Diseases 0.000 claims description 10
- 239000008194 pharmaceutical composition Substances 0.000 claims description 9
- 241000124008 Mammalia Species 0.000 claims description 5
- 238000012258 culturing Methods 0.000 claims description 5
- 230000001732 thrombotic effect Effects 0.000 claims description 4
- 208000015294 blood coagulation disease Diseases 0.000 claims description 3
- 230000009852 coagulant defect Effects 0.000 claims description 2
- 229960000027 human factor ix Drugs 0.000 claims 2
- 210000004027 cell Anatomy 0.000 description 104
- 230000000694 effects Effects 0.000 description 58
- 108090000765 processed proteins & peptides Proteins 0.000 description 56
- 108090000623 proteins and genes Proteins 0.000 description 55
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 48
- 210000004369 blood Anatomy 0.000 description 47
- 208000032843 Hemorrhage Diseases 0.000 description 46
- 208000034158 bleeding Diseases 0.000 description 46
- 230000000740 bleeding effect Effects 0.000 description 46
- 239000008280 blood Substances 0.000 description 46
- 108020004414 DNA Proteins 0.000 description 45
- 102000004196 processed proteins & peptides Human genes 0.000 description 44
- 229920001184 polypeptide Polymers 0.000 description 43
- 241000700159 Rattus Species 0.000 description 39
- 102100035360 Cerebellar degeneration-related antigen 1 Human genes 0.000 description 33
- 239000011780 sodium chloride Substances 0.000 description 33
- 208000007536 Thrombosis Diseases 0.000 description 29
- 230000004913 activation Effects 0.000 description 27
- 230000014509 gene expression Effects 0.000 description 27
- 235000018102 proteins Nutrition 0.000 description 27
- 102000004169 proteins and genes Human genes 0.000 description 27
- 230000015271 coagulation Effects 0.000 description 26
- 238000005345 coagulation Methods 0.000 description 26
- 230000001419 dependent effect Effects 0.000 description 24
- 238000011282 treatment Methods 0.000 description 24
- 241001465754 Metazoa Species 0.000 description 23
- 241000700199 Cavia porcellus Species 0.000 description 22
- 102100021584 Neurturin Human genes 0.000 description 22
- 238000003556 assay Methods 0.000 description 22
- 238000002474 experimental method Methods 0.000 description 22
- 235000001014 amino acid Nutrition 0.000 description 21
- 238000006467 substitution reaction Methods 0.000 description 21
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 20
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 20
- 239000000427 antigen Substances 0.000 description 20
- 108091007433 antigens Proteins 0.000 description 20
- 102000036639 antigens Human genes 0.000 description 20
- 230000005764 inhibitory process Effects 0.000 description 20
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 19
- 239000012634 fragment Substances 0.000 description 19
- 150000001413 amino acids Chemical class 0.000 description 18
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 17
- 229940024606 amino acid Drugs 0.000 description 17
- 239000011575 calcium Substances 0.000 description 17
- 229920000669 heparin Polymers 0.000 description 17
- 238000005259 measurement Methods 0.000 description 17
- 241000894007 species Species 0.000 description 17
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 16
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 16
- 239000013604 expression vector Substances 0.000 description 16
- 229960002897 heparin Drugs 0.000 description 16
- 239000000872 buffer Substances 0.000 description 15
- 108010076504 Protein Sorting Signals Proteins 0.000 description 14
- 108010000499 Thromboplastin Proteins 0.000 description 14
- 102000002262 Thromboplastin Human genes 0.000 description 14
- 230000015572 biosynthetic process Effects 0.000 description 14
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Substances OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 230000001965 increasing effect Effects 0.000 description 13
- 238000013518 transcription Methods 0.000 description 13
- 230000035897 transcription Effects 0.000 description 13
- 241000283973 Oryctolagus cuniculus Species 0.000 description 12
- 108010094028 Prothrombin Proteins 0.000 description 11
- 102100027378 Prothrombin Human genes 0.000 description 11
- 230000004071 biological effect Effects 0.000 description 11
- 230000002401 inhibitory effect Effects 0.000 description 11
- 229940039716 prothrombin Drugs 0.000 description 11
- PJRSUKFWFKUDTH-JWDJOUOUSA-N (2s)-6-amino-2-[[2-[[(2s)-2-[[(2s,3s)-2-[[(2s)-2-[[2-[[(2s)-2-[[(2s)-6-amino-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[(2-aminoacetyl)amino]-4-methylsulfanylbutanoyl]amino]propanoyl]amino]-3-hydroxypropanoyl]amino]hexanoyl]amino]propanoyl]amino]acetyl]amino]propanoyl Chemical compound CSCC[C@H](NC(=O)CN)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(N)=O PJRSUKFWFKUDTH-JWDJOUOUSA-N 0.000 description 10
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 10
- 241000196324 Embryophyta Species 0.000 description 10
- 108010022394 Threonine synthase Proteins 0.000 description 10
- 239000003146 anticoagulant agent Substances 0.000 description 10
- 210000001715 carotid artery Anatomy 0.000 description 10
- 238000010367 cloning Methods 0.000 description 10
- 230000035602 clotting Effects 0.000 description 10
- 102000004419 dihydrofolate reductase Human genes 0.000 description 10
- 230000023597 hemostasis Effects 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 230000001404 mediated effect Effects 0.000 description 10
- 239000013612 plasmid Substances 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 206010003178 Arterial thrombosis Diseases 0.000 description 9
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 241000588724 Escherichia coli Species 0.000 description 9
- 108060003951 Immunoglobulin Proteins 0.000 description 9
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 9
- 239000003623 enhancer Substances 0.000 description 9
- 229940088598 enzyme Drugs 0.000 description 9
- 102000018358 immunoglobulin Human genes 0.000 description 9
- 210000004962 mammalian cell Anatomy 0.000 description 9
- 238000004091 panning Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 230000001225 therapeutic effect Effects 0.000 description 9
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 8
- 238000002965 ELISA Methods 0.000 description 8
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 8
- 229920002684 Sepharose Polymers 0.000 description 8
- 125000000539 amino acid group Chemical group 0.000 description 8
- 238000004113 cell culture Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 238000010494 dissociation reaction Methods 0.000 description 8
- 230000005593 dissociations Effects 0.000 description 8
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 7
- 230000002785 anti-thrombosis Effects 0.000 description 7
- 230000017531 blood circulation Effects 0.000 description 7
- 210000002889 endothelial cell Anatomy 0.000 description 7
- 230000004927 fusion Effects 0.000 description 7
- 230000013595 glycosylation Effects 0.000 description 7
- 238000006206 glycosylation reaction Methods 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- 238000011534 incubation Methods 0.000 description 7
- 238000001802 infusion Methods 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 230000010076 replication Effects 0.000 description 7
- 210000002966 serum Anatomy 0.000 description 7
- PGOHTUIFYSHAQG-LJSDBVFPSA-N (2S)-6-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-5-amino-2-[[(2S)-2-[[(2S)-2-[[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-5-amino-2-[[(2S)-1-[(2S,3R)-2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-1-[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-4-methylsulfanylbutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]propanoyl]pyrrolidine-2-carbonyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-methylpentanoyl]amino]acetyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]-3-sulfanylpropanoyl]amino]-4-methylsulfanylbutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-hydroxybutanoyl]pyrrolidine-2-carbonyl]amino]-5-oxopentanoyl]amino]-3-hydroxypropanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-5-yl)propanoyl]amino]-4-methylpentanoyl]amino]-3-hydroxybutanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-5-carbamimidamidopentanoyl]amino]-5-oxopentanoyl]amino]-3-hydroxybutanoyl]amino]-3-hydroxypropanoyl]amino]-3-carboxypropanoyl]amino]-3-hydroxypropanoyl]amino]-5-oxopentanoyl]amino]-5-oxopentanoyl]amino]-3-phenylpropanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-methylbutanoyl]amino]-4-methylpentanoyl]amino]-4-oxobutanoyl]amino]-5-carbamimidamidopentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-4-carboxybutanoyl]amino]-5-oxopentanoyl]amino]hexanoic acid Chemical compound CSCC[C@H](N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](Cc1cnc[nH]1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc1c[nH]c2ccccc12)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(O)=O PGOHTUIFYSHAQG-LJSDBVFPSA-N 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 241000283690 Bos taurus Species 0.000 description 6
- 241000282472 Canis lupus familiaris Species 0.000 description 6
- 102000009123 Fibrin Human genes 0.000 description 6
- 108010073385 Fibrin Proteins 0.000 description 6
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 6
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 6
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 6
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 6
- 241000700605 Viruses Species 0.000 description 6
- 230000003321 amplification Effects 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 229950003499 fibrin Drugs 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 239000001963 growth medium Substances 0.000 description 6
- 230000002439 hemostatic effect Effects 0.000 description 6
- 229940072221 immunoglobulins Drugs 0.000 description 6
- -1 isocytochrome C Proteins 0.000 description 6
- 239000003550 marker Substances 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 230000036961 partial effect Effects 0.000 description 6
- 150000003904 phospholipids Chemical class 0.000 description 6
- 230000003389 potentiating effect Effects 0.000 description 6
- 230000002035 prolonged effect Effects 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 229960004072 thrombin Drugs 0.000 description 6
- 230000002537 thrombolytic effect Effects 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 238000001890 transfection Methods 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 5
- SXGZJKUKBWWHRA-UHFFFAOYSA-N 2-(N-morpholiniumyl)ethanesulfonate Chemical compound [O-]S(=O)(=O)CC[NH+]1CCOCC1 SXGZJKUKBWWHRA-UHFFFAOYSA-N 0.000 description 5
- 102000007469 Actins Human genes 0.000 description 5
- 108010085238 Actins Proteins 0.000 description 5
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- 108010090444 Innovin Proteins 0.000 description 5
- 238000012313 Kruskal-Wallis test Methods 0.000 description 5
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 108090000190 Thrombin Proteins 0.000 description 5
- 230000003024 amidolytic effect Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 230000001580 bacterial effect Effects 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- 239000003593 chromogenic compound Substances 0.000 description 5
- 230000002950 deficient Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229940093476 ethylene glycol Drugs 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 210000003292 kidney cell Anatomy 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 229920000136 polysorbate Polymers 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 230000010474 transient expression Effects 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- 241000700198 Cavia Species 0.000 description 4
- 241000282693 Cercopithecidae Species 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 4
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 4
- 241001529936 Murinae Species 0.000 description 4
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 4
- 229930193140 Neomycin Natural products 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 101800004937 Protein C Proteins 0.000 description 4
- 102000017975 Protein C Human genes 0.000 description 4
- 101800001700 Saposin-D Proteins 0.000 description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 210000001367 artery Anatomy 0.000 description 4
- 230000036772 blood pressure Effects 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 150000001720 carbohydrates Chemical group 0.000 description 4
- 238000007820 coagulation assay Methods 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 125000000151 cysteine group Chemical class N[C@@H](CS)C(=O)* 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- 239000010432 diamond Substances 0.000 description 4
- 231100000673 dose–response relationship Toxicity 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 238000001647 drug administration Methods 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Natural products O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 239000003446 ligand Substances 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 4
- 238000002703 mutagenesis Methods 0.000 description 4
- 231100000350 mutagenesis Toxicity 0.000 description 4
- 229960004927 neomycin Drugs 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000010647 peptide synthesis reaction Methods 0.000 description 4
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 4
- 230000036515 potency Effects 0.000 description 4
- 229960000856 protein c Drugs 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 229960001153 serine Drugs 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- YMXHPSHLTSZXKH-RVBZMBCESA-N (2,5-dioxopyrrolidin-1-yl) 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoate Chemical compound C([C@H]1[C@H]2NC(=O)N[C@H]2CS1)CCCC(=O)ON1C(=O)CCC1=O YMXHPSHLTSZXKH-RVBZMBCESA-N 0.000 description 3
- XTWYTFMLZFPYCI-KQYNXXCUSA-N 5'-adenylphosphoric acid Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XTWYTFMLZFPYCI-KQYNXXCUSA-N 0.000 description 3
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 3
- XTWYTFMLZFPYCI-UHFFFAOYSA-N Adenosine diphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O XTWYTFMLZFPYCI-UHFFFAOYSA-N 0.000 description 3
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 241000193830 Bacillus <bacterium> Species 0.000 description 3
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 3
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 3
- 241000282465 Canis Species 0.000 description 3
- 102000008186 Collagen Human genes 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- 108010014173 Factor X Proteins 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- 239000007995 HEPES buffer Substances 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 3
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 3
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 3
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 3
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 3
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 206010040070 Septic Shock Diseases 0.000 description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 208000006011 Stroke Diseases 0.000 description 3
- 239000004098 Tetracycline Substances 0.000 description 3
- 239000007983 Tris buffer Substances 0.000 description 3
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 239000003114 blood coagulation factor Substances 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 235000018417 cysteine Nutrition 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 230000006624 extrinsic pathway Effects 0.000 description 3
- 229940012414 factor viia Drugs 0.000 description 3
- 210000001105 femoral artery Anatomy 0.000 description 3
- 239000003527 fibrinolytic agent Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000001900 immune effect Effects 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000009401 metastasis Effects 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 230000010807 negative regulation of binding Effects 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 238000002203 pretreatment Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 238000004007 reversed phase HPLC Methods 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 230000036303 septic shock Effects 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229960002180 tetracycline Drugs 0.000 description 3
- 229930101283 tetracycline Natural products 0.000 description 3
- 235000019364 tetracycline Nutrition 0.000 description 3
- 150000003522 tetracyclines Chemical class 0.000 description 3
- 229960000103 thrombolytic agent Drugs 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 2
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- YEDUAINPPJYDJZ-UHFFFAOYSA-N 2-hydroxybenzothiazole Chemical compound C1=CC=C2SC(O)=NC2=C1 YEDUAINPPJYDJZ-UHFFFAOYSA-N 0.000 description 2
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 2
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 2
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 2
- 102000013563 Acid Phosphatase Human genes 0.000 description 2
- 108010051457 Acid Phosphatase Proteins 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 101710154825 Aminoglycoside 3'-phosphotransferase Proteins 0.000 description 2
- 101100107610 Arabidopsis thaliana ABCF4 gene Proteins 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000304886 Bacilli Species 0.000 description 2
- 241000701822 Bovine papillomavirus Species 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 101150074155 DHFR gene Proteins 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 2
- 206010051055 Deep vein thrombosis Diseases 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- 241000255925 Diptera Species 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 108010062466 Enzyme Precursors Proteins 0.000 description 2
- 102000010911 Enzyme Precursors Human genes 0.000 description 2
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 2
- 241001646716 Escherichia coli K-12 Species 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 108010023321 Factor VII Proteins 0.000 description 2
- 108010054265 Factor VIIa Proteins 0.000 description 2
- 108010049003 Fibrinogen Proteins 0.000 description 2
- 102000008946 Fibrinogen Human genes 0.000 description 2
- 241000724791 Filamentous phage Species 0.000 description 2
- 102000005731 Glucose-6-phosphate isomerase Human genes 0.000 description 2
- 108010070600 Glucose-6-phosphate isomerase Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 208000001953 Hypotension Diseases 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 244000285963 Kluyveromyces fragilis Species 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- KFKWRHQBZQICHA-STQMWFEESA-N Leu-Phe Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 KFKWRHQBZQICHA-STQMWFEESA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 238000000585 Mann–Whitney U test Methods 0.000 description 2
- 102000018697 Membrane Proteins Human genes 0.000 description 2
- 108010052285 Membrane Proteins Proteins 0.000 description 2
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 2
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 2
- 241001460678 Napo <wasp> Species 0.000 description 2
- 230000004989 O-glycosylation Effects 0.000 description 2
- 229920001213 Polysorbate 20 Polymers 0.000 description 2
- 108020005091 Replication Origin Proteins 0.000 description 2
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 2
- 101100068078 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) GCN4 gene Proteins 0.000 description 2
- 229920005654 Sephadex Polymers 0.000 description 2
- 239000012507 Sephadex™ Substances 0.000 description 2
- 108010022999 Serine Proteases Proteins 0.000 description 2
- 102000012479 Serine Proteases Human genes 0.000 description 2
- 241000700584 Simplexvirus Species 0.000 description 2
- 241000256251 Spodoptera frugiperda Species 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 102000006601 Thymidine Kinase Human genes 0.000 description 2
- 108020004440 Thymidine kinase Proteins 0.000 description 2
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 2
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 2
- 101710120037 Toxin CcdB Proteins 0.000 description 2
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 206010047249 Venous thrombosis Diseases 0.000 description 2
- 206010052428 Wound Diseases 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 238000012867 alanine scanning Methods 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 239000005557 antagonist Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 210000002403 aortic endothelial cell Anatomy 0.000 description 2
- 239000012131 assay buffer Substances 0.000 description 2
- 229940019700 blood coagulation factors Drugs 0.000 description 2
- 238000004820 blood count Methods 0.000 description 2
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 108090001015 cancer procoagulant Proteins 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 229940012952 fibrinogen Drugs 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 210000004602 germ cell Anatomy 0.000 description 2
- 229960002989 glutamic acid Drugs 0.000 description 2
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 2
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 2
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 2
- 230000036543 hypotension Effects 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 230000006623 intrinsic pathway Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 210000004731 jugular vein Anatomy 0.000 description 2
- RGLRXNKKBLIBQS-XNHQSDQCSA-N leuprolide acetate Chemical compound CC(O)=O.CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 RGLRXNKKBLIBQS-XNHQSDQCSA-N 0.000 description 2
- 210000005229 liver cell Anatomy 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- FIMHASWLGDDANN-UHFFFAOYSA-M methyl sulfate;tributyl(methyl)azanium Chemical compound COS([O-])(=O)=O.CCCC[N+](C)(CCCC)CCCC FIMHASWLGDDANN-UHFFFAOYSA-M 0.000 description 2
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229960000951 mycophenolic acid Drugs 0.000 description 2
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000002823 phage display Methods 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 230000017854 proteolysis Effects 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003362 replicative effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 230000009870 specific binding Effects 0.000 description 2
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 2
- 238000012453 sprague-dawley rat model Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000013268 sustained release Methods 0.000 description 2
- 239000012730 sustained-release form Substances 0.000 description 2
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- 229960000187 tissue plasminogen activator Drugs 0.000 description 2
- 230000005030 transcription termination Effects 0.000 description 2
- 238000000844 transformation Methods 0.000 description 2
- 101150108727 trpl gene Proteins 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 1
- OJBNDXHENJDCBA-QFIPXVFZSA-N (2s)-2-(9h-fluoren-9-ylmethoxycarbonylamino)-6-(prop-2-enoxycarbonylamino)hexanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CCCCNC(=O)OCC=C)C(=O)O)C3=CC=CC=C3C2=C1 OJBNDXHENJDCBA-QFIPXVFZSA-N 0.000 description 1
- XMQUEQJCYRFIQS-YFKPBYRVSA-N (2s)-2-amino-5-ethoxy-5-oxopentanoic acid Chemical compound CCOC(=O)CC[C@H](N)C(O)=O XMQUEQJCYRFIQS-YFKPBYRVSA-N 0.000 description 1
- VVQIIIAZJXTLRE-QMMMGPOBSA-N (2s)-2-amino-6-[(2-methylpropan-2-yl)oxycarbonylamino]hexanoic acid Chemical compound CC(C)(C)OC(=O)NCCCC[C@H](N)C(O)=O VVQIIIAZJXTLRE-QMMMGPOBSA-N 0.000 description 1
- KYBXNPIASYUWLN-WUCPZUCCSA-N (2s)-5-hydroxypyrrolidine-2-carboxylic acid Chemical compound OC1CC[C@@H](C(O)=O)N1 KYBXNPIASYUWLN-WUCPZUCCSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 1
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- 125000000979 2-amino-2-oxoethyl group Chemical group [H]C([*])([H])C(=O)N([H])[H] 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- XBBVURRQGJPTHH-UHFFFAOYSA-N 2-hydroxyacetic acid;2-hydroxypropanoic acid Chemical compound OCC(O)=O.CC(O)C(O)=O XBBVURRQGJPTHH-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- IJJWOSAXNHWBPR-HUBLWGQQSA-N 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]-n-(6-hydrazinyl-6-oxohexyl)pentanamide Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)NCCCCCC(=O)NN)SC[C@@H]21 IJJWOSAXNHWBPR-HUBLWGQQSA-N 0.000 description 1
- 229940117976 5-hydroxylysine Drugs 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- ZZOKVYOCRSMTSS-UHFFFAOYSA-N 9h-fluoren-9-ylmethyl carbamate Chemical compound C1=CC=C2C(COC(=O)N)C3=CC=CC=C3C2=C1 ZZOKVYOCRSMTSS-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 241001552669 Adonis annua Species 0.000 description 1
- 241000256118 Aedes aegypti Species 0.000 description 1
- 241000256173 Aedes albopictus Species 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108010041525 Alanine racemase Proteins 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 101710187573 Alcohol dehydrogenase 2 Proteins 0.000 description 1
- 101710133776 Alcohol dehydrogenase class-3 Proteins 0.000 description 1
- 206010002388 Angina unstable Diseases 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- QJMCHPGWFZZRID-BQBZGAKWSA-N Asn-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](N)CC(N)=O QJMCHPGWFZZRID-BQBZGAKWSA-N 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000351920 Aspergillus nidulans Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 102100022717 Atypical chemokine receptor 1 Human genes 0.000 description 1
- 241001203868 Autographa californica Species 0.000 description 1
- 241000713842 Avian sarcoma virus Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 108700003860 Bacterial Genes Proteins 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 241000255789 Bombyx mori Species 0.000 description 1
- 241000409811 Bombyx mori nucleopolyhedrovirus Species 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 208000019300 CLIPPERS Diseases 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 101800000592 Capsid protein 3 Proteins 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000282552 Chlorocebus aethiops Species 0.000 description 1
- 108090001069 Chymopapain Proteins 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 102100023804 Coagulation factor VII Human genes 0.000 description 1
- 102100026735 Coagulation factor VIII Human genes 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 102000001187 Collagen Type III Human genes 0.000 description 1
- 108010069502 Collagen Type III Proteins 0.000 description 1
- 206010011091 Coronary artery thrombosis Diseases 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UWTATZPHSA-N D-alanine Chemical compound C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 241000255601 Drosophila melanogaster Species 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 101710146739 Enterotoxin Proteins 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 101100390711 Escherichia coli (strain K12) fhuA gene Proteins 0.000 description 1
- 241001522878 Escherichia coli B Species 0.000 description 1
- 108010080805 Factor XIa Proteins 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- 108010003471 Fetal Proteins Proteins 0.000 description 1
- 102000004641 Fetal Proteins Human genes 0.000 description 1
- 241000700662 Fowlpox virus Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700023863 Gene Components Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 102000030595 Glucokinase Human genes 0.000 description 1
- 108010021582 Glucokinase Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 1
- 101100082540 Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd) pcp gene Proteins 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 206010019860 Hereditary angioedema Diseases 0.000 description 1
- 208000009889 Herpes Simplex Diseases 0.000 description 1
- 102000005548 Hexokinase Human genes 0.000 description 1
- 108700040460 Hexokinases Proteins 0.000 description 1
- 102000007625 Hirudins Human genes 0.000 description 1
- 108010007267 Hirudins Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000678879 Homo sapiens Atypical chemokine receptor 1 Proteins 0.000 description 1
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 1
- 101001002657 Homo sapiens Interleukin-2 Proteins 0.000 description 1
- 241000701109 Human adenovirus 2 Species 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- TUYOFUHICRWDGA-CIUDSAMLSA-N Ile-Met Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@H](C(O)=O)CCSC TUYOFUHICRWDGA-CIUDSAMLSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 1
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 240000007839 Kleinhovia hospita Species 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 125000000998 L-alanino group Chemical group [H]N([*])[C@](C([H])([H])[H])([H])C(=O)O[H] 0.000 description 1
- DEFJQIDDEAULHB-IMJSIDKUSA-N L-alanyl-L-alanine Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(O)=O DEFJQIDDEAULHB-IMJSIDKUSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- 241000481961 Lachancea thermotolerans Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 241000880493 Leptailurus serval Species 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 239000007987 MES buffer Substances 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000003792 Metallothionein Human genes 0.000 description 1
- 108090000157 Metallothionein Proteins 0.000 description 1
- 101100382264 Mus musculus Ca14 gene Proteins 0.000 description 1
- 101100112373 Mus musculus Ctsm gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 1
- 230000004988 N-glycosylation Effects 0.000 description 1
- 229910017974 NH40H Inorganic materials 0.000 description 1
- 241001602876 Nata Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000221960 Neurospora Species 0.000 description 1
- 241000221961 Neurospora crassa Species 0.000 description 1
- 108010015406 Neurturin Proteins 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 101710141454 Nucleoprotein Proteins 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 108010067372 Pancreatic elastase Proteins 0.000 description 1
- 102000016387 Pancreatic elastase Human genes 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 108010087702 Penicillinase Proteins 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 240000007377 Petunia x hybrida Species 0.000 description 1
- 102000001105 Phosphofructokinases Human genes 0.000 description 1
- 108010069341 Phosphofructokinases Proteins 0.000 description 1
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 1
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 108010011939 Pyruvate Decarboxylase Proteins 0.000 description 1
- 102000013009 Pyruvate Kinase Human genes 0.000 description 1
- 108020005115 Pyruvate Kinase Proteins 0.000 description 1
- 101150106690 R1 gene Proteins 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241000714474 Rous sarcoma virus Species 0.000 description 1
- 108010056373 SK potentiator Proteins 0.000 description 1
- 101100094962 Salmo salar salarin gene Proteins 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- ILVGMCVCQBJPSH-WDSKDSINSA-N Ser-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H](N)CO ILVGMCVCQBJPSH-WDSKDSINSA-N 0.000 description 1
- 241000607720 Serratia Species 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 244000000231 Sesamum indicum Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 238000002105 Southern blotting Methods 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 108010023197 Streptokinase Proteins 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000006180 TBST buffer Substances 0.000 description 1
- 241000255588 Tephritidae Species 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 208000001435 Thromboembolism Diseases 0.000 description 1
- 241001149964 Tolypocladium Species 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 241000223259 Trichoderma Species 0.000 description 1
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 1
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 1
- 208000007814 Unstable Angina Diseases 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 101150117115 V gene Proteins 0.000 description 1
- 244000000188 Vaccinium ovalifolium Species 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Chemical compound CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 229930003448 Vitamin K Natural products 0.000 description 1
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 1
- 241000235013 Yarrowia Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 230000009824 affinity maturation Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 108010056243 alanylalanine Proteins 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000002399 angioplasty Methods 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009697 arginine Nutrition 0.000 description 1
- 208000011775 arteriosclerosis disease Diseases 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 108010051210 beta-Fructofuranosidase Proteins 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 238000010241 blood sampling Methods 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000009400 cancer invasion Effects 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 230000002612 cardiopulmonary effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 238000012219 cassette mutagenesis Methods 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000007541 cellular toxicity Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 238000011098 chromatofocusing Methods 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 208000021930 chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids Diseases 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000008876 conformational transition Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000007887 coronary angioplasty Methods 0.000 description 1
- 208000002528 coronary thrombosis Diseases 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 239000002385 cottonseed oil Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000003405 delayed action preparation Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- 101150088787 deoC2 gene Proteins 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 239000013024 dilution buffer Substances 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 230000000440 effect on coagulation Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 238000011013 endotoxin removal Methods 0.000 description 1
- 239000000147 enterotoxin Substances 0.000 description 1
- 231100000655 enterotoxin Toxicity 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000011536 extraction buffer Substances 0.000 description 1
- 229940012413 factor vii Drugs 0.000 description 1
- 210000003191 femoral vein Anatomy 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 108060003196 globin Proteins 0.000 description 1
- 102000018146 globin Human genes 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 229960004198 guanidine Drugs 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000005534 hematocrit Methods 0.000 description 1
- ZFGMDIBRIDKWMY-PASTXAENSA-N heparin Chemical compound CC(O)=N[C@@H]1[C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O[C@@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O[C@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@@H](O[C@@H]3[C@@H](OC(O)[C@H](OS(O)(=O)=O)[C@H]3O)C(O)=O)O[C@@H]2O)CS(O)(=O)=O)[C@H](O)[C@H]1O ZFGMDIBRIDKWMY-PASTXAENSA-N 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 229940006607 hirudin Drugs 0.000 description 1
- WQPDUTSPKFMPDP-OUMQNGNKSA-N hirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(OS(O)(=O)=O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCCN)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H]1NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]2CSSC[C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@H](C(NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N2)=O)CSSC1)C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]1NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)CSSC1)C(C)C)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 WQPDUTSPKFMPDP-OUMQNGNKSA-N 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000011532 immunohistochemical staining Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 201000004332 intermediate coronary syndrome Diseases 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 239000001573 invertase Substances 0.000 description 1
- 235000011073 invertase Nutrition 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- VCMGMSHEPQENPE-UHFFFAOYSA-N ketamine hydrochloride Chemical compound [Cl-].C=1C=CC=C(Cl)C=1C1([NH2+]C)CCCCC1=O VCMGMSHEPQENPE-UHFFFAOYSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 108010044056 leucyl-phenylalanine Proteins 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 101150074251 lpp gene Proteins 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 210000005265 lung cell Anatomy 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- CMWYAOXYQATXSI-UHFFFAOYSA-N n,n-dimethylformamide;piperidine Chemical compound CN(C)C=O.C1CCNCC1 CMWYAOXYQATXSI-UHFFFAOYSA-N 0.000 description 1
- 210000004897 n-terminal region Anatomy 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000011587 new zealand white rabbit Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 108010058731 nopaline synthase Proteins 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 229940043515 other immunoglobulins in atc Drugs 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 229950009506 penicillinase Drugs 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 235000020030 perry Nutrition 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- SHUZOJHMOBOZST-UHFFFAOYSA-N phylloquinone Natural products CC(C)CCCCC(C)CCC(C)CCCC(=CCC1=C(C)C(=O)c2ccccc2C1=O)C SHUZOJHMOBOZST-UHFFFAOYSA-N 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920000724 poly(L-arginine) polymer Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 108010054442 polyalanine Proteins 0.000 description 1
- 108010011110 polyarginine Proteins 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002704 polyhistidine Polymers 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 230000029983 protein stabilization Effects 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229940069575 rompun Drugs 0.000 description 1
- 239000012146 running buffer Substances 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 208000013223 septicemia Diseases 0.000 description 1
- 210000000717 sertoli cell Anatomy 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007974 sodium acetate buffer Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000012289 standard assay Methods 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 238000011146 sterile filtration Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960005202 streptokinase Drugs 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000005846 sugar alcohols Chemical class 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- ZGYICYBLPGRURT-UHFFFAOYSA-N tri(propan-2-yl)silicon Chemical compound CC(C)[Si](C(C)C)C(C)C ZGYICYBLPGRURT-UHFFFAOYSA-N 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 108010087967 type I signal peptidase Proteins 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 230000003966 vascular damage Effects 0.000 description 1
- 208000019553 vascular disease Diseases 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000019168 vitamin K Nutrition 0.000 description 1
- 239000011712 vitamin K Substances 0.000 description 1
- 150000003721 vitamin K derivatives Chemical class 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 229940046010 vitamin k Drugs 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
- QYEFBJRXKKSABU-UHFFFAOYSA-N xylazine hydrochloride Chemical compound Cl.CC1=CC=CC(C)=C1NC1=NCCCS1 QYEFBJRXKKSABU-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Peptides Or Proteins (AREA)
Description
2 (n
Human Anti-Factor IX/IXa Antibodies '
The present invention relates to isolation, identification, synthesis, expression and purification of antibodies reactive with factor
IX (FIX) /factor IXa (FIXa) and especially the FIX/FIXa Gla domain. In particular aspects, the invention provides human antibodies reactive with the human FIX/FIXa Gla domain. The invention further relates to : 10 compositions, especially pharmaceutical compositions, articles of manufacture, and methods of inhibiting the activation of FIX/FIXa and inhibiting FIX/FIXa dependent coagulation.
Description of Related Disclosures
Factor IXa is a vitamin K dependent plasma serine protease that participates in both the intrinsic and extrinsic pathways of blood coagulation. The NH; terminal 43 amino acids (Gla domain) of factor IXa and its zymogen factor IX contain 12 Gla residues formed by the vitamin
K-dependent carboxylation of Glu residues. The Gla domain is followed by two epidermal growth factor (EGF) type domains, followed by a carboxy terminal serine protease domain. } The Gla domain of FIX/FIXa contains important structural determinants for interaction with high affinity binding sites on vascular endothelial cells and platelets (Heimark et al., (1983) Biochem. Biophys.
Res. Commun. 111:723-731; Ahmad et al., (1994) Biochem. 33:12048-12055;
Ryan et al., (1989) J. Biol.. Chem. 264:20283-20287; Toomey et al., (1992)
Biochemistry 31:1806-1808; Cheung et al., (1992) J. Bio. Chem. 267:20529-
B 20531; Rawala-Sheikh et al., (1992) Blood 79:398-405; Cheung et al., (1996) Proc. Natl. Acad. Sci. USA 93:11068-11073; Prokok et al., (1996) . Int. J. Pept. Res. 48:281-285; Ahmad et al., (1998) Biochemistry 37:1671- 167%). In the presence of Ca++ and Mg++ the FIX/FIXa Gla domain adopts different conformations. Coagulation reactions, such as FIX/FIXa-mediated activation of FX proceed with high efficiency on the surface of activated platelets (Ahmad and Walsh (1994) Trends Cardiovasc. Med., 4:271-277).
Antibodies that bind the FIX/FIXa Gla domain have been shown to inhibit FIX/FIXa function, such as cell binding (Cheung et al., (1996) supra; clotting activity (Sugo et al., (1990) Thromb. Res. 58:603-614) and
FIX/FIXa activation by FXI (Sugo et al., (1990) supra; Leibman et al., (1987) J. Bio. Chem. 262:7605-7612). Rabbit and murine antibodies to
WG (0/12562 PCT/USS9/159453 .
FIX/FIXa have been shown to bind to the C- and N-terminal region of the
Gla domain (Liebman et al., (1993) Eur. J. Biochem. 212:339-345 and Sugo et al., (1990) Thromb. Res. 58:603-614). Antibodies reactive with human
FIX/IXa have been shown to inhibit the activation of FIX to FIXa and inhibit coagulation in a FIXa dependent assay (Blackburn et al., (1997)
Blood 90:Suppl. 1:424a-425a). Active site inhibited FIXa attenuates thrombosis in vivo (Wong et al., (1997) Thromb. Haemost. 77:1143-1147;
Benedict et al., (1991) J. Clin. Invest. B88:1760-1765; Spanier et al., (1998) Am. J. Thoracic Cardiovasc. Surgery 115:1179-1188).
The present invention provides isolated antibodies, antibody fragments, especially human antibodies and antibody fragments, reactive with the factor IX or factor IXa Gla domain. In preferred aspects the antibodies or antibody fragments inhibit an activity associated with blood coagulation factor IX or IXa. Advantagecusly, the antibodies of the present invention provide for the preparation of potent pharmaceutical compositions comprising the antibodies. The pharmaceutical compositions provide for low dose pharmaceutical formulations for the treatment of acute and chronic thrombotic disorders without compromising normal hemostasis.
In one embodiment, the invention provides an antibody or antibody fragment that reacts with human factor FIX/FiXa and especially the human FIX/FIXa Gla domain. Representative antibody fragments include Fv, scFv, Fab, F(ab’), fragments, as well as diabodies and linear antibodies.
These fragments may be fused to other sequences including, for example, a “leucine zipper” or other sequence and include pegylated sequences or
Fc variants used to improve or modulate half-life. Representative antibodies or antibody fragments comprise three complementarity- determining regions (CDRs) referred to herein as CDR1l, CDR2 and CDR3. The amino acid sequences of the CDR polypeptides are selected from those of the exemplary antibody fragments 10C12, 11C5, 11G9, 13D1, 13H6 and 14H9 and variants thereof. Preferred antibodies are selected from the group consisting of Abl, Ab2, Ab3, Ab4, AbS5 and Abs, wherein the CDRs of Abl-Ab6 correspond to those of 10C12, 11C5, 11G9, 13D1, 13H6 and 14H9, respectively.
In one embodiment, the composition of the present invention is an antibody polypeptide and the invention encompasses a composition of matter comprising an isolated nucleic acid, preferably DNA, encoding the
A tn, polypeptide of the invention. According to this aspect, the invention ' further comprises an expression control sequence operably linked to the
DNA molecule, an expression vector, preferably a plasmid, comprising the
DNA molecule, where the control sequence is recognized by a host cell comprising the vector, as well as a host cell comprising the vector.
The present invention further extends to therapeutic applications for the antibody compositions described herein. Thus the invention includes a pharmaceutical composition comprising a pharmaceutically acceptable excipient and an antibody or antibody fragment of the invention. The invention includes kits and articles of manufacture 2 comprising the antibody compositicns of the invention. Kits and articles . of manufacture preferably include: (a) a container; . (b) a label on said container; and : (c) a composition comprising an antibody or antibody fragment . of the invention contained within said container; wherein the composition iy is effective for treating a coagulation disorder and the optional label . on said container indicates that the composition can be used for treating 5 a coagulopathic disorder. The kits optionally include accessory components such as a second container comprising a pharmaceutically- . acceptable buffer and instructions for using the composition to treat a . coagulation related disorder. = Pharmaceutical compositions comprising the antibodies or antibody - fragments can be used in the treatment or prophylaxis of thrombotic or coagulopathic diseases or disorders and include, for example, methods of treating a mammal for which inhibiting a FIX/FIXa mediated event is . indicated. The methods comprise administering a therapeutically effective amount of a pharmaceutical composition of the invention to the . mammal . Such indications include, deep venous thrombosis, arterial thrombosis, unstable angina, post myocardial infarction, post surgical thrombosis, coronary artery bypass graft (CABG), percutaneous transluminal coronary angioplasty (PTCA), stroke, tumor growth, invasion or metastasis, inflammation, septic shock, hypotension, ARDS, atrial fibrillation and DIC. The compositions of the present invention may also be used as an adjunct in thrombolytic therapy.
Figures 1A and 1B: Gla domain sequences. Sequence homology between
FIX Gla domains from various species: human, SEQ ID NO:5; canine, SEQ ID
NO:2; murine, SEQ ID NO:3 and rabbit, SEQ ID NO:4 (Figure 1A) and Gla domains of various human coagulation proteins: factor IX, SEQ ID NO:5; factor X, SEQ ID NO:6; factor VII, SEQ ID NO:7; protein C, SEQ ID NO:8 and prothrombin, SEQ ID NC:9 (Figure 1B). Non-homologous residues are indicated in bold face type.
Figure 2: V-gene segment usage and CDR sequences of selected scFv.
Resiaues difrerent Lrom TOOsSe OL LULL. are indicated in bola type. Luli« heavy chain: CDR1, SEQ ID NO:10; CDR2, SEQ ID NO:11, CDR3, SEQ ID NO:12. 10C12 light chain: CDR1, SEQ ID NO:13; CDR2, SEQ ID NO:14; CDR3, SEQ ID
NO:15. 11C5 heavy chain: CDR1, SEQ ID NO:10; CDR2, SEQ ID NO:16; CDR3,
SEQ ID NO: 17. 11C5 light chain: CDR1, SEQ ID NC:13; CDR2, SEQ ID NO:14:
CDR3, SEQ ID NO:15. 11GS heavy chain: CDR1, SEQ ID NO:10; CDR2, SEQ ID
NO:18; CDR3, SEQ ID NO:19. 11G9 light chain: CDR1l, SEQ ID NO:13; CDR2,
SEQ ID NO:14; CDR3, SEQ ID NO:15. 13D1 heavy chain: CDR1l, SEQ ID NO:10;
CDR2, SEQ ID NO:20; CDR3, SEQ ID NO:12. 13D1 light chain: CDR1, SEQ ID
NO:13; CDR2, SEQ ID NO:14; CDR3, SEQ ID NO:15. 13H6 heavy chain: CDR1,
SEQ ID NO:21; CDR2, SEQ ID NO:22; CDR3, SEQ ID NO:23. 13H6 light chain:
CDR1, SEQ ID NO:24; CDR2, SEQ ID NO:25; CDR3, SEQ ID NO:26. 14H9 heavy chain: CDR1, SEQ ID NO:27; CDR2, SEQ ID NO:28; CDR3, SEQ ID NO:289. 14HS light chain: CDR1, SEQ ID NO:30; CDR2, SEQ ID NO:31; CDR3, SEQ ID NO:32.
Figure 3: Affinities of selected anti-FIX F(ab’), for human
FIX/FIXa: Human FIX was coupled to a biosensor chip according to supplier's description (BIAcore Inc., Piscataway NJ). The affinities were calculated from the measured association and dissociation constants using a BIAcore-2000™ surface plasmon resonance system (Pharmacia Biosensor).
Figure 4: Binding of scFv to full length FIX. Plates were coated with 10 ug/ml of 9E10 anti-C-myc mAb. Serial dilutions of scFv (10 ug/ml to 5 ng/ml) were added to each well for one hour followed by biotinylated factor IX (1 ug/ml) and streptavidin-HRP.
Figures 5A and 5B: Effect of scFv on FIX binding to bovine aortic endothelial cells and on platelet-dependent coagulation. In Figure 5A assays were conducted at 4°C in 100 ul 10 mM Hepes, 137 mM NaCl, 4 mM KCl, 11 mM glucose, 2 mM CaCl,, 5 mg/ml bovine serum albumin pH 7.5 (assay buffer). Monolayers of bovine aortic endothelial (BAE) cells were washed once with assay buffer without CaCl, before use. The scFv were pre- incubated with biotinylated human FIX in 100 ul buffer for one hour, then added to BAE cells for two hours, washed and incubated with 100 pl of 3,3'5,5'-tetramethylbenzidine/H,0, (Kirkgaard &Perry) substrate for ten hy ty minutes. The reaction was quenched with 100 ul of 1M HPO, and the optical density was read at 450 nm. Figure 5B ~- Washed human platelets were activated by adenosine diphosphate (ADP) and allowed to adhere to collagen type III before scFv and human recalcified platelet poor plasma were added. The effect on coagulation was monitored over 90 min. by measuring the increase of the optical density at 405 nm. Shown are the effects of the scFv at a plasma concentration of 500 nM.
Figures 6A and 6B: Binding specificity of anti-FIX scFv and
F(ab’),. Elisa plates were coated with factor IX, factor X, factor
VII, prothrombin, or protein C at 1 ug/ml. ScFv (Figure 6A) and F(ab’), . (Figure 6B) were added at 5 ug/ml and 0.02 ug/ml, respectively, for one " hour. This step was followed by addition of biotinylated 9E10 anti-C-myc : mAb (2 ug/ml) and then streptavidin-HRP. Factor IX + serum: scFvs were preincubated for 1 hour on ice with FIX-deficient serum (less than 1%
Factor IX residual activity) prior to incubation with FIX coated on plate.
All ELISA buffers contained 2 mM CaCl,. : Figures 7A and 7B. Comparison of two anti-FIX-F(ab’),-leu zipper fragments in platelet-dependent coagulation assay. Collagen-adherent -activated human platelets were incubated with different concentrations of k 20 10C1l2 F(ab’),-leu zipper (Figure 7A) and 13H6 F(ab’),-leu zipper (Figure 7B) and recalcified human plasma was added to start the coagulation
El process. Six different concentrations per antibody were tested, three of 0 which are shown in each graph. Each value represents the mean + SD of 3 : Le © independent experiments. The IC50 values were calculated from inhibition curves, using the OD values at the 100 min. time point with the control value (uninhibited coagulation) set at 100%. 10C12, IC50 = 59+3nM; 13H6, ! IC50 = 173+43nM. Open circles: 1000nM, open squares: 250nM, diamonds:62.5nM, filled triangles: 15.6nM, filled circles: control. . Figure 8. Inhibition of FIXa-dependent activation of FX by anti-FIX
F(ab’)s-leu zipper. Antibodies were incubated with FIXa, FVIIIa and phospholipids for 20 min. after which FX was added. The rate of FXa generation was calculated after measuring the concentration of FXa at different time points using the chromogenic substrate S2765. The inhibition by antibodies is expressed as fractional rates (inhibited divided by uninhibited rates of FXa generation). The concentrations of antibodies 10C12 (squares), 13H6 (diamonds) and an irrelevant control antibody anti-Neurturin (circles) are those in the final reaction mixture with FX.
Figures 9A and 9B. Effects of 10012 F(ab’),-leu zipper on activated partial thromboplastin time (APTT) and prothrombin time (PT).
In Figure 9A the antibodies were incubated with human plasma for 10 min. at 37 °C and the APTT and PT were measured on an ACL 300. Shown are the APTT (filled symbols) and PT (open symbols) by 10012 T{ab'), leu zipper (squares) and 13H6 F(ab'),-leu zipper (circles). In Figure 2B
LUCl2 kab’ )j-leu zipper was incubated for 10 min. at 37°C with plasma of different species and the APTT and PT were measured on an ACL 300. Shown are the APTT (filled symbols) and PT (open symbols) of human (circles), rat (diamonds), dog (squares) and rabbit plasma (inverted triangles).
Figures 10A and 10B: FIX activation by ¥¥Ia and by the tissue factor: factor VIIa (TF:FVIIa) complex. FIX (400nM) was incubated with 10c1l2 (filled symbols) or a control antibody (NTN: anti-neurturin) (open symbols) in HBSA-5mM CaCl, . Figure 10A: 1nM FXIa was added to start the reaction. Figure 10B: relipidated TF:FVIila (4nM:1nM) (circles) or membrane TF:FVIIa (150ug/ml:1nM) (squares) was added to start the reaction. At defined time intervals reaction aliquots were quenched in EDTA-ethyleneglycol and FIXa amdiolytic activity in each sample was determined after adding FIXa substrate #299. The inhibition of the rates of FIXa generation were expressed as fractional rates {(vi/vo) + SD of 3-4 independent experiments.
Figure 11: Measurement of activated partial thromboplastin time (APTT) and prothrombin time (PT) in plasma of guinea pig and rat. 10C12 was diluted in citrated plasma of guinea pig and rat. After an incubation of 10 min., human relipidated tissue factor (Innovin) or Actin FS were added to start the PT (open symbols) and APTT (filled symbols) reaction, respectively. The effects on clotting were expressed as fold prolongation of control plasma clotting times. diamonds=guinea pig; circles=rat.
Figure 12: Effects of 10Cl2 on cyclic flow variatioms (CFVs) in guinea pig arterial thrombosis model. 10C12 and controls were given by intravenous bolus administration 15 min. prior to the initiation of CFVs in the carotid artery. The number of CFVs during a 40 min. period was recorded and the thrombosis index calculated as the ratio of CFVs divided by the number of applied pinches. **p<0.01, **+*p<0.001 versus control by
Mann-Whitney U-test following determination of significant differences between multiple groups in Kruskal-Wallis test.
Figure 13: Effect of FeCl; treatment on carotid artery blood flow in the rat. Representative carotid artery blood flow tracings in rats treated
Sy ~, i WO 00/12562 PCT/US99/19453 " with either saline or 10Cl2 prior to placement of a FeCl; saturated disc.
Occlusive thrombosis was induced in 10 of 10 control treated rats and O of 5 rats treated with an iv bolus of 2mg/kg of 10C12.
Figures 14A and 14B: Effects of 10C12 and heparin on thrombus formation in the FeClj-induced arterial thrombosis model in the rat. 10C12 and controls were given as bolus and heparin as a 100U/kg bolus followed by infusion at a rate of 1U/kg/min 5 min prior to the placement of the
FeCl;-disc onto the exposed artery. Figure 14A: The effects on clot weight were quantified by removing and weighing the thrombus 65 min. after drug administration started. Figure 14B: Effects on the duration of vessel . occlusion were determined by measuring the time periods during which zero- i flow occurred following placement of the FeCl,-disc. **p20.01 versus control by Mann-Whitney U-test following determination of significant differences between multiple groups in Kruskal-Wallis test.
Terms used in the claims and specification are defined as set forth
Lo below unless otherwise specified.
SE a Abbreviations used throughout the description include: FIX for : 20 factor IX; FIXa for factor IXa; FXIa for factor XIa; FXa for factor Xa; . TF for tissue factor; FVII for zymogen factor VII; FVIiIa for factor VIIa; = “ PT for prothrombin time; APTT for activated partial thromboplastin time. : The term amino acid or amino acid residue, as used herein, refers to naturally occurring L amino acids or to D amino acids as described further below with respect to variants. The commonly used one- and three- letter abbreviations for amino acids are used herein (Bruce Alberts et ’ al., Molecular Biology of the Cell, Garland Publishing, Inc., New York (3d ed. 1994)).
A FIX/FIXa mediated or associated process or event, or equivalently, an activity associated with plasma FIX/FIXa, according to the present invention is any event which requires the presence of FIX/IXa. The general mechanism of blood clot formation is reviewed by Ganong, in Review of Medical Physiology, 13th ed., Lange, Los Altos CA, pp411-414 (1987);
Bach (1988) CRC Crit. Rev. Biochem. 23 (4) :359-368 and Davie et al., {1991)
Biochemistry 30:10363; and the rate of FIX in Limentoni et al., (1994)
Hemostasis and Thrombosis Basic Principles and Clinical Practice, Third
Edition, Coleman et al. Eds., Lippincott Company, Philadelphia.
Coagulation requires the confluence of two processes, the production of thrombin which induces platelet aggregation and the formation of fibrin which renders the platelet plug stable. The process comprises several stages each requiring the presence of discrete proenzymes and procofactors. The process ends in fibrin crosslinking and thrombus formation. Fibrinogen is converted to fibrin by the action of thrombin. Thrombin, in turn, is formed by the proteolytic cleavage of prothrombin. This proteolysis is effected by FXa which pinds Lo che surface of activated platelets and in the presence of FVa and calcium, cleaves prothrombin. TF-FVIIa is required for the proteolytic activation of FX by the extrinsic pathway of coagulation. FIX is activated by two different enzymes, FXIa (Fuiekawa et al., (1974) Biochemistry, 13:4508- 4516; Di Scipio et al., (1978) J. Clin. Invest., 61:1526-1538; gstexrud et al., (1978) J. Biol.. Chem. 253:5946-5951) and the tissue factor:factor
VIIa (TF:FVIIa) complex (@sterud and Papaport (1977) Proc. Natl. Acad.
Sci. USA 74:5260-5264). The formed FIXa in complex with its cofactor
FVIIIa assembles into the intrinsic Xase complex on cell surfaces such as platelets and endothelial cells, and converts substrate FX into FXa (Mann et al., (18382) Semin. Hematol.. 29:213-226). Thrombin generated by FXa enzymatic activity, cleaves fibrinogen leading to fibrin formation and also activates platelets resulting in platelet aggregation. Therefore, a process mediated by or associated with FIX/IXa, or an activity associated with FIXa includes any step in the coagulation cascade from the introduction of FIX in the extrinsic or intrinsic pathway to the formation of a fibrin platelet clot and which initially involves the presence FIX/IXa. FIX/FIXa mediated or associated process, or FIXa activity, can be conveniently measured employing standard assays such as those described herein.
A FIX/FIXa related disease or disorder is meant to include chronic thromboembolic diseases or disorders associated with fibrin formation including vascular disorders such as deep venous thrombosis, arterial thrombosis, stroke, tumor metastasis, thrombolysis, arteriosclerosis and restenosis following angioplasty, acute and chronic indications such as inflammation, septic shock, septicemia, hypotension, adult respiratory distress syndrome (BARDS), disseminated intravascular coagulopathy (DIC) and other diseases.
The term "FIX" is used to refer to a polypeptide having an amino acid sequence corresponding to a naturally occurring mammalian factor
IX or a recombinant IX described below. Naturally occurring FIX includes
Ee - human species as well as other animal species such as rabbit, rat, ’ porcine, non human primate, equine, murine, and bovine FIX (see, for example, Yoshitake et al., (1985) Biochemistry 24:3736 (human)). The amino acid sequence of the mammalian factor IX/IXa proteins are generally known or obtainable through conventional techniques. The 43 amino acid y-carboxyglutamic acid (Gla) domains of human, canine, murine and rabbit FIX are listed in Figure 1.
The term “treatment” as used within the context of the present invention is meant to include therapeutic treatment as well as prophylactic, or suppressive measures for the disease or disorder. Thus, . for example, the term treatment includes the administration of an agent prior to or following the onset of a disease or disorder thereby preventing or removing all signs of the disease or disorder. As another example, administration of the agent after clinical manifestation of the disease to combat the symptoms of the disease comprises “treatment” of the disease. Further, administration of the agent after onset and after clinical symptoms have developed where administration affects clinical parameters of the disease or disorder and perhaps amelioration of the disease, comprises “treatment” of the disease. : Those “in need of treatment” include mammals, such as humans, already having the disease or disorder, including those in which the disease or disorder is to be prevented.
Antibodies or immunoglobulins are, most commonly, heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light (L) chains and two identical heavy (H) chains. Each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies between the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (Vy) followed by a number of constant domains. Each light chain has a variable domain at one end (Vy) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain, and the light chain variable domain is aligned with the variable domain of the heavy chain.
Particular amino acid residues are believed to form an interface between the light- and heavy-chain variable domains (Clothia et al. (1985), J.
Mol. Biol.. 186:651; Novotny and Haber (1985), Proc. Natl. Acad. Sci.
U.S.A. B2:4592).
Tile term “variable® refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibedy for its particular antigen. However, the variability is not evenly distributed throughout the variable domains of antibodies. It is concentrated in three segments called complementarity-determining regions (Chee) or hypervariable regions Lolth tu the light-chain and the neavy- chain variable domains. The more highly conserved portions of variable domains are called the framework (FR). The variable domains of native lhecavy and light chains each cumprise four FR regions, largely adepting a
R-gheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the (-sheet structure.
The CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the antigen-binding site of antibodies (see Kabat et al. (1991), Sequences of Proteins of Immunological Interest, Fifth Edition,
National Institute of Health, Bethesda, MD). The constant domains are not involved directly in binding an antibody to an antigen, but exhibit various effector functions, such as participation of the antibody in antibody-dependent cellular toxicity.
Papain digestion of antibodies produces two identical antigen- binding fragments, called Fab fragments, each with a single antigen- binding site, and a residual Fc fragment, whose name reflects its ability to crystallize readily. Pepsin treatment yields an F(ab’), fragment that has two antigen-combining sites and is still capable of cross-linking antigen. ’
Fv is the minimum antibody fragment which contains a complete antigen-recognition and -binding site. In a two-chain Fv species, this region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. In a single-chain Fv species (scFv), one heavy- and one light-chain variable domain can be covalently linked by a flexible peptide linker such that the light and heavy chains can associate in a "dimeric" structure analogous to that in a two-chain Fv species. It is in this configuration that the three
CDRs of each variable domain interact to define an antigen-binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific
MA LN for an antigen) has the ability to recognize and bind antigen, although : at a lower affinity than the entire binding site. For a review of scFv see Pluckthun, in The Pharmacology of Monoclonal Antibodies, vol. 113,
Rosenburg and Moore eds., Springer-Verlag, New York, pp. 269-315 (1994).
The Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab! fragments differ from Fab fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group. F(ab'), antibody fragments ] originally were produced as pairs of Fab' fragments which have hinge cysteines between them. Other chemical couplings of antibody fragments are also known.
The light chains of antibodies (immunoglobulins) from any vertebrate species can be assigned to one of two clearly distinct types, called kappa (x) and lambda (A), based on the amino acid sequences of their constant domains.
Depending on the amino acid sequence of the constant domain of their heavy chains, antibodies can be assigned to different classes. : There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and : IgM, and several of these can be further divided into subclasses . (isotypes), e.g., IgG, IgG,, IgG, IgG,, IgA;, and IgA,. The heavy-chain constant domains that correspond to the different classes of immunoglobulins are called o, 8, €, vy, and pu, respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.
The term "antibody" is used in the broadest sense and specifically covers single monoclonal antibodies (including agonist and antagonist antibodies) and antibody compositions with polyepitopic specificity. "Antibody fragments" comprise a portion of an intact antibody, generally the antigen binding site or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab', Fab’-SH,
F(ab'),, and Fv fragments; diabodies; any antibody fragment that is a polypeptide having a primary structure consisting of one uninterrupted sequence of contiguous aminc acid residues (referred to herein as a “single-chain antibody fragment” or “single chain polypeptide”), including without limitation (1)single-chain Fv (scFv) molecules (2) single chain
So polypeptides containing only one light chain variable domain. or a fragment thereof that contains the three CDRs of the light chain variable domain, without an associated heavy chain moiety and (3) single chain polypeptides containing only one heavy chain variable region, or a fragment thereof containing the three CDRs of the heavy chain variable region, without an associated light chain moiety; and multi specific antibodies tormed trom antibody tragments.
The term "monoclonal antibody” (mAb) as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each mAb is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they can be synthesized by hybridoma culture, uncontaminated by other immunoglobulins. The modifier "monoclonal!" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
The term "diabodies" refers to small antibody fragments with two antigen-binding sites, which fragments comprise a heavy chain variable domain (Vy) connected to a light chain variable domain (Vy) in the same polypeptide chain (Vy and Vp). By using a linker that is too short to allow pairing between the two domains on the same chain, the domains are forced to pair with the complementary domains of another chain and create two antigen-binding sites. Diabodies are described more fully in, for example, EP 404,097; WO 93/11161; and Hollinger et al. (1993), Proc.
Natl. Acad. Sci. USA 90:6444-6448.
The expression “linear antibodies” when used throughout this application refers to the antibodies described in Zapata et al. (1995)
Protein Eng. 8(10) :1057-1062. Briefly, these antibodies comprise a pair of tandem Fd segments (Vy-Cyl-Vy-Cyl) which form a pair of antigen binding regions. Linear antibodies can be bispecific or monospecific.
A “variant” antibody or antibody fragment, refers to a molecule which differs in amino acid sequence from a “parent” antibody or
J -
R WO 00/12562 PCT/US99/19453 antibody fragment amino acid sequence by virtue of addition, deletion and/or substitution of one or more amino acid residue(s) in the parent antibody or antibody fragment sequence. For example, the variant may comprise one or more amino acid substitution(s) in one or more CDR's of the parent antibody or antibody fragment. For example, the variant may comprise at least one, from about one to about ten, or preferably from about two to about five, amino acid substitutions in one or more CDR's of the parent antibody or antibody fragment. Ordinarily, the variant will have an amino acid sequence having at least 75% amino acid sequence identity with the parent antibody heavy or light chain variable . domain sequences, more preferably at least 80%, more preferably at least 85%, more preferably at least 90%, and preferably at least 95%. - Identity or homology with respect to this sequence is defined herein as the percentage of amino acid residues in the candidate sequence that are identical with the parent antibody residues, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum " percent sequence identity. None of N-terminal, C-terminal, or internal ne extensions, deletions, or insertions into the antibody sequence shall be a construed as affecting sequence identity or homology. The variant y - 20 retains the ability to bind the human FIX Gla domain and preferably has : properties which are superior to those of the parent antibody. For . example, the variant may have a greater binding affinity for the human - FIX Gla domain when compared with the parent antibody or antibody from a which it is derived. In analyzing such properties, a variant antibody or } 25 antibody fragment, such as a Fab form of the variant, is compared to the same fragment, for example the Fab form, of the parent antibody or antibody fragment. As a further example, a full length antibody form of the variant should be compared to a full length form of the parent antibody, since it has been found that the format of the antibody or antibody fragment impacts its activity in the biological activity assays disclosed herein. The variant antibody or antibody fragment of particular interest herein is one which displays between 2 and ten fold, preferably, at least about 10 fold, preferably at least about 20 fold, and more preferably at least about 50 fold, enhancement in biological activity when compared to the parent antibody. The term variant is meant to include an antibody or antibody fragment having at least qualitative biological activity in common with a parent antibody or antibody fragment and which has at least one amino acid substitution in at least one CDR of the exemplary CDRs described in Figure 2. The qualitating biological activity referred to is selected, without limitation to a single activity, from the group congisting of (1) reactivity with the human
FIX/FIXa Gla domain, (ii) inhibition of activation of FIX by FXIa; (iii) dmhibitlion of activation of FIX by tissue factor: factor VIia complex; and (iv) inhibition of FX activation. Assay systems for measurement. of inhibition of ria and ra activation are known in the art.
In preferred embodiments, the variant of the present invention competes with a parent antibody or antibody fragments for binding a human FIX/IXa
Gla domain. lherefore, without limitation to any one theory, qualitating biological activity may be defined as the ability to competes with a parent antibody or antibody fragment and in preferred embodiments thereby inhibit an activity associated with FIX such as its activation or the activation FX. As will be appreciated from the foregoing, the term “compete” and “ability to compete” are relative terms. Thus the terms, when used to describe the activity of the variant, means a variant that when added in a 10-fold molar excess to a parent antibody or fragment in a standard binding assay produces at least a 50% inhibition of binding of the parent antibody or fragment. Preferably the variant will produce at least a 50% inhibition of binding in a 5- fold molar excess and most preferably at least a 2-fold molar excess.
A preferred variant of the present invention will produce at least a 50% inhibition of binding when present in a 1:1 stoichiometric ratio with the parent antibody or antibody fragment.
The “parent” antibody or antibody fragment herein is one which is encoded by an amino acid sequence used for the preparation of the variant.
Preferably, the parent antibody or antibody fragment has a human framework region and has human antibody constant region(s). For example, the parent antibody or antibody is preferably an isolated human antibody or fragment thereof.
An "isolated" antibody is one which has been identified and separated and/or recovered from a component of its natural environment.
Contaminant components of its natural environment are materials which would interfere with diagnostic or therapeutic uses for the antibody, and may include enzymes, hormones, and other proteinaceous or nonproteinaceous solutes. In preferred embodiments, the antibody will be purified (1) to greater than 95% by weight of antibody as determined by the Lowry method, and most preferably more than 99% by weight, (2) to wt te) a degree sufficient to obtain at least 15 residues of N-terminal or internal amino acid sequence by use of a spinning cup seguenator, or (3) to homogeneity by SDS-PAGE under reducing or nonreducing conditions using Coomassie blue or, preferably, silver stain. Isolated antibody includes the antibody in situ within recombinant cells since at least one component of the antibody's natural environment will not be present.
Ordinarily, however, isolated antibody will be prepared by at least one purification step.
The term "epitope tagged" when used herein refers to an antibody fused to an "epitope tag". The epitope tag polypeptide has enough residues to provide an epitope against which an antibody thereagainst can be made, g yet -is short enough such that it does not interfere with activity of the antibody. The epitope tag preferably is sufficiently unique so that the antibody thereagainst does not substantially cross-react with other epitopes. Suitable tag polypeptides generally have at least 6 amino acid residues and usually between about 8-50 amino acid residues (preferably between about 9-30 residues). Examples include the flu HA tag : polypeptide and its antibody 12CAS (Field et al. (1988), Mol. Cell.
Le Biol.. B8:2159-2165); the c-myc tag and the BF9, 3C7, 6E10, G4, B7 and 9E10 ” 20 antibodies thereto (Evan et al. (1985), Mol. Cell. Biol.. 5(12):3610-
KE 3616); and the Herpes Simplex virus glycoprotein D (gD) tag and its { antibody (Paborsky et al. (1990), Protein Engineering 3(6):547-553 (1990)). In certain embodiments, the epitope tag is a "salvage receptor binding epitope". As used herein, the term "salvage receptor binding epitope" refers to an epitope of the Fc region of an IgG molecule (e.g., IgG,, IgG,, IgG;, or IgG) that is responsible for increasing the in vivo serum half-life of the IgG molecule.
Modes for Carrying out the Invention
The invention provides an antibody or antibody fragment comprising a heavy chain variable domain comprising a CDR amino acid sequence of any of the heavy chain polypeptide CDR amino acid sequences of Fig. 2.
The invention encompasses a single chain antibody fragment comprising any of the heavy chain CDR sequences, with or without any additional amino acid sequence. By way of example, the invention provides a single chain antibody fragment comprising a heavy chain comprising a CDR1, a CDR2 and a CDR3 without any associated light chain variable domain amino acid sequence, i.e. a single chain species that makes up one half of an Fv fragment.
WG 60/12562 PCTUSS9/19453
Further provided herein are an antibody or antibody fragment comprising any of the heavy chain CDR sequences as described above, and further comprising a light chain CDR amino acid seguence comprising the amino acid sequence of a light chain CDR amino acid sequence of Figure 2.
By way of example, in one embodiment, the invention provides a single chain antibody fragment wherein any heavy chain comprising a CDR1 a CDR2 and a CUks, and light cnain (Ac) comprising a Ac-CDR1, a Ac-CDRZ and a Ac-
CDR3 are contained in a single chain polypeptide species. By way of example and not limitation, the single chain antibody fragment is, a particular embodiment, a scFv species comprising the heavy chain joined to the light chain by means of a flexible peptide linker sszguence, wherein the heavy chain and light chain variable domains can associate in a “dimeric” structure analogous to that formed in a two-chain Fv species.
In another embodiment, the single chain antibody fragment is a species comprising the heavy chain joined to the light chain by a linker that is too short to permit intramolecular pairing of the two variable domains, i.e., a single chain polypeptide monomer that forms a diabody upon dimerization with another monomer.
In yet another embodiment, the invention provides an antibody fragment comprising a plurality of polypeptide chains, wherein one polypeptide chain comprises any of the heavy chain CDRs of Figure 2 and a second polypeptide chain comprises any of the light chain CDRs of
Figure 2 and the two polypeptide chains are covalently linked by one or more interchain disulfide bonds. In a preferred embodiment, the foregoing two-chain antibody fragment is selected from the group consisting of Fab,
Fab’, Fab’-SH, Fv, and F{ab'),.
The invention also provides an antibody or antibody fragment comprising a heavy chain variable domain containing any of the CDRs of
Figure 2 and optionally further comprising a light chain variable domain containing any of the light chain CDRs of Figure 2, wherein the heavy chain variable domain, and optionally the light chain variable domain, is (are) fused to an additional moiety, such as a immunoglobulin constant domain. Constant domain sequence can be added to the heavy chain and/or light chain sequence (s) to form species with full or partial length heavy and/or light chain(s). It will be appreciated that constant regions of any isotype can be used for this purpose, including IgG, IgM, IgA,
IgDh, and IgE constant regions, and that such constant regions can be obtained from any human or animal species. Preferably, the constant a LH domain sequence is human in origin. Suitable human constant domain sequences can be obtained from Kabat et al. (supra).
In a preferred embodiment, the antibody or antibody fragment comprises any of the heavy chain CDR amino acid sequences of Figure 2 in a variable domain that is fused to a heavy chain constant domain containing a leucine zipper sequence. The leucine zipper can increase the affinity and/or production efficiency of the antibody or antibody fragment of interest. Suitable leucine zipper sequences include the jun and fos leucine zippers taught by Kostelney et al. (1982), J.
TImmunol., 148: 1547-1553, and the GCN4 leucine zipper described in the
Examples below. In a preferred embodiment, the antibody or antibody fragment comprises the variable domain fused at its C-terminus to the
GCN4 leucine zipper.
The invention additionally encompasses antibody and antibody fragments comprising variant antibody or antibody fragment. Variant antibodies or antibody fragments include any of the foregoing described antibodies or antibody fragments wherein at least one amino acid of a CDR : described in Figure 2 has been substituted with another amino acid. The a skilled artisan will recognize that certain of the amino acids of the oC 20 CDR's described in Figure 2 may be substituted, modified and in some cases deleted, to provide an antibody or antibody fragment with an
Bg improved or altered biclogical activity. Variants of the complementarity determining regions or variants of variable domains comprising the
CDR's of Figure 2 which exhibit higher affinity for the FIX Gla domain and/or possess properties that yield greater efficiency in recombinant production processes than that of the parent antibody or antibody fragment are preferred in the context of the present invention.
Methods of Making
Nucleic acid encoding the antibodies or antibody fragments of the invention can be prepared from a library of single chain antibodies displayed on a bacteriophage. The preparation of such a library is well known to one of skill in this art. Suitable libraries may be prepared by the methods described in WO 92/01047, WO 92/20791, WO 93/06213, WO 93/11236, WO 93/19172, WO 85/01438 and WO 95/15388. In a preferred embodiment, a library of single chain antibodies (scFv) may be generated from a diverse population of human B-cells from human donors. mRNA corresponding to the VH and VL antibody chains is isolated and purified using standard techniques and reverse transcribed to generate a population of cDNA. After PCR amplification, DNA coding for single chain antibodies is assembled using a linker, such as Gly,Ser (SEQ ID
NO:1), and cloned into suitable expression vectors. A phage library is then prepared in which the population of single chain antibodies is displayed on the surface of the phage. Suitable methods for preparing phage libraries have been reviewed and are described in Winter et. al. (1994), Annu. Rev. Immunol. 12:433-55; Soderlind et. al. (1882).
Immunological Reviews 130:109-123; Hoogenboom, Tibtech (February 1897},
Vol. 15; Neri et. al. (1995), Cell Biophysics 27:47-61, and the references described therein.
The antibodies of the invention may be selected by immobilizing a FIX Gla domain and then panning a library of human scFv prepared as described above using the immobilized FIX Gla domain to bind antibody.
Griffiths et. al. (1993), EMBO-J 12:725-734. The specificity and activity of specific clones can be assessed using known assays.
Griffiths et. al.; Clarkson et. al. (1991), Nature 352:642-648. After a first panning step, one obtains a library of phage containing a plurality of different single chain antibodies displayed on phage having improved binding to the FIX Gla domain. Subsequent panning steps provide additional libraries with higher binding affinities. When avidity effects are a problem, monovalent phage display libraries may be used in which less than 20%, preferably less than 10%, and more preferably less than 1% of the phage display more than one copy of an antibody on the surface of the phage. Monovalent display can be accomplished with the use of phagemid and helper phage as described, for example, in Lowman et. al. (1991), Methods: A Companion to Methods in Enzymology 3(3):205-216.
A preferred phage is M13 and display is preferably as a fusion protein with coat protein 3 as described in Lowman et. al., supra.
Other suitable phage include f1 and fd filamentous phage. Fusion protein display with other virus coat proteins is also known and may be used in this invention. See U.S. 5,223,409.
Amino acid sequence variants of the antibody are prepared by introducing appropriate nucleotide changes into the antibody DNA, or by peptide synthesis. Such variants include, for example, deletions from, and/or insertions into and/or substitutions of, residues within the amino acid sequences of the antibodies of the examples herein. Any combination of deletion, insertion, and substitution is made to arrive at the final construct, provided that the final construct possesses the desired
Fa LL characteristics. The amino acid changes also may alter post- translational processes of the variant antibody, such as changing the number or position of glycosylation sites.
A useful method for identification of certain residues or regions of the antibody that are preferred locations for mutagenesis is called "alanine scanning mutagenesis," as described by Cunningham and Wells (1989), Science 244:1081-1085 (1989). Here, a residue or group of target residues are identified (e.g., charged residues such as arg, asp, his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably alanine or polyalanine) to affect the interaction of the : amino acids with the FIX Gla domain. Those amino acid locations demonstrating functional sensitivity to the substitutions then are refined by introducing further or other variants at, or for, the sites of substitution. Thus, while the site for introducing an amino acid sequence variation is predetermined, the nature of the mutation per se need not be predetermined. For example, to analyze the performance of a mutation at a given site, ala scanning or random mutagenesis is conducted at the target codon or region and the expressed antibody variants are screened for the desired activity.
Amino acid sequence insertions include amino- and/or carboxyl- n terminal fusions ranging in length from one residue to polypeptides : containing a hundred or more residues, as well as intrasequence . insertions of single or multiple amino acid residues. Examples of : terminal insertions include an antibody with an N-terminal methionyl residue or the antibody fused to an epitope tag. Other insertional variants of the antibody molecule include the fusion to the N- or C- terminus of the antibody of an enzyme or a polypeptide or PEG which increases the serum half-life of the antibody.
Another type of variant is an amino acid substitution variant.
These variants have at least one amino acid residue in the antibody molecule removed and a different residue inserted in its place. The sites of greatest interest for substitutional mutagenesis include the hypervariable regions, but FR alterations are also contemplated.
Conservative substitutions are shown in Table 1 under the heading of ‘preferred substitutions". If such substitutions result in a change in biological activity,. then more substantial changes, denominated "exemplary substitutions” in Table A, or as further described below in reference to amino acid classes, may be introduced and the products screened.
Table A
Original Exemplary I Preferred
Residue Substitutions | Substitutions [Em
Arg (R) lys; gln; asn lys
Asn (N) gin; his; asp, lys; arg | gln
Tu
Cys 10 ex
Gln (Q) asn; glu | asn
Glu (5) asp
Gly (G) ala ala
Fis (3) asm; gin; lys; arg
Ile (I) leu; val; met; ala; | leu phe; norleucine
Leu (L) norleucine; ile; val; ile met; ala; phe
Tew; phe; ile Ten leu; val; ile; ala; tyr | tyr
Pro (P) ala oT ala 2p; phe; thr; ser val (V) ile; leu; met; phe; ala; | leu norleucine
Substantial modifications in the biological properties of the antibody are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or {c) the bulk of the side chain. Naturally occurring residues are divided into groups based on common side-chain properties: (1) hydrophobic: norleucine, met, ala, val, leu, ile; (2) neutral hydrophilic: cys, ser, thr; (3) acidic: asp, glu; (4) basic: asn, gln, his, lys, arg; (5) residues that influence chain orientation: gly, pro; and (6) aromatic: trp, tyr, phe. °
Non-conservative substitutions will entail exchanging a member of one of these classes for another class.
Any cysteine residue not involved in maintaining the proper conformation of the variant antibody also may be substituted, generally with serine, to improve the oxidative stability of the molecule and prevent aberrant crosslinking. Conversely, cysteine bond(s) may be added to the antibody to improve its stability (particularly where the antibody is an antibody fragment such as an Fv fragment).
A particularly preferred type of substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e.g. a human antibody). Generally, the resulting variant (s) selected for further development will have improved biological properties relative to the parent antibody from which they are generated. A i convenient way for generating such substitutional variants is affinity maturation using phage using methods known in the art. Briefly, several hypervariable region sites (e.g. 3-7 sites) are mutated to generate all possible amino substitutions at each site. The antibody variants thus generated are displayed in a monovalent fashion from filamentous phage particles as fusions to the gene III product of M13 packaged within ) each particle. The phage-displayed variants are then screened for their . biological activity (e.g. binding affinity) as herein disclosed. In order to identify candidate hypervariable region sites for modification, alanine scanning mutagenesis can be performed to identified hypervariable region residues contributing significantly to antigen binding.
Alternatively, or in addition, it may be beneficial to analyze a crystal structure of the antigen-antibody complex to identify contact points between the antibody and FIX Gla domain. Such contact residues and neighboring residues are candidates for substitution according to the techniques elaborated herein. Once such variants are generated, the panel of variants is subjected to screening as described herein and antibodies with superior properties in one or more relevant assays may be selected for further development.
Another type of amino acid variant of the antibody alters the original glycosylation pattern of the antibody. By altering is meant deleting one or more carbohydrate moieties found in the antibody, and/or adding one or more glycosylation sites that are not present in the antibody.
Glycosylation of antibodies is typically either N-linked or O- linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers tu the attachment of one of the sugars N-aceylgalactosamine, galactose, or xylose Lu a hydroxyainllo acld, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine may also be used.
Addition of glycosylation sites to the antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the addition of, or substitution by, one or more serine or threonine residues to the sequence of the original antibody (for O-linked glycosylation sites).
Nucleic acid molecules encoding amino acid sequence variants of the antibody are prepared by a variety of methods known in the art.
These methods include, but are not limited to, isolation from a natural source (in the case of naturally occurring amino acid sequence variants) or preparation by oligonucleotide-mediated (or site-directed) mutagenesis, PCR mutagenesis, and cassette mutagenesis of an earlier prepared variant or a non-variant version of the antibody.
Preferably, the antibodies are prepared by standard recombinant procedures which involve production of the antibodies by culturing cells transfected to express antibody nucleic acid (typically by transforming the cells with an expression vector) and recovering the antibody from the cells of cell culture.
The nucleic acid {(e.g., cDNA or genomic DNA) encoding antibody selected as described above is inserted into a replicable vector fox further cloning {amplification of the DNA) or for expression. Many vectors are available, and selection of the appropriate vector will depend on (1) whether it is to be used for DNA amplification or for DNA expression, (2) the size of the nucleic acid to be inserted into the vector, and (3) the host cell to be transformed with the vector. Each vector contains various components depending on its function (amplification of DNA or expression of DNA) and the host cell with which it is compatible. The vector components generally include, but are not limited to, one or more of the following: a signal sequence, an origin of replication, one or more marker genes, an enhancer element, a promoter,
and a transcription termination sequence. (i) Signal Sequence Component
The antibody of this invention may be expressed not only directly, but also as a fusion with a heterologous polypeptide, preferably a signal sequence or other polypeptide having a specific cleavage site at the N- terminus of the mature protein or polypeptide. In general, the signal sequence may be a component of the vector, or it may be a part of the antibody DNA that is inserted into the vector. The heterologous signal sequence selected should be one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell. For prokaryotic host cells a prokaryotic signal sequence selected, for example, from the group of the alkaline phosphatase, penicillinase, lpp, or heat-stable ) enterotoxin II leaders. For veast secretion the native signal sequence may be substituted by, e.g., the yeast invertase, alpha factor, or acid phosphatase leaders, the CC. albicans glucocamylase leader (EP 362,179 published 4 April 1990), or the signal described in WO 90/13646 published 15 November 1990. In mammalian cell expression the native signal sequence is satisfactory, although other mammalian signal sequences may be suitable, such as signal sequences from other ligand polypeptides or from the same ligand from a different animal species, : signal sequences from a ligand, and signal sequences from secreted polypeptides of the same or related species, as well as viral secretory leaders, for ‘example, the herpes simplex gD signal. (ii) origin of Replication Component
Both expression and cloning vectors contain a nucleic acid sequence that enables the vector to replicate in one or more selected host cells.
Generally, in cloning vectors this sequence is one that enables the vector to replicate independently of the host chromosomal DNA, and includes origins of replication or autonomously replicating sequences.
Such sequences are well known for a variety of bacteria, yeast, and viruses. The origin of replication from the plasmid pBR322 is suitable for most Gram-negative bacteria, the 2 ux plasmid origin is suitable for yeast, and various viral origins (SV40, polyoma, adenovirus, VSV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (the SV40 origin may typically be used only because it contains the early promoter) .
Most expression vectors are “shuttle” vectors, i.e., they are i capable of replication in at least one class of organisms but can be transfected into another organism for expression. For example, a vector is cloned in E. coli and then the same vector is transfected into yeast: aor mammalian cells for expression even though it is not capable of replicating independently of the host cell chromosome.
DNA may alsc be amplified by insertion into the host genome. This is readily accomplished using Bacillus species as hosts, for example, by including in the vector a DNA seguence that is complementary to a sequence found in Bacillus genomic DNA. Transfection of Bacillus with this vector results in homologous recombination with the genome and insertion of antibody DNA. However, the recovery of genomic DNA encoding antibody is more complex than that of an exogenously replicated vector because restriction enzyme digestion is required to excise the antibody
DNA. (iii) Selection Gene Component
Expression and cloning vectors should contain a selection gene, also termed a selectable marker. This gene encodes a protein necessary for the survival or growth of transformed host cells grown in a selective culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium. Typical selection genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, (b) complement auxotrophic deficiencies, or (c) supply critical nutrients not available from complex media, e.g., the gene encoding D- alanine racemase for Bacilli.
One example of a selection scheme utilizes a drug to arrest growth of a host cell. Those cells that are successfully transformed with a heterologous gene express a protein conferring drug resistance and thus survive the selection regimen. Examples of such dominant selection use the drugs neomycin (Southern et al. (1982), J. Molec. Appl. Genet. 1:327) mycophenolic acid (Mulligan et al. (1980), Science 209:1422) or hygromycin (Sugden et al. (1985), Mol. Cell. Biol.. 5:410-413). The three examples given above employ bacterial genes under eukaryotic control to convey resistance to the appropriate drug G418 or neomycin (geneticin), xgpt (mycophenolic acid), or hygromycin, respectively.
Examples of other suitable selectable markers for mammalian cells are those that enable the identification of cells competent to take up the antibody nucleic acid, such as dihydrofolate reductase (DHFR) or thymidine kinase. The mammalian cell transformants are placed under selection pressure that only the transformants are uniquely adapted to survive by virtue of having taken up the marker. Selection pressure is imposed by culturing the transformants under conditions in which the concentration of selection agent in the medium is successively changed, thereby leading to amplification of both the selection gene and the DNA that encodes antibody. Amplification is the process by which genes in greater demand for the production of a protein critical for growth are reiterated in tandem within the chromosomes of successive generations of recombinant cells. Increased quantities of antibody are synthesized from the amplified DNA. : . For example, cells transformed with the DHFR selection gene are : first identified by culturing all of the transformants in a culture medium that contains methotrexate (Mtx), a competitive antagonist of DHFR. An appropriate host cell when wild-type DHFR is employed is the
Chinese hamster ovary (CHO) cell line deficient in DHFR activity, . prepared and propagated as described by Urlaub and Chasin (1980),
Proc. Natl. Acad. Sci. USA 77:4216. The transformed cells are then exposed to increased levels of Mtx. This leads to the synthesis of i 20 multiple copies of the DHFR gene, and, concomitantly, multiple copies of other DNA comprising the expression vectors, such as the DNA encoding antibody. This amplification technique can be used with any : otherwise suitable host, e.g., ATCC No. CCL61 CHO-K1, notwithstanding the presence of endogenous DHFR if, for example, a mutant DHFR gene that is highly resistant to Mtx is employed (EP 117,060). Alternatively, host cells (particularly wild-type hosts that contain endogenous DHFR) transformed or co-transformed with DNA sequences encoding antibody, wild-type DHFR protein, and another selectable marker such as aminoglycoside 3' phosphotransferase (APH) c¢an be selected by cell growth in medium containing a selection agent for the selectable marker such as an aminoglycosidic antibiotic, e.g., kanamycin, neomycin, or G418.
See U.S. Patent No. 4,965,199.
A suitable selection gene for use in yeast is the trpl gene present in the yeast plasmid YRp7 (Stinchcomb et al. (1979), Nature 282:39;
Kingsman et al. (1979), Gene 7:141; or Tschemper et al. (1980), Gene 10:157). The trpl gene provides a selection marker for a mutant strain of yeast lacking the ability to grow in tryptophan, for example, ATCC No. 44076 or PEP4-1 (Jones (1977), Genetics 85:12). The presence of the trpl lesion in the yeast host cell genome then provides an effective environment for detecting transformation by growth in the absence of
Lryptophian. Similarly, Leu2-deficient yeast strains (ATCC No. 20,622 aor 38,626) are complemented by known plasmids bearing the Leu2 gene. (iv) Promoter Component
Expression and cloning vectors usually contain a promoter that is recognized by the host organism and is operably linked to the antibody nucleic acid. Promoters are untranslated sequences located upstream (5°) to the start codon of a structural gene (generally within about 100 to 1000 bp) that control the transcription and translation of particular nucleic acld sequence, such as the antibody nucleic acid sequence, +c which they are operably linked. Such promoters typically fall into two classes, inducible and constitutive. Inducible promoters are promoters that initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, e.g., the presence or absence of a nutrient or a change in temperature. At this time a large number of promoters recognized by a variety of potential host cells are well known. These promoters are operably linked to antibody encoding DNA by removing the promoter from the source DNA by restriction enzyme digestion and inserting the isolated promoter sequence into the vector. Both the native antibody promoter sequence and many heterologous promoters may be used to direct amplification and/or expression of the antibody DNA. However, heterologous promoters arc preferred, as they generally permit greater transcription and higher yields of expressed antibody as compared to the native promoter.
Promoters suitable for use with prokaryotic hosts include the $- lactamase and lactose promoter systems (Chang et al. (1978), Nature 275:615; and Goeddel et al. (1979), Nature 281:544), alkaline phosphatase, a tryptophan (trp) promoter system (Goeddel (1380), Nucleic Acids Res. 8:4057 and EP 36,776) and hybrid promoters such as the tac promoter (deBoer et al. (1983), Proc. Natl. Acad. Sci. USA 80:21-25). However, other known bacterial promoters are suitable. Their nucleotide sequences have been published, thereby enabling a skilled worker cperably to ligate them to DNA encoding antibody (Siebenlist et al. (1980), Cell 20:269) using linkers or adapters to supply any required restriction sites.
Promoters for use in bacterial systems also will contain a Shine-Dalgarno (S.D.) sequence operably linked to the DNA encoding antibody polypeptide.
Promoter sequences are known for eukaryotes. Virtually all
: eukaryotic genes have an AT-rich region located approximately 25 to 30 bases upstream from the site where transcription is initiated. Another sequence found 70 to 80 bases upstream from the start of transcription of many genes is a CXCAAT region where X may be any nucleotide. At the 3' end of most eukaryotic genes is an AATAAA sequence that may be the signal for addition of the poly A tail to the 3' end of the coding sequence.
All of these sequences are suitably inserted into eukaryotic expression vectors.
Examples of suitable promoting sequences for use with yeast hosts include the promoters for 3-phosphoglycerate kinase (Hitzeman et al. (1980), J. Biol.. Chem. 255:2073) or other glycolytic enzymes (Hess et al. (1968), J. Adv. Enzyme Reg. 7:149; and Holland (1978), Biochemistry 17:4900), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6- phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.
Other yeast promoters, which are inducible promoters having the additional advantage of transcription controlled by growth conditions, are the promoter regions for alcohol dehydrogenase 2, isocytochrome C, acid phosphatase, degradative enzymes associated with nitrogen metabolism, ; metallothionein, glyceraldehyde-3-phosphate dehydrogenase, and enzymes responsible for maltose and galactose utilization. Suitable vectors and promoters for use in yeast expression are further described in Hitzeman et al., EP 73,657A. Yeast enhancers also are advantageously used with yeast promoters.
Antibody transcription from vectors in mammalian host cells may be controlled, for example, by promoters obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and most preferably Simian Virus 40 (SV40), from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, from heat-shock promoters, and from the promoter normally associated with the antibody sequence, provided such promoters are compatible with the host cell systems.
The early and late promoters of the SV40 virus are conveniently obtained as an SV40 restriction fragment that also contains the sv40 viral origin of replication. Fiers et al. (1978), Nature 273:113;
Mulligan and Berg (1980), Science 209:1422-1427; DPavlakis nt al (1981), Proc. Natl. Acad. Sci. USA 78:7398-7402. The immediate early promoter of the human cytomegalovirus is conveniently obtained as a
HindIII E restriction fragment. Greenaway et al. (18982), Gene, 18:355- 360. A system for expressing DNA in mammalian hosts using the bovine papilloma virus as a vector is disclosed in U.S. Patent No. 4,419,446.
A modification of this system is described in U.S. Patent No. 4,601,978. See also Gray et al. (1982), Nature 255:503-508 on expressing cDNA encoding immune interferon in monkey cells; Reyes et al. (1982),
Nature 297:598-601 on expression of human #R-interferon cDNA in mouse cells under the control of a thymidine kinase promoter from herpes simplex virus; Canaani and Berg (1882), Proc. Natl. Acad. Sci. USA 79:5166-5170, on expression of the human interferon R1 gene in cultured mouse and rabbit cells; and Gorman et al. (1982), Proc. Natl. Acad.
Sci. USA 79:6777-6781, on expression of bacterial CAT sequences in CV- 1 monkey kidney cells, chicken embryo fibroblasts, Chinese hamster ovary cells, Hela cells, and mouse NIH-3T3 cells using the Rous sarcoma virus long terminal repeat as a promoter. (v) Enhancer Element Component
Transcription of a DNA encoding the antibody of this invention by higher eukaryotes is often increased by inserting an enhancer sequence into the vector. Enhancers are cis-acting elements of DNA, usually about from 10 to 300 bp, that act on a promoter to increase its transcription. Enhancers are relatively orientation and position independent, having been found 5' (Laimins et al. (1981), Proc. Natl.
Acad. Sci. USA 78:993) and 3' (Lusky et al. (1983), Mol. Cell Bio. 3:1108) to the transcription unit, within an intron (Banerji et al. (1983), Cell 33:729), as well as within the coding sequence itself (Osborne et al. (1984), Mol. Cell Bio. 4:1293). Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, a- fetoprotein, and insulin). Typically, however, one will use an enhancer from a eukaryotic cell virus. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers. See also Yaniv (1982),
Nature 297:17-18, on enhancing elements for activation of eukaryotic promoters. The enhancer may be spliced into the vector at a position 5' or 3' to the antibody encoding sequence, but is preferably located at a site 5' from the promoter. (vi) Transcription Termination Component
Expression vectors used in eukaryotic host cells (yeast, fungi, insect, plant, animal, human, or nucleated cells from other multicellular organisms) will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. Such sequences are commonly available from the 5' and, occasionally 3' untranslated regions of eukaryotic or viral DNAs or cDNAs. These regions contain nucleotide segments transcribed as polyadenylated fragments in the untranslated portion of the mRNA encoding antibody. (vii) Construction and Analysis of Vectors
Construction of suitable vectors containing one or more of the : above listed components employs standard ligation techniques. Isolated plasmids or DNA fragments are cleaved, tailored, and religated in the form desired to generate the plasmids required.
For analysis to confirm correct sequences in plasmids constructed, the ligation mixtures are used to transform E. coli K12 strain 294 (ATCC
No. 31,446) and successful transformants selected by ampicillin or tetracycline resistance where appropriate. Plasmids from the transformants are prepared, analyzed by restriction endonuclease digestion, and/or sequenced by the method of Messing et al. (1981),
Nucleic Acids Res. 9:309 or by the method of Maxam et al. (1980), Methods in Enzymology 65:499. (viii) Transient Expression Vectors
Particularly useful in the practice of this invention are expression vectors that provide for the transient expression in mammalian cells of DNA encoding the antibody polypeptide. In general, transient expression involves the use of an expression vector that is able to replicate efficiently in a host cell, such that the host cell accumulates many copies of the expression vector and, in turn, synthesizes high levels of a desired polypeptide encoded by the expression vector. Sambrook et al., supra, pp. 16.17 - 16.22. Transient expression systems, comprising a suitable expression vector and a host cell, allow for the convenient positive identification of polypeptides encoded by cloned DNAs, as well as for the rapid screening of such polypeptides for desired biological or physiolecgical properties. Thus, transient expression systems are particularly useful in the invention for purposes of identifying analogues and variants of antibody polypeptide that have antibody polypeptide biological activity. (ix) Suitable Exemplary Vertebrate Cell Vectors
Other methods, vectors, and host cells suitable for adaptation to the synthesis of the antibody in recombinant vertebrate cell culture are described in @Gething et al. (1381), Nature 293:620-625; Mantei et al. (1979), Nature 281:40-46; Levinson et al.; EP 117,060; and EP 117,058.
A particularly useful plasmid for mammalian cell culture expression is
PRKS (EP 307,247 U. S. patent no. 5,258,287) or pSVIEB (PCT Publication
No. WC 951/08291).
Suitable host cells for cloning or expressing the vectors herein are the prokaryote, yeast, or higher eukaryotic cells described above.
Suitable prokaryotes include eubacteria, such as Gram-negative or Gram- positive organisms, for example, E. coli, Bacilli such as B. subtilis,
Pseudomonas species such as P. aeruginosa, Salmonella typhimurium, or
Serratia marcescans. One preferred E. coli cloning host is E. coli 254 (ATCC No. 31,446), although other strains such as E. coli B, E. coli X1776 (ATCC No. 31,537), and E. coli W311l0 (ATCC No. 27,325) are suitable.
These examples are illustrative rather than limiting. Preferably the host cell should secrete minimal amounts of proteolytic enzymes. Alternatively, in vitro methods of cloning, e.g., PCR or other nucleic acid polymerase reactions, are suitable.
In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable hosts for antibody encoding vectors. Saccharomyces cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe (Beach and Nurse (1981), Nature 290:140; EP 139,383 published 2 May 1985), Kluyveromyces hosts (U.S. Patent No. 4,943,529) such as, e.g., K. lactis (Louvencourt et al. (1983, J. Bacteriol. 737), K. fragilis, K. bulgaricus, K. thermotolerans, and K. marxianus, yarrowia (EP 402,226), Pichia pastoris (EP 183,070; Sreekrishna et al. (1988), J. Basic Microbiol. 28:265-278),
Candida, Trichoderma reesia (EP 244,234), Neurospora crassa (Case et al. (1979), Proc. Natl. Acad. Sci. USA 76:5259-5263), and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium (WO 91/00357 published 10 January 1991), and Aspergillus hosts such as A. nidulans (Ballance et al. (1983), Biochem. Biophys. Res. Commun. 112:284-283;
Tilburn et al. (1983), Gene 26:205-221; Yelton et al. (1984), Proc. Natl.
Acad. Sci. USA 81:1470-1474) and A. niger (Kelly and Hynes (1985), EMBO
J. 4:475-479).
Suitable host cells for the expression of glycosylated antibody are derived from multicellular organisms. Such host cells are capable of complex processing and glycosylation activities. In principle, any higher eukaryotic cell culture is workable, whether from vertebrate or invertebrate culture. Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains and variants and : corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes aegypti (mosquito), Aedes albopictus » (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified. See, e.g., Luckow et al. (1988), Bio/Technology 6:47-55;
Miller et al., Genetic Engineering, Setlow et al. (1986), eds., Vol. 8 (Plenum Publishing), pp. 277-279; and Maeda et al. (1985), Nature 315:592-5%4. A variety of viral strains for transfection are publicly -available, e.g., the L-1 variant of Autographa californica NPV and the
Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein according to the present invention, particularly for transfection of Spodoptera frugiperda cells.
Plant cell cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco can be utilized as hosts. Typically, plant cells are transfected ‘by incubation with certain strains of the bacterium
Agrobacterium tumefaciens, which has been previously manipulated to contain the antibody DNA. During incubation of the plant cell culture with A. tumefaciens, the DNA encoding the antibody is transferred to the plant cell host such that it is transfected, and will, under appropriate conditions, express the antibody DNA. In addition, regulatory and signal sequences compatible with plant cells are available, such as the nopaline synthase promoter and polyadenylation signal sequences. Depicker et al. (1982), J. Mol. Appl. Gen. 1:561. In addition, DNA segments isolated from the upstream region of the T-DNA 780 gene are capable of activating or increasing transcription levels of plant-expressible genes in recombinant DNA-containing plant tissue. EP 321,196 published 21 June 1989.
However, interest has been greatest in vertebrate cells, and propagation of vertebrate cells in culture (tissue culture) has become a routine procedure in recent years (Tissue Culture (19873), Academic
Press, Kruse and Patterson, editors). Examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS5-7, ATCC CURL 1651) ; human embryonic kidney line (293 or 293 cells subcloned for growth in suspension culture, Graham et al. (1877), J. Gen Virol. 36:55); baby hamster kidney cells (BHK, ATCC CCL 10); Chinese hamster ovary cells/-
DHFR (CHO, Urlaub and Chasin (1980), Proc. Natl. Acad. Sci. USA 77:4216); mouse sertoli cells (TM4, Mather (1980), Biol. Reprod. 23:243-251); monkey kidney «cells (CV1l ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL-1587); human cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34); buffalo rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75); human liver cells (Hep G2, HB 8065); mouse mammary tumor (MMT 060562, ATCC
CCL51); TRI cells (Mather et al. (1882), Annals N.Y. Acad. Sci. 383:44- 68); MRC 5 cells; FS4 cells; and a human hepatoma line (Hep G2).
Host cells are transfected and preferably transformed with the above-described expression or cloning vectors of this invention and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences.
Transfection refers to the taking up of an expression vector by a host cell whether or not any coding sequences are in fact expressed.
Numerous methods of transfection are known to the ordinarily skilled artisan, for example, CaPO4 and electroporation. Successful transfection is generally recognized when any indication of the operation of this vector occurs within the host cell.
Transformation means introducing DNA into an organism so that the
DNA is replicable, either as an extrachromosomal element or by chromosomal integrant. Depending on the host cell used, transformation is done using standard techniques appropriate to such cells. The calcium treatment employing calcium chloride, as described in section 1.82 of
Sambrook et al., supra, is generally used for prokaryotes or other cells that contain substantial cell-wall barriers. Infection with
Agrobacterium tumefaciens is used for transformation of certain plant cells, as described by Shaw et al. (1983), Gene 23:315, and WO 85/05859% published 29 June 1989. In addition, plants way be transfected using ultrasound treatment as described in WO 91/00358 published 10 January 1991. For mammalian cells without such cell walls, the calcium phosphate precipitation method of Graham and van der Eb (1978), Virology 52:456- 457, is preferred. General aspects of mammalian cell host system transformations have been described by Axel in U.S. Patent No. 4,399,216 issued 16 August 1983. Transformations into yeast are typically carried out according to the method of Van Solingen et al. (1977), J. Bact. 130:946, and Hsiao et al. (1979), Proc. Natl. Acad. Sci. (USA) 76:3829.
However, other methods for introducing DNA into cells such as by nuclear injection, electroporation, or protoplast fusion may also be used.
Prokaryotic cells used to produce the antibody polypeptide of this invention are cultured in suitable media as described generally in
Sambrook et al., supra. ' The mammalian host cells used to produce the antibody of this invention may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium ( (MEM), Sigma),
RPMI-1640 (Sigma), and Dulbecco’s Modified Eagle’s Medium ( (DMEM), Sigma) are suitable for culturing the host cells. In addition, any of the media described in Ham and Wallace (1979), Meth. Enz. 58:44, Barnes and Sato (1980), Anal. Biochem. 102:255, U.S. Patent No. 4,767,704; 4,657,866; 4,927,762; or 4,560,655; WO 90/03430; WO 87/00195; or U.S.
Patent Re. 30,985; the disclosures of all of which are incorporated herein by reference, may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as sodium chloride, calcium, magnesium, and phosphate), buffers (such as HEPES), nucleosides (such as adenosine and thymidine), antibiotics (such as Gentamycin drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
The host cells referred to in this disclosure encompass cells in in vitro culture as well as cells that are within a host animal.
Gene amplification and/or expression may be measured in a sample directly, for example, by conventional Southern blotting, northern blotting to quantitate the transcription of mRNA (Thomas (1980), Proc.
Natl. Acad. Sci. USA 77:5201-5205), dot blotting (DNA analysis), or im situ hybridization, using an appropriately labeled probe, based on the sequences provided Therein. Various labels may be employed, most commonly radicisotopes, particularly 32p, However, other techniques may also be cmployed, such as using biotin-modified nucleotides for introduction into a polynucleotide. The biotin then serves as the site for binding to avidin or antibodies, which may be labeled with a wide variety of labels, such as radionuclides, fluorescers, enzymes, or the like. Alternatively, antibodies may be employed that cam recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn may be labeled and the assay may be carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected.
Gene expression, alternatively, may be measured by immunological methods, such as immunchistochemical staining of tissue sections and assay of cell culture or body fluids, to quantitate directly the expression of gene product. With immunohistochemical staining techniques, a cell sample is prepared, typically by dehydration and fixation, followed by reaction with labeled antibodies specific for the gene product coupled, where the labels are usually visually detectable, such as enzymatic labels, fluorescent labels, luminescent labels, and the like. A particularly sensitive staining technique suitable for use in thc present invention is described by Hsu et al. (1980), Am. J. Clin. Path. 75:734-738.
Antibody preferably is recovered from the culture medium as a secreted polypeptide, although it also may be recovered from host cell lysates when directly expressed without a secretory signal.
When the antibody is expressed in a recombinant cell other than one of human origin, the antibody is completely free of proteins or polypeptides of human origin. However, it is still usually necessary to purify the antibody from other recombinant cell proteins or polypeptides to obtain preparations that are substantially homogeneous as to the ligand per se. As a first step, the culture medium or lysate is centrifuged to remove particulate cell debris. The membrane and soluble protein fractions are then separated. Alternatively, a commercially available protein concentration filter (e.g., AMICON or Millipore PELLICON ultrafiltration units) may be used. The antibody may then be purified from the soluble protein fraction. The antibody thereafter is purified from contaminant soluble proteins and polypeptides by salting out and exchange or chromatographic procedures employing various gel matrices.
These matrices include; acrylamide, agarose, dextran, cellulose and others common to protein purification. Exemplary chromatography procedures suitable for protein purification include immunoaffinity, FIX Gla domain affinity (e.g., -IgG or protein A SEPHAROSE), hydrophobic interaction chromatography (HIC) (e.g., ether, butyl, or phenyl Toyopearl), lectin chromatography (e.g., Con A-SEPHAROSE, lentil-lectin-SEPHAROSE), size : exclusion {(e.g., SEPHADEX G-75), cation- and anion-exchange columns (e.g., DEAE or cdrboxymethyl- and sulfopropyl-cellulose), and reverse- phase high performance liquid chromatography (RP-HPLC) (see e.g., Urdal et al. (1984), J. Chromatog. 296:171, where two sequential RP-HPLC steps are used to purify recombinant human IL-2). Other purification steps optionally include; ethanol precipitation; ammenium sulfate precipitation; chromatofocusing; preparative SDS-PAGE, and the like.
Antibody variants in which residues have been deleted, inserted, or substituted are recovered in the same fashion, taking account of any substantial changes in properties occasioned by the variation. For example, preparation of an antibody fusion with another protein or polypeptide, e.qg., a bacterial or viral antigen, facilitates purification; an immunoaffinity column containing antibody to the antigen can be used to adsorb the fusion polypeptide. Immunoaffinity columns such as a rabbit polyclonal anti-antibody column can be employed to absorb the antibody variant by binding it to at least one remaining immune epitope. Alternatively, the antibody may be purified by affinity chromatography using a purified FIX Gla domain-IgG coupled to a (preferably) immobilized resin such as AFFI-Gel 10 (Bio-Rad, Richmond, CA) or the like, by means well known in the art. A protease inhibitor such as phenyl methyl sulfonyl fluoride (PMSF) also may be useful to inhibit ‘proteolytic degradation during purification, and antibiotics may be included to prevent the growth of adventitious contaminants. One skilled in the art will appreciate that purification methods suitable for the native antibody may require modification to account for changes in the character of the antibody or its variants upon expression in recombinant cell culture.
Utility
The antibodies disclosed herein are useful for in vitro diagnostic assays for inhibiting the activation of FIX to FIXa by FXIa or by TF-FVIIa and in inhibiting coagulation in a FIXa dependent assav.
The compositions of this invention may be used in the treatment and prevention of FIXa mediated discases or disorders including but are not limited to the prevention of arterial re-thrombosis in combination with thrombolytic therapy. It has been suggested that the FIX plays a significant role in a variety of clinical states including deep venous chirombosis, arterial Taromposis, stroke, DIC, septic shock, cardiopulmonary bypass surgery, adult respiratory distress syndrome, hereditary angioedema as well as tumor growth and metastasis. Inhibitors of FIX may theretore play important roles in the regulation of inflammatory and/or thrombotic disorders.
Thus the present invention encompasses a method for preventing a FIX/FIXa mediated event in a human comprising administering to a patient in need thereof a therapeutically effective amount of the antibody composition of the present invention. A therapeutically effective amount of the antibody molecule of the present invention is predetermined to achieve the desired effect. The amount to be employed therapeutically will vary depending upon therapeutic objectives, the routes of administration and the condition being treated. Accordingly, the dosages to be administered are sufficient to bind to available FIX/FIXa and form an inactive complex leading to decreased coagulation in the subject being treated.
The therapeutic effectiveness is measured by an improvement in one or more symptoms associated with the FIXa dependent coagulation. Such therapeutically effective dosages can be determined by the skilled artisan and will vary depending upon the age condition, sex and condition of the subject being treated. Suitable dosage ranges for systemic administration are typically between about 1 pg/kg to up to 100 mg/kg or more and depend upon the route of administration. According to the present invention a preferred therapeutic dosage is between about 1 ug/kg body weight and about 5 mg/kg body weight. For example, suitable regimens include intravenous injection or infusion sufficient to maintain concentration in the blood in the ranges specified for the therapy contemplated.
Pharmaceutical compositions which comprise the antibodies or antibody fragments of the invention may be administered in any suitable manner, including parental, topical, oral, or local (such as aerosol or transdermal) or any combination thereof. Suitable regimens also include an initial administration by intravenous bolus injection followed by repeated doses at one or more intervals.
Where the composition of the invention is being administered in combination with a thrombolytic agent, for example, for the prevention of reformation of an occluding thrombus in the course of thrombolytic therapy, a therapeutically effective dosage of the thrombolytic is between about 80 and 100 % of the conventional dosage range. The conventional dosage range of a thrombolytic agent is the daily dosage used in therapy and is readily available to the treating physician. (Physicians Desk Reference (1994), 50th Edition, Edward R. Barnhart, publisher). The typical dosage range will depend upon the thrombolytic being employed and include for tissue plasminogen activator (t-PA), 0.5 to about 5 mg/kg body weight; streptokinase, 140,000 to 2,500,0000 units per patient; urokinase, 500,000 to 6,250,00 units per patient; and anisolated streptokinase plasminogen activator complex (ASPAC), 0.1 to about 10 units/ kg body weight. 1s The term combination as used herein includes a single dosage form containing at least the molecule of the present invention and at least one thrombolytic agent. The term is also meant to include multiple dosage forms wherein the molecule of the present invention is administered separately but concurrently by two separate administration, such as in - 20 sequential administration. These combinations and compositions work to - dissolve or prevent the formation of an occluding thrombus resulting in dissolution of the occluding thrombus. When used for in vivo administration, the antibody formulation must be sterile. This is readily accomplished by filtration through sterile filtration membranes, prior to or following lyophilization and reconstitution. The antibody ordinarily will be stored in lyophilized form or in solution.
Therapeutic antibody compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
The route of antibody administration is in accord with known methods, e.g., injection or infusion by intravenous, intraperitoneal, intracerebral, intramuscular, intraocular, intraarterial, intrathecal, inhalation or intralesional routes, or by sustained release systems as noted below. The antibody is preferably administered continuously by infusion or by bolus injection. ‘
The antibodies of the invention may be prepared in a mixture with a pharmaceutically acceptable carrier. This therapeutic composition can be administered intravenously or through the nose or lung, preferably as a liquid or powder aerosol (lyophilized). The composition may also be administered parenterally or subcutaneously as desired. When administered systematically, the therapeutic composition should be sterile, pyrogen-free and in a parenterally acceptable solution having due regard for pH, isotonicity, and stability. These conditions are known to those skilled in the ail. Brlelly, dosage formulations or the compounds of the present invention are prepared for storage or administration by mixing the compound having the desired degree of purity with physiologically acceptable carriers, excipients, or stabilizers. Such materials are non- toxic to the recipients at the dosages and concentrations employed, and include buffers such as TRIS HCl, phosphate, citrate, acetate and other organic acid salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) peptides such as polyarginine, proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidinone; amino acids such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, gluccse, mannose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium and/or nonionic surfactants such as TWEEN, PLURONICS or polyethyleneglycol.
Sterile compositions for injection can be formulated according to conventional pharmaceutical practice. For example, dissolution or suspension of the active compound in a vehicle such as water or naturally occurring vegetable oil like sesame, peanut, or cottonseed oil or a synthetic fatty vehicle like ethyl oleate or the like may be desired.
Buffers, preservatives, antioxidants and the like can be incorporated according to accepted pharmaceutical practice.
Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the polypeptide, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (e.qg., poly (2-hydroxyethyl-methacrylate) as described by Langer et al. (1981), J. Biomed. Mater. Res. 15:167-277, and Langer (1982), Chem. Tech. 12:98-105, or poly(vinylalcohel)), polylactides (U.S. Patent No. 3,773,919, EP 58,481), copolymers of L- glutamic acid and gamma ethyl-L-glutamate (Sidman et al. (1983),
Biopolymers 22:547-556), non-degradable ethylene-vinyl acetate (Langer et al., supra), degradable lactic acid-glycolic acid copolymers such as the
LUPRON Depot (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid (EP 133,988).
While polymers such as ethylene-vinyl acetate and lactic acid- glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated proteins remain in the body for a long time, they may denature Or aggregate as a result of exposure to moisture at 37°C, resulting in a loss of biological activity and possible changes in immunogenicity. Rational strategies can be devised for protein stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and ‘developing specific polymer matrix compositions. The following examples are offered by way of illustration and not by way of limitation. The disclosures of all citations in the specification are expressly incorporated herein by reference.
EXAMPLES y EXAMPLE I
Reagents. FIX and FXIa was from Haematologic Technologies Inc., (Essex
Jet., VT). FX was from Enzyme Research Laboratories Inc. (South Bend,
IN), dioleoyl 1,2-diacyl-sn-glycero-3- (phospho-L-serine) (PS) and oleoyl 1,2-diacyl-sn-glycero-3-phosphocholine (PC) from Avanti Polar Lipids Inc. (Alabaster, AL). FIXa chromogenic substrate #299 was from American
Diagnostica (Greenwich, CT). Actin FS and Innovin were obtained from Dade
International Inc. (Miami, FL). SEPHAROSE resins and columns were from
Amersham Pharmacia Biotech (Piscataway, NJ). DiaEthyleneglycol (analytical grade) and FeCl; (reagent grade) were from Mallinckrodt Inc. (Paris, KY). Fatty acid-free BSA was from Calbiochem (La Jolla, CA).
Sodium heparin for injection was from Elkins Sinn Inc. (Cherry Hill, NJ).
Sterile saline for injection was purchased from Baxter Healthcare Corp. (Deerfield, IL). Purified TF (1-243) from E.coli and recombinant F.VIIa were kindly provided by Robert F. Kelley (Genentech, Inc.).
Methods
Synthesis and biotinylation of Gla peptide: Gla peptide synthesis was performed on an ABI431 Peptide Synthesizer using standard Fmocc chemistry protocols on a 0.25 mmol scale. Couplings were carried out with
HBT [2-(1H-benzotriazole-1-y1l)-1,12,3,3-tetramethyluronium hexaflourophosphate] , HOBT (N-hydroxybenzotriazole), and DIPEA (diisopropylethylamine) for 1 hour. Fmoc amine acid side chain protecting groups were as follows: Tyr(tBut), Thr(tBut), Sex (tBut), Lys(Boc),
Aogipglhl), Asaibel), Glalizl), Gla(OtBuibjz, Jyslacw) anc rrpisoc).
Oxidation was carried out with the peptide still on the resin by stirring the resin with 10 equivalents of iodine in DMF at 4°C for 1 hour. The peptide was cleaved using 70:30:0.L TFA:dichloromethane:triisopropylsilane for 3 hours at room temperature, triturated with ether, extracted off the resin with 30 mM NH40H and lyophilized. The identity of the material was confirmed by electrospray mass spectrometry, peptide sequencing and amino acid analysis. Fmoc-L-Gla(OtBut)2 was obtained from
Peninsula Labs (Belmont CA) and Fmoc-Lys (alloc) from Perseptive
Biosystems (Framingham MA). The catalyst Pd(0) and Biotin-NHS were purchased from Fluka (Ronkonkoma NY) and Sigma (St Louis MO), respectively.
Biotinylated Gla peptide synthesis was modified from the above procedure as follows. The peptide synthesis was carried out using Fmoc-
Lys{alloc) in position 40 and the final Fmoc group on the N-terminus of the peptide was not removed. Removal of the alloc (allyloxycarbonyl) group was done with a palladium catalyst using a 0.1L M solution of tetrakistriphenylphosphine palladium(0) with 5% acetic acid and 2.5% N- methylmorpholine in chloroform for 3 hours. Biotin-NHS (N- hydroxysuccinimidobiotin) was coupled to the side chain of Lysine (40) with DIPEA overnight in DMF/DCM. Then the final Fmoc group was removed with 20% piperidine/DMF and the peptide was oxidized on the resin, cleaved off the resin and extracted off the resin as described in the previous paragraph.
Results
The amino acid sequence of the synthesized Gla peptide is shown in
Figure 1 (human).
EXAMPLE 2
Methods
Bicpanning procedure - A large library of 101% scFv (Cambridge
Antibody Technology, Cambridgeshire, UK ) (Vaughan et al. (1996) Nature
Biotechnology 14:309-314) was panned through two rounds of enrichment against biotinylated peptide. Affinity-driven selection (Hawkins et al-, (1992) J. Mol. Biol. 226:889-896) was performed by decreasing the amount of antigen at each subsequent round of panning (100 nM and 10 nM, for rounds 1 and 2, respectively). To ensure proper conformation of the Gla peptide, calcium chloride (2 mM) was added to all solutions, unless indicated otherwise, during the panning procedure and all subsequent assays. For each selection, approximately 102 titered units of phage, blocked in 1 ml of TBS containing 3% skimmed milk, 0.1% TWEEN and 2 mM
CaCl, (MTBST/Ca), were incubated for 1 hr at room temperature (RT) with the biotinylated peptide. Streptavidin-conjugated beads (DYNABEADS, Dynal,
Oslo Norway) blocked in MTBS, were added to the phage-biotinylated antigen mixture for 15 min. at RT. A volume of 300 ul of DYNABEADS was used for round 1, and was decreased to 100 ul at round 2. The DYNABEADS were washed three times with each of the following solutions :
TBST/Ca, MTBST/Ca, MTBS/Ca, and TBS/Ca, using a Dynal MPC (Magnetic
Particle Concentrator). Bound phage were eluted step-wise with 4M
MgCl,, 1 mM Tetra-ethylamine (TEA), and 100 mM HCl. Each elution was performed at RT for 5 min, and eluted fractions were neutralized with 50 mM Tris-HCl, pH 7.5. Phage recovered after each round of panning were propagated in the bacterial suppressor strain TG1.
Results i Isolation and characterization of scFvs to human FIX - In an attempt “to isolate antibodies specific to human FIX with potential anti-thrombotic “activity, a phage-displayed library of human scFv antibodies with a peptide corresponding to the Gla domain of human FIX was screened. Since the binding of cCa'’ to FIX Gla domain was shown to induce conformational changes important for interaction with phospholipids and cell surfaces, all panning selection steps were performed in the presence of 2 mM CaCl,. Two rounds of panning were done in solution with 100 nM and 10 nM of - 30 biotinylated peptide, respectively. After the second round of panning, 96 out of 800 clones screened (12%) were selected on their ability to bind to the FIX Gla peptide specifically by phage ELISA (Griffiths et al. (1993),
EMBO J. 12:725-734).
EXAMPLE 3
Methods
Clone characterization - MAXISORP Elisa plates (Nunc) were coated overnight at 4°C with Gla peptide (5 ug/ml) in HEPES buffered saline (HBS). Plates were blocked with HBS buffer containing 0.1% TWEEN and
3% milk powder. Phage culture supernatants (50 pl) were directly applied te the plates. Horseradish peroxidase (HRP) -conjugated anti-M13 (Pharmacia, Uppsala, Sweden) was then added. DNA purified from selected clones was characterized by BstNI digestion and sequencing (ABI377, Perkin
Elmer, Foster City, Ca).
ScFv protein ELISA - ELISA plates were coated with either the anti-c¢ myc antibody SklU in carbonate buffer (format I), FIX or FIX- related factors, in HBS with 2 mM CaCl, (HBSCa) (format II). Plates were blocked with HBSCa containing 0.1% TWEEN (HBST/Ca). ScPv were
LU added at a concentration of 5 ug/ml. In format I, biotinylated FIX (lug) was applied to the plates followed by Streptavidin-HRP. In format II, detection of scFv was performed using 9E10 anti-c myc mAb and an HRP- conjugated goat anti-mouse Fc-specific mAb (Zymed, South San Francisco,
Ca). All reagent dilutions were prepared in blocking buffer HBST/Ca and plates were washed with HBS/Ca containing 0.05% Tween.
Results
To further assess germline diversity of the selected clones, DNA was purified from individual clones and subjected to BstNI fingerprinting (Clackson et al, (1991) Nature 352:624-628). The 96 clones were classified into 24 distinct fingerprint families. ScFvs were expressed as epitope-tagged proteins containing a c-myc tag sequence recognized by monoclonal antibody 9E10 (Griffiths et al. (1993), EMBO
J. 12:725-734) and a polyhistidine tag (hisé) and were purified over Ni-NTA with imidazole elution as recommended by the manufacturer (Qiagen,
Chatsworth, CA). One clone from each fingerprint family was selected for
ScFv expression. Purified scFv were then tested for their reactivity to Gla peptide and full length FIX by ELISA. out of the 24 clones tested, six clones (10C12, 11C5, 11G9, 13D1, 13H6, and 14H9) were shown to crossreact to various extent with both the Gla peptide and full length
FIX by ELISA (Figure 4), all others reacted with Gla peptide only. Clones 10C12, 13D1 and 13H6 exhibited stronger binding to FIX than clones 11G9, 11C5, and 14HS.
These six clones were further characterized by DNA sequencing to analyze segment usage (Figure 2). Four clones (10C12, 11C5, 11G3, and 13D1) displayed the same light chain (VA 1) with identical CDR regions.
Clones 13H6 and 14H9 light chains were unique and different from the others, with no homology found in the CDR regions. Sequencing of the heavy chains revealed strong homology between clones 10C12 and 13D1 with differences at only 3 residues, one located in CDR, and two in the frame work regions. Clone 11C5 heavy chain had almost identical CDR and
CDR2 as 10C12 and 13D1 but a different CDR; region. Clones 13H6 and 14H3 heavy chains showed little homology to the other clones. These results show that 10C12, 11CS, 11G9, and 13D1 are closely related, the most striking difference residing in clone 11C5 heavy chain CDRj region. The overall homology suggests that these antibodies bind an identical epitope within the FIX-Gla domain. In the presence of Ca++ and Mg++, the FIX Gla domain adopts different conformations which expose distinct antibody epitopes.
The antibodies 10C12, 13D1, 11C5 and 13H6 which display high homology in their CDRs (except for 13H6) exclusively bound to the Ca++ induced conformation of the Gla domain, consistent with the view that they recognize a common epitope. In contrast, clones 13Hé and 14HS both have unique heavy and light chains. Clone 14H9 appears to have significantly more charged residues in the CDR domains, especially in CDRj.
Four of the six antibodies were chosen to be reformatted as Fi{ab’), molecules, based on strong FIXa inhibiting activity (10C12, 13D1, and 13H6) and DNA germline diversity (14H9).
Binding specificity of scFvs and F(ab’), to various blood coagulation factors - There is a high degree of homology between Gla domains of different blood coagulation factors (FVII, FIX, FX, prothrombin, and protein C) (see Figure 1B). To determine the specificity of the antibodies selected for. binding to FIX Gla domain, ELISA experiments were performed by coating various factors (FIX, FVII, FX, prothrombin and protein C} onto plates and incubating with scFvs (Figure 6A) or F(ab’), (Figure 6B) at a concentration of 5 ug/ml (0.02 pg/ml for F(ab’),).
Results showed that both scFv and F(ab’), from clones 10Cl2, 13Dl and 13H6 reacted with FIX only while 14H9 recognized all factors tested.
Moreover, binding of scFv from clones 10Cl12, 13D1 and 13H6 to FIX was not reduced when scFvs were preincubated with FIX deficient serum, ruling out any interaction of these clones with factors, other than FIX, present in the serum. In contrast, binding of scFv from clone 14HS was dreatly diminished after incubation of scFv with the same serum. These results demonstrated that the epitope recognized by clone 14H9 is unique and different from the sequence seen by the other 3 antibodies.
Calcium and magnesium dependence of anti-FIX F(ab‘), binding to FIX -
The selection of scFv antibodies described in this study was performed in presence of ca'* ioms. FIX has been shown to undergo two metal-
dependent conformational transitions, one metal-dependent but cation non- selective, the second one metal-selective for Ca*™ or Sr**. To test the influence of metal ions on the binding of the anti-FIX antibodies, ELISA experiments were performed with either ca®", Mg'®, or EDTA (which chelates
Ca’ ions) added to all buffers. Results indicated that clones 10C12, 13D1 and 13H6 recognized FIX only in the presence of Ca”, and the binding was partially Or completely inhibited in presence of 2 mM EDTA. In contrast, clone 14H9 did bind to FIX in presence of either Mg™ or ca™”.
No inhibition was observed in presence of EDTA which demonstrated that Ca’” ions were not necessary for the binding to occur.
EXAMPLE 4
Methods
BIAcore evaluation of anti-FIX F(ab‘), affinities - The antigen- binding affinities of several (Fab'), "leucine-zipper" fragments were calculated (L&fas & Johnsson (1990), J. Chem. Soc. Commun. 21:1526-1528) from association and dissociation rate constants measured using a BIAcore- 2000™ surface plasmon resonance system (Pharmacia Biosensor). A biosensor chip was activated using N-ethyl-N'- (3-dimethylaminopropyl) -carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) according to the supplier's (BIAcore, Inc., Piscataway, NJ) instructions. Factor IX, and
Factor X as a negative control, were diluted approximately 30 ug/mL in 10 mM sodium acetate buffer (pH 4.5). Aliquots were injected to achieve approximately 519 response units (RU) of coupled FIX, and 2330 RU or 13,590 RU of coupled FX. Finally, 1M ethanolamine was injected as a blocking agent.
For kinetics measurements, 2-fold serial dilutions (10 uL) of antibody were injected in running buffer (0.05% Tween-20, 150 mM NaCl, 2 mM CaCl,, 10 mM Hepes pH 7.4) at 25°C using a flow rate of 10 uL/min.
Regeneration was achieved with 4.5 M MgCl,, followed by wash solution (50 mM EDTA, 150 mM NaCl, 0.05% TWEEN-20). Equilibrium dissociation constants, Kd's, from SPR measurements were calculated as kore/kon-
Dissociation data were fit to a simple 1:1 Langmuir binding model. Pseudo- first order rate constant (ks) were calculated for each association curve, and plotted as a function of protein concentration to obtain Kgp +/- s.e. (standard error of fit). The resulting errors e[K] in calculated Kg's were calculated as follows: elK] = [(kop) (Soe)? + (kogr) 2 (kon) * (son) 2) 2 where s,¢r and s,, are the standard errors in kon and koff, respectively.
Results
Affinity measurement of anti-FIX F(ab’), binding to FIX- In SPR binding experiments, F(ab'),-zipper forms of 10C12, 13D1l, and 13H6 showed specific binding to FIX (versus F.X, or a blank flow cell). For these experiments, a low density (519 RU) of immobilized antigen (FIX) was used. Although the bivalent form of the antibodies could have resulted in avidity effects in binding to antigen, the binding kinetics observed were consistent with simple 1:1 models of association and dissociation.
All three antibodies had similar dissociation rate constants (korg). corresponding to dissociation half-lives of about 50-70 minutes (Figure 3). The association rate (kyo) for 13H6, however, was significantly faster than 10C12 or 13D1. Consequently the equilibrium dissociation constant {Kg) for 13H6 is lower (Kgq= 0.45 nM) than 10C12 (Kg= 1.6 nM) or 13D1 (2.9 nM).
EXAMPLE 5
Methods a FIX binding to bovine endothelial cells - Primary bovine aortic : = endothelial cells were grown as described (Marcum et al. (1986), J. Biol.
RE 20 Chem. 261:7507) for four days. Cells were washed with Hepes buffer we containing 10 mM HEPES pH 7.2, 137 mM NaCl, 4 mM KCl, 11 mM Glucose, 5
SS mg/ml -BSA and 2 mM CaCl,. Cells were then incubated at 4°C for 2 hours
Fs with biotinylated FIX, and/or biotinylated FIX preincubated for 1 hour
B with various amounts of cold FIX, scFv or F(ab’), proteins. Plates were washed and a Streptavidin-HRP conjugate was added for 1 hour at RT, followed by TMB/H,0, substrate. Plates were analyzed on a plate reader at 620 nm.
Platelet-dependent coagulation assay - Microtiter plates (Linbro # 76-232-05) were coated with 4 ug/ml of human collagen III (GibcoBRL #12167- 011) in PBS, 1 mM CaCl,, 1 mM Mg Cl, overnight at 4 °C. After washing with PBS the plates were further incubated with Tyrode’s BSA, 2 mM CaCl, for 60 min. at 37° C before use.
Washed platelets were prepared from human citrated whole blood as described (Dennis et al. (1989), Proc. Natl. Acad. Sci. USA 87:2471- 2475). The washed platelets were adjusted to a concentration of approximately 6x10° platelets/ ml in Tyrode’s BSA and allowed to rest for 120 min. at 37°C. After adding 1 mM CaCl, and 1 mM MgCl,, the platelets were activated with ADP (10 uM final conc.). 60 ul of platelet suspension was added per well, the plate centrifuged at 60xg for 5 min. and then the platelets were allowed to firmly adhere to the collagen-coated wells for 60 min at room temperature. The nonadherent platelets were gently decanted and the plate washed twice with PBS containing 1 mM CaCl, and 1 mM Mg Cl,. The collagen-adherent platelet layer was then incubated for 10min with the antibodies in Tyrode's BSA-2 mo Cally (4u wl/welli). 6U gl Of Numan citrated plasma (plasma pool from
Peninsula Blood Bank) recalcified with CaCl, (to 11 mM final conc.) was added to each well. Coagulation was quantified by monitoring the increase in optical density at 405nm on a kinetic microplate reader (SLT Lab
Instruments, model EAR 340AT).
Results
Potent inhibitory effect of scFvs on FIX binding to endothelial cells and on platelet-dependent coagulation - Since the Gla domain of FIX is known to be required for the interaction of FIX with phospholipid and cell surfaces (Ryan et al. (1989), J. Biol. Chem. 264:20283-20287;
Toomey et al. (1992), Biochemistry 31:1806-1808; Cheung et al. (1992), J.
Biol. Chem. 267:20529-20531; Ahmad et al. (1994), Biochem. 33:12048-12055), scFv generated against FIX Gla domain were further tested for their ability to block the binding of FIX to endothelial cells. In a competition assay using bovine aortic endothelial cells, binding of biotinylated FIX to the cells was measured in absence or presence of scFvs from either clones 10C12, 11C5, 11G9, 13D1, 13H6, 14H9, 6Ell ox unlabeled FIX. The results of this experiment are shown in Figure 5A. ScFv from clones 10C12, 13D1, 13H6 and 11G9 exhibited the most potent inhibitory effect on FIX binding, similar to unlabeled FIX (IC50 equivalent to 20-50 nM). ScFv from clones 11C5, 6El1l and 14H9 showed much weaker inhibition (IC50 >300 nM).
The FIX Gla domain also contains a major determinant for binding to platelets (Ahmad et al. (1994), supra). A human platelet-dependent plasma coagulation assay was used to assess the potency of the various scFvs as inhibitors of FIX activity. In this assay, washed human platelets were activated and allowed to adhere to collagen, and platelet-free recalcified human plasma was added. The ongoing coagulation was monitored as change in optical density up to 90 min. Omission of the platelets or use of FIX-deficient plasma in the presence of platelets did not lead to any significant change in absorbance over this time period. These findings indicate that coagulation in this in vitro system is dependent on platelets and FIXa activity. As shown in Figure 5B, scFv from clones 10C12, 11G9, 13H6, and 13D1 completely inhibited clot formation at a concentration of 500 nM. At this concentration, 14H9 had no effect whereas 11C5 showed an intermediate response. At a higher concentration (2 uM), both of these scFv were completely inhibitory. The potencies of the examined scFvs to interfere with FIXa function in this system rank in the same order as in the endothelial cell binding assay. This may indicate that similar structural elements of the Gla domain are recognized by endothelial cells and platelets.
EXAMPLE 6
Methods
Plasma clotting assays - The activated partial thromboplastin time . (APTT) and prothrombin time (PT) of plasma from different species were measured on a ACL 300 (Coulter Corp., Miami, FL) using Actin FS (Dade
Diagnostics, PR) and human relipidated tissue factor reagent Innovin (Dade
International Inc., Miami, FL) as coagulation initiators. For the rabbit
PT, rabbit thromboplastin CC Plus (Dade Diagnostics, PR) was used.
Innovin was a potent initiator of clotting across all species examined here, in agreement with the findings of Janson et al. (1984) Haemostasis 14:440-444 that human relipidated tissue factor can effectively clot plasma from different animal species. The plasma derived from citrated blood of New Zealand white rabbits, C-57 mice, Sprague-Dawley rats and .dogs were prepared by standard procedures and stored at -80°C. Human pooled plasma was obtained from the Peninsula Blood Bank (Burlingame, Ca).
The anti-FIX antibodies were incubated diluted 10-fold in citrated plasma and incubated for 10min before clotting was started by adding Actin FS and CaCl, (for APTT) or Innovin (for PT). The effect of the antibodies was expressed as x-fold prolongation which is the ratio of clotting times in the presence and absence (=control) of antibody.
FX activation by the FVIIIa : FIXa complex on phospholipids - A mixture of 0.5 nM Factor IXa, 0.7 U/ml F.VIII, 200 uM phospholipid vesicles (PC:PS = 7:3) and 10 mM CaCl, in HBSA buffer (0.1 M Hepes, pH 7.5, 0.14 M NaCl, 0.5 mg/ml fatty acid-free BSA) was incubated with o-thrombin (2.8 nM) for 1 min at room temperature to activate FVIII. Thrombin activity was neutralized by addition of 23.3 nM hirudin. The antibodies were added to the mixture and incubated for 20 min at RT before 0.8 uM FX was added. In this final reaction mixture the concentration of reactants was: 0.25 nM FIXa, 0.35 U/ml F.VIIIa, 25 uM p hospholipids, 100 nM FX and mM CaCl,. At different time points 50 pl aliquots were added te 150 pl of 20 mM EDTA to stop the reaction. To measure the FXa concentration in the samples, 50 pl of 1.5 mM 85-2765 was added to each well and the change in absorbance monitored on a kinetic microplate reader (Molecular Devices, 5 Menlo Park, CA). The rates of FXa generation were determined by using linear regression analysis of the FXa concentrations vs. time.
Results
Selective inhibition of FIX function by 10C12 and 13H6 F(ab’), - A number of different functional assays were employed to investigate whether the observed specific binding to FIX by 10C12 and 13H6 also translated into a specific inhibition of FIX/IXa function. Both 13D1, due to its identity to 10Cl2, and 14H9, due to its non-specific binding pattern, were not pursued further. Firstly, we measured the effects of 10C1l2 and 13H6 on the FIX-dependent APTT and the FIX-independent PT in human plasma.
As shown in Figure 9A, both antibodies specifically prolonged the APTT but did not change the PT. A control F(ab’), (anti-neurturin) neither prolonged the APTT nor the PT. Secondly, both 10C12 and 13H6 F(ab)’, strongly interfered with platelet-dependent coagulation, similar to the results obtained with their single chain forms. 10Cl2 was more potent than 13H6 with an ICgo, of 59.0 + 3 nM compared with 173 + 43 nM (Figure 7).
Cross-species reactivity of 10C12 F(ab)’, - The amino acid sequences of FIX-Gla domains of different animal species are much conserved (Fig. 1A), suggesting that an antibody that binds to human FIX-Gla may also recognize plasma FIX/IXa of various animals. The potency of 10C12
F(ab'), to inhibit the APTT in plasma from different species was therefore examined. As shown in Figure 9B, 10Cl1l2 F(ab’), most potently prolonged the APTT in dog and to a lesser extent that in rat and rabbit plasma. The specificity of the antibody effect towards FIX/IXa was evidenced by the absence of any effect on the PT in homologous plasma.
The antibodies were evaluated in a FvVIIIa:FIXa-mediated FX activation assay using phospholipid vesicles (PCPS) (Figure 8). A concentration-dependent inhibition of FX activation rates was observed with half-maximal rate inhibitions of 3.5+1.8 nM for 10C12 and 7.31.3 nM for 13H6. A non-relevant control F(ab'), directed against neurturin (o-
NTN) did not affect the activation rate. Moreover, the antibodies had no effect on the FXa activity to cleave chromogenic substrate S2765 which was used in the second stage of the assay to determine the concentration of newly formed FXa. Therefore, the effect of the antibodies was solely due to interference with intrinsic Xase function. Together these results indicated that both 10C12 and 13H6 F(ab'), specifically inhibited
FIX/FIXa function in agreement with their demonstrated binding specificity in ELISA- type assays.
EXAMPLE 7
Inhibitory Mechanism of 10C12
Methods
Activation of FIX by FXIa. Antibodies were incubated with FIX in 20mM hepes, pH7.5, 0.15M NaCl, 5mM CaCl,, 0.05% BSA (HBSA buffer) using microtiter tubes (8.8x45mm, OPS, Petaluma, CA). After a 20 minute incubation period FXIa was added to start the reaction. The concentration of FIX and FXIa in this reaction mixture were 400nM and 1nM, respectively. 100ul aliquots were taken at 30 sec intervals and quenched in 96-well Costar plates (Corning Inc., Corning, NY) containing 125u1 of 30mM EDTA buffer-60% (v/v) ethyleneglycol. Ethyleneglycol was included because of its enhancing effect on FIXa amdiolytic activity = . {Sturzebecher et al., (1997) FEBS lett., 412:295-300; Neuenschwander et a al., (1997) Thromb. Haemostatsis 78 (Suppl.):428). After adding 25ul of “ 20 . 5SmM FIX substrate #299, FIXa amidolytic activity was measured at 405nm on a kinetic microplate reader (Molecular Devices, Menlo Park, CA). i . Inhibition by the tested antibodies was expressed as fractional rates = (vi/vo) of FIXa generation. ’ : Activation of FIX by tissue factor:F.VIIa complex. TF (1-243) lacking the cytoplasmic domain (Paborsky et al. (198%), Biochemistry 28:8072; Paborsky et al. (1991), J. Biol. Chem. 266:21911-21916) was relipidated with PC/PS (7:3 molar ratio) according to Mimms et al. (1981),
Biochemistry 20:833-840. Membrane TF (mTF) was prepared from a human embryonic kidney cell line (293) expressing full length TF (1-263) (Kelley et al. (1997), supra). The cells were washed in PBS, detached with 10mM
EDTA and centrifuged twice (2500 rpm for 10min). The cell pellet (4-5x107 cells/ml) was resuspended in Tris, pH 7.5 and homogenized in PBS using a pestle homogenizer, followed by centrifugation (2500 rpm on a Beckman
GSA) for 40 min at 4°C. The protein concentration of the cell membrane fraction was determined and the membranes stored in aliquots at -80°C until use.
Antibodies were incubated with FIX in HBSA buffer for 20min in microtiter tubes. A complex of relipidated TF (1-243) (20nM) and FrvIIa
(51M) was pre-formed for at least 10min before it was added to the
FIX/antibody incubation solution. In this reaction mixture the concentrations of relipidated TF (1-243), FVITa and FIX were 4nM, 1nM and 400nM, respectively. For experiments with mTF, a complex of mTF (membrane protein conc. of 750ug/ml) and 5nM FVIIa was pre-formed. This concentration of mTF gave maximal FVIIa activity and was equal to that seen with relipidoted Tr (2 243). The concentoation ol WIE and rviia in tne reaction mixture was 150ug/ml (membrane protein concentration) and 1nM, respectively. 100ul aliquots of the reaction mixture were taken at 30sec
LU intervals and quenched ia 56-well plates (Costar) containing 125pul of 3omM EDTA-buffer-60% (v/v) ethyleneglycol. After adding 25ul of 5mM FIX substrate #299, FIXa amidolytic activity was measured at 405nm on a kinetic microplate reader (Molecular Devices, Menlo Park, CA). Inhibition by the tested antibodies was expressed as fractional rates (vi/vo) of FIXa generation. Using standard curves with FIXab, it was determined that, in both the TF:FVIIa and the FXIa assay, less than 15% of zymogen FIX was converted during the reaction period.
Results
Inhibitory mechanism of 10C12.
The effects of 10Cl2 on FIX activation mediated by FXIa and the
TF:FVIIa complex were examined. Recently, Stuerzebecher et al. (1997), Febs lett. 412:295-300, and Neuenschwander et al. (1997), Thromb. Haemostasis 78 (suppl.) :428 reported that ethyleneglycol enhanced FIXa amidolytic activity towards certain types of chromogenic substrates. A FIX activation assay using ethylenglycol to increase the amidolytic activity of newly generated FIXa was derived. As shown in Figure 103A, 10C12 inhibited conversion cf FIX into FIXa by FXIa in a concentration-dependent manner (ICgy 28.8+1.7ug/ml;+SD). A control antibody, anti-neurturin (NTN), which was also formatted as a leucine-zippered F(ab’),, had no effect.
Because 10C12 binds to the Gla domain of FIX and FIXa, it was not expected that 10C12 would interfere with the ability of FIXa to cleave small chromogenic substrate used to measure the concentration of generated FIXa in the assay. To confirm this assumption, increasing concentrations of FIXa were incubated with 100 ug/ml of 10C1l2 and assayed with FIXa substrate. 10Cl12 did not change the rates of substrate cleavage by FIXa, indicating that 10Cl2 solely inhibited FXIa-dependent activation of FIX, and not FIXa amidolytic activity.
Furthermore, the effects of 10Cl1l2 on the extrinsic activation of FIX were measured by using a complex of relipidated TF(1-243) and FVIIa. 10Cl2 inhibited conversion of FIX with a half-maximal inhibition at 34.2+1.6ug/ml, while a control antibody (NTN) had no effect (Fig. 10B}.
Then, membrane TF (mTF) was used instead of relipidated TF(1-243). As for the assays with relipidated TF (1-243), the concentration of mTF used were saturating in respect to FVIIa enzymatic activity. The results showed that inhibition of FIX activation by 10Cl2 was inhibited in a similar fashion with an ICs; at a somewhat lower concentration (15.4+0.7ug/ml;+SD) as compared to relipidated TF(1-243) (Fig. 10B). To further evaluate the specificity of 10Cl2 for FIX, interference with the function of two other
Gla-containing coagulation factors, FVIIa and FX was examined. The rates of FX (200nM) activation by the relipidated TF(1-243):FVIIa (0.2nM/0.04nM) ‘ complex were measured either after incubating 10C12 for 20min with FVIIa or with the substrate FX. 10C12 at up to 200pg/ml did not inhibit FXa generation in either experimental setting, confirming the specificity of the 10C12 antibody.
Specific inhibition of FIX-dependent coagulation in guinea pig/rat plasma. Whether the specific inhibition of human FIX function by 10C12 was maintained for guinea pig and rat FIX was examined. 10Cl12 was incubated with platelet-poor plasma derived from citrated blood of rat and } guinea pig, and the effects on APTT and PT were measured. 10C1l2 specifically prolonged the APTT in both guinea pig and rat plasma (Fig. 11) . .Two-fold APTT prolongation was at 65ug/ml (650nM) and at 60ug/ml {600nM) for guinea pig and rat, respectively. These potencies were almost identical to that in human plasma where 10Cl2 gave a 2-fold APTT prolongation at 60ug/ml. A control antibody (NTN) neither affected the APTT nor the PT. These data suggested that 10C12 bound and neutralized
FIX/IXa in plasma of guinea pig and rat, yet maintained its specificity, as indicated by the unchanged PT. The observed cross-species reactivity and specificity of 10C12 allowed us to examine the antithrombotic activity in established thrombosis models in guinea pig and rat.
EXAMPLE 8
Administration of anti-IX/IXa Gla Domain Antibodies Prevents Cyclic Flow
Variations in Damaged Carotid Arteries Without Affecting Coagulation or
Bleeding Parameters.
Methods
Production and purification of leucine-zippered 10C12 F(ab’), antibody. cDNAs encoding the variable heavy and light chain of clone
10C12 were amplified by PCR and subcloned into an expression vector containing both human heavy (Fg) and light chain (lambda) constant regions (Carter et al. (1992) Bio/Technology 10:163-157) as well as a leucine zipper sequence (Kostelny et al. (1992), J. Immunol. 14B:1547- 1553) added at the 3’ end of the constant heavy chain sequence. This vector was expressed in E. coli K12 strain 33B6 (fhuA phoA-delta-ElS5delta(argF- lac) 169 deoC2 degP41l (deltaPstI-kanR) IN (rrnDrrnE)1l ilvG2096), derived from the strain W3110. Cells were grown for 46 hours in an aerated 60 liter fermentor at 30°C in a medium that initially contained 12 mg/l tetracycline, 12 g/l digested casein, 5 mM glucose, 47 mM (NH4),S0,, 10 mM
NaH,P0O,, 18 mM X,HPO,, 4 mM trisodium citrate, 12 mM ¥MgSO4, 250 mk FeCl, and 40 mM each of ZnSO, MnSO,;, CuSQO,, CoCl,, H;BO3, and NaMoO,. The fermentation received an automated feed of ammonia:leucine (35:1 molar ratio) to maintain the pH at 7.0 and glucose, adjusted to the highest rate that would prevent acetate accumulation. Operating conditions were sufficient to supply oxygen at 3 mmol/l-min. Expression was induced by phosphate starvation. Final cell density was 160 ODggg- Harvested E. coli cell pellet was stored frozen at -70°C. The frozen pellet was broken into small pieces with a mallet and mixed with 5 volumes of 20 mM MES (2- {N-Morpholino}ethane-sulfonic acid)/2 M urea/5 mM EDTA/0.25 M NaCl, pH 5.0 (extraction buffer) using an ultraturax tissue homecgenizer until a uniform suspension was achieved. The cell suspension was then passed through a homogenizer (Model 15M, Gaulin Corp., Everett, MA) to disrupt the cells.
The extract was clarified by adjusting the mixture to pH 3.5 with 6 N HCl and centrifuging for 20 minutes at 6000 X g. The pH of the supernatant was readjusted to 5.0 using NaOH. The supernatant was conditioned for chromatography by dilution with 4 parts 20 mM MES/2 M urea, pH 5.0, filtered through a 0.2 micron filter (Millipore Corp., Bedford, MA) and applied to a SP-SEPHAROSE fast flow cation exchange resin equilibrated in the dilution buffer. The column was washed extensively in the same buffer and then with 20 mM MES, pH 5.0. The column was eluted in two steps using 0.5 M NaCl and 1 M NaCl in 20 mM MES buffer, pH 5.0. The 10C12 leucine-zippered F(ab‘), was recovered in the 1 M NaCl/20 mM MES fraction.
The SP-SEPHAROSE pool was loaded in multiple cycles to a Protein G-
SEPHAROSE fast flow column. The column was equilibrated and washed with 20 mM Tris/0.5 M NaCl, pH 7.5. Elution was with 0.1 M acetic acid/0.15 M
NaCl, pH 3.0, and the column was regenerated after each cycle with 20 mM
Tris/2 M guanidine HCl, pH 7.5. The combined protein G pools were concentrated approximately 20-fold using an Amicon stirred cell system (Amicon Inc., Beverly, MA) equipped with a YM30 membrane. The concentrated pool was buffer exchanged using a SEPHADEX G25 column run in 20 mM
NaPO,/0.15 M NaCl, pH 7.0. The G25 pool was passed through a Q-SEPHAROSE ’ 5 fast flow column in 20 mM NaPO,/0.15M NaCl, pH 7.0, for endotoxin removal.
The final pool contained 12.5 EU/mg protein and was passed through a 0.22 micron filter.
As a control antibody for all experiments, the anti-neurturin leucine-zippered F(ab’), antibody (NTN) was used. This antibody was also produced in E.coli and was purified over a protein G fast flow column. The leucine-zippered control F(ab’), and the leucine-zippered 10Cl2 F(ab’), will be simply referred to as anti-neurturin antibody (NTN) and 10C12 antibody. The molecular weight of both antibodies was calculated as 100,000. - Arterial thrombosis model in the guinea pig. Experiments were performed as described by Carteaux et al. (1995), Circulation 91:1568- 1574). GOHI male guinea pigs (350-450 g, BRL, Fillinsdorf, Switzerland) . were anesthetized by i. m. injection of 40 mg/kg ketamine HCl (Ketasol- : 100%, Graub AG, Bern, Switzerland) and 5 mg/kg xylazine 2% (Rompun®, Bayer
AG, Leverkusen, Germany). A catheter pressure transducer (Millar 2F Mikro-
Tip SPC-320 Millar Instr. Inc. Houston, TX) was inserted into the right femoral artery to measure blood pressure and heart rate. Into the left femoral artery was placed a catheter (TriCath In 22G, Codan,
Espergaerde, DK) for blood sampling. A left jugular vein catheter (TriCath
In 22G) was also inserted for drug administration. The right carotid artery was dissected free and a 0.8 mm diameter silicone cuff-type Doppler flow probe (type D-20-0.8, Iowa Doppler Products, IA) was connected to a 20
MHz pulsed Doppler flowmeter module (System 6-Model 202, Triton
Technology, Inc. San Diego, CA) to monitor the blood flow velocity. Blood pressure (mm Hg), heart rate (beats/min) and carotid blood flow velocity (Volts) were recorded on a Graphtec Linear recorder VII (Model WR 3101,
Hugo Sachs, March-Hugstetten, Germany).
Guinea pigs received a single bolus of saline, 10Cl1l2 or control antibody (NTN) via the left jugular vein catheter and after 15 minutes vascular damage was initiated. Two millimeter distally to the Doppler flow probe, damage to the subendothelium was induced by pinching a 1-mm segment of the dissected carotid artery with a rubber covered forceps during 10 s as previously described (Carteaux et al. (1995), supra; Roux et al.
(1994), Haemostasis 71:252-256). After damage, the carotid blood flow velocity would typically decline to complete occlusion followed by restoration of flow upon gentle shaking cf the damaged area tc disladge the thrombus. The pattern of cyclic flow variations (CFVs) were established similar to those described by Folts (1981), Circulation 83:Supple. IV:3-14) in a dog coronary thrombosis model. If no CFVs were opserved for 5 minutes, an adaltional pimnci was performed on top of the first damage. The same procedure was repeated every 5 minutes till
CFVs occurred. Finally, the number of pinches necessary to produce the
LL CrVs were counted over the 40-minute observation period. It was assumed that several pinches are likely to increase the thrombogenicity of the subendothelial layer of the carotid artery, thus a thrombosis index was calculated as the ratio of the number of CFVs to the number of pinches (Carteaux et al. (1995), supra). Under these experimental conditions the calculated shear rate of the carotid artery was around 1500-2800 s™' (Roux et al. (1994), supra).
Blood was collected prior to inhibitor administration (pre-value) and at 60 min following drug administration (post-value) for measurement of activated clotting time (ACT), prothrombin time (PT), activated partial thromboplastin time (APTT) and blood cell counts. Nail cuticle bleeding times were also measured in these animals at the pre- and post- experimental periods. Thrombus initiation and sample collection times were based on a pilot pharmacokinetic study in which prolongation of APTT reached a maxima within 15 minutes of IV bolus dosing (5 mg/kg, n=2} and then remained essentially unchanged over the following 2 hours. Sample handling, coagulation assays and bleeding time methods are described below.
Cuticle bleeding time measurements in the guinea pig. The cuticle bleeding method was adapted from dog (Giles et al. (1982), Blood 60:727- 731) and rabbit (Kelley et al. (1997), Blood 89:3219-3227, Himber et al. (1997), Haemostasis 78:1142-1149) models of coagulation dependent bleeding.
A standard cut was made at the apex of the nail cuticle by the mean of scissors. Blood was allowed to flow freely by maintaining the paw in contact with the surface of 38°C water. Cuticle bleeding time was determined as the amount of time that blood continued to flow from the transected cuticle. This procedure was performed in triplicate for both pre- and post-dose (60 minutes) determinations. The ratio of post- treatment to pre-treatment was calculated by dividing the mean of the post-treatment value by the mean of the pre-treatment value.
Results
Antithrombotic and hemostatic effects of 10C12 in guinea pig. To evaluate 10Cl2's antithrombotic potential in-vivo, a previously established guinea pig arterial thrombosis model of cyclic flow variations (CFVs) was used. In 12 control animals which received saline, the number of CFVs during the 40min measurement period was 11.2+1 (+SEM) and the calculated thrombosis index was 9.3+1.5. Administration of a control antibody (NTN) gave 13.7+1.8 CFVs and a thrombosis index of 12.5+2.11. Neither of these thrombotic nor any of the hemostatic endpoints were significantly different from the saline control. Therefore, saline and NTN control data were pooled for subsequent comparison to 10C12 - treatments. The mean (+SEM) thrombosis index of the pooled controls was 10.4+1.2. As shown in figure 12, bolus administration of increasing concentrations of 10Cl2 resulted in a dose-dependent reduction of CFVs, reaching a highly significant reduction at 6ug/kg (p<0.0l1) and complete inhibition of CFVs at 60ug/kg. At all tested doses, including 1000ug/kg, - the blood pressure, heart rate, hematocrit, and blood cell counts remained . unchanged (data not shown). Likewise, 10C12 did not significantly affect (p>0.05 in Kruskal-Wallis test) the APTT, ACT or PT up to 1000ug/kg ’ (Table I). However there was a dose dependent increase in APTT and ACT but not PT which reached statistical significance (p<0.01) at 1000ug/kg : if a 2-tail t-test was used to compare individual dose groups against the control.
Table I. Effects of 10C12 antibody on coagulation parameters in guinea pig. Data are mean+SEM
Rx Number of APTT PT prolongation ACT Cuticle bleeding animals prolongation (post/pre)* prolongation time (post/pre)* (post/pre)* prolongation (post/pre) A
Control 8 18 1.10+0.03 1.09+0.01 0.97+0.02 1.0040.03 10C12 - 3 nghke 7 1.15+0.05 1.08+0.01 1.06:0.02 0.90+0.02 - 6 ugkg 7 1.07+£0.03 1.08+0.02 0.97+0.03 0.92+0.06 - 10 ugkg 6 1.11£0.06 1.06£0.03 1.04£0.03 1.01+0.09 - 60 ng/kg 3 1.18£0.10 1.10+£0.01 1.01£0.09 0.78+0.04 - 1000 ng/kg 3 1.31£0.07 1.04+0.02 1.23+0.14 0.97+0.05 —_—
A Measurements taken before (pre-treatment) and 60 minutes after (post- treatment) Rx administration. 8 pooled data from saline control and contrel antibody (NTN) experiments
The effect eof 10C12 on normal hemostasis was assessed by measuring the cuticle bleeding time, which has previously been shown to be coagulation dependent in dogs and rabbits. The bleeding time was weasured pefore LuCl4 administracion (pre-value) and at the end of the experiment (post-value; 60min after bolus administration). Despite its potent antithrombotic effect 10C12 did not prolong the cuticle bleeding time. Even at 1000ug/kg the cuticle bleeding time remained unchanged (Table I). The effect of the highest dose of 10012 (1000ug/kg) on cuticle bleeding at an earlier time point was accessed in a separate group of guinea pigs. In these experiments the cuticle bleeding time, incidence of rebleeding and total blood loss were measured at 1 minute rather than 60 minutes post treatment. As shown in Table II, there was a trend towards an increase in these parameters in the 10C12 treated group.
However, in no case was the increase statistically significant.
Furthermore, in most cases (8 out of 9 in controls and 4 out of 6 in 10Cl12 treated) bleeding ceased entirely after primary hemostasis was complete.
Table I1. Comparative effects of 10C12 antibody on cuticle bleeding in guinea pig and rat. Data are mean+SEM
Species Number of Cuticle Rebleed® Total blood loss ©
Rx Animals bleeding (number) (mg) time * (min)
Sty Ay U5 EEA ee guinea pig
Control P 9 3.10.4 1 90=21 10C12 - 1000 ng/kg 6 4.5+0.7 2 137£37 ee — rat
Control ° 10 2.50.4 10 494x105 10C12 - 1000 ng/kg 10 2.6£0.5 10 593x197
Cs
A Measurements taken 1 minute after Rx administration ® number of animals which have a cuticle bleeding episode after initial cesation of bleeding © total amount of blood shed over 30 minutes (from cuticle transection) ® pooled data from saline control and control antibody (NTN) experiments
EXAMPLE 9
Administration of anti-IX/IXa gla Domain Antibodies Reduces Clot Weight and Duration of Vessel Occlusion in an Arterial Thrombosis Model.
Methods
FeCl;-induced arterial thrombosis model in the rat. The model of
Kurz et al. (1990), Thromb. Res. 60:269-280, was modified as follows.
Dosing and sampling catheters (PE 50 polyethylene tubing, Becton Dickinson and Co., Sparks, ML ) were placed in the femoral vein and artery of an isoflorane anesthetized, Sprague Dawley, male rat (Harlan Labs,
Indianapolis, IND). Rat body weights ranged from 420 to 460 grams. Body temperature was maintained at 37°C throughout the surgical and experimental periods. The carotid artery was dissected free of its surrounding tissue and a ultrasonic flow probe (Transonic IR, Transonic
Systems Inc., Itheca, NY) was placed on the artery proximal to the heart.
Thrombosis was induced by placing a slit polyethylene tubing (PE 205) containing a 3 mm diameter filter paper disc saturated with 70% FeCl; ; around the exposed artery cranial to the probe. Blood flow was monitored . prior to and for 60 minutes following placement of the disc. 10C12, NTN : or heparin were diluted to the appropriate concentration in sterile saline for injection. Various doses of 10Cl2 or NTN were administered as a : single bolus of 1 ml. Heparin was administered as a loading bolus (100U/kg) followed by a constant infusion (1U/kg/min) over 65 minutes (total volume of 2 ml). Controls for the heparin administration consisted of saline for injection administered over the same time period and at the same volume. All treatments were administered via the venous catheter 5 minutes prior to disc placement. At one minute (NTN and 10C12 treatments) or 30 minutes (saline and heparin treatments) post dosing tail bleeding times were measured as described below. At 60 minutes, the artery was excised and any thrombus present was removed, blotted with filter paper and weighed. Thrombosis endpoints recorded were the incidence and duration of occlusion, and thrombus weight. Blood samples were drawn from the arterial catheter at predose and at 1, 35 and 65 minutes after dosing. These samples were analyzed for PT, APTT and ACT as described.
Measurements of tail bleeding time and blood loss in the rat thrombosis model. Tail bleeding time was determined by a modification of the free hand tail transection method described by Dejana et al.
(1982), Thromb. Haemostasis 48:108-111). During the experimental period the rat was maintained supine on an elevated platform such that its tail was perpendicular to the plane of the body. Tail temperature was kept at 37°C by placing it through the inner lumen of a water jacketed condenser (Kontes Glass, Baxter Healthcare Corp., Deerfield, IL) attached to a thermostatically controlled water recirculator (American Medical
Systems, Cincinnati, UH). With this contiguration, approximately 10 mm of the tail tip was accessible for transection. Tail bleeding times were measured following transection of 5 mm of the tail tip with =a veterinary nail clipper {Resco model 727 with #400 blade, Tecla Co Inc,
Walled Lake MI). This procedure was performed at one minute (NTN and 10C12 treatments) or 30 minutes (saline and heparin treatments) post dosing. These sampling times were selected to coincide with the time at which blood concentrations of the test reagents and therefore hemostatic effects were presumed to be near maximal for the bolus and infusion regimens used to administer the respective test reagents. Blood drops were collected at 30 second intervals into a pre-weighed microfuge tube. Bleeding time was recorded as the time before bleeding was completely arrested or drops required >30 seconds to form. At this time a second tube was placed under the tail to collect any additional blood (secondary blood loss) that was shed for up to 30 minutes after the tail transection. After this 30 minute collection period, the wound was cauterized to prevent additional blood loss. The total amount of blood lost over 30 minutes was determined by summing the weight of blood collected in the two tubes.
Additional cuticle bleeding time and blood loss experiments in guinea pig and rat. Because there were differences in how guinea pig cuticle bleeding and rat tail bleeding responded to 10Cl2 treatment, additional bleeding measurements were performed in order to identify the source of the discrepancy. In these additional experiments, the same methodology was used to measure bleeding in both guinea pigs and rats. Briefly, the animals were anesthetized and dosing catheters placed as described in the respective thrombosis models. However, blood samples, blood pressure or thrombosis measurements were not taken. One minute following administration of control (saline or NTN) or 1000 pg/kg of 10C1l2 as an IV bolus, the cuticle was transected and bleeding time, rebleeding and total blooed loss where measured as described above for the rat tail bleeding assay.
Results
Antithrombotic and hemostatic effects of 10C12 and heparin in rat.
The effects of 10C12 and heparin in the rat FeClj-induced arterial thrombosis model were examined. The antithrombotic efficacy was assessed by measuring the incidence and duration of vessel occlusion during the 60min period following application of FeCl. In addition, the weight of thrombus recovered at the termination of the experiment was measured. Representative carotid artery blood flow tracings of a saline control and a 10Cl1l2 treated rat are shown in Figure 13. Following bolus administration of the control antibody (NTN at 2000ug/kg) none of the thrombotic nor any of the hemostatic endpoints were significantly different from the saline control. Therefore, saline and NTN control : data were pooled for subsequent comparison to 10C12 and heparin treatments. Occlusion occurred in 10 out of 10 control animals at an average time of 14.1+1.5min. With the exception of one animal, in which arterial flow briefly recovered before reoccluding, occlusion was sustained for the remainder of the experiment. The clot weight of controls was 2.8+0.2mg and the duration of vessel occlusion was 44 .7+2.6min (Fig. 14). Administration of 10Cl2 at 500ug/kg had no ' 20 effect on either parameter nor on incidence of occlusion (5 out of 5). : At 1000ug/kg the incidence of occlusion decreased to 2 out of 5 : (P<0.05 vs control), while the clot weight was reduced to 0.66+0.17mg (23.6+6.1% of control) and the duration of vessel occlusion decreased to 9.6+8.9min (21.5+19.9% of control) (Fig. 14). At the highest dose of 2000ug/kg, 10C12 further reduced the incidence of occlusion to 0 out of 5 (P<0.001 versus control), while average clot weight decreased to 0.26+0.08mg (9.2+2.3% of control) (Fig. 14). The effects on APTT/PT/ACT were determined from measurements in blood samples taken prior to and at multiple time points after drug administration. Since these parameters remained stable during the 60 minutes post dosing period, the 30 minute post dose values were selected for comparison to the predose value. 10C12 produced modest, dose dependent prolongation of the APTT and ACT whereas the PT was not affected (Table III), demonstrating the specificity of 10C12 in vivo. In comparison, administration of heparin (100U/kg bolus and 1U/kg/min infusion rate) had dramatic effects on the
APTT in addition to affecting the ACT and PT (Table III) without completely reducing the clot weight or restoring vessel patency (Fig. 14).
Table 11l. Effects of 10C12 antibody and heparin on coagulation parameters in rat nlasma. Nata arc mean+SEM
I —
Rx Number of APTT prolongation PT prolongation ACT animals (post/pre) A (pust/pre) prolongation (post/pre) A
Ee ————p—
Control 3 10 1.00+0.02 0.98+0 N1 0.001002 10C12 - 500 ng/kg 5 1.13+0.14 0.97+0.01 1.06+0.02 * - 1000 ng/kg 5 1.23£0.10 0.99+0.01 1.14+£0.05 ** - 2000 pg/kg 5 1.67+0.15 xx 0.57+0.02 1.20+0.09 **
Heparin - 1U/kg/min 5 121+ £.37 xx 1.2420.0% x 2.16+5.13 ## et —— a ——
A» Measurements taken before and 35 minutes after Rx administration. ® pooled data from saline control and control antibody (NTN) experiments * P=0.05, ** P=0.01 (Mann-Whitney post hoc after Kruskal-Wallis Test)
As shown in table IV, none of the antithrombotically active doses of 10C12 prolonged the tail bleeding time. However, major effects of 10C12 on total blood loss were observed. In control animals, primary hemostasis at the transected tail was complete after 2.0+0.3min and the weight of blood collected during this time period was 31.1x9.4mg.
In contrast to the transected guinea pig cuticle, all of the control tail wounds either continued to ooze blood (at a rate of less than one drop of blood per 0.5 minutes), or in some cases began to rebleed intermittently. In spite of oozing and/or resumed bleeding, the average blood loss during this secondary period was small (57.1+32.0 mg) relative to the time period (mean = 48 minutes) over which the blood was collected. Administration of 10C12 exacerbated this secondary blood loss, thus increasing the total blood loss (Table IV). Although animal to animal variation was considerable, secondary blood loss increased in a dose dependent manner and the increase was statistically significant at all of the doses tested. Primary blood loss was not significantly affected. Heparin also caused increased cumulative blood loss. However, in contrast to 10C12 this increased bleeding was primarily due to delayed hemostatic plug formation reflected in prolonged tail bleeding times and increased primary blood loss (Table IV).
Table 1V. Effects of 10C12 antibody and heparin on bleeding time and blood loss in the rat. Data are mean+SEM : ett EEE —————— EE
Rx Number Tail bleeding Primary Secondary Total of animals time “ (min) blood blood © loss blood loss (mg) (mg) loss = (mg) ae EE
Control E 10 2.0£0.3 31.1494 57.1232 88.2432.5 10C12 -500 ng/kg 5 2.0+0.4 78.841 4244216 * 503£257 - 1000 pg/kg 5 2.30.2 70.8+25 473+198 ** 5444209 ** -2000 ng/kg 5 2.60.8 117+67 558+280 ** 6741343 **
Heparin - 1U/kg/min 5 16.5£5.6 ** 3194195 178+77.2 497+£142 **
A ———
A Measurements taken 1 minute after Rx administration
B amount of blood shed during bleeding time measurement € amount of blood shed after cessation of initial bleeding to 30 minutes after tail transection . P total amount of blood shed over 30 minutes (from tail transection) h 15 E pooled data from saline control and control antibody (NTN) experiments i * p=0.05, ** p=0.01 (Mann-Whitney post hoc after Kruskal-Wallis Test wh Rat cuticle bleeding. Because the pattern of blood loss following as 10C1l2 administration in the guinea pig cuticle and the rat tail were so
FE different cuticle bleeding experiments were performed in a separate
RT 20 group of rats. As in the rat tail bleeding experiments, oozing and or rebleeding occurred at the transected cuticle of both control and treated animals (10C12 at a dose of 1000ug/kg). However, in contrast to the tail bleeding assay, 10C12 did not enhance secondary bleeding at the rat cuticle, as there was no difference in cuticle bleeding time, incidence of rebleeding or total blood loss between control and 10Cl2 treated animals (Table II).
Claims (23)
1. A camposition comprising a human antibody or antibody E£ragment reactive with the factor IX/IXa Gla domain.
2. The composition of claim 1 wherein the antibody or antibody fragment is selected [rom the group consisting ob (a) a parent antibody or antibody fragment comprising: a heavy chain variable domain comprising a CDR1, a CDR2 and a CDR2 amino acid sequence wherein the amino acid sequence of CDR1 is selected from the group consisting of: SEQ ID NO: 10 and SEQ ID NO: 21; the amino acid sequence of CDR2 is selected from the group consisting of: SEQ ID NO: 11 SEQ ID NO: 16 SEQ ID NO: 18 SEQ ID NO: 20 and SEQ ID NO: 22; the amino acid sequence of CDR3 is selected from the group consisting of: SEQ ID NO: 12 SEQ ID NO: 17 SEQ ID NO: 192 and SEQ ID NO: 23; (b) a variant of (a) having an affinity of at least that of the parent antibody or antibody fragment for the human factor IX/IXa Gla domain; and (¢) a variant of (a) which competes with the parent antibody for binding the human factor IX/IXa Gla domain.
3. The antibody composition of claim 2 wherein the heavy chain variable region comprises SEQ ID NO: 10, SEQ ID NO: 11 and SEQ ID NO: 12.
4. The antibody composition of claim 2 wherein the heavy chain variable region comprises SEQ ID NO: 10, SEQ ID NO: 16 and SEQ ID NO: 17.
5. The antibody composition of claim 2 wherein the heavy chain variable region comprises SEQ ID NO: 10, SEQ ID NO: 18 and SEQ ID NO: 195.
6. The antibody composition of claim 2 wherein the heavy chain variable region comprises SEQ ID NO: 10, SEQ ID NO: 20 and SEQ ID NO: 12.
7. The antibody composition of claim 2 wherein the heavy chain variable region comprises SEQ ID NO: 21, SEQ ID NO: 22 and SEQ ID NO: 23.
8. The composition of claim 2 wherein the parent antibody or antibody fragment additionally comprises a light chain (lc) variable domain comprising a lc-CDR1, a lc-CDR2 and a 1lc-CDR3 amino acid sequence wherein the amino acid sequence of the lc-CDR1 is selected from the group consisting of: : SEQ ID NO: 13 and SEQ ID NO: 24; the amino acid sequence of the 1lc-CDR2 is selected from the group consisting of: SEQ ID NO: 14 and SEQ ID NO: 25 and the amino acid sequence of the 1c-CDR3 is selected from the group consisting of: SEQ ID NO: 15 and SEQ ID NO: 26.
9. The antibody composition of claim 8 wherein the light chain variable region comprises SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15.
10. The antibody composition of claim 8 wherein the light chain variable region comprises SEQ ID NO: 24, SEQ ID NO: 25, and SEQ ID NO: 26.
11. The antibody composition of claim 8 wherein the heavy chain variable region comprises SEQ ID NO: 10, SEQ ID NO: 11 and SEQ ID NO: 12 and wherein the light chain variable region comprises SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15.
12. The antibody composition of claim 8 wherein the heavy chain variable region comprises SEQ ID NO: 10, SEQ ID NO: 16 and SEQ ID NO: 17 and wherein the light chain variable region comprises SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15.
30... WO 0012562 PCT/US99/19453
13. The antibody composition of claim 8 wherein the heavy chain variable region comprises SEQ ID NO: 10, SEQ ID NO: 18 and SEQ ID NO: 19 and wherein the light chain variable region comprises SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15.
14. The antibody composition of claim 8 wherein the heavy chain variable region comprises SEQ ID NO: 10, SEQ ID NO: 20 and SEQ ID NO: 12 and wherein the light chain variable region comprises SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15.
15. The antibody composition of claim 8 wherein the heavy chain variable region comprises SEQ ID NO: 21, SEQ ID NO: 22 and SEQ ID NO: 23 and wherein the light chain variable region comprises SEQ ID NO: 24, SEQ ID NO: 25, and SEQ ID NO: 26.
15 .
16. Isolated nucleic acid encoding the antibody or antibody fragment of claim 1.
17. A vector comprising the nucleic acid of claim 16.
18. A host cell comprising the vector of claim 17.
19. A method of producing an antibody or antibody fragment comprising culturing the host cell of claim 18 under condition wherein the nucleic acid is expressed.
20. An article of manufacture comprising } (a) a container; (b) a label on said container; and (c) a composition comprising an antibody or antibody fragment of claim 1 contained within said container; wherein the composition is effective for treating a coagulation disorder and an optional label on said container indicates that the composition can be used for treating a coagulopathic disorder.
21. The use of a composition in a method of treating a thrombotic or coagulophathic disorder or disease in a mammal comprising -64~ AMENDED SHEET 20.07.2001
: PCT/US99/19453 be, ey WO 00/12562 administering a therapeutically effective amount of the composition comprising the antibody or antibody fragment of claim 1 to the mammal.
22. A pharmaceutical composition comprising the antibody or antibody fragment of claim 1.
23. A composition according to claim 1 substantially as herein described with reference to any one of Examples Z to 9. ~-65- AMENDED SHEET 20.07.2001
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9823398P | 1998-08-28 | 1998-08-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
ZA200100681B true ZA200100681B (en) | 2002-01-24 |
Family
ID=27733482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ZA200100681A ZA200100681B (en) | 1998-08-28 | 2001-01-24 | Human anti-factor IX/IXA antibodies. |
Country Status (1)
Country | Link |
---|---|
ZA (1) | ZA200100681B (en) |
-
2001
- 2001-01-24 ZA ZA200100681A patent/ZA200100681B/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7354585B2 (en) | Methods of treating coagulapathic or thrombotic disorders | |
EP2321356B1 (en) | Monoclonal antibodies against tissue factor pathway inhibitor (tfpi) | |
US20080075723A1 (en) | Endotheliase 2 ligands | |
JP2014506257A (en) | Plasma kallikrein binding protein | |
TW201802121A (en) | Reversal binding agents for anti-factor XI/XIa antibodies and uses thereof | |
US10144784B2 (en) | Monoclonal antibodies against antithrombin beta | |
ZA200100681B (en) | Human anti-factor IX/IXA antibodies. | |
MXPA01001687A (en) | HUMAN ANTI-FACTOR IX/IXa ANTIBODIES | |
AU2013202752B2 (en) | Monoclonal antibodies against tissue factor pathway inhibitor (TFPI) |