WO2025019473A1 - Isoxazole-3-carboxyamide compounds for enhancing telomerase reverse transcriptase (tert) expression - Google Patents
Isoxazole-3-carboxyamide compounds for enhancing telomerase reverse transcriptase (tert) expression Download PDFInfo
- Publication number
- WO2025019473A1 WO2025019473A1 PCT/US2024/038153 US2024038153W WO2025019473A1 WO 2025019473 A1 WO2025019473 A1 WO 2025019473A1 US 2024038153 W US2024038153 W US 2024038153W WO 2025019473 A1 WO2025019473 A1 WO 2025019473A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compound
- compounds
- tert
- cells
- cell
- Prior art date
Links
- 108010017842 Telomerase Proteins 0.000 title claims abstract description 128
- 102100032938 Telomerase reverse transcriptase Human genes 0.000 title claims abstract description 116
- 230000014509 gene expression Effects 0.000 title claims abstract description 94
- 230000002708 enhancing effect Effects 0.000 title claims abstract description 59
- RRKRAAFZEQHDKI-UHFFFAOYSA-N 2-(1,2-oxazol-3-yl)acetamide Chemical class NC(=O)CC=1C=CON=1 RRKRAAFZEQHDKI-UHFFFAOYSA-N 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 253
- 238000000034 method Methods 0.000 claims abstract description 132
- LKYNGTHMKCTTQC-UHFFFAOYSA-N 1,2-oxazole-3-carboxamide Chemical class NC(=O)C=1C=CON=1 LKYNGTHMKCTTQC-UHFFFAOYSA-N 0.000 claims abstract description 12
- -1 isoxazole-3-carboxamide compound Chemical class 0.000 claims description 47
- 125000003118 aryl group Chemical group 0.000 claims description 31
- 241000124008 Mammalia Species 0.000 claims description 28
- 125000000217 alkyl group Chemical group 0.000 claims description 23
- 230000032683 aging Effects 0.000 claims description 18
- 239000001257 hydrogen Substances 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- 125000000623 heterocyclic group Chemical group 0.000 claims description 14
- 239000008194 pharmaceutical composition Substances 0.000 claims description 13
- 125000001931 aliphatic group Chemical group 0.000 claims description 11
- 125000002795 guanidino group Chemical group C(N)(=N)N* 0.000 claims description 10
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 10
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 9
- 239000003937 drug carrier Substances 0.000 claims description 7
- 125000001544 thienyl group Chemical group 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 230000001965 increasing effect Effects 0.000 abstract description 21
- 210000004027 cell Anatomy 0.000 description 122
- 239000000203 mixture Substances 0.000 description 49
- 238000003556 assay Methods 0.000 description 41
- 238000011282 treatment Methods 0.000 description 36
- 108090000623 proteins and genes Proteins 0.000 description 34
- 102100025169 Max-binding protein MNT Human genes 0.000 description 30
- 230000027455 binding Effects 0.000 description 30
- 108091006107 transcriptional repressors Proteins 0.000 description 30
- 108091035539 telomere Proteins 0.000 description 29
- 102000055501 telomere Human genes 0.000 description 29
- 210000003411 telomere Anatomy 0.000 description 28
- 235000018102 proteins Nutrition 0.000 description 27
- 102000004169 proteins and genes Human genes 0.000 description 27
- 238000012216 screening Methods 0.000 description 27
- 230000000694 effects Effects 0.000 description 25
- 210000003491 skin Anatomy 0.000 description 22
- 125000004432 carbon atom Chemical group C* 0.000 description 21
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 21
- 241001465754 Metazoa Species 0.000 description 19
- 201000010099 disease Diseases 0.000 description 19
- 238000009472 formulation Methods 0.000 description 18
- 125000004429 atom Chemical group 0.000 description 16
- 150000003839 salts Chemical class 0.000 description 16
- 125000000753 cycloalkyl group Chemical group 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 230000001225 therapeutic effect Effects 0.000 description 15
- 125000001072 heteroaryl group Chemical group 0.000 description 14
- 208000030507 AIDS Diseases 0.000 description 13
- 125000001424 substituent group Chemical group 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 239000003814 drug Substances 0.000 description 12
- 239000003112 inhibitor Substances 0.000 description 12
- 108020004999 messenger RNA Proteins 0.000 description 11
- 230000009758 senescence Effects 0.000 description 11
- 210000004927 skin cell Anatomy 0.000 description 11
- 101100048228 Homo sapiens UBP1 gene Proteins 0.000 description 10
- 208000025500 Hutchinson-Gilford progeria syndrome Diseases 0.000 description 10
- 208000007932 Progeria Diseases 0.000 description 10
- 101100117629 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) LCB3 gene Proteins 0.000 description 10
- 102100040065 Upstream-binding protein 1 Human genes 0.000 description 10
- 238000002347 injection Methods 0.000 description 10
- 239000007924 injection Substances 0.000 description 10
- 239000003981 vehicle Substances 0.000 description 10
- LUKBXSAWLPMMSZ-OWOJBTEDSA-N Trans-resveratrol Chemical compound C1=CC(O)=CC=C1\C=C\C1=CC(O)=CC(O)=C1 LUKBXSAWLPMMSZ-OWOJBTEDSA-N 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 125000004122 cyclic group Chemical group 0.000 description 9
- 125000005842 heteroatom Chemical group 0.000 description 9
- 150000002431 hydrogen Chemical group 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 206010053138 Congenital aplastic anaemia Diseases 0.000 description 8
- 230000004568 DNA-binding Effects 0.000 description 8
- 201000004939 Fanconi anemia Diseases 0.000 description 8
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- QNVSXXGDAPORNA-UHFFFAOYSA-N Resveratrol Natural products OC1=CC=CC(C=CC=2C=C(O)C(O)=CC=2)=C1 QNVSXXGDAPORNA-UHFFFAOYSA-N 0.000 description 8
- 238000012258 culturing Methods 0.000 description 8
- 239000000839 emulsion Substances 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- 125000001183 hydrocarbyl group Chemical group 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 230000002401 inhibitory effect Effects 0.000 description 8
- 239000000546 pharmaceutical excipient Substances 0.000 description 8
- 230000003716 rejuvenation Effects 0.000 description 8
- 230000003362 replicative effect Effects 0.000 description 8
- 238000011160 research Methods 0.000 description 8
- 210000001519 tissue Anatomy 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 102100033658 Alpha-globin transcription factor CP2 Human genes 0.000 description 7
- 241000282412 Homo Species 0.000 description 7
- 101000800875 Homo sapiens Alpha-globin transcription factor CP2 Proteins 0.000 description 7
- 208000027418 Wounds and injury Diseases 0.000 description 7
- 125000003342 alkenyl group Chemical group 0.000 description 7
- 210000001185 bone marrow Anatomy 0.000 description 7
- 210000002798 bone marrow cell Anatomy 0.000 description 7
- 239000006071 cream Substances 0.000 description 7
- 210000002889 endothelial cell Anatomy 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 125000005647 linker group Chemical group 0.000 description 7
- 150000003833 nucleoside derivatives Chemical class 0.000 description 7
- 235000021283 resveratrol Nutrition 0.000 description 7
- 229940016667 resveratrol Drugs 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 229940124597 therapeutic agent Drugs 0.000 description 7
- 230000000699 topical effect Effects 0.000 description 7
- 238000002054 transplantation Methods 0.000 description 7
- 241000725303 Human immunodeficiency virus Species 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 101150047500 TERT gene Proteins 0.000 description 6
- 241000700605 Viruses Species 0.000 description 6
- 206010052428 Wound Diseases 0.000 description 6
- 125000002947 alkylene group Chemical group 0.000 description 6
- 125000000304 alkynyl group Chemical group 0.000 description 6
- 125000003710 aryl alkyl group Chemical group 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 230000004071 biological effect Effects 0.000 description 6
- 210000000988 bone and bone Anatomy 0.000 description 6
- 230000010094 cellular senescence Effects 0.000 description 6
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 6
- 238000002648 combination therapy Methods 0.000 description 6
- 230000006378 damage Effects 0.000 description 6
- 239000003085 diluting agent Substances 0.000 description 6
- 150000002148 esters Chemical class 0.000 description 6
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 208000002780 macular degeneration Diseases 0.000 description 6
- 230000010807 negative regulation of binding Effects 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 6
- 230000002062 proliferating effect Effects 0.000 description 6
- 238000004904 shortening Methods 0.000 description 6
- 230000035882 stress Effects 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 239000003826 tablet Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- 208000024827 Alzheimer disease Diseases 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 108010010803 Gelatin Proteins 0.000 description 5
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 5
- 208000001132 Osteoporosis Diseases 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 239000004480 active ingredient Substances 0.000 description 5
- 239000013543 active substance Substances 0.000 description 5
- 125000003545 alkoxy group Chemical group 0.000 description 5
- 239000003443 antiviral agent Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000004166 bioassay Methods 0.000 description 5
- 210000004204 blood vessel Anatomy 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 230000001413 cellular effect Effects 0.000 description 5
- 208000019425 cirrhosis of liver Diseases 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 5
- 239000002552 dosage form Substances 0.000 description 5
- 239000008273 gelatin Substances 0.000 description 5
- 229920000159 gelatin Polymers 0.000 description 5
- 235000019322 gelatine Nutrition 0.000 description 5
- 235000011852 gelatine desserts Nutrition 0.000 description 5
- 238000011194 good manufacturing practice Methods 0.000 description 5
- 125000004404 heteroalkyl group Chemical group 0.000 description 5
- 210000000987 immune system Anatomy 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 210000002569 neuron Anatomy 0.000 description 5
- 239000002417 nutraceutical Substances 0.000 description 5
- 235000021436 nutraceutical agent Nutrition 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 230000036542 oxidative stress Effects 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 239000000825 pharmaceutical preparation Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 239000012453 solvate Substances 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000000829 suppository Substances 0.000 description 5
- 230000004083 survival effect Effects 0.000 description 5
- 239000002562 thickening agent Substances 0.000 description 5
- 201000001320 Atherosclerosis Diseases 0.000 description 4
- 208000024172 Cardiovascular disease Diseases 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- NWBJYWHLCVSVIJ-UHFFFAOYSA-N N-benzyladenine Chemical compound N=1C=NC=2NC=NC=2C=1NCC1=CC=CC=C1 NWBJYWHLCVSVIJ-UHFFFAOYSA-N 0.000 description 4
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 4
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 4
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- 201000011032 Werner Syndrome Diseases 0.000 description 4
- 239000000443 aerosol Substances 0.000 description 4
- 208000007502 anemia Diseases 0.000 description 4
- 230000003712 anti-aging effect Effects 0.000 description 4
- 239000003963 antioxidant agent Substances 0.000 description 4
- 235000006708 antioxidants Nutrition 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000032823 cell division Effects 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 125000004093 cyano group Chemical group *C#N 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 230000009931 harmful effect Effects 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 208000032839 leukemia Diseases 0.000 description 4
- 239000006210 lotion Substances 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 235000019198 oils Nutrition 0.000 description 4
- 239000002674 ointment Substances 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- MEZLKOACVSPNER-GFCCVEGCSA-N selegiline Chemical group C#CCN(C)[C@H](C)CC1=CC=CC=C1 MEZLKOACVSPNER-GFCCVEGCSA-N 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 125000005309 thioalkoxy group Chemical group 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 108091028026 C-DNA Proteins 0.000 description 3
- 230000033616 DNA repair Effects 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 101000655352 Homo sapiens Telomerase reverse transcriptase Proteins 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 3
- 240000007472 Leucaena leucocephala Species 0.000 description 3
- 206010025323 Lymphomas Diseases 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 3
- 206010063493 Premature ageing Diseases 0.000 description 3
- 208000032038 Premature aging Diseases 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 102000019197 Superoxide Dismutase Human genes 0.000 description 3
- 108010012715 Superoxide dismutase Proteins 0.000 description 3
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 3
- 210000001744 T-lymphocyte Anatomy 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 3
- 229960003942 amphotericin b Drugs 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- XSCHRSMBECNVNS-UHFFFAOYSA-N benzopyrazine Natural products N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 208000015322 bone marrow disease Diseases 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 238000002659 cell therapy Methods 0.000 description 3
- 230000003833 cell viability Effects 0.000 description 3
- 235000012000 cholesterol Nutrition 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- VFLDPWHFBUODDF-FCXRPNKRSA-N curcumin Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)CC(=O)\C=C\C=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-FCXRPNKRSA-N 0.000 description 3
- 125000000392 cycloalkenyl group Chemical group 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthene Chemical compound C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 210000004209 hair Anatomy 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 150000004677 hydrates Chemical class 0.000 description 3
- 208000000509 infertility Diseases 0.000 description 3
- 230000036512 infertility Effects 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- QANMHLXAZMSUEX-UHFFFAOYSA-N kinetin Chemical compound N=1C=NC=2N=CNC=2C=1NCC1=CC=CO1 QANMHLXAZMSUEX-UHFFFAOYSA-N 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 125000006574 non-aromatic ring group Chemical group 0.000 description 3
- 239000002777 nucleoside Substances 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 210000000963 osteoblast Anatomy 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000000651 prodrug Substances 0.000 description 3
- 229940002612 prodrug Drugs 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 238000003762 quantitative reverse transcription PCR Methods 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000037380 skin damage Effects 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 125000005346 substituted cycloalkyl group Chemical group 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 230000000475 sunscreen effect Effects 0.000 description 3
- 239000000516 sunscreening agent Substances 0.000 description 3
- 239000006188 syrup Substances 0.000 description 3
- 235000020357 syrup Nutrition 0.000 description 3
- 125000005296 thioaryloxy group Chemical group 0.000 description 3
- 125000005323 thioketone group Chemical group 0.000 description 3
- 150000003573 thiols Chemical class 0.000 description 3
- 238000011200 topical administration Methods 0.000 description 3
- 238000010200 validation analysis Methods 0.000 description 3
- 235000013311 vegetables Nutrition 0.000 description 3
- 229940100050 virazole Drugs 0.000 description 3
- 230000029663 wound healing Effects 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- SCVJRXQHFJXZFZ-KVQBGUIXSA-N 2-amino-9-[(2r,4s,5r)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-3h-purine-6-thione Chemical compound C1=2NC(N)=NC(=S)C=2N=CN1[C@H]1C[C@H](O)[C@@H](CO)O1 SCVJRXQHFJXZFZ-KVQBGUIXSA-N 0.000 description 2
- MTVWFVDWRVYDOR-UHFFFAOYSA-N 3,4-Dihydroxyphenylglycol Chemical compound OCC(O)C1=CC=C(O)C(O)=C1 MTVWFVDWRVYDOR-UHFFFAOYSA-N 0.000 description 2
- SPJAGILXQBHHSZ-UHFFFAOYSA-N 5-benzyl-1-(2-hydroxyethoxymethyl)uracil Chemical compound O=C1NC(=O)N(COCCO)C=C1CC1=CC=CC=C1 SPJAGILXQBHHSZ-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 208000037259 Amyloid Plaque Diseases 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 208000018240 Bone Marrow Failure disease Diseases 0.000 description 2
- 206010065553 Bone marrow failure Diseases 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- JDVVGAQPNNXQDW-WCMLQCRESA-N Castanospermine Natural products O[C@H]1[C@@H](O)[C@H]2[C@@H](O)CCN2C[C@H]1O JDVVGAQPNNXQDW-WCMLQCRESA-N 0.000 description 2
- JDVVGAQPNNXQDW-TVNFTVLESA-N Castinospermine Chemical compound C1[C@H](O)[C@@H](O)[C@H](O)[C@H]2[C@@H](O)CCN21 JDVVGAQPNNXQDW-TVNFTVLESA-N 0.000 description 2
- 238000003734 CellTiter-Glo Luminescent Cell Viability Assay Methods 0.000 description 2
- 102000019034 Chemokines Human genes 0.000 description 2
- 108010012236 Chemokines Proteins 0.000 description 2
- 208000017667 Chronic Disease Diseases 0.000 description 2
- 206010010356 Congenital anomaly Diseases 0.000 description 2
- 206010011385 Cri-du-chat syndrome Diseases 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- 230000004543 DNA replication Effects 0.000 description 2
- 206010061818 Disease progression Diseases 0.000 description 2
- 201000010374 Down Syndrome Diseases 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 108090000288 Glycoproteins Proteins 0.000 description 2
- 102000003886 Glycoproteins Human genes 0.000 description 2
- 229940121672 Glycosylation inhibitor Drugs 0.000 description 2
- 201000009794 Idiopathic Pulmonary Fibrosis Diseases 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 108090001030 Lipoproteins Proteins 0.000 description 2
- 102000004895 Lipoproteins Human genes 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 208000001804 Monosomy 5p Diseases 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- REFJWTPEDVJJIY-UHFFFAOYSA-N Quercetin Chemical compound C=1C(O)=CC(O)=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 REFJWTPEDVJJIY-UHFFFAOYSA-N 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- 108010081734 Ribonucleoproteins Proteins 0.000 description 2
- 102000004389 Ribonucleoproteins Human genes 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 229930182558 Sterol Natural products 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 206010044688 Trisomy 21 Diseases 0.000 description 2
- 208000026911 Tuberous sclerosis complex Diseases 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- DRTQHJPVMGBUCF-XVFCMESISA-N Uridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-XVFCMESISA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- DZBUGLKDJFMEHC-UHFFFAOYSA-N acridine Chemical compound C1=CC=CC2=CC3=CC=CC=C3N=C21 DZBUGLKDJFMEHC-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 125000004442 acylamino group Chemical group 0.000 description 2
- 125000004423 acyloxy group Chemical group 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 2
- 125000004466 alkoxycarbonylamino group Chemical group 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 230000000840 anti-viral effect Effects 0.000 description 2
- 210000000628 antibody-producing cell Anatomy 0.000 description 2
- 125000004104 aryloxy group Chemical group 0.000 description 2
- 238000011948 assay development Methods 0.000 description 2
- 150000003851 azoles Chemical class 0.000 description 2
- CUFNKYGDVFVPHO-UHFFFAOYSA-N azulene Chemical compound C1=CC=CC2=CC=CC2=C1 CUFNKYGDVFVPHO-UHFFFAOYSA-N 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 239000000090 biomarker Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000000747 cardiac effect Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 238000003570 cell viability assay Methods 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 235000015872 dietary supplement Nutrition 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 230000005750 disease progression Effects 0.000 description 2
- 208000035475 disorder Diseases 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 229940126534 drug product Drugs 0.000 description 2
- 230000004064 dysfunction Effects 0.000 description 2
- 239000003974 emollient agent Substances 0.000 description 2
- 230000001804 emulsifying effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000002615 epidermis Anatomy 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- XHEFDIBZLJXQHF-UHFFFAOYSA-N fisetin Chemical compound C=1C(O)=CC=C(C(C=2O)=O)C=1OC=2C1=CC=C(O)C(O)=C1 XHEFDIBZLJXQHF-UHFFFAOYSA-N 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000003349 gelling agent Substances 0.000 description 2
- 230000002518 glial effect Effects 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 230000003779 hair growth Effects 0.000 description 2
- 125000004446 heteroarylalkyl group Chemical group 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 2
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 2
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 208000036971 interstitial lung disease 2 Diseases 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- AWJUIBRHMBBTKR-UHFFFAOYSA-N isoquinoline Chemical compound C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 2
- MWDZOUNAPSSOEL-UHFFFAOYSA-N kaempferol Natural products OC1=C(C(=O)c2cc(O)cc(O)c2O1)c3ccc(O)cc3 MWDZOUNAPSSOEL-UHFFFAOYSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 210000005229 liver cell Anatomy 0.000 description 2
- 239000007937 lozenge Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 201000006938 muscular dystrophy Diseases 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 201000008482 osteoarthritis Diseases 0.000 description 2
- 210000002997 osteoclast Anatomy 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- RDOWQLZANAYVLL-UHFFFAOYSA-N phenanthridine Chemical compound C1=CC=C2C3=CC=CC=C3C=NC2=C1 RDOWQLZANAYVLL-UHFFFAOYSA-N 0.000 description 2
- GBROPGWFBFCKAG-UHFFFAOYSA-N picene Chemical compound C1=CC2=C3C=CC=CC3=CC=C2C2=C1C1=CC=CC=C1C=C2 GBROPGWFBFCKAG-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- HYAFETHFCAUJAY-UHFFFAOYSA-N pioglitazone Chemical compound N1=CC(CC)=CC=C1CCOC(C=C1)=CC=C1CC1C(=O)NC(=O)S1 HYAFETHFCAUJAY-UHFFFAOYSA-N 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 238000000275 quality assurance Methods 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000003938 response to stress Effects 0.000 description 2
- 238000003757 reverse transcription PCR Methods 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- 239000003419 rna directed dna polymerase inhibitor Substances 0.000 description 2
- 229960003946 selegiline Drugs 0.000 description 2
- 229940125381 senolytic agent Drugs 0.000 description 2
- 239000002453 shampoo Substances 0.000 description 2
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 235000003702 sterols Nutrition 0.000 description 2
- 150000003432 sterols Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000005017 substituted alkenyl group Chemical group 0.000 description 2
- 125000000547 substituted alkyl group Chemical group 0.000 description 2
- 125000004426 substituted alkynyl group Chemical group 0.000 description 2
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 2
- SUVMJBTUFCVSAD-UHFFFAOYSA-N sulforaphane Chemical compound CS(=O)CCCCN=C=S SUVMJBTUFCVSAD-UHFFFAOYSA-N 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 150000003536 tetrazoles Chemical class 0.000 description 2
- 239000012049 topical pharmaceutical composition Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 150000003852 triazoles Chemical class 0.000 description 2
- 208000009999 tuberous sclerosis Diseases 0.000 description 2
- 230000007306 turnover Effects 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- AIFRHYZBTHREPW-UHFFFAOYSA-N β-carboline Chemical compound N1=CC=C2C3=CC=CC=C3NC2=C1 AIFRHYZBTHREPW-UHFFFAOYSA-N 0.000 description 2
- VRYALKFFQXWPIH-PBXRRBTRSA-N (3r,4s,5r)-3,4,5,6-tetrahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)CC=O VRYALKFFQXWPIH-PBXRRBTRSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- FLBAYUMRQUHISI-UHFFFAOYSA-N 1,8-naphthyridine Chemical compound N1=CC=CC2=CC=CN=C21 FLBAYUMRQUHISI-UHFFFAOYSA-N 0.000 description 1
- YDYOYUPJKSJCMF-UHFFFAOYSA-N 1-(2-hydroxyethoxymethyl)pyrimidine-2,4-dione Chemical class OCCOCN1C=CC(=O)NC1=O YDYOYUPJKSJCMF-UHFFFAOYSA-N 0.000 description 1
- XKKCQTLDIPIRQD-JGVFFNPUSA-N 1-[(2r,5s)-5-(hydroxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)CC1 XKKCQTLDIPIRQD-JGVFFNPUSA-N 0.000 description 1
- USMXIXZBRZZOQH-UHFFFAOYSA-N 1-[[4-(1,4,8,11-tetrazacyclotetradec-1-ylmethyl)phenyl]methyl]-1,4,8,11-tetrazacyclotetradecane;dihydrate;octahydrochloride Chemical compound O.O.Cl.Cl.Cl.Cl.Cl.Cl.Cl.Cl.C=1C=C(CN2CCNCCCNCCNCCC2)C=CC=1CN1CCCNCCNCCCNCC1 USMXIXZBRZZOQH-UHFFFAOYSA-N 0.000 description 1
- 125000006432 1-methyl cyclopropyl group Chemical group [H]C([H])([H])C1(*)C([H])([H])C1([H])[H] 0.000 description 1
- VSNHCAURESNICA-NJFSPNSNSA-N 1-oxidanylurea Chemical compound N[14C](=O)NO VSNHCAURESNICA-NJFSPNSNSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- BAXOFTOLAUCFNW-UHFFFAOYSA-N 1H-indazole Chemical compound C1=CC=C2C=NNC2=C1 BAXOFTOLAUCFNW-UHFFFAOYSA-N 0.000 description 1
- MFJCPDOGFAYSTF-UHFFFAOYSA-N 1H-isochromene Chemical compound C1=CC=C2COC=CC2=C1 MFJCPDOGFAYSTF-UHFFFAOYSA-N 0.000 description 1
- AAQTWLBJPNLKHT-UHFFFAOYSA-N 1H-perimidine Chemical compound N1C=NC2=CC=CC3=CC=CC1=C32 AAQTWLBJPNLKHT-UHFFFAOYSA-N 0.000 description 1
- ODMMNALOCMNQJZ-UHFFFAOYSA-N 1H-pyrrolizine Chemical compound C1=CC=C2CC=CN21 ODMMNALOCMNQJZ-UHFFFAOYSA-N 0.000 description 1
- KJUGUADJHNHALS-UHFFFAOYSA-N 1H-tetrazole Substances C=1N=NNN=1 KJUGUADJHNHALS-UHFFFAOYSA-N 0.000 description 1
- WVXRAFOPTSTNLL-NKWVEPMBSA-N 2',3'-dideoxyadenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1CC[C@@H](CO)O1 WVXRAFOPTSTNLL-NKWVEPMBSA-N 0.000 description 1
- FJPGAMCQJNLTJC-UHFFFAOYSA-N 2,3-Heptanedione Chemical compound CCCCC(=O)C(C)=O FJPGAMCQJNLTJC-UHFFFAOYSA-N 0.000 description 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- SOYCFODXNRVBTI-UHFFFAOYSA-N 2-[8-(1,3-benzothiazol-2-ylcarbamoyl)-3,4-dihydro-1h-isoquinolin-2-yl]-5-[3-[4-[3-(dimethylamino)prop-1-ynyl]-2-fluorophenoxy]propyl]-1,3-thiazole-4-carboxylic acid Chemical compound FC1=CC(C#CCN(C)C)=CC=C1OCCCC1=C(C(O)=O)N=C(N2CC3=C(C(=O)NC=4SC5=CC=CC=C5N=4)C=CC=C3CC2)S1 SOYCFODXNRVBTI-UHFFFAOYSA-N 0.000 description 1
- QOVUZUCXPAZXDZ-UHFFFAOYSA-N 2-amino-9-(3,4-dihydroxybutyl)-3h-purin-6-one Chemical compound N1C(N)=NC(=O)C2=C1N(CCC(O)CO)C=N2 QOVUZUCXPAZXDZ-UHFFFAOYSA-N 0.000 description 1
- UXGVMFHEKMGWMA-UHFFFAOYSA-N 2-benzofuran Chemical compound C1=CC=CC2=COC=C21 UXGVMFHEKMGWMA-UHFFFAOYSA-N 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- VHMICKWLTGFITH-UHFFFAOYSA-N 2H-isoindole Chemical compound C1=CC=CC2=CNC=C21 VHMICKWLTGFITH-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- ZOOGRGPOEVQQDX-UUOKFMHZSA-N 3',5'-cyclic GMP Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=C(NC2=O)N)=C2N=C1 ZOOGRGPOEVQQDX-UUOKFMHZSA-N 0.000 description 1
- TYBARJRCFHUHSN-DMJRSANLSA-N 3-[(1r,3s,5s,8r,9s,10r,11r,13r,14s,17r)-1,5,11,14-tetrahydroxy-10-(hydroxymethyl)-13-methyl-3-[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-17-yl]-2h-furan-5-one;octahydrate Chemical compound O.O.O.O.O.O.O.O.O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@@H]1C[C@@]2(O)CC[C@H]3[C@@]4(O)CC[C@H](C=5COC(=O)C=5)[C@@]4(C)C[C@@H](O)[C@@H]3[C@@]2(CO)[C@H](O)C1 TYBARJRCFHUHSN-DMJRSANLSA-N 0.000 description 1
- QCQQONWEDCOTBV-UHFFFAOYSA-N 3-[1-(1-adamantylmethyl)-5-methylpyrazol-4-yl]-6-[8-(1,3-benzothiazol-2-ylcarbamoyl)-3,4-dihydro-1h-isoquinolin-2-yl]pyridine-2-carboxylic acid Chemical compound C1=CC=C2SC(NC(=O)C=3C=CC=C4CCN(CC4=3)C3=CC=C(C(=N3)C(O)=O)C3=C(N(N=C3)CC34CC5CC(CC(C5)C3)C4)C)=NC2=C1 QCQQONWEDCOTBV-UHFFFAOYSA-N 0.000 description 1
- WREGKURFCTUGRC-UHFFFAOYSA-N 4-Amino-1-[5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one Chemical compound O=C1N=C(N)C=CN1C1OC(CO)CC1 WREGKURFCTUGRC-UHFFFAOYSA-N 0.000 description 1
- SUVMJBTUFCVSAD-JTQLQIEISA-N 4-Methylsulfinylbutyl isothiocyanate Natural products C[S@](=O)CCCCN=C=S SUVMJBTUFCVSAD-JTQLQIEISA-N 0.000 description 1
- BDUHCSBCVGXTJM-WUFINQPMSA-N 4-[[(4S,5R)-4,5-bis(4-chlorophenyl)-2-(4-methoxy-2-propan-2-yloxyphenyl)-4,5-dihydroimidazol-1-yl]-oxomethyl]-2-piperazinone Chemical compound CC(C)OC1=CC(OC)=CC=C1C1=N[C@@H](C=2C=CC(Cl)=CC=2)[C@@H](C=2C=CC(Cl)=CC=2)N1C(=O)N1CC(=O)NCC1 BDUHCSBCVGXTJM-WUFINQPMSA-N 0.000 description 1
- LTDCCBLBAQXNKP-SHYZEUOFSA-N 4-amino-1-[(2r,3r,5s)-3-fluoro-5-(hydroxymethyl)oxolan-2-yl]pyrimidin-2-one Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@H](F)C[C@@H](CO)O1 LTDCCBLBAQXNKP-SHYZEUOFSA-N 0.000 description 1
- GDRVFDDBLLKWRI-UHFFFAOYSA-N 4H-quinolizine Chemical compound C1=CC=CN2CC=CC=C21 GDRVFDDBLLKWRI-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- SLWSQPYUSBXANQ-BAJZRUMYSA-N 9-[(2r,3r,5s)-3-fluoro-5-(hydroxymethyl)oxolan-2-yl]-3h-purin-6-one Chemical compound O1[C@H](CO)C[C@@H](F)[C@@H]1N1C(NC=NC2=O)=C2N=C1 SLWSQPYUSBXANQ-BAJZRUMYSA-N 0.000 description 1
- BWXMFMZDYMXQQX-GDLHICMESA-N 9-[(2s,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)-2-[(4-nitrophenyl)methyl]oxolan-2-yl]-3h-purine-6-thione Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@@]1(N1C2=NC=NC(S)=C2N=C1)CC1=CC=C([N+]([O-])=O)C=C1 BWXMFMZDYMXQQX-GDLHICMESA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 235000006491 Acacia senegal Nutrition 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- LPMXVESGRSUGHW-UHFFFAOYSA-N Acolongiflorosid K Natural products OC1C(O)C(O)C(C)OC1OC1CC2(O)CCC3C4(O)CCC(C=5COC(=O)C=5)C4(C)CC(O)C3C2(CO)C(O)C1 LPMXVESGRSUGHW-UHFFFAOYSA-N 0.000 description 1
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 102100036439 Amyloid beta precursor protein binding family B member 1 Human genes 0.000 description 1
- 208000032467 Aplastic anaemia Diseases 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 201000004569 Blindness Diseases 0.000 description 1
- 206010065687 Bone loss Diseases 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 125000001313 C5-C10 heteroaryl group Chemical group 0.000 description 1
- 108010041397 CD4 Antigens Proteins 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- QRYRORQUOLYVBU-VBKZILBWSA-N Carnosic acid Natural products CC([C@@H]1CC2)(C)CCC[C@]1(C(O)=O)C1=C2C=C(C(C)C)C(O)=C1O QRYRORQUOLYVBU-VBKZILBWSA-N 0.000 description 1
- 108010087806 Carnosine Proteins 0.000 description 1
- 102100035882 Catalase Human genes 0.000 description 1
- 108010053835 Catalase Proteins 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 206010007882 Cellulitis Diseases 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 206010062759 Congenital dyskeratosis Diseases 0.000 description 1
- 208000029767 Congenital, Hereditary, and Neonatal Diseases and Abnormalities Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- HOOWCUZPEFNHDT-UHFFFAOYSA-N DHPG Natural products OC(=O)C(N)C1=CC(O)=CC(O)=C1 HOOWCUZPEFNHDT-UHFFFAOYSA-N 0.000 description 1
- 239000012623 DNA damaging agent Substances 0.000 description 1
- ZBNZXTGUTAYRHI-UHFFFAOYSA-N Dasatinib Chemical compound C=1C(N2CCN(CCO)CC2)=NC(C)=NC=1NC(S1)=NC=C1C(=O)NC1=C(C)C=CC=C1Cl ZBNZXTGUTAYRHI-UHFFFAOYSA-N 0.000 description 1
- 206010012289 Dementia Diseases 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- BXZVVICBKDXVGW-NKWVEPMBSA-N Didanosine Chemical compound O1[C@H](CO)CC[C@@H]1N1C(NC=NC2=O)=C2N=C1 BXZVVICBKDXVGW-NKWVEPMBSA-N 0.000 description 1
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 102000016942 Elastin Human genes 0.000 description 1
- 108010014258 Elastin Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 241000282324 Felis Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 102100035416 Forkhead box protein O4 Human genes 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- JRZJKWGQFNTSRN-UHFFFAOYSA-N Geldanamycin Natural products C1C(C)CC(OC)C(O)C(C)C=C(C)C(OC(N)=O)C(OC)CCC=C(C)C(=O)NC2=CC(=O)C(OC)=C1C2=O JRZJKWGQFNTSRN-UHFFFAOYSA-N 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- 206010019663 Hepatic failure Diseases 0.000 description 1
- 101000928670 Homo sapiens Amyloid beta precursor protein binding family B member 1 Proteins 0.000 description 1
- 101000877683 Homo sapiens Forkhead box protein O4 Proteins 0.000 description 1
- 101100313363 Homo sapiens TFCP2L1 gene Proteins 0.000 description 1
- 101000940144 Homo sapiens Transcriptional repressor protein YY1 Proteins 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 208000026350 Inborn Genetic disease Diseases 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 229930194542 Keto Natural products 0.000 description 1
- FAIXYKHYOGVFKA-UHFFFAOYSA-N Kinetin Natural products N=1C=NC=2N=CNC=2C=1N(C)C1=CC=CO1 FAIXYKHYOGVFKA-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-L L-tartrate(2-) Chemical compound [O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O FEWJPZIEWOKRBE-JCYAYHJZSA-L 0.000 description 1
- 239000002067 L01XE06 - Dasatinib Substances 0.000 description 1
- 102000007330 LDL Lipoproteins Human genes 0.000 description 1
- 108010007622 LDL Lipoproteins Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 239000004909 Moisturizer Substances 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 1
- CQOVPNPJLQNMDC-UHFFFAOYSA-N N-beta-alanyl-L-histidine Natural products NCCC(=O)NC(C(O)=O)CC1=CN=CN1 CQOVPNPJLQNMDC-UHFFFAOYSA-N 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N Nitrogen dioxide Chemical compound O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 229910004749 OS(O)2 Inorganic materials 0.000 description 1
- LPMXVESGRSUGHW-GHYGWZAOSA-N Ouabain Natural products O([C@@H]1[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O1)[C@H]1C[C@@H](O)[C@@]2(CO)[C@@](O)(C1)CC[C@H]1[C@]3(O)[C@@](C)([C@H](C4=CC(=O)OC4)CC3)C[C@@H](O)[C@H]21 LPMXVESGRSUGHW-GHYGWZAOSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- VABYUUZNAVQNPG-UHFFFAOYSA-N Piperlongumine Natural products COC1=C(OC)C(OC)=CC(C=CC(=O)N2C(C=CCC2)=O)=C1 VABYUUZNAVQNPG-UHFFFAOYSA-N 0.000 description 1
- WHAAPCGHVWVUEX-UHFFFAOYSA-N Piperlonguminine Natural products CC(C)CNC(=O)C=CC=CC1=CC=C2OCOC2=C1 WHAAPCGHVWVUEX-UHFFFAOYSA-N 0.000 description 1
- VABYUUZNAVQNPG-BQYQJAHWSA-N Piplartine Chemical compound COC1=C(OC)C(OC)=CC(\C=C\C(=O)N2C(C=CCC2)=O)=C1 VABYUUZNAVQNPG-BQYQJAHWSA-N 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 208000004210 Pressure Ulcer Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- MYEJFUXQJGHEQK-ALRJYLEOSA-N Proscillaridin Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@@H]1C=C2CC[C@H]3[C@@]4(O)CC[C@H](C5=COC(=O)C=C5)[C@@]4(C)CC[C@@H]3[C@@]2(C)CC1 MYEJFUXQJGHEQK-ALRJYLEOSA-N 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 102000002067 Protein Subunits Human genes 0.000 description 1
- WTKZEGDFNFYCGP-UHFFFAOYSA-N Pyrazole Chemical compound C=1C=NNC=1 WTKZEGDFNFYCGP-UHFFFAOYSA-N 0.000 description 1
- ZVOLCUVKHLEPEV-UHFFFAOYSA-N Quercetagetin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=C(O)C(O)=C(O)C=C2O1 ZVOLCUVKHLEPEV-UHFFFAOYSA-N 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- HWTZYBCRDDUBJY-UHFFFAOYSA-N Rhynchosin Natural products C1=C(O)C(O)=CC=C1C1=C(O)C(=O)C2=CC(O)=C(O)C=C2O1 HWTZYBCRDDUBJY-UHFFFAOYSA-N 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- IRHXGOXEBNJUSN-YOXDLBRISA-N Saquinavir mesylate Chemical compound CS(O)(=O)=O.C([C@@H]([C@H](O)CN1C[C@H]2CCCC[C@H]2C[C@H]1C(=O)NC(C)(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)C=1N=C2C=CC=CC2=CC=1)C1=CC=CC=C1 IRHXGOXEBNJUSN-YOXDLBRISA-N 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 208000020221 Short stature Diseases 0.000 description 1
- 206010040844 Skin exfoliation Diseases 0.000 description 1
- GCQYYIHYQMVWLT-HQNLTJAPSA-N Sorivudine Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(\C=C\Br)=C1 GCQYYIHYQMVWLT-HQNLTJAPSA-N 0.000 description 1
- 239000004163 Spermaceti wax Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 244000166550 Strophanthus gratus Species 0.000 description 1
- 108700012920 TNF Proteins 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 102100032866 Transcription factor CP2-like protein 1 Human genes 0.000 description 1
- 102100024000 Transcription factor NF-E4 Human genes 0.000 description 1
- 102100031142 Transcriptional repressor protein YY1 Human genes 0.000 description 1
- 101800001690 Transmembrane protein gp41 Proteins 0.000 description 1
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 241000219094 Vitaceae Species 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- UDMBCSSLTHHNCD-UHTZMRCNSA-N [(2r,3s,4s,5r)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl dihydrogen phosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O UDMBCSSLTHHNCD-UHTZMRCNSA-N 0.000 description 1
- KBEMFSMODRNJHE-BAJZRUMYSA-N [(2s,4r,5r)-5-(6-aminopurin-9-yl)-4-fluorooxolan-2-yl]methanol Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)C[C@H]1F KBEMFSMODRNJHE-BAJZRUMYSA-N 0.000 description 1
- ZWBTYMGEBZUQTK-PVLSIAFMSA-N [(7S,9E,11S,12R,13S,14R,15R,16R,17S,18S,19E,21Z)-2,15,17,32-tetrahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-1'-(2-methylpropyl)-6,23-dioxospiro[8,33-dioxa-24,27,29-triazapentacyclo[23.6.1.14,7.05,31.026,30]tritriaconta-1(32),2,4,9,19,21,24,26,30-nonaene-28,4'-piperidine]-13-yl] acetate Chemical compound CO[C@H]1\C=C\O[C@@]2(C)Oc3c(C2=O)c2c4NC5(CCN(CC(C)C)CC5)N=c4c(=NC(=O)\C(C)=C/C=C/[C@H](C)[C@H](O)[C@@H](C)[C@@H](O)[C@@H](C)[C@H](OC(C)=O)[C@@H]1C)c(O)c2c(O)c3C ZWBTYMGEBZUQTK-PVLSIAFMSA-N 0.000 description 1
- QVXFGVVYTKZLJN-KHPPLWFESA-N [(z)-hexadec-7-enyl] acetate Chemical compound CCCCCCCC\C=C/CCCCCCOC(C)=O QVXFGVVYTKZLJN-KHPPLWFESA-N 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- JDPAVWAQGBGGHD-UHFFFAOYSA-N aceanthrylene Chemical group C1=CC=C2C(C=CC3=CC=C4)=C3C4=CC2=C1 JDPAVWAQGBGGHD-UHFFFAOYSA-N 0.000 description 1
- 125000004054 acenaphthylenyl group Chemical group C1(=CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- SQFPKRNUGBRTAR-UHFFFAOYSA-N acephenanthrylene Chemical group C1=CC(C=C2)=C3C2=CC2=CC=CC=C2C3=C1 SQFPKRNUGBRTAR-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- HXGDTGSAIMULJN-UHFFFAOYSA-N acetnaphthylene Natural products C1=CC(C=C2)=C3C2=CC=CC3=C1 HXGDTGSAIMULJN-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229940023476 agar Drugs 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 229930013930 alkaloid Natural products 0.000 description 1
- 150000003797 alkaloid derivatives Chemical class 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000004419 alkynylene group Chemical group 0.000 description 1
- PMMURAAUARKVCB-UHFFFAOYSA-N alpha-D-ara-dHexp Natural products OCC1OC(O)CC(O)C1O PMMURAAUARKVCB-UHFFFAOYSA-N 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- KUFRQPKVAWMTJO-LMZWQJSESA-N alvespimycin Chemical compound N1C(=O)\C(C)=C\C=C/[C@H](OC)[C@@H](OC(N)=O)\C(C)=C\[C@H](C)[C@@H](O)[C@@H](OC)C[C@H](C)CC2=C(NCCN(C)C)C(=O)C=C1C2=O KUFRQPKVAWMTJO-LMZWQJSESA-N 0.000 description 1
- 229950007861 alvespimycin Drugs 0.000 description 1
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 1
- 229960003805 amantadine Drugs 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 125000006598 aminocarbonylamino group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229960001830 amprenavir Drugs 0.000 description 1
- YMARZQAQMVYCKC-OEMFJLHTSA-N amprenavir Chemical compound C([C@@H]([C@H](O)CN(CC(C)C)S(=O)(=O)C=1C=CC(N)=CC=1)NC(=O)O[C@@H]1COCC1)C1=CC=CC=C1 YMARZQAQMVYCKC-OEMFJLHTSA-N 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 238000012801 analytical assay Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- ZRALSGWEFCBTJO-UHFFFAOYSA-N anhydrous guanidine Natural products NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000002259 anti human immunodeficiency virus agent Substances 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000036436 anti-hiv Effects 0.000 description 1
- 230000002790 anti-mutagenic effect Effects 0.000 description 1
- 230000000798 anti-retroviral effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 238000011225 antiretroviral therapy Methods 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- BVUSIQTYUVWOSX-UHFFFAOYSA-N arsindole Chemical compound C1=CC=C2[As]C=CC2=C1 BVUSIQTYUVWOSX-UHFFFAOYSA-N 0.000 description 1
- KNNXFYIMEYKHBZ-UHFFFAOYSA-N as-indacene Chemical compound C1=CC2=CC=CC2=C2C=CC=C21 KNNXFYIMEYKHBZ-UHFFFAOYSA-N 0.000 description 1
- 239000003212 astringent agent Substances 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 125000000852 azido group Chemical group *N=[N+]=[N-] 0.000 description 1
- 235000008452 baby food Nutrition 0.000 description 1
- 235000015241 bacon Nutrition 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical compound CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 1
- 125000003785 benzimidazolyl group Chemical class N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- DRTQHJPVMGBUCF-PSQAKQOGSA-N beta-L-uridine Natural products O[C@H]1[C@@H](O)[C@H](CO)O[C@@H]1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-PSQAKQOGSA-N 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000000513 bioprotective effect Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000010322 bone marrow transplantation Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229960001169 brivudine Drugs 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 229940097217 cardiac glycoside Drugs 0.000 description 1
- 239000002368 cardiac glycoside Substances 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- CQOVPNPJLQNMDC-ZETCQYMHSA-N carnosine Chemical compound [NH3+]CCC(=O)N[C@H](C([O-])=O)CC1=CNC=N1 CQOVPNPJLQNMDC-ZETCQYMHSA-N 0.000 description 1
- 229940044199 carnosine Drugs 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 230000006364 cellular survival Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- VZWXIQHBIQLMPN-UHFFFAOYSA-N chromane Chemical compound C1=CC=C2CCCOC2=C1 VZWXIQHBIQLMPN-UHFFFAOYSA-N 0.000 description 1
- QZHPTGXQGDFGEN-UHFFFAOYSA-N chromene Chemical compound C1=CC=C2C=C[CH]OC2=C1 QZHPTGXQGDFGEN-UHFFFAOYSA-N 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- WCZVZNOTHYJIEI-UHFFFAOYSA-N cinnoline Chemical compound N1=NC=CC2=CC=CC=C21 WCZVZNOTHYJIEI-UHFFFAOYSA-N 0.000 description 1
- 230000007882 cirrhosis Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 229960001681 croscarmellose sodium Drugs 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 235000012754 curcumin Nutrition 0.000 description 1
- 229940109262 curcumin Drugs 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 238000011018 current good manufacturing practice Methods 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000006639 cyclohexyl carbonyl group Chemical group 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000298 cyclopropenyl group Chemical group [H]C1=C([H])C1([H])* 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- UQHKFADEQIVWID-UHFFFAOYSA-N cytokinin Natural products C1=NC=2C(NCC=C(CO)C)=NC=NC=2N1C1CC(O)C(CO)O1 UQHKFADEQIVWID-UHFFFAOYSA-N 0.000 description 1
- 239000004062 cytokinin Substances 0.000 description 1
- 229960002448 dasatinib Drugs 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- VFLDPWHFBUODDF-UHFFFAOYSA-N diferuloylmethane Natural products C1=C(O)C(OC)=CC(C=CC(=O)CC(=O)C=CC=2C=C(OC)C(O)=CC=2)=C1 VFLDPWHFBUODDF-UHFFFAOYSA-N 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical class OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 1
- 229960005156 digoxin Drugs 0.000 description 1
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 229940088679 drug related substance Drugs 0.000 description 1
- 208000009356 dyskeratosis congenita Diseases 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 229920002549 elastin Polymers 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 108010066256 enhancer-binding protein NF-E4 Proteins 0.000 description 1
- 238000007824 enzymatic assay Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 238000003114 enzyme-linked immunosorbent spot assay Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000011124 ex vivo culture Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000011990 fisetin Nutrition 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 229940014259 gelatin Drugs 0.000 description 1
- QTQAWLPCGQOSGP-GBTDJJJQSA-N geldanamycin Chemical compound N1C(=O)\C(C)=C/C=C\[C@@H](OC)[C@H](OC(N)=O)\C(C)=C/[C@@H](C)[C@@H](O)[C@H](OC)C[C@@H](C)CC2=C(OC)C(=O)C=C1C2=O QTQAWLPCGQOSGP-GBTDJJJQSA-N 0.000 description 1
- 238000002682 general surgery Methods 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 231100000118 genetic alteration Toxicity 0.000 description 1
- 231100000722 genetic damage Toxicity 0.000 description 1
- 208000016361 genetic disease Diseases 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 235000003969 glutathione Nutrition 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 235000021021 grapes Nutrition 0.000 description 1
- 239000003324 growth hormone secretagogue Substances 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 230000037308 hair color Effects 0.000 description 1
- 230000003803 hair density Effects 0.000 description 1
- 210000003780 hair follicle Anatomy 0.000 description 1
- 230000003781 hair follicle cycle Effects 0.000 description 1
- 239000008266 hair spray Substances 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- ODZBBRURCPAEIQ-PIXDULNESA-N helpin Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(\C=C\Br)=C1 ODZBBRURCPAEIQ-PIXDULNESA-N 0.000 description 1
- 208000014951 hematologic disease Diseases 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 239000012676 herbal extract Substances 0.000 description 1
- 125000004366 heterocycloalkenyl group Chemical group 0.000 description 1
- QSQIGGCOCHABAP-UHFFFAOYSA-N hexacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC6=CC=CC=C6C=C5C=C4C=C3C=C21 QSQIGGCOCHABAP-UHFFFAOYSA-N 0.000 description 1
- PKIFBGYEEVFWTJ-UHFFFAOYSA-N hexaphene Chemical compound C1=CC=C2C=C3C4=CC5=CC6=CC=CC=C6C=C5C=C4C=CC3=CC2=C1 PKIFBGYEEVFWTJ-UHFFFAOYSA-N 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000002631 hypothermal effect Effects 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- CBVCZFGXHXORBI-PXQQMZJSSA-N indinavir Chemical compound C([C@H](N(CC1)C[C@@H](O)C[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H]2C3=CC=CC=C3C[C@H]2O)C(=O)NC(C)(C)C)N1CC1=CC=CN=C1 CBVCZFGXHXORBI-PXQQMZJSSA-N 0.000 description 1
- 229960001936 indinavir Drugs 0.000 description 1
- HOBCFUWDNJPFHB-UHFFFAOYSA-N indolizine Chemical compound C1=CC=CN2C=CC=C21 HOBCFUWDNJPFHB-UHFFFAOYSA-N 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 231100000535 infertility Toxicity 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229940124524 integrase inhibitor Drugs 0.000 description 1
- 239000002850 integrase inhibitor Substances 0.000 description 1
- 230000016507 interphase Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 229940088976 invirase Drugs 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- GWVMLCQWXVFZCN-UHFFFAOYSA-N isoindoline Chemical compound C1=CC=C2CNCC2=C1 GWVMLCQWXVFZCN-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 125000000555 isopropenyl group Chemical group [H]\C([H])=C(\*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical compound C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical compound C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 229960001669 kinetin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- QDLAGTHXVHQKRE-UHFFFAOYSA-N lichenxanthone Natural products COC1=CC(O)=C2C(=O)C3=C(C)C=C(OC)C=C3OC2=C1 QDLAGTHXVHQKRE-UHFFFAOYSA-N 0.000 description 1
- AGBQKNBQESQNJD-UHFFFAOYSA-M lipoate Chemical compound [O-]C(=O)CCCCC1CCSS1 AGBQKNBQESQNJD-UHFFFAOYSA-M 0.000 description 1
- 235000019136 lipoic acid Nutrition 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000012669 liquid formulation Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 208000007903 liver failure Diseases 0.000 description 1
- 231100000835 liver failure Toxicity 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 235000009498 luteolin Nutrition 0.000 description 1
- IQPNAANSBPBGFQ-UHFFFAOYSA-N luteolin Chemical compound C=1C(O)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(O)C(O)=C1 IQPNAANSBPBGFQ-UHFFFAOYSA-N 0.000 description 1
- LRDGATPGVJTWLJ-UHFFFAOYSA-N luteolin Natural products OC1=CC(O)=CC(C=2OC3=CC(O)=CC(O)=C3C(=O)C=2)=C1 LRDGATPGVJTWLJ-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 230000002025 microglial effect Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000001333 moisturizer Effects 0.000 description 1
- 238000007479 molecular analysis Methods 0.000 description 1
- 238000000302 molecular modelling Methods 0.000 description 1
- 239000002062 molecular scaffold Substances 0.000 description 1
- 125000002757 morpholinyl group Chemical group 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- JLYAXFNOILIKPP-KXQOOQHDSA-N navitoclax Chemical compound C([C@@H](NC1=CC=C(C=C1S(=O)(=O)C(F)(F)F)S(=O)(=O)NC(=O)C1=CC=C(C=C1)N1CCN(CC1)CC1=C(CCC(C1)(C)C)C=1C=CC(Cl)=CC=1)CSC=1C=CC=CC=1)CN1CCOCC1 JLYAXFNOILIKPP-KXQOOQHDSA-N 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- NQHXCOAXSHGTIA-SKXNDZRYSA-N nelfinavir mesylate Chemical compound CS(O)(=O)=O.CC1=C(O)C=CC=C1C(=O)N[C@H]([C@H](O)CN1[C@@H](C[C@@H]2CCCC[C@@H]2C1)C(=O)NC(C)(C)C)CSC1=CC=CC=C1 NQHXCOAXSHGTIA-SKXNDZRYSA-N 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 210000002682 neurofibrillary tangle Anatomy 0.000 description 1
- 230000003961 neuronal insult Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000002547 new drug Substances 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 229940072250 norvir Drugs 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 1
- PFTXKXWAXWAZBP-UHFFFAOYSA-N octacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC6=CC7=CC8=CC=CC=C8C=C7C=C6C=C5C=C4C=C3C=C21 PFTXKXWAXWAZBP-UHFFFAOYSA-N 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- OVPVGJFDFSJUIG-UHFFFAOYSA-N octalene Chemical compound C1=CC=CC=C2C=CC=CC=CC2=C1 OVPVGJFDFSJUIG-UHFFFAOYSA-N 0.000 description 1
- WTFQBTLMPISHTA-UHFFFAOYSA-N octaphene Chemical compound C1=CC=C2C=C(C=C3C4=CC5=CC6=CC7=CC=CC=C7C=C6C=C5C=C4C=CC3=C3)C3=CC2=C1 WTFQBTLMPISHTA-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000008203 oral pharmaceutical composition Substances 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002892 organic cations Chemical class 0.000 description 1
- 229960003343 ouabain Drugs 0.000 description 1
- LSQODMMMSXHVCN-UHFFFAOYSA-N ovalene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3C5=C6C(C=C3)=CC=C3C6=C6C(C=C3)=C3)C4=C5C6=C2C3=C1 LSQODMMMSXHVCN-UHFFFAOYSA-N 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000003961 penetration enhancing agent Substances 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N penta-1,3-diene Chemical compound CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- GUVXZFRDPCKWEM-UHFFFAOYSA-N pentalene Chemical compound C1=CC2=CC=CC2=C1 GUVXZFRDPCKWEM-UHFFFAOYSA-N 0.000 description 1
- JQQSUOJIMKJQHS-UHFFFAOYSA-N pentaphene Chemical compound C1=CC=C2C=C3C4=CC5=CC=CC=C5C=C4C=CC3=CC2=C1 JQQSUOJIMKJQHS-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000011170 pharmaceutical development Methods 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- NQFOGDIWKQWFMN-UHFFFAOYSA-N phenalene Chemical compound C1=CC([CH]C=C2)=C3C2=CC=CC3=C1 NQFOGDIWKQWFMN-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- ZJAOAACCNHFJAH-UHFFFAOYSA-N phosphonoformic acid Chemical compound OC(=O)P(O)(O)=O ZJAOAACCNHFJAH-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000865 phosphorylative effect Effects 0.000 description 1
- LFSXCDWNBUNEEM-UHFFFAOYSA-N phthalazine Chemical compound C1=NN=CC2=CC=CC=C21 LFSXCDWNBUNEEM-UHFFFAOYSA-N 0.000 description 1
- 208000024335 physical disease Diseases 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 229960005095 pioglitazone Drugs 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 230000007505 plaque formation Effects 0.000 description 1
- DIJNSQQKNIVDPV-UHFFFAOYSA-N pleiadene Chemical compound C1=C2[CH]C=CC=C2C=C2C=CC=C3[C]2C1=CC=C3 DIJNSQQKNIVDPV-UHFFFAOYSA-N 0.000 description 1
- 229960002169 plerixafor Drugs 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 244000062645 predators Species 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 229960003584 proscillaridin Drugs 0.000 description 1
- MYEJFUXQJGHEQK-UHFFFAOYSA-N proscillaridin A Natural products OC1C(O)C(O)C(C)OC1OC1C=C2CCC3C4(O)CCC(C5=COC(=O)C=C5)C4(C)CCC3C2(C)CC1 MYEJFUXQJGHEQK-UHFFFAOYSA-N 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 230000020978 protein processing Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- CPNGPNLZQNNVQM-UHFFFAOYSA-N pteridine Chemical compound N1=CN=CC2=NC=CN=C21 CPNGPNLZQNNVQM-UHFFFAOYSA-N 0.000 description 1
- LNKHTYQPVMAJSF-UHFFFAOYSA-N pyranthrene Chemical compound C1=C2C3=CC=CC=C3C=C(C=C3)C2=C2C3=CC3=C(C=CC=C4)C4=CC4=CC=C1C2=C34 LNKHTYQPVMAJSF-UHFFFAOYSA-N 0.000 description 1
- 150000003217 pyrazoles Chemical class 0.000 description 1
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 1
- 235000005875 quercetin Nutrition 0.000 description 1
- 229960001285 quercetin Drugs 0.000 description 1
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 239000013643 reference control Substances 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000022983 regulation of cell cycle Effects 0.000 description 1
- 230000026267 regulation of growth Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000001718 repressive effect Effects 0.000 description 1
- 230000033458 reproduction Effects 0.000 description 1
- 230000026416 response to pain Effects 0.000 description 1
- 210000000844 retinal pigment epithelial cell Anatomy 0.000 description 1
- 229960000885 rifabutin Drugs 0.000 description 1
- 229940063639 rifadin Drugs 0.000 description 1
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- NCDNCNXCDXHOMX-XGKFQTDJSA-N ritonavir Chemical compound N([C@@H](C(C)C)C(=O)N[C@H](C[C@H](O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1SC=NC=1)CC=1C=CC=CC=1)C(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-XGKFQTDJSA-N 0.000 description 1
- FMKFBRKHHLWKDB-UHFFFAOYSA-N rubicene Chemical compound C12=CC=CC=C2C2=CC=CC3=C2C1=C1C=CC=C2C4=CC=CC=C4C3=C21 FMKFBRKHHLWKDB-UHFFFAOYSA-N 0.000 description 1
- WEMQMWWWCBYPOV-UHFFFAOYSA-N s-indacene Chemical compound C=1C2=CC=CC2=CC2=CC=CC2=1 WEMQMWWWCBYPOV-UHFFFAOYSA-N 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000002884 skin cream Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229940084106 spermaceti Drugs 0.000 description 1
- 235000019385 spermaceti wax Nutrition 0.000 description 1
- 238000013097 stability assessment Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 229930002534 steroid glycoside Natural products 0.000 description 1
- 150000008143 steroidal glycosides Chemical class 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000005415 substituted alkoxy group Chemical group 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 description 1
- 229960005559 sulforaphane Drugs 0.000 description 1
- 235000015487 sulforaphane Nutrition 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- AYUNIORJHRXIBJ-TXHRRWQRSA-N tanespimycin Chemical compound N1C(=O)\C(C)=C\C=C/[C@H](OC)[C@@H](OC(N)=O)\C(C)=C\[C@H](C)[C@@H](O)[C@@H](OC)C[C@H](C)CC2=C(NCC=C)C(=O)C=C1C2=O AYUNIORJHRXIBJ-TXHRRWQRSA-N 0.000 description 1
- 229950007866 tanespimycin Drugs 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 230000003797 telogen phase Effects 0.000 description 1
- 230000033863 telomere maintenance Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229960002663 thioctic acid Drugs 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- VSQQQLOSPVPRAZ-RRKCRQDMSA-N trifluridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(C(F)(F)F)=C1 VSQQQLOSPVPRAZ-RRKCRQDMSA-N 0.000 description 1
- 229960003962 trifluridine Drugs 0.000 description 1
- 125000005580 triphenylene group Chemical group 0.000 description 1
- 230000001228 trophic effect Effects 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- DRTQHJPVMGBUCF-UHFFFAOYSA-N uracil arabinoside Natural products OC1C(O)C(CO)OC1N1C(=O)NC(=O)C=C1 DRTQHJPVMGBUCF-UHFFFAOYSA-N 0.000 description 1
- 229940045145 uridine Drugs 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 229940023080 viracept Drugs 0.000 description 1
- 230000007486 viral budding Effects 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 230000007482 viral spreading Effects 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 229960000523 zalcitabine Drugs 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D261/00—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
- C07D261/02—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
- C07D261/06—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
- C07D261/10—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D261/18—Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
- C07D413/04—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Definitions
- telomeres are regions of repetitive DNA found at the ends of the chromosomes of most eukaryotes.
- human telomeres include many kilobases of (TTAGGG)n and are associated with various proteins. Small portions of these terminal sequences of telomeric DNA are lost from the tips of the chromosomes during the S phase of the cell cycle because of incomplete DNA replication. Many human cells progressively lose terminal sequences with cell division, a loss that correlates with the apparent absence of telomerase in these cells. The resulting telomere shortening limits cellular lifespan.
- Telomerase is a ribonucleoprotein that synthesizes telomeric DNA. Telomerase is made up of two components: (1 ) an essential structural RNA component (TR or TER) (in humans the component is referred to as hTR or hTER), and (2) a catalytic protein (telomerase reverse transcriptase or TERT) (in humans the component is referred to as hTRT or hTERT). Telomerase works by adding multiple DNA sequence repeats to the 3' end of DNA in the telomere region, where hTER serves as the template for nucleotide incorporation, and TERT as the catalyst. Both the catalytic protein component and the RNA template component of telomerase are activity-limiting components.
- telomerase activity Because of its role in cellular senescence and immortalization, there is much interest in the regulation of telomerase activity.
- Telomerase reverse transcriptase (TERT) expression enhancing isoxazole-3- carboxamide compounds, and methods for using the same, are provided. These compounds and methods find use in a variety of applications in which increased expression of telomerase reverse transcriptase is desired.
- Acyl refers to a -C(O)R group, where R is hydrogen, alkyl, alkenyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroalkyl, heteroalkenyl, or heteroaryl as defined herein.
- Representative examples include, but are not limited to, formyl, acetyl, cyclohexylcarbonyl, cyclohexylmethylcarbonyl, benzoyl, benzylcarbonyl and the like.
- Acylamino refers to a -NR'C(O)R group, where R' is hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroalkyl, heteroaryl, heteroarylalkyl and R is hydrogen, alkyl, alkoxy, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroalkyl, heteroaryl or heteroarylalkyl, as defined herein.
- Representative examples include, but are not limited to, formylamino, acetylamino, cyclohexylcarbonylamino, cyclohexylmethyl-carbonylamino, benzoylamino, benzylcarbonylamino and the like.
- Acyloxy refers to the group -OC(O)H, -OC(O)-alkyl, -OC(O)-aryl or -OC(O)- cycloalkyl.
- Aliphatics refers to hydrocarbyl organic compounds or groups characterized by a straight, branched or cyclic arrangement of the constituent carbon atoms and an absence of aromatic unsaturation. Aliphatics include, without limitation, alkyl, alkylene, alkenyl, alkynyl and alkynylene. Lower aliphatic groups typically have from 1 or 2 to 6 or 12 carbon atoms.
- alkenyl refers to monovalent olef inically unsaturated hydrocarbyl groups having up to about 11 carbon atoms, such as from 2 to 8 carbon atoms, and including from 2 to 6 carbon atoms, which can be straight-chained or branched and having at least 1 and including from 1 to 2 sites of olefinic unsaturation.
- Alkoxy refers to the group -O-alkyl. Particular alkoxy groups include, by way of example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, te/t-butoxy, sec-butoxy, n- pentoxy, n-hexoxy, 1 ,2-dimethylbutoxy , and the like.
- Alkoxycarbonyl refers to a radical -C(0)-alkoxy where alkoxy is as defined herein.
- Alkoxycarbonylamino refers to the group -NRC(O)OR' where R is hydrogen, alkyl, aryl or cycloalkyl, and R' is alkyl or cycloalkyl.
- Alkyl refers to monovalent saturated aliphatic hydrocarbyl groups particularly having up to about 12 or 18 carbon atoms, more particularly as a lower alkyl, from 1 to 8 carbon atoms and still more particularly, from 1 to 6 carbon atoms.
- the hydrocarbon chain may be either straight-chained or branched. This term is exemplified by groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, iso-butyl, tert-butyl, n-hexyl, n-octyl, tert-octyl and the like.
- alkyl also includes "cycloalkyls" as defined herein.
- Alkylene refers to divalent saturated aliphatic hydrocarbyl groups particularly having up to about 12 or 18 carbon atoms and more particularly 1 to 6 carbon atoms which can be straight-chained or branched. This term is exemplified by groups such as methylene (-CH 2 -), ethylene (-CH 2 CH 2 -), the propylene isomers (e.g., -CH 2 CH 2 CH 2 - and -CH(CH 3 )CH 2 -) and the like.
- Alkynyl refers to acetylenically unsaturated hydrocarbyl groups particularly having up to about 12 or 18 carbon atoms and more particularly 2 to 6 carbon atoms which can be straight-chained or branched and having at least 1 and particularly from 1 to 2 sites of alkynyl unsaturation.
- Amino refers to the radical -NH 2 .
- Aminocarbonyl refers to the group -C(O)NRR where each R is independently hydrogen, alkyl, aryl or cycloalkyl, or where the R groups are joined to form an alkylene group.
- Aminocarbonylamino refers to the group -NRC(O)NRR where each R is independently hydrogen, alkyl, aryl or cycloalkyl, or where two R groups are joined to form an alkylene group.
- Aminocarbonyloxy refers to the group -OC(O)NRR where each R is independently hydrogen, alkyl, aryl or cycloalky, or where the R groups are joined to form an alkylene group.
- Alkyl or “arylalkyl” refers to an alkyl group, as defined above, substituted with one or more aryl groups, as defined above.
- Aryl refers to a monovalent aromatic hydrocarbon group derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system.
- Typical aryl groups include, but are not limited to, groups derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, as-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene,
- Aryloxy refers to -O-aryl groups wherein “aryl” is as defined herein.
- Carbonyl refers to -C(O)- groups, for example, a carboxy, an amido, an ester, a ketone, or an acyl substituent.
- Carboxyl refers to a -C(O)OH group
- Cyano refers to a -CN group.
- Cycloalkenyl refers to cyclic hydrocarbyl groups having from 3 to 10 carbon atoms and having a single cyclic ring or multiple condensed rings, including fused and bridged ring systems and having at least one and particularly from 1 to 2 sites of olefinic unsaturation.
- Such cycloalkenyl groups include, by way of example, single ring structures such as cyclohexenyl, cyclopentenyl, cyclopropenyl, and the like.
- Cycloalkyl refers to cyclic hydrocarbyl groups having from 3 to about 10 carbon atoms and having a single cyclic ring or multiple condensed rings, including fused and bridged ring systems, which optionally can be substituted with from 1 to 3 alkyl groups.
- Such cycloalkyl groups include, by way of example, single ring structures such as cyclopropyl, cyclobutyl, cyclopentyl, cyclooctyl, 1 -methylcyclopropyl, 2-methylcyclopentyl, 2- methylcyclooctyl, and the like, and multiple ring structures such as adamantanyl, and the like.
- Heterocycloalkyl refers to a stable heterocyclic non-aromatic ring and fused rings containing one or more heteroatoms independently selected from N, 0 and S.
- a fused heterocyclic ring system may include carbocyclic rings and need only include one heterocyclic ring.
- heterocyclic rings include, but are not limited to, piperazinyl, homopiperazinyl, piperidinyl and morpholinyl.
- Halogen or “halo” refers to fluoro, chloro, bromo and iodo.
- Hetero when used to describe a compound or a group present on a compound means that one or more carbon atoms in the compound or group have been replaced by, for example, a nitrogen, oxygen, or sulfur heteroatom. Hetero may be applied to any of the hydrocarbyl groups described above such as alkyl, e.g. heteroalkyl, cycloalkyl, e.g. heterocycloalkyl, aryl, e.g. heteroaryl, cycloalkenyl, e.g., heterocycloalkenyl, cycloheteroalkenyl, e.g., heterocycloheteroalkenyl and the like having from 1 to 5, and particularly from 1 to 3 heteroatoms.
- a heteroatom is any atom other than carbon or hydrogen and is typically, but not exclusively, nitrogen, oxygen, sulfur, phosphorus, boron, chlorine, bromine, or iodine.
- Heteroaryl refers to a monovalent heteroaromatic group derived by the removal of one hydrogen atom from a single atom of a parent heteroaromatic ring system.
- Typical heteroaryl groups include, but are not limited to, groups derived from acridine, arsindole, carbazole, ⁇ -carboline, chromane, chromene, cinnoline, furan, imidazole, indazole, indole, indoline, indolizine, isobenzofuran, isochromene, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, pteridine, purine, pyran, pyrazine, pyrazole, pyri
- the heteroaryl group can be a 5-20 membered heteroaryl, or 5-10 membered heteroaryl.
- Particular heteroaryl groups are those derived from thiophen, pyrrole, benzothiophene, benzofuran, indole, pyridine, quinoline, imidazole, oxazole and pyrazine.
- Heterocycle refers to organic compounds that contain a ring structure containing atoms in addition to carbon, such as sulfur, oxygen or nitrogen, as part of the ring. They may be either simple aromatic rings or non-aromatic rings. Examples include azoles, morpholine, piperazine, pyridine, pyrimidine and dioxane.
- the maximum number of heteroatoms in a stable, chemically feasible heterocyclic ring, whether it is aromatic or non aromatic, is determined by factors such as, the size of the ring, the degree of unsaturation and the valence of the heteroatoms. In general, a heterocyclic ring may have one to four heteroatoms so long as the heteroaromatic ring is chemically feasible and stable.
- Haldroxyl refers to a -OH group.
- Linker refers to a linking moiety of up to about 20 atoms in length.
- a tether may be a single bond or a chain of from about 1 to about 20 atoms in length, for example of about 1 , 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18 or 20 carbon atoms in length, where the linker backbone is optionally substituted with a sulfur, nitrogen or oxygen heteroatom, which linker may comprise one, two, three, five, seven or more backbone heteroatoms.
- the bonds between backbone atoms may be saturated or unsaturated, usually not more than one, two, or three unsaturated bonds will be present in a linker backbone.
- Each of the backbone atoms may be substituted or unsubstituted, for example with an alkyl, aryl or alkenyl group.
- a linker may include, without limitations, oligo(ethylene glycol); ethers, thioethers, tertiary amines, alkyls, which may be straight or branched, e.g., methyl, ethyl, n-propyl, 1 -methylethyl (iso-propyl), n-butyl, n-pentyl, 1 ,1 - dimethylethyl (t-butyl), and the like.
- the linker backbone may include a cyclic group, for example, an aryl, a heterocycle or a cycloalkyl group, where 2 or more atoms, e.g., 2, 3 or 4 atoms, of the cyclic group are included in the backbone.
- Niro refers to a -NO 2 group.
- “Scaffold” refers to a molecular scaffold or core structure.
- a scaffold may form the basis for a small molecule library where one or more substituents connected to the scaffold are variable.
- Stepoisomer as it relates to a given compound refers to another compound having the same molecular formula, wherein the atoms making up the other compound differ in the way they are oriented in space, but wherein the atoms in the other compound are like the atoms in the given compound with respect to which atoms are joined to which other atoms (e.g. an enantiomer, a diastereomer, or a geometric isomer). See for example, Morrison and Boyd, Organic Chemistry, 1983, 4th ed., Allyn and Bacon, Inc., Boston, MA, p. 123.
- Substituted refers to a group in which one or more hydrogen atoms are each independently replaced with the same or different substituent(s).
- “Substituted” groups particularly refer to groups having 1 or more substituents, for instance from 1 to 5 substituents, and particularly from 1 to 3 substituents, selected from the group consisting of acyl, acylamino, acyloxy, alkoxy, substituted alkoxy, alkoxycarbonyl, alkoxycarbonylamino, amino, substituted amino, aminocarbonyl, aminocarbonylamino, aminocarbonyloxy, aryl, aryloxy, azido, carboxyl, cyano, cycloalkyl, substituted cycloalkyl, halogen, hydroxyl, keto, nitro, thioalkoxy, substituted thioalkoxy, thioaryloxy, thioketo, thiol, alkyl-S(O)-, aryl-S(O)-, alky
- Substituted acyl includes those groups recited in the definition of "substituted” herein, and particularly refers to the group -C(O)R where R selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amino, substituted amino, aryl, arylalkyl, cycloalkyl, substituted cycloalkyl, heterocycloalkyl, heteroalkyl, or heteroaryl as defined herein.
- Substituted amino includes those groups recited in the definition of "substituted” herein, and particularly refers to the group -N(R) 2 where each R is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, cycloalkyl, substituted cycloalkyl, and where both R groups are joined to form an alkylene group.
- Sulfonyl refers to the group -SO 2 -. Sulfonyl includes, for example, methyl -SO 2 -, phenyl -SO 2 -, and alkylamino -SO 2 -.
- Thioalkoxy refers to the group -S-alkyl.
- Thioaryloxy refers to the group -S-aryl.
- Thiol refers to the group -SH.
- Thio refers to the group -S-. Thio includes, for example, thioalkoxy, thioaryloxy, thioketo and thiol.
- any of the groups disclosed herein which contain one or more substituents it is understood, of course, that such groups do not contain any substitution or substitution patterns which are sterically impractical and/or synthetically non-feasible.
- the subject compounds include all stereochemical isomers arising from the substitution of these compounds.
- pharmaceutically acceptable salt means a salt which is acceptable for administration to a patient, such as a mammal (e.g., salts having acceptable mammalian safety for a given dosage regime).
- Such salts can be derived from pharmaceutically acceptable inorganic or organic bases and from pharmaceutically acceptable inorganic or organic acids.
- “Pharmaceutically acceptable salt” refers to pharmaceutically acceptable salts of a compound, which salts are derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the molecule contains a basic functionality, salts of organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, oxalate, and the like.
- salt thereof means a compound formed when the hydrogen of an acid is replaced by a cation, such as a metal cation or an organic cation and the like. Where applicable, the salt is a pharmaceutically acceptable salt, although this is not required for salts of intermediate compounds that are not intended for administration to a patient.
- solvent refers to a complex formed by combination of solvent molecules with molecules or ions of the solute.
- the solvent can be an organic compound, an inorganic compound, or a mixture of both.
- Some examples of solvents include, but are not limited to, methanol, N,N-dimethylformamide, tetrahydrofuran, dimethylsulfoxide, and water. When the solvent is water, the solvate formed is a hydrate.
- Stereoisomers refer to compounds that have same atomic connectivity but different atomic arrangement in space. Stereoisomers include cis-trans isomers, E and Z isomers, enantiomers, and diastereoisomers.
- pyrazoles imidazoles, benzimidazoles, triazoles, and tetrazoles.
- Telomerase reverse transcriptase (TERT) expression enhancing isoxazole-3- carboxamide compounds and methods for using the same, are provided. These compounds and methods find use in a variety of applications in which increased expression of telomerase reverse transcriptase is desired.
- aspects of the invention include TERT expression enhancing compounds.
- the TERT expression enhancing compounds are compounds that increase TERT expression in a cell upon contact with a cell or components thereof.
- the types of cells in which the compounds of the invention exhibit activity are ones that include a TERT gene containing a Site C site in its promoter region, e.g., in the TERT gene minimal promoter.
- TERT expression By increasing TERT expression is meant that the expression level of the TERT encoding mRNA is increased by 2-fold or more, such as by 5-fold or more and sometimes by 25-, 50-, or 100-fold or more and in certain embodiments 300-, 1000-, 3000- or 10,000-fold or more or higher, as compared to a control, i.e., expression in a comparable cell (such as a clone, cell from the same tissue, etc.) not contacted with the compound of interest (e.g., by using the assay described in Published United States Patent Application Publication No. US-2006-0199171 -A1 , the disclosure of which assay is herein incorporated by reference).
- a comparable cell such as a clone, cell from the same tissue, etc.
- the expression level of the TERT encoding mRNA is considered to be increased if expression is increased to a level that is easily detectable, e.g., by using the assay described in Published United States Patent Application Publication No. US-2006- 0199171 -A1 , the disclosure of which assay is herein incorporated by reference.
- the target cell in which TERT expression is increased is a normal cell, e.g., a somatic cell.
- the compounds of the invention are used to increase the proliferative capacity of a cell.
- proliferative capacity refers to the number of divisions that a cell can undergo, and in some instances to the ability of the target cell to continue to divide where the daughter cells of such divisions are not transformed, i.e., they maintain normal response to growth and cell cycle regulation.
- the compounds of the invention may find use in the delay of the occurrence of cellular senescence, among other applications.
- the compounds of the invention may delay the onset of cellular senescence by a factor of 1 .2 or more, such as 2- fold or more, including 5-fold or more where in certain embodiments the delay is even greater, e.g., 10-, 20-, 50-, 100-, 300-, 1000-fold or more or even higher, compared to a control.
- the compounds of the invention modulate the interaction of a transcriptional repressor complex and a Site C site in the TERT promoter.
- transcriptional repressor complex is meant a complex containing at least one factor (e.g., protein), wherein the complex binds specifically to a Site C site in the TERT promoter.
- the transcriptional repressor complex can be a single protein that binds specifically to the Site C site in the TERT promoter (or minimal promoter).
- the transcriptional repressor complex can contain a number of factors (e.g., proteins) that together bind specifically to the Site C site in the TERT promoter. In general, binding of the transcriptional repressor complex to a Site C site in the TERT promoter represses or reduces transcription of the TERT gene.
- modulating the interaction of a transcriptional repressor complex and a Site C site means that the interaction is inhibited or reduced.
- the mechanism of activity of the compounds is by specific, direct interaction with the transcriptional repressor protein complex thereby preventing its binding to Site C in the TERT promoter.
- the binding of the compound to the transcriptional repressor complex competitively inhibits Site C DNA binding (meaning that the compound binds to the DNA-binding site of the transcriptional repressor complex) while in other embodiments the compound allosterically inhibits Site C DNA binding of the transcriptional repressor (meaning that it binds to a site other than to the DNA binding site of the transcriptional repressor).
- the compound binds to a member of the transcriptional repressor complex other than the DNA binding subunit to exert its inhibitory activity.
- the compounds of the present invention reduce the repressive activity of a TERT transcriptional repressor complex of one or more factors (e.g., proteins), e.g., by inhibiting the binding of a transcriptional repressor to its cognate DNA binding site in the TERT minimal promoter.
- factors e.g., proteins
- the Site C DNA binding site within the -66 to -51 region of the TERT minimal promoter has been described in U.S. Patent No. 6,686,159, which is incorporated herein by reference.
- the Site C sequence is: GGCCCCGCCCTCTCCTCGCGGCGCGAGTTTCAGGCAGCGCT (SEQ ID NO:1 )
- the target Site C sequence is a portion or subsequence of the above sequence, such as:
- GGCGCGAGTTTCA (SEQ ID NO:2); CGCGAGTTTC (SEQ ID NO:3); or GGCGCGAGTTTCAGGCAGCGC (SEQ ID NO:4).
- Site C-binding transcriptional repressor complexes of interest include those described in U.S. patent application 11/088,001 filed on March 22, 2005 entitled “Methods and Compositions for Modulating Telomerase Reverse Transcriptase (TERT) Expression", which is incorporated by reference herein in its entirety.
- transcriptional repressor complexes that bind to Site C site include any known or later discovered members of LSF family including any homolog or any protein or polypeptide with at least 50%, at least 70%, or at least 90% of its amino acids identical to a member of LSF family, especially within its functional regions, e.g., its DNA binding domain or regions involved in protein-protein interaction.
- LSF family is a family of proteins related to mammalian transcription factor LSF.
- Members of LSF family usually include LBP1 a, LBP1 b, LBP1 c, LBP1 d, LBP9, LBP32v1 , LBP32v2, SOMvl , SOMv2, SOMv3, and BOM.
- LBP1 d is a splice variant of LBP1 c while LBP1 a is a splice variant of LBP1 b.
- members the LSF family also include a splice variant of LBP1 c, called LBP1 c2, and a variant of BOM, called BOMv2, as well as any protein or polypeptide capable of binding to or interacting with one or more members related to LSF, e.g., YY1 , NF-E4, Fe65, APP-CT, NFPB, and SP1.
- the compounds of the invention increase the amount of telomerase expression from a level that is so low as to be undetectable to a level that is easily detectable, as determined by a quantitative RT-PCR assay, e.g., by an assay that determines the number of hTERT mRNA transcripts present in a cell after treatment with a compound of the invention, by measuring the Cycle Threshold value (C t , a measure of the number of PCR cycles that are required to amplify a target cDNA) and correlating it to the number of hTERT mRNA transcripts present.
- C t Cycle Threshold value
- the compounds of the invention may increase the number of hTERT mRNA transcripts per cell to a detectable level of 250 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1200 or more, 1500 or more, 2000 or more, 4000 or more, 8000 or more, 10,000 or more, 20,000 or more, or even higher.
- the compounds of the invention have no significant effect on the viability of a cell, as determined by a cell viability assay, e.g., as determined by administering a compound of the invention to a cell and determining the number of viable cells in culture using a homogeneous method, such as the CellTiter-Glo® Luminescent Cell Viability Assay (Promega Corporation, Madison, Wl.).
- a cell viability assay e.g., as determined by administering a compound of the invention to a cell and determining the number of viable cells in culture using a homogeneous method, such as the CellTiter-Glo® Luminescent Cell Viability Assay (Promega Corporation, Madison, Wl.).
- the compounds of the invention may exhibit a % cell viability, as compared to a control (e.g., a DMSO control), of 15% or more, such as 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 100% or more, 120% or more, or even higher.
- a control e.g., a DMSO control
- aspects of the invention include TERT expression enhancing isoxazole-3-carboxamide compounds.
- isoxazole-3-carboxamide compounds of the invention range in molecular weight from about 100 to about 700 daltons, including from about 125 to about 600 daltons such as from about 150 to about 450 daltons.
- azole compounds of the invention may contain from about 4 to about 50 carbon atoms, such as 7 to 25 carbon atoms, or 10 to 15 carbon atoms, and contain at least one other type of atom, including but not limited to nitrogen, oxygen, sulfur, bromine, fluorine, and/or chlorine atoms.
- the isoxazole-3-carboxamide compounds of the invention may include one or more aromatic or heteroaromatic rings.
- the non-carbon atoms can be present as part of an aromatic ring structure, a substituent of the aromatic ring group, as part of a non-aromatic ring structure, or as another structural element.
- the compounds are substituted isoxazole-3-carboxamides e.g., substituted with one or more substituents.
- the compounds are isoxazole-3-carboxamides substituted with a cyclic substituent, e.g., an aryl or heteroaryl substituent, such as a phenyl or thiophenyl substituent.
- the substituent is bonded to the 5- position of the isoxazole-3-carboxamide ring structure.
- the heterocyclic substituent includes a five-membered aromatic heterocycle.
- the heterocyclic substituent includes at least one oxygen or sulfur atom.
- the heterocyclic substituent includes a thiophene group.
- bonds to the heterocyclic substituent are made to the 2-position of the heterocycle.
- bonds to the heterocyclic substituent are made to the 3- position of the heterocycle.
- the substituent is a phenyl group.
- a compound of the invention is not a polymeric molecule, e.g., a nucleic acid such as RNA, DNA or polynucleotide analog; a peptide, e.g., protein or fragment thereof, etc.
- a compound of the invention is not an hTERT expression regulatory RNA, e.g., an RNA with a base sequence complimentary to a target gene or gene expression vector.
- a substituent may contribute to optical isomerism and/or stereo isomerism of a compound.
- Salts, solvates, hydrates, and prodrug forms of a compound are also of interest. All such forms are embraced by the present invention.
- the compounds described herein include salts, solvates, hydrates, prodrug and isomer forms thereof, including the pharmaceutically acceptable salts, solvates, hydrates, prodrugs and isomers thereof.
- a compound may be a metabolized into a pharmaceutically active derivative. where n is 2, 3, 4, 5, 6, 7 or 8, such as 3 to 7, e.g., 3 to 6, such as 3, 4, 5 or 6;
- R 68 is hydrogen or an alkyl
- R 51 is phenyl or thiophenyl
- R 52 is amino or guanadino (i.e., aminoamidine), optionally substituted with an aliphatic, an aryl or a heterocyclic group.
- a compound of the invention is of one of the following structures:
- compositions that include a TERT expression enhancing compound (for example one or more TERT expression enhancing compounds, either alone or in the presence of one or more additional active agents) present in a pharmaceutically acceptable vehicle.
- TERT expression enhancing compound for example one or more TERT expression enhancing compounds, either alone or in the presence of one or more additional active agents
- pharmaceutically acceptable vehicles may be vehicles approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in mammals, such as humans.
- vehicle refers to a diluent, adjuvant, excipient, or carrier with which a compound of the invention is formulated for administration to a mammal.
- Such pharmaceutical vehicles can be liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like.
- the pharmaceutical vehicles can be saline, gum acacia, gelatin, starch paste, talc, keratin, colloidal silica, urea, and the like.
- auxiliary, stabilizing, thickening, lubricating and coloring agents may be used.
- the compounds and compositions of the invention and pharmaceutically acceptable vehicles, excipients, or diluents may be sterile.
- an aqueous medium is employed as a vehicle when the compound of the invention is administered intravenously, such as water, saline solutions, and aqueous dextrose and glycerol solutions.
- compositions can take the form of capsules, tablets, pills, pellets, lozenges, powders, granules, syrups, elixirs, solutions, suspensions, emulsions, suppositories, or sustained-release formulations thereof, or any other form suitable for administration to a mammal.
- the pharmaceutical compositions are formulated for administration in accordance with routine procedures as a pharmaceutical composition adapted for oral or intravenous administration to humans. Examples of suitable pharmaceutical vehicles and methods for formulation thereof are described in Remington: The Science and Practice of Pharmacy, Alfonso R. Gennaro ed., Mack Publishing Co. Easton, Pa., 19th ed., 1995, Chapters 86, 87, 88, 91 , and 92, incorporated herein by reference.
- excipient will be determined in part by the particular compound, as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of the pharmaceutical composition of the present invention.
- Administration of TERT expression enhancing compounds of the invention may be systemic or local. In certain embodiments administration to a mammal will result in systemic release of a compound of the invention (for example, into the bloodstream). Methods of administration may include enteral routes, such as oral, buccal, sublingual, and rectal; topical administration, such as transdermal and intradermal; and parenteral administration. Suitable parenteral routes include injection via a hypodermic needle or catheter, for example, intravenous, intramuscular, subcutaneous, intradermal, intraperitoneal, intraarterial, intraventricular, intrathecal, and intracameral injection and non-injection routes, such as intravaginal rectal, or nasal administration. In particular embodiments, the compounds and compositions of the invention are administered orally.
- This may be achieved, for example, by local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sikalastic membranes, or fibers.
- the TERT expression enhancing compounds can be formulated into preparations for injection by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.
- formulations suitable for oral administration can include (a) liquid solutions, such as an effective amount of the compound dissolved in diluents, such as water, or saline; (b) capsules, sachets or tablets, each containing a predetermined amount of the active ingredient, as solids or granules; (c) suspensions in an appropriate liquid; and (d) suitable emulsions.
- Tablet forms can include one or more of lactose, mannitol, corn starch, potato starch, microcrystalline cellulose, acacia, gelatin, colloidal silicon dioxide, croscarmellose sodium, talc, magnesium stearate, stearic acid, and other excipients, colorants, diluents, buffering agents, moistening agents, preservatives, flavoring agents, and pharmacologically compatible excipients.
- Lozenge forms can include the active ingredient in a flavor, usually sucrose and acacia or tragacanth, as well as pastilles including the active ingredient in an inert base, such as gelatin and glycerin, or sucrose and acacia, emulsions, gels, and the like containing, in addition to the active ingredient, such excipients as are described herein.
- an inert base such as gelatin and glycerin, or sucrose and acacia, emulsions, gels, and the like containing, in addition to the active ingredient, such excipients as are described herein.
- the subject formulations of the present invention can be made into aerosol formulations to be administered via inhalation.
- These aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like. They may also be formulated as pharmaceuticals for non-pressured preparations such as for use in a nebulizer or an atomizer.
- formulations suitable for parenteral administration include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives.
- the formulations can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials, and can be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid excipient, for example, water, for injections, immediately prior to use.
- Extemporaneous injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described.
- Formulations suitable for topical administration may be presented as creams, gels, pastes, or foams, containing, in addition to the active ingredient, such carriers as are appropriate.
- the topical formulation contains one or more components selected from a structuring agent, a thickener or gelling agent, and an emollient or lubricant.
- Frequently employed structuring agents include long chain alcohols, such as stearyl alcohol, and glyceryl ethers or esters and oligo(ethylene oxide) ethers or esters thereof.
- Thickeners and gelling agents include, for example, polymers of acrylic or methacrylic acid and esters thereof, polyacrylamides, and naturally occurring thickeners such as agar, carrageenan, gelatin, and guar gum.
- emollients include triglyceride esters, fatty acid esters and amides, waxes such as beeswax, spermaceti, or carnauba wax, phospholipids such as lecithin, and sterols and fatty acid esters thereof.
- the topical formulations may further include other components, e.g., astringents, fragrances, pigments, skin penetration enhancing agents, sunscreens (i.e., sunblocking agents), etc.
- a compound of the invention may be formulated for topical administration.
- the vehicle for topical application may be in one of various forms, e.g., a lotion, cream, gel, ointment, stick, spray, or paste. They may contain various types of carriers, including, but not limited to, solutions, aerosols, emulsions, gels, and liposomes.
- the carrier may be formulated, for example, as an emulsion, having an oil-in-water or water-in-oil base.
- Suitable hydrophobic (oily) components employed in emulsions include, for example, vegetable oils, animal fats and oils, synthetic hydrocarbons, and esters and alcohols thereof, including polyesters, as well as organopolysiloxane oils.
- Such emulsions also include an emulsifier and/or surfactant, e.g., a nonionic surfactant to disperse and suspend the discontinuous phase within the continuous phase.
- Suppository formulations are also provided by mixing with a variety of bases such as emulsifying bases or water-soluble bases.
- bases such as emulsifying bases or water-soluble bases.
- Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams.
- a compound of the invention may also be formulated as a dietary supplement or nutraceutical, e.g., for oral administration.
- suitable excipients include pharmaceutical grades of carriers such as mannitol, lactose, glucose, sucrose, starch, cellulose, gelatin, magnesium stearate, sodium saccharine, and/or magnesium carbonate.
- the composition may be prepared as a solution, suspension, emulsion, or syrup, being supplied either in solid or liquid form suitable for hydration in an aqueous carrier, such as, for example, aqueous saline, aqueous dextrose, glycerol, or ethanol, preferably water or normal saline.
- an aqueous carrier such as, for example, aqueous saline, aqueous dextrose, glycerol, or ethanol, preferably water or normal saline.
- the composition may also contain minor amounts of non-toxic auxiliary substances such as wetting agents, emulsifying agents, or buffers.
- a compound of the invention may also be incorporated into existing nutraceutical formulations, such as are available conventionally, which may also include an herbal extract.
- Unit dosage forms for oral or rectal administration such as syrups, elixirs, and suspensions may be provided wherein each dosage unit, for example, teaspoonful, tablespoonful, tablet or suppository, contains a predetermined amount of the composition containing one or more inhibitors.
- unit dosage forms for injection or intravenous administration may include the inhibitor(s) in a composition as a solution in sterile water, normal saline or another pharmaceutically acceptable carrier.
- unit dosage form refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of compounds of the present invention calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier or vehicle.
- the specifications for the novel unit dosage forms of the present invention depend on the particular compound employed and the effect to be achieved, and the pharmacodynamics associated with each compound in the host.
- Dose levels can vary as a function of the specific compound, the nature of the delivery vehicle, and the like. Desired dosages for a given compound are readily determinable by a variety of means.
- the dose administered to an animal, particularly a human, in the context of the present invention should be sufficient to effect a prophylactic or therapeutic response in the animal over a reasonable time frame, e.g., as described in greater detail below. Dosage will depend on a variety of factors including the strength of the particular compound employed, the condition of the animal, and the body weight of the animal, as well as the severity of the illness and the stage of the disease. The size of the dose will also be determined by the existence, nature, and extent of any adverse side-effects that might accompany the administration of a particular compound.
- the TERT expression enhancing compounds may be administered in the form of a free base, their pharmaceutically acceptable salts, or they may also be used alone or in appropriate association, as well as in combination, with other pharmaceutically active compounds.
- aspects of the invention further include methods of using TERT expression enhancing compounds, e.g., as described above, to enhance TERT expression in a target cell population.
- the cells of interest are contacted with an effective amount of a TERT expression enhancing compound, e.g., as described above.
- effective amount is meant an amount of the TERT expression enhancing compound that is sufficient to enhance TERT expression in the target cell population to a desired level.
- enhancing TERT expression is meant that the expression level of the TERT coding sequence is increased by 2-fold or more, such as by 5-fold or more and including by 25-, 50-, 100-fold or more, such as by 300-, or 1000-fold or more, 3000-fold or more, 10,000-fold or more, as compared to a control, i.e. , expression from an expression system that is not subjected to the methods of the present invention.
- expression of the TERT gene is considered to be enhanced if expression is increased to a level that is easily detectable.
- the cells of interest may be contacted with the effective amount of the TERT expression enhancing compound in an in vitro or ex vivo culture system, or in vivo.
- a TERT expression enhancing compound may be contacted to primary cells grown under standard tissue culture conditions or alternatively to cells that are part of a whole animal (e.g., administered to a subject).
- the target cell or collection of cells may vary, where the collection of cells may be cultured cells, a whole animal or portion thereof, e.g., tissue, organ, etc.
- the target cell(s) may be a host animal or portion thereof, or may be a therapeutic cell (or cells) which is to be introduced into a multi-cellular organism, e.g., a cell employed in gene therapy.
- an effective amount of an active agent is administered to the target cell or cells, e.g., by contacting the cells with the agent, by administering the agent to the animal, etc.
- effective amount is meant a dosage sufficient to modulate TERT expression in the target cell(s), as desired.
- the TERT expression enhancing compound may be contacted with the target cells using any convenient protocol that results in the desired enhancement of TERT expression.
- the TERT expression enhancing compound can be incorporated into a variety of pharmaceutical compositions for therapeutic administration, e.g., as described above.
- the TERT expression enhancing compound can be formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments (e.g., skin creams), solutions, suppositories, injections, inhalants and aerosols, such as described above.
- administration of the TERT expression enhancing compounds can be achieved in various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intracheal, intrathecal, etc., administration.
- treatment finds use in the treatment of a variety of different conditions in which the enhancement of TERT expression in the host is desired.
- treatment is meant that at least an amelioration of the symptoms associated with the condition afflicting the host is achieved, where amelioration is used in a broad sense to refer to at least a reduction in the magnitude of a parameter, e.g., symptom (such as inflammation), associated with the condition being treated.
- a parameter e.g., symptom (such as inflammation)
- treatment also includes situations where the pathological condition, or at least symptoms associated therewith, are completely inhibited, e.g., prevented from happening, or stopped, e.g. terminated, such that the host no longer suffers from the condition, or at least the symptoms that characterize the condition.
- hosts are treatable according to the subject methods.
- Such hosts are "mammals” or “mammalian,” where these terms are used broadly to describe organisms which are within the class mammalia, including the orders carnivore (e.g., dogs and cats), rodentia (e.g., mice, guinea pigs, and rats), ungulates (e.g., horses) and primates (e.g., humans, chimpanzees, and monkeys).
- the hosts will be humans.
- TERT expression enhancing compounds e.g., as described above, for their ability to inhibit binding of a transcriptional repressor protein/protein complex to a TERT promoter that includes at least one of Site C binding site. Aspects of these screening methods may include determining whether a candidate TERT expression enhancing compound is capable of inhibiting binding of the transcriptional repressor protein/protein complex to the Site C binding site. Screening methods may include screening for TERT expression enhancing activity in a cell containing a TERT expression system that includes at least one Site C binding site in its promoter. Such methods may include: (i) contacting the cell with an effective amount of a candidate TERT expression enhancing compound; and (ii) determining whether the candidate compound inhibits binding of a transcriptional repressor protein/protein complex to the Site C binding site.
- the determining step may be carried out by any one or more of a variety a protocols for characterizing TERT expression and/or the inhibition of binding of the transcriptional repressor protein/protein complex to the Site C binding site of the TERT expression system.
- screening may be a reconstitution assay, cell-based assay, enzyme assay, ELISA assay or other related biological assay for assessing TERT expression and/or the inhibition of binding of the transcriptional repressor protein/protein complex to the Site C binding site of the TERT expression system, and the determining or assessment step suitable for application in such assays are well known and involve routine protocols.
- Screening may also include in silico approaches, in which one or more physical and/or chemical attributes of a compound of interest are expressed in a computer-readable format and evaluated by any one or more of a variety molecular modeling and/or analysis programs and algorithms suitable for this purpose.
- the screening methods of the invention can be carried out in vitro or in vivo.
- the cell when the TERT promoter is in a cell, the cell may be in vitro or in vivo, and the determining of whether the compound is capable of inhibiting binding includes: (i) contacting the cell with an effective amount of the candidate TERT expression enhancing compound; and (ii) assessing whether the candidate compound inhibits binding of the transcriptional repressor protein/protein complex to the Site C binding site.
- inhibition of binding of the transcriptional repressor protein/protein complex to the Site C binding site increases the proliferative capacity of the cell.
- inhibition of binding of the transcriptional repressor protein/protein complex to the Site C binding site delays the senescence of the cell.
- the TERT expression enhancing compound inhibits binding of the transcriptional repressor protein/protein complex to the Site C binding site.
- determining whether a candidate TERT expression enhancing compound is capable of inhibiting binding of the transcriptional repressor protein/protein complex to the Site C binding site may be carried out by any number of methods, as well as combinations thereof.
- the screening protocol is or includes part of an assay selected from a potency assay, a compound or product release assay, and combinations thereof.
- the potency assay characterizes one or more biological activities of a compound of interest, where biological activity is characterized in general by TERT expression levels and/or inhibiting binding of the transcriptional repressor protein/protein complex to the Site C binding site of a TERT expression system. Such a potency assay may also be exploited in the development and/or validation of assays, as well as for a compound release assay.
- the compound release assay involves assessment of one or more of sterility, safety, purity, identity and potency of a compound of interest.
- the TERT expression enhancing compound when the screening method employs a TERT expression enhancing compound that inhibits binding of the transcriptional repressor protein/protein complex to the Site C binding site, the TERT expression enhancing compound may be present as a pharmaceutical composition, e.g., as described above.
- the screening is a release assay for the pharmaceutical composition.
- the screening is a potency assay for the pharmaceutical composition.
- the screening methods of the invention are carried out for compound release, such as to demonstrate and/or confirm that a compound, such as a pharmaceutical composition including the compound, is one or more of safe, pure, potent, effective and stable.
- the screening methods of the invention may include demonstration of manufacturing and product consistency, including characterization for product release involving assessment of one or more of sterility, safety, purity, identity and potency.
- potency is intended the specific ability or capacity of a compound to effect a given result.
- Tests for potency may consist of either in vitro or in vivo tests, or both, which have been specifically adapted for each product so as to indicate its potency.
- potency assays indicate biological activity(s) specific/relevant to the product of interest.
- the potency assays may include the generation of data regarding TERT expression and/or inhibition of binding of the transcriptional repressor protein/protein complex to the Site C binding site.
- Such data may include, but is not limited to, qualitative and/or quantitative results for compound activity, lot release, predefined acceptance and/or rejection criteria (demonstrate lot to lot consistency), include appropriate reference material/controls, be validated for licensure, measure activity of one or more components that may be necessary for product activity, and/or indicate product stability.
- Potency measurements can be direct (e.g., biological assay) or indirect (e.g., surrogate assay(s) correlated to biological activity that may include one of many assays that measure product quality).
- potency can be measured by simple identity markers that exhibit minimal variability from assay to assay over time, including functional biomarkers that correlate with cellular differentiation and senescence. This includes measurement of one or more of cellular proliferation, cellular survival, and/or senescence, as well as biomarkers from analytic, genomic and/or proteomic-based techniques that correlate to the biological activity of interest.
- determining expression of TERT and/or inhibition of binding of the transcriptional repressor protein/protein complex to the Site C binding site can include various approaches for indirect potency measurements, including analytical assays such as a non-bioassay method correlated to a unique and/or specific activity of the compound (e.g., immunochemical procedures such as ELISA, ELISPOT, Q-flow cytometry, quantitative western blots; and molecular and biochemical procedures such as enzymatic assays, Q- PCR, RT-PCR, microarray/genomics, proteomics).
- analytical assays such as a non-bioassay method correlated to a unique and/or specific activity of the compound
- immunochemical procedures such as ELISA, ELISPOT, Q-flow cytometry, quantitative western blots
- molecular and biochemical procedures such as enzymatic assays, Q- PCR, RT-PCR, microarray/genomics, proteomics
- potency measurement may be carried out in vivo in animal models or from clinical data (e.g., assessment of gene function, cell survival and so forth), and in vitro such as in cell and/or tissue culture (e.g., assessment of signaling pathways, proliferation, enzymatic activity, cell survival and so forth).
- TERT expression enhancing compounds find use in a variety of applications.
- Applications of interest include, but are not limited to: therapeutic applications, research and manufacturing applications, and screening applications. Each of these different applications are now reviewed in greater details below.
- TERT expression enhancing compounds of the invention find use in a variety of therapeutic applications.
- Therapeutic applications of interest include those applications in which reduced activity or expression of TERT (or shortened telomeres) is the cause or a compounding factor in disease progression.
- the subject compounds find use in the treatment of a variety of different conditions in which the enhancement of TERT expression in the host is desired.
- disease conditions which may be treated with compounds of the invention include, but are not limited to: cancer, progeria, atherosclerosis, cardiovascular diseases, osteoarthritis, osteoporosis, Alzheimer’s disease, macular degeneration, muscular dystrophy, dyskeratosis congenital, idiopathic pulmonary fibrosis, Cri du Chat syndrome, down’s syndrome, Fanconi’s Anemia, tuberous sclerosis, Werner’s syndrome, conditions related to cell and tissue transplants, liver cirrhosis, rheumatoid arthritis, immune senescence, skin rejuvenation, bone marrow disorders, anemia, leukemia, lymphoma, and AIDS.
- Progeria is a collection of syndromes all of which exhibit varying forms of premature aging. In many ways progeria parallels aging itself.
- the two most publicized forms of progeria are Hutchinson-Gilford syndrome, which strikes in early childhood, and Werner syndrome, which is an adult-onset disease. Children with Hutchinson-Gilford syndrome live an average of just under 13 years, dying primarily from atherosclerosis, usually cardiac or cardiovascular. People with Werner syndrome are usually diagnosed in their thirties and die in their forties.
- the progerias have been linked directly to premature telomere loss in a variety of cell types.
- Dyskeratosis congenita is rare progressive congenital disorder which results in premature aging as seen in progeria. It is thought to be primarily a disorder of poor telomere maintenance.
- the subject methods can be used in such conditions to further delay natural telomeric shortening and/or increase telomeric length, thereby treating these currently incurable syndromes.
- FA Fanconi anemia
- FA is a genetic disease that affects children and adults from all ethnic backgrounds. FA is characterized by short stature, skeletal anomalies, increased incidence of solid tumors and leukemias, bone marrow failure (aplastic anemia), and cellular sensitivity to DNA damaging agents such as mitomycin C. FA is known to affect DNA repair and FA patients are more likely to develop bone marrow failure, myelodysplastic syndromes(MDS) and acute myeloid leukemia (AML).
- MDS myelodysplastic syndromes
- AML acute myeloid leukemia
- TERT enhancing compounds of the invention results in treatment of the subject for this condition.
- HIV HIV
- CD4 lymphocyte cells CD4 lymphocyte cells
- telomere shortening ultimately hastening immune senescence of the CD8 cells.
- Anti-retroviral therapies have successfully restored the immune systems of AIDS patients, but survival depends upon the remaining fraction of the patient’s aged T-cells. Once shortened, telomere length has not been naturally restored within cells. The subject methods can be employed to restore this length and/or prevent further shortening.
- telomeres can spare telomeres and is useful in conjunction with the anti-retroviral treatments currently available for HIV/AIDS.
- telomere length and replicative capacity of endothelial cells lining blood vessel walls (DeBono, Heart 80:1 10-1 , 1998). Endothelial cells form the inner lining of blood vessels and divide and replace themselves in response to stress. Stresses include high blood pressure, excess cholesterol, inflammation, and flow stresses at forks in vessels. As endothelial cells age and can no longer divide sufficiently to replace lost cells, areas under the endothelial layer become exposed. Exposure of the underlying vessel wall increases inflammation, the growth of smooth muscle cells, and the deposition of cholesterol.
- the vessel narrows and becomes scarred and irregular, which contributes to even more stress on the vessel (Cooper, Cooke and Dzau, J Gerontol Biol Sci 49: 191-6, 1994).
- Aging endothelial cells also produce altered amounts of trophic factors (hormones that affect the activity of neighboring cells). These too contribute to increased clotting, proliferation of smooth muscle cells, invasion by white blood cells, accumulation of cholesterol, and other changes, many of which lead to plaque formation and clinical cardiovascular disease (Ibid.).
- trophic factors hormones that affect the activity of neighboring cells.
- the occurrence of strokes caused by the aging of brain blood vessels may also be significantly reduced by employing the subject methods to help endothelial cells in the brain blood vessels to continue to divide and perform their intended function.
- osteoporosis Yet another disease condition in which the subject compounds find use is the treatment of osteoporosis.
- osteoblasts make bone and osteoclasts destroy it. Normally, the two are in balance and maintain a constant turnover of highly structured bone.
- bones are resilient, harder to break, and heal quickly.
- bones are brittle, break easily, and heal slowly and often improperly. Bone loss has been postulated to occur because aged osteoblasts, having lost much of their replicative capacity, cannot continue to divide at the rate necessary to maintain balance (Hazzard et al. PRINCIPLES OF GERIATRIC MEDICINE AND GERONTOLOGY, 2d ed. McGraw-Hill, New York City, 1994).
- the subject compounds can be employed to lengthen telomeres of osteoblast and osteoclast stem cells, thereby encouraging bone replacement and proper remodeling and reinforcement. The resultant stronger bone improves the quality of life for the many sufferers of osteoporosis and provides savings from fewer fracture treatments.
- the subject compounds and methods are generally part of a comprehensive treatment regime that also includes calcium, estrogen, and exercise.
- the target may be a cell or population of cells which are treated according to the subject methods and then introduced into a multi-cellular organism for therapeutic effect.
- the subject methods may be employed in bone marrow transplants for the treatment of cancer and skin grafts for burn victims.
- cells are isolated from a human donor and then cultured for transplantation back into human recipients.
- the cells normally age and senesce, decreasing their useful lifespans.
- Bone marrow cells for instance, lose approximately 40% of their replicative capacity during culturing. This problem is aggravated when the cells are first genetically engineered (Decary, Mouly et al. Hum Gene Ther 7(1 1 ): 1347-50, 1996).
- the therapeutic cells must be expanded from a single engineered cell.
- the subject compounds further find use cell therapy treatment applications.
- Cell therapy involves the isolation of healthy human cells, the expansion of those cells ex vivo, and the reinfusion of the expanded cells into a patient.
- Cell therapy has application in the treatment of cancer and organ transplantation and many other disease states or conditions.
- bone marrow therapy takes advantage of the fact that bone marrow, the major organ of the immune system, is responsible for production of various cells in the blood from hematopoietic stem cells.
- Physicians treat hematological disorders such as anemia, leukemia, and lymphoma through bone marrow transplantation, in which bone marrow is removed from a donor (allogenic transplant) or a patient (autologous transplant) through general surgery, frozen and stored, and then transfused into the patient at a later date.
- the bone marrow cells gravitate to the bone marrow and engraft, eventually producing new blood cells either to increase the number of such cells in the anemic patient or to reconstitute the bone marrow destroyed as a result of chemotherapy or radiation therapy.
- macular degeneration results in the gradual loss of central vision, ultimately leading to blindness.
- Applications of interest therefore include the treatment of macular degeneration by enhancing TERT expression in these cells.
- the senescence of ocular keratocytes correlates with the development of cataracts and is another target for compounds of the invention.
- Hepatic cirrhosis causes many deaths each year and has no effective treatment. Liver cells normally turn over slowly and have excellent regenerative characteristics. In cirrhosis, however, regeneration is insufficient and abnormal leading ultimately to liver failure. Relengthening telomeres in liver cells with compounds of the invention delays or prevents loss of liver function and failure.
- Yet another disease condition in which the subject compounds find use is Alzheimer's disease.
- Most current research on this degenerative disease of the brain focuses on amyloid plaques and neurofibrillary tangles. Amyloid plaques are found outside the neurons, neurofibrillary plaques are found inside the neurons. Neuron cells do not divide at any significant rate so many people discount the role of telomere shortening in Alzheimer's disease and other dementias. However, neurons depend on glial and microglial cells for support, and these cells do divide continually. Relengthening of glial telomeres addresses the underlying cause of neuronal damage, and provides a treatment of Alzheimer's disease.
- the subject compounds also find use in skin rejuvenation.
- the skin is the first line of defense of the immune system and shows the most visible signs of aging (West, Arch Dermatol 130(1 ):87-95, 1994). As skin ages, it thins, develops wrinkles, discolors, and heals poorly. Skin cells divide quickly in response to stress and trauma; but, over time, there are fewer and fewer actively dividing skin cells. Compounding the loss of replicative capacity in aging skin is a corresponding loss of support tissues. The number of blood vessels in the skin decreases with age, reducing the nutrients that reach the skin. Also, aged immune cells less effectively fight infection.
- Nerve cells have fewer branches, slowing the response to pain and increasing the chance of trauma.
- In aged skin there are also fewer fat cells, increasing susceptibility to cold and temperature changes. Old skin cells respond more slowly and less accurately to external signals. They produce less vitamin D, collagen, and elastin, allowing the extracellular matrix to deteriorate.
- To repair the increasing ultraviolet damage skin cells need to divide to replace damaged cells, but aged skin cells have shorter telomeres and are less capable of dividing (Fossel, RE ERSING HUMAN AGING. William Morrow & Company, New York City, 1996).
- telomere length By practicing the subject methods, e.g., via administration of a compound of the invention topically, one can extend telomere length, and slow the downward spiral that skin experiences with age. Such a product not only helps protect a person against the impairments of aging skin; it also permits rejuvenated skin cells to restore youthful immune resistance and appearance.
- compounds and methods of the invention may be employed to reduce the appearance of aging, e.g., by reducing the appearance of fine lines and wrinkles of the face and other locations of the body.
- the subject compounds and methods can be used for both medical and cosmetic skin rejuvenation applications.
- the subject compounds also find use in treatment of wounds and acute or chronic skin conditions, by increasing telomerase activity, cell proliferation or migration at the treatment site, epithelialization of the surface, closure of a wound if present, or restoration of normal physiological function.
- the subject compounds also find use in increasing the density of epithelial cells at the treatment site as a result of the applied therapy.
- the subject compounds also find use increasing telomerase activity in cells surrounding a wound to enhance wound healing.
- the subject compounds and methods can be used for skin rejuvenation and wound treatment applications.
- a topical composition including a compound may be used for treatment of acute or chronic conditions of the epidermis or for wound treatment and healing, e.g., such as a lotion, cream, gel, ointment, stick, spray, or paste.
- Compounds of the invention may be used for treating decubitus ulcers, sepsis, hypothermic stress, and other conditions of poor wound healing. Compounds could also be valuable in the production and use of skin grafts for severe burns and other conditions of traumatic skin loss.
- the subject compounds also find use in protecting cells against the harmful effects of exposure to UV and y-radiation. Telomere dysfunction is linked to impaired DNA repair and radiosensitivity, and as such activation of TERT may counter or protect against the harmful effects of radiation induced stress on skin cells.
- the subject compounds and methods can be used for skin protection applications.
- a topical composition including a compound may be used as a sunscreen e.g., a lotion, cream, gel, ointment, stick, spray, or past; and optionally include a UV absorbing compound, a moisturizer, and other common components of sunscreens.
- the subject compounds also find use to induce the proliferation of hair follicles for growth of hair.
- Induction of TERT in skin epithelium causes a rapid transition from telogen, the resting phase of the hair follicle cycle, to anagen, the active phase, thereby facilitating robust hair growth.
- the subject compounds and methods can be used for hair rejuvenation applications.
- a topical or a nutraceutical composition including a compound may enhance hair growth, density or color, e.g., a shampoo, cream, hair gel, or hair spray.
- the subject compounds can also be used to extend the lifespan of a mammal.
- extend the lifespan is meant to increase the time during which the animal is alive, where the increase is generally 1 % or more, such as 5% or more and including 10 % or more as compared to a control.
- the target may be a cell or population of cells which are treated according to the subject methods and then introduced into a multicellular organism for therapeutic effect.
- the subject compounds may be employed in bone marrow transplants for the treatment of cancer and skin grafts for burn victims.
- cells are isolated from a human donor and then cultured for transplantation back into human recipients.
- the cells normally age and senesce, decreasing their useful lifespans.
- Bone marrow cells for instance, lose approximately 40 % of their replicative capacity during culturing. This problem is aggravated when the cells are first genetically engineered (Decary, Mouly et al. Hum Gene Ther 7(11 ): 1347-50, 1996).
- the therapeutic cells must be expanded from a single engineered cell. By the time there are sufficient cells for transplantation, the cells have undergone the equivalent of 50 years of aging (Decary, Mouly et al. Hum Gene Ther 8(12): 1429-38, 1997).
- Use of the subject compounds spares the replicative capacity of bone marrow cells and skin cells during culturing and expansion and thus significantly improves the survival and effectiveness of bone marrow and skin cell transplants.
- Any transplantation technology requiring cell culturing can benefit from the subject methods, including ex vivo gene therapy applications in which cells are cultured outside of the animal and then administered to the animal, as described in U.S. Patent Nos. 6,068,837; 6,027,488;
- the subject compounds also find use in countering the harmful effects of oxidative stress induced in the cells of newborn infants during the first 4 months of age. Newborns, and especially those delivered preterm, are more prone to oxidative stress than individuals later in life. Factors such as oxidative stress are modulators of telomere length. Telomere length has also been implicated as a modulating factor of genetic damage in newborns. Telomere dysfunction is linked to impaired DNA repair. As such, the subject compounds and methods can be used to protect against the harmful effects of oxidative stress.
- a composition e.g. a topical or nutraceutical composition
- a compound may be used for treatment of oxidative stress injuries, e.g. a nutritional supplement for use in baby food or vitamin products, or a lotion, cream, shampoo, etc.
- the subject compounds also find use in countering the effects of abnormal or diminished levels of TERT activity in spermatogonia cells, their progenitors or descendants.
- the subject compounds and methods can be used in fertility applications, for example, by reversing abnormal or diminished levels of TERT activity in spermatogonia cells.
- a composition including a compound may be used for the treatment of infertility or disorders of reproduction.
- TERT expression enhancing compounds of the invention may find use in a variety addition applications, include research and manufacturing applications.
- TERT expression enhancing compounds find use in applications for increasing the proliferative capacity of cells grown in vitro (e.g., immortalizing cells).
- compounds of the invention find use in expanding cells for a variety uses, including expanding cells for use in diagnostic assays, expanding cells for use in preparative protocols (e.g., expanding antibodyproducing cells or cells expressing a protein/factor of interest), expanding cells to facilitate studying the cells themselves (e.g., expanding rare stem cells harvested from a subject).
- the primary method of producing monoclonal antibodies requires the creation of immortalized antibody producing cells, called hybridomas, made by fusing B-lymphocytes (which secrete antibodies) with immortal (cancerous) myeloma cells to extend their life span.
- hybridomas immortalized antibody producing cells
- the fusion process can take from 8 to 12 months and represents approximately 25% of the cost of production.
- a compound of the invention could be used to extend the life span of B- lymphocytes directly, reducing the production startup time to, for example, 2 to 3 months.
- the compounds of the invention can be used to expand cells that will themselves be administered to a subject for experimental or therapeutic purposes, for example in expanding cells for genetic alteration (e.g., gene therapeutic purposes).
- the compounds and methods of the invention are useful in any application in which an increase in cellular proliferation or a reduction in cellular senescence is advantageous.
- the subject compounds also find use in countering the effects of premature aging of cloned animals.
- a cloned animal inherits its age from its cell donor, thus being born old and die early.
- the length of the telomeres is related to the ageing problems of clones. Early embryonic telomere elongation is telomerase dependent, such that activation may lead to a rejuvenation of telomeres in cloned bovine embryos.
- the subject compounds also find use in cloning applications and may be used in a composition for use in agricultural cloning, such as in cloning of a cow or a sheep.
- the screening methods find use in a variety of applications, including identifying and/or testing candidate TERT expression enhancing compounds use in a wide range of research and therapeutic applications, such as pharmaceutical development, manufacturing, and quality assurance/control, as well as immortalization of cell lines and treating conditions in a subject characterized by cellular senescence.
- Applications of interest include use of the screening methods of the invention for performing research, as well as for pharmaceutical compliance related to GLP ("Good Laboratory Practice") and GMP ("Good Manufacturing Practice” also referred to as "cGMP" or "current Good Manufacturing Practice”)) and laboratory services.
- screening methods of the invention find broad use in research and lead development, sample analysis, as well as assay development, validation, drug regulatory submissions and compliance for new drug substances and drug products, drug product release and compound auditing in general.
- compound auditing is meant quality assurance and/or quality control of a compound.
- Compound auditing in accordance with the subject screening methods may be exploited in multiple settings.
- One example is in assay development or simply to transfer an assay from one location to another, whether or not it requires GLP and/or GMP compliance.
- This aspect may include the use of the subject screening methods to ensure that a compound of interest performs consistently and provides continuity in an assay over time.
- Statistical data analysis and related relevant data analysis tools can be exploited to best match the compound and use of interest.
- the screening method can be performed under "research level" protocols to identify those parameters such as the limit of detection (LOD), the limit of quantitation (LOQ) and the linear range necessary for assay validation and/or transfer.
- the screening methods find use in compiling and executing SOPs ("Standard Operating Procedure" or "Standard Operating Protocol”) which can be used for compound auditing.
- Additional uses of the screening methods of the invention include the generation and/or execution one or more GLP or GMP protocols that assess one or more of linearity, accuracy, precision, specificity, robustness, ruggedness and system suitability for one or more compounds of interest for a given end use.
- Generation of such protocols may include assays for identifying as well as testing of a compound of interest, including QA and/or QC, as well as generating controls that may be aliquoted under GLP or GMP compliance which may be used over several years depending upon the stability of the compound of interest.
- the subject screening methods may be used in qualitative and/or quantitative potency assays for routine lot release, lot comparisons, sampling, and stability assessment of a compound of interest.
- the screening methods may also be used in a multiple assay approach (i.e., assay matrix), such as when it is desirable to develop or use more than a single assay (e.g., an assay matrix often finds use when there is limited knowledge of product and mechanism of action, the product has multiple components with multiple biological activities, time is constrained due to limited product stability, biological assay is not quantitative and the like).
- assay matrix i.e., an assay matrix often finds use when there is limited knowledge of product and mechanism of action, the product has multiple components with multiple biological activities, time is constrained due to limited product stability, biological assay is not quantitative and the like.
- an acceptable product release and/or potency assay e.g., a quantitative physical assay along with a qualitative bioassay.
- aspects of the invention further include combination therapies.
- combination therapy is meant that a compound of the invention can be used in a combination with another therapeutic agent to treat a single disease or condition.
- a compound of the invention is administered concurrently with the administration of another therapeutic agent, which can be administered as a component of a composition including the compound of the invention or as a component of a different composition.
- a composition including a compound of the invention is administered prior or subsequent to administration of another therapeutic agent.
- the compounds of the present invention can be administered in combination with other therapeutic agents in a variety of therapeutic applications.
- Therapeutic applications of interest for combination therapy include those applications in which reduced activity or expression of TERT (or shortened telomeres) is the cause or a compounding factor in disease progression.
- the subject compounds find use in combination therapies in which the enhancement of TERT expression in the host is desired.
- disease conditions which may be treated by a combination therapy including a compound of the invention include, but are not limited to: cancer, progeria, atherosclerosis, cardiovascular diseases, osteoarthritis, osteoporosis, Alzheimer’s disease, macular degeneration, muscular dystrophy, dyskeratosis congenital, idiopathic pulmonary fibrosis, Cri du Chat syndrome, down’s syndrome, Fanconi’s Anemia, tuberous sclerosis, Werner’s syndrome, conditions related to cell and tissue transplants, liver cirrhosis, rheumatoid arthritis, immune senescence, skin rejuvenation, bone marrow disorders, anemia, leukemia, lymphoma, and AIDS. For example, combinations for anti-aging and AIDS therapy are discussed below.
- the compounds of the present invention can be administered in combination with other therapeutic agents as an anti-aging therapy.
- cell membranes may be damaged by reactive oxygen species and other free radicals, resulting, for example, in cross-linkage or cleavage of proteins and lipoproteins, and oxidation of membrane lipids and lipoproteins. Damage to the cell membrane can result in myriad changes including loss of cell permeability, increased intercellular ionic concentration, and decreased cellular capacity to excrete or detoxify waste products. As the intercellular ionic concentration of potassium increases, colloid density increases and m-RNA and protein synthesis are hampered, resulting in decreased cellular repair. Some cells become so dehydrated they cannot function at all. In aging, the regularity of tissue structure is lost, and individual cells enlarge, but the total number of cells decreases approximately 30%.
- compounds of the invention can be used in combination with an antioxidant.
- antioxidants include vitamin E, vitamin C, superoxide dismutase, glutathione, resveratrol, lipoic acid, carnosine, sulforaphane, and pioglitazone.
- Other compounds that have anti-aging effects and can be used in combination with compounds of the invention include (-)deprenyl (selegeline), 6-furfurylamino purine (kinetin), and 6-benzylamino purine (BAP).
- (-)Deprenyl (selegeline) can increase the formation of natural anti-oxidant enzymes SuperOxide Dismutase (SOD) and catalase.
- Cytokinins such as 6-furfurylamino purine (kinetin) and 6-benzylamino purine (BAP), are known to be growth stimulators. Kinetin promotes cell division.
- compounds of the invention are administered in conjunction with resveratrol, or an alalog thereof.
- 3,4',5-trihydroxystilbene commonly known as resveratrol is found in grapes.
- Resveratrol is found to exhibit antioxidative and antimutagenic properties.
- Resveratrol is also an inducer of phase II drug metabolizing enzymes.
- resveratrol consumption is found to inhibit peroxidation of plasma low density lipoprotein and this effect has been proposed to protect against the development of atherosclerosis.
- the above referenced bioprotective properties of resveratrol are attributed to the presence of phenolic groups in its structure.
- resveratrol analogs such as those describe din U.S. Patent No. 7,026,518; the disclosure of which is herein incorporated by reference.
- the compounds are administered in combination with an agent that kills cells.
- compounds of the invention may be employed counteract telomere shortening caused by subsequent cell division that occurs to replace the killed cells.
- compounds of the invention may be administered in conjunction with a senolytic agent, where senolytic agents that may be administered in combination with compounds of the invention include, but are not limited to: Dasatinib, Quercetin, Fisetin, Luteolin, Curcumin, Curcumin Analog EF24, Navitoclax (ABT263), A1331852, A1155463, Geldanamycin, Tanespimycin, Alvespimycin, Piperlongumine, FOXO4-related peptide, Nutlin3a, Cardiac glycosides, e.g., Ouabain, Proscillaridin A, Digoxin, etc.
- the compounds of the present invention can be administered jointly with other therapeutics in order to enhance antiviral efficacy.
- the present compounds can be administered with antiviral agents, including (but not limited to) agents acting on any suitable target in the virus replication process, such as reverse transcriptase inhibitors, viral protease inhibitors and glycosylation inhibitors, etc.; antiviral agents acting on different targets all through the virus spreading process; antiviral agents acting on different sites of the same molecule; and antiviral agents capable of preventing or reducing the development of the drug resistance.
- the compounds may be used jointly with other therapeutics to treat human AIDS, as well as analogous conditions in other species, e.g., Feline AIDS, etc.
- compounds of the invention can be administered jointly with retrovirus inhibitors, including (but not limited to) nucleoside analogs.
- nucleoside derivatives in the absence of any 3'-substituent that can be bound to other nucleosides, can suppress the synthesis of cDNA catalyzed by reverse transcriptase and thereby terminate the viral DNA replication. This is why they become anti-HIV therapeutic agents.
- AZT and ddT both of them can suppress HIV-1 replication in vivo and in vitro, had been approved as remedies for HIV infection and AIDS.
- the present compounds can be administered jointly with nucleoside derivatives and non-nucleoside derivatives.
- the nucleoside derivatives include (but not limited to): 2', 3'- dideoxyadenosine (ddA); 2',3'-diseoxyguanosine (ddG); 2',3'-dideoxyinosine (ddl); 2', 3'- dideoxycytidine (ddC); 2',3'-dideoxythymidine (ddT); 2',3'-dideoxy-dideoxythymidine (d4T) and 3'-azide2',3'-dideoxycytidine (AZT).
- the nucleoside derivatives are halonucleoside, preferably 2' 3'-dideoxy-2'- fluoronuceotides, including (but not limited to): 2',3'-dideoxy-2'-fluoroadenosine; 2',3'-dideoxy- 2'-fluoroinosine; 2',3'-dideoxy-2'-fluorothymidine; 2', 3'-dideoxy-2'-fluorocytidine; and 2', 3'- dideoxy-2',3'-didehydro-2'-fluoronuceotides, including (but not limited to): 2',3'-dideoxy-2',3'- didehydro-2'fluorothymidine (Fd4T).
- 2',3'-dideoxy-2'-fluoroadenosine 2',3'-dideoxy- 2'-fluoroinosine
- the present compounds can also be administered jointly with inhibitors of uridine phosphorylating enzyme, including (but not limited to) acyclouridine compounds, including benzylacyclouridine (BALI); benzoxybenzylacyclouridine (BBAU); amethobenzylacyclouridine (AMBAU); amethobenzoxybenzylacyclouridine (AMB-BAU); hydroxymethylbenzylacyclouridine (HMBAU); and hydroxymethylbenzoxybenzylacyclouridine (HMBBAU).
- BALI benzylacyclouridine
- BBAU benzoxybenzylacyclouridine
- AMBAU amethobenzylacyclouridine
- AMB-BAU amethobenzoxybenzylacyclouridine
- HMBAU hydroxymethylbenzylacyclouridine
- HMBBAU hydroxymethylbenzoxybenzylacyclouridine
- the present compounds can also be administered jointly with cytokines or cytokine inhibitors, including (but not limited to): rIFNa, rlFN
- cytokines or cytokine inhibitors including (but not limited to): rIFNa, rlFN
- Protease inhibitors prevent the virus from maturing mainly during the viral assembly period or after the assembly period (namely during the viral budding).
- Protease inhibitors show an antiviral activity both in vivo and in vitro.
- the AIDS patient HIV-level After being administered protease inhibitors, the AIDS patient HIV-level exhibits an exponential decline and their CD4 lymphocytes rise in number (Deeks, et al., 1997, JAMA 277:145-53).
- Aspects of the present invention provide for administration of the present compounds together with a protease inhibitor, the latter including (but not limited to): Indinavir, Invirase, Norvir, Viracept, and Agenerase.
- the present compounds can also be used jointly with anti-HIV drugs that disturb 5'- mRNA processing, such as virazole.
- anti-HIV drugs that disturb 5'- mRNA processing, such as virazole.
- the acting mechanism of virazole is unknown yet and presumed to be competing with guanine in forming the mRNA capping structure, and/or disturbing the methylation of these molecules.
- amphotericin B is a polyene antifungal antibiotic that can bind irreversibly with sterol. Amphotericin B and its formate have an inhibiting effect against many lipid envelop viruses including HIV.
- the present compounds can also be administered jointly with the glycoprotein processing inhibitor castanospermine, which is a vegetable alkaloid capable of inhibiting glycol protein processing.
- HIV envelope contains two large glycoproteins gp120 and gp41 .
- the glycosylation of proteins plays an important role in the interactions between gp120 and CD4.
- the progeny virus synthesized in the presence of castanospermine has a weaker infectivity than the parental virus.
- Drug combinations of interest include the present compounds, and at least one of other antiviral agents, such as reverse transcriptase inhibitors, protease inhibitors, mRNA processing inhibitors, protein glycosylation inhibitors, virus adsorbent, CD4 receptor inhibitors, chemokine co-receptor inhibitors, neutralizing antibody, integrase inhibitors, and other fusion inhibitors, including (but not limited to) nucleoside analogs or chain terminators; chemokine co-receptor inhibitors AMD-3100 (Tremblay, C. L. et al., 2000, J. AIDS 1 :25(2)99- 10).
- antiviral agents such as reverse transcriptase inhibitors, protease inhibitors, mRNA processing inhibitors, protein glycosylation inhibitors, virus adsorbent, CD4 receptor inhibitors, chemokine co-receptor inhibitors, neutralizing antibody, integrase inhibitors, and other fusion inhibitors, including (but not limited to) nucleoside analog
- therapeutic agents that can be used jointly with the present compounds include (but not limited to): 2-deoxy-D-glucose (2dG1 c), deoxynojirimycinacycloguanosine, virazole, rifadin, adamantanamine, rifabutine, ganciclover (DHPG), famciclove, buciclover (DHBG), fluoroiodoaracytosine, iodoxuridine, trifluorothymidine, ara-A, ara-AMP, bromovinyldeoxyuridine, BV-arau, 1 -b-D- glycoarabinofuranoside-E-5-[2-bromovinyl]uracil, adamantethylamine, hydroxyurea, phenylacetic heptanedione, diarylamidine, (S)-(p-nitrobenzyl)-6-thioinosine and phosphonoformate.
- 2dG1 c 2-deoxy
- kits that include compounds of the invention.
- Systems of the invention are collections of active agents brought together, e.g., by a health care practitioner, for administration to a subject, such as a patient.
- Such systems may include TERT expression enhancing compound of the invention and one or more additional active agents.
- Kits that include TERT expression enhancing compounds of the invention are also provided.
- Kits of the invention may include one or more dosages of a TERT expression enhancing compound, and optionally one or more dosages of one or more additional active agents.
- the formulations may be provided in a unit dosage format.
- in addition to the containers containing the formulation(s), e.g. unit doses is an informational package insert describing the use of the subject formulations in the methods of the invention, e.g., instructions for using the subject unit doses to treat cellular proliferative disease conditions.
- These instructions may be present in the subject systems and kits in a variety of forms, one or more of which may be present in the kit.
- One form in which these instructions may be present is as printed information on a suitable medium or substrate, e.g., a piece or pieces of paper on which the information is printed, in the packaging of the kit, in a package insert, etc.
- Yet another means would be a computer readable medium, e.g., portable flash drive, diskette, CD, etc., on which the information has been recorded.
- Yet another means that may be present is a website address which may be used via the internet to access the information at a removed site. Any convenient means may be present in the kits.
- the following examples are offered by way of illustration and not by way of limitation.
- Telomerase is a ribonucleoprotein complex composed of the catalytic protein subunit (human telomerase reverse transcriptase or hTERT) and the RNA template. hTERT expression level can be measured by PCR.
- Quantitative Reverse Transcription PCR can be run according to procedures outlined in Yajima et al. (Yajima, T. et al. Quantitative Reverse Transcription-PCR Assay of the RNA Component of Human Telomerase Using the TaqMan Fluorogenic Detection System Clinical Chemistry, 44:12, 2441-2445, 1998).
- the emission signal accumulates in each sample, and the C t required to reach a given fluorescence threshold is determined (C t stands for Cycle Threshold and is a measure of the number of PCR cycles that are required to amplify a target - thus, a lower C t score means that there is more abundant hTERT mRNA).
- C t stands for Cycle Threshold and is a measure of the number of PCR cycles that are required to amplify a target - thus, a lower C t score means that there is more abundant hTERT mRNA).
- C t value of a sample inversely correlates to the quantity of the starting cDNA which correlates to the number of mRNA transcripts.
- a standard curve can be generated and used to determine the starting amount of mRNA transcripts based on the C t value of each sample.
- Quantitative real-time PCR can be done on cDNA from test compound-treated and nontreated cells by use of a ABI Prism 7900 Sequence Detection System (PE Applied Biosystems, Foster City, CA) following the Assays-on-Demand protocol (PE Applied Biosystems, Foster City, CA). Quantitative data can be analyzed using the Sequence Detection System software version 2.1 (PE Applied Biosystems). Cell Viability Assay
- Cell viability is determined using a homogeneous method, such as CellTiter-Glo® Luminescent Cell Viability Assay (Promega Corporation, Madison, Wl.) to determine the number of viable cells in culture These assays are based on quantitation of the ATP present, which signals the presence of metabolically active cells. Luminescent values of compound treated cells are compared to that of cells treated with vehicle alone to determine the average cell viability as a percent of control.
- a method for enhancing telomerase reverse transcriptase (TERT) expression in a cell comprising: contacting the cell with a TERT expression enhancing effective amount of a compound, wherein the compound is an isoxazole-3-carboxamide.
- TERT telomerase reverse transcriptase
- R 68 is hydrogen or an alkyl
- R 51 is phenyl or thiophenyl
- R 52 is amino or guanadino, optionally substituted with an aliphatic, an aryl or a heterocyclic group.
- R 68 is hydrogen or an alkyl
- R 51 is phenyl or thiophenyl
- R 52 is amino or guanadino, optionally substituted with an aliphatic, an aryl or a heterocyclic group.
- a method for extending the lifespan of a mammal comprising: administering to the mammal an effective amount of an isoxazole-3-carboxamide compound of any of Clauses 13 to 22.
- a method for treating a mammal for ultraviolet damage comprising: administering to the mammal an effective amount of an isoxazole-3-carboxamide compound of any of Clauses 13 to 22; to treat the mammal for ultraviolet damage.
- a method for reducing the appearance of aging in a mammal comprising: administering to the mammal an effective amount of an isoxazole-3-carboxamide compound of any of Clauses 13 to 22; to reduce the appearance of aging in the mammal.
- a pharmaceutical composition comprising: a TERT expression enhancing an isoxazole-3-carboxamide compound of any of Clauses 13 to 22; and a pharmaceutically acceptable carrier.
- composition according to Clause 34 wherein the composition is a topical composition.
- composition according to Clause 35 wherein the composition further comprises a sunblocking agent.
- composition according to Clause 34, wherein the composition is an oral composition.
- composition according to Clause 34 wherein the composition is an injectable composition.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
Abstract
Telomerase reverse transcriptase (TERT) expression enhancing isoxazole-3-carboxamide compounds, and methods for using the same, are provided. These compounds and methods find use in a variety of applications in which increased expression of telomerase reverse transcriptase is desired.
Description
ISOXAZOLE-3-CARBOXAMIDE COMPOUNDS FOR ENHANCING TELOMERASE REVERSE TRANSCRIPTASE (TERT) EXPRESSION
INTRODUCTION
Pursuant to 35 U.S.C. §119(e), this application claims priority to the filing date of the Swedish Provisional Patent Application Serial No. 63/527,132 filed July 17, 2023; the disclosure of which application is herein incorporated by reference.
INTRODUCTION
Telomeres are regions of repetitive DNA found at the ends of the chromosomes of most eukaryotes. For example, human telomeres include many kilobases of (TTAGGG)n and are associated with various proteins. Small portions of these terminal sequences of telomeric DNA are lost from the tips of the chromosomes during the S phase of the cell cycle because of incomplete DNA replication. Many human cells progressively lose terminal sequences with cell division, a loss that correlates with the apparent absence of telomerase in these cells. The resulting telomere shortening limits cellular lifespan.
Telomerase is a ribonucleoprotein that synthesizes telomeric DNA. Telomerase is made up of two components: (1 ) an essential structural RNA component (TR or TER) (in humans the component is referred to as hTR or hTER), and (2) a catalytic protein (telomerase reverse transcriptase or TERT) (in humans the component is referred to as hTRT or hTERT). Telomerase works by adding multiple DNA sequence repeats to the 3' end of DNA in the telomere region, where hTER serves as the template for nucleotide incorporation, and TERT as the catalyst. Both the catalytic protein component and the RNA template component of telomerase are activity-limiting components.
Because of its role in cellular senescence and immortalization, there is much interest in the regulation of telomerase activity.
SUMMARY
Telomerase reverse transcriptase (TERT) expression enhancing isoxazole-3- carboxamide compounds, and methods for using the same, are provided. These compounds and methods find use in a variety of applications in which increased expression of telomerase reverse transcriptase is desired.
DEFINITIONS
When describing the compounds, pharmaceutical compositions containing such compounds and methods of using such compounds and compositions, the following terms have the following meanings unless otherwise indicated. It should also be understood that any of the moieties defined forth below may be substituted with a variety of substituents, and that the respective definitions are intended to include such substituted moieties within their scope.
"Acyl" refers to a -C(O)R group, where R is hydrogen, alkyl, alkenyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroalkyl, heteroalkenyl, or heteroaryl as defined herein. Representative examples include, but are not limited to, formyl, acetyl, cyclohexylcarbonyl, cyclohexylmethylcarbonyl, benzoyl, benzylcarbonyl and the like.
"Acylamino" refers to a -NR'C(O)R group, where R' is hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroalkyl, heteroaryl, heteroarylalkyl and R is hydrogen, alkyl, alkoxy, cycloalkyl, heterocycloalkyl, aryl, arylalkyl, heteroalkyl, heteroaryl or heteroarylalkyl, as defined herein. Representative examples include, but are not limited to, formylamino, acetylamino, cyclohexylcarbonylamino, cyclohexylmethyl-carbonylamino, benzoylamino, benzylcarbonylamino and the like.
"Acyloxy" refers to the group -OC(O)H, -OC(O)-alkyl, -OC(O)-aryl or -OC(O)- cycloalkyl.
"Aliphatic" refers to hydrocarbyl organic compounds or groups characterized by a straight, branched or cyclic arrangement of the constituent carbon atoms and an absence of aromatic unsaturation. Aliphatics include, without limitation, alkyl, alkylene, alkenyl, alkynyl and alkynylene. Lower aliphatic groups typically have from 1 or 2 to 6 or 12 carbon atoms.
"Alkenyl" refers to monovalent olef inically unsaturated hydrocarbyl groups having up to about 11 carbon atoms, such as from 2 to 8 carbon atoms, and including from 2 to 6 carbon atoms, which can be straight-chained or branched and having at least 1 and including from 1 to 2 sites of olefinic unsaturation. Particular alkenyl groups include ethenyl (-CH=CH2), n-propenyl (-CH2CH=CH2), isopropenyl (-C(CH3)=CH2), vinyl and substituted vinyl, and the like.
"Alkoxy" refers to the group -O-alkyl. Particular alkoxy groups include, by way of example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, te/t-butoxy, sec-butoxy, n- pentoxy, n-hexoxy, 1 ,2-dimethylbutoxy , and the like.
"Alkoxycarbonyl" refers to a radical -C(0)-alkoxy where alkoxy is as defined herein.
"Alkoxycarbonylamino" refers to the group -NRC(O)OR' where R is hydrogen, alkyl, aryl or cycloalkyl, and R' is alkyl or cycloalkyl.
"Alkyl" refers to monovalent saturated aliphatic hydrocarbyl groups particularly having up to about 12 or 18 carbon atoms, more particularly as a lower alkyl, from 1 to 8 carbon atoms and still more particularly, from 1 to 6 carbon atoms. The hydrocarbon chain may be either straight-chained or branched. This term is exemplified by groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, iso-butyl, tert-butyl, n-hexyl, n-octyl, tert-octyl and the like. The term "alkyl" also includes "cycloalkyls" as defined herein.
"Alkylene" refers to divalent saturated aliphatic hydrocarbyl groups particularly having up to about 12 or 18 carbon atoms and more particularly 1 to 6 carbon atoms which can be straight-chained or branched. This term is exemplified by groups such as methylene (-CH2-), ethylene (-CH2CH2-), the propylene isomers (e.g., -CH2CH2CH2- and -CH(CH3)CH2-) and the like.
"Alkynyl" refers to acetylenically unsaturated hydrocarbyl groups particularly having up to about 12 or 18 carbon atoms and more particularly 2 to 6 carbon atoms which can be straight-chained or branched and having at least 1 and particularly from 1 to 2 sites of alkynyl unsaturation. Particular non-limiting examples of alkynyl groups include acetylenic, ethynyl (- C=CH), propargyl (-CH2C=CH), and the like.
"Amino" refers to the radical -NH2.
"Aminocarbonyl" refers to the group -C(O)NRR where each R is independently hydrogen, alkyl, aryl or cycloalkyl, or where the R groups are joined to form an alkylene group.
"Aminocarbonylamino" refers to the group -NRC(O)NRR where each R is independently hydrogen, alkyl, aryl or cycloalkyl, or where two R groups are joined to form an alkylene group.
"Aminocarbonyloxy" refers to the group -OC(O)NRR where each R is independently hydrogen, alkyl, aryl or cycloalky, or where the R groups are joined to form an alkylene group.
"Aralkyl" or "arylalkyl" refers to an alkyl group, as defined above, substituted with one or more aryl groups, as defined above.
"Aryl" refers to a monovalent aromatic hydrocarbon group derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system. Typical aryl
groups include, but are not limited to, groups derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, as-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene, rubicene, triphenylene, trinaphthalene and the like. In some cases, an aryl group includes from 6 to 14 carbon atoms.
"Aryloxy" refers to -O-aryl groups wherein "aryl" is as defined herein.
“Azido" refers to a -N3 group.
“Carbonyl" refers to -C(O)- groups, for example, a carboxy, an amido, an ester, a ketone, or an acyl substituent.
"Carboxyl" refers to a -C(O)OH group
"Cyano" refers to a -CN group.
"Cycloalkenyl" refers to cyclic hydrocarbyl groups having from 3 to 10 carbon atoms and having a single cyclic ring or multiple condensed rings, including fused and bridged ring systems and having at least one and particularly from 1 to 2 sites of olefinic unsaturation. Such cycloalkenyl groups include, by way of example, single ring structures such as cyclohexenyl, cyclopentenyl, cyclopropenyl, and the like.
"Cycloalkyl" refers to cyclic hydrocarbyl groups having from 3 to about 10 carbon atoms and having a single cyclic ring or multiple condensed rings, including fused and bridged ring systems, which optionally can be substituted with from 1 to 3 alkyl groups. Such cycloalkyl groups include, by way of example, single ring structures such as cyclopropyl, cyclobutyl, cyclopentyl, cyclooctyl, 1 -methylcyclopropyl, 2-methylcyclopentyl, 2- methylcyclooctyl, and the like, and multiple ring structures such as adamantanyl, and the like.
“Heterocycloalkyl” refers to a stable heterocyclic non-aromatic ring and fused rings containing one or more heteroatoms independently selected from N, 0 and S. A fused heterocyclic ring system may include carbocyclic rings and need only include one heterocyclic ring. Examples of heterocyclic rings include, but are not limited to, piperazinyl, homopiperazinyl, piperidinyl and morpholinyl.
“Halogen" or “halo” refers to fluoro, chloro, bromo and iodo.
"Hetero" when used to describe a compound or a group present on a compound means that one or more carbon atoms in the compound or group have been replaced by, for example, a nitrogen, oxygen, or sulfur heteroatom. Hetero may be applied to any of the
hydrocarbyl groups described above such as alkyl, e.g. heteroalkyl, cycloalkyl, e.g. heterocycloalkyl, aryl, e.g. heteroaryl, cycloalkenyl, e.g., heterocycloalkenyl, cycloheteroalkenyl, e.g., heterocycloheteroalkenyl and the like having from 1 to 5, and particularly from 1 to 3 heteroatoms. A heteroatom is any atom other than carbon or hydrogen and is typically, but not exclusively, nitrogen, oxygen, sulfur, phosphorus, boron, chlorine, bromine, or iodine.
"Heteroaryl" refers to a monovalent heteroaromatic group derived by the removal of one hydrogen atom from a single atom of a parent heteroaromatic ring system. Typical heteroaryl groups include, but are not limited to, groups derived from acridine, arsindole, carbazole, β -carboline, chromane, chromene, cinnoline, furan, imidazole, indazole, indole, indoline, indolizine, isobenzofuran, isochromene, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, pteridine, purine, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine, quinazoline, quinoline, quinolizine, quinoxaline, tetrazole, thiadiazole, thiazole, thiophene, triazole, xanthene, and the like. The heteroaryl group can be a 5-20 membered heteroaryl, or 5-10 membered heteroaryl. Particular heteroaryl groups are those derived from thiophen, pyrrole, benzothiophene, benzofuran, indole, pyridine, quinoline, imidazole, oxazole and pyrazine.
“Heterocycle” refers to organic compounds that contain a ring structure containing atoms in addition to carbon, such as sulfur, oxygen or nitrogen, as part of the ring. They may be either simple aromatic rings or non-aromatic rings. Examples include azoles, morpholine, piperazine, pyridine, pyrimidine and dioxane. The maximum number of heteroatoms in a stable, chemically feasible heterocyclic ring, whether it is aromatic or non aromatic, is determined by factors such as, the size of the ring, the degree of unsaturation and the valence of the heteroatoms. In general, a heterocyclic ring may have one to four heteroatoms so long as the heteroaromatic ring is chemically feasible and stable.
“Hydroxyl” refers to a -OH group.
“Linker”, for example L1, as used in the structures herein, refers to a linking moiety of up to about 20 atoms in length. A tether may be a single bond or a chain of from about 1 to about 20 atoms in length, for example of about 1 , 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18 or 20 carbon atoms in length, where the linker backbone is optionally substituted with a sulfur, nitrogen or oxygen heteroatom, which linker may comprise one, two, three, five, seven or more backbone heteroatoms. The bonds between backbone atoms may be saturated or
unsaturated, usually not more than one, two, or three unsaturated bonds will be present in a linker backbone. Each of the backbone atoms may be substituted or unsubstituted, for example with an alkyl, aryl or alkenyl group. A linker may include, without limitations, oligo(ethylene glycol); ethers, thioethers, tertiary amines, alkyls, which may be straight or branched, e.g., methyl, ethyl, n-propyl, 1 -methylethyl (iso-propyl), n-butyl, n-pentyl, 1 ,1 - dimethylethyl (t-butyl), and the like. The linker backbone may include a cyclic group, for example, an aryl, a heterocycle or a cycloalkyl group, where 2 or more atoms, e.g., 2, 3 or 4 atoms, of the cyclic group are included in the backbone.
“Nitro” refers to a -NO2 group.
“Scaffold” refers to a molecular scaffold or core structure. For example, a scaffold may form the basis for a small molecule library where one or more substituents connected to the scaffold are variable.
“Stereoisomer” as it relates to a given compound refers to another compound having the same molecular formula, wherein the atoms making up the other compound differ in the way they are oriented in space, but wherein the atoms in the other compound are like the atoms in the given compound with respect to which atoms are joined to which other atoms (e.g. an enantiomer, a diastereomer, or a geometric isomer). See for example, Morrison and Boyd, Organic Chemistry, 1983, 4th ed., Allyn and Bacon, Inc., Boston, MA, p. 123.
"Substituted" refers to a group in which one or more hydrogen atoms are each independently replaced with the same or different substituent(s). "Substituted” groups particularly refer to groups having 1 or more substituents, for instance from 1 to 5 substituents, and particularly from 1 to 3 substituents, selected from the group consisting of acyl, acylamino, acyloxy, alkoxy, substituted alkoxy, alkoxycarbonyl, alkoxycarbonylamino, amino, substituted amino, aminocarbonyl, aminocarbonylamino, aminocarbonyloxy, aryl, aryloxy, azido, carboxyl, cyano, cycloalkyl, substituted cycloalkyl, halogen, hydroxyl, keto, nitro, thioalkoxy, substituted thioalkoxy, thioaryloxy, thioketo, thiol, alkyl-S(O)-, aryl-S(O)-, alkyl-S(O)2- and aryl-S(O)2. Substituents of interest may include, but are not limited to, -X, - R8 (with the proviso that R8 is not hydrogen), -O-, =0, -OR8, -SR8, -S', =S, -NR8R9, =NR8, - CX3, -CF3, -CN, -OCN, -SCN, -NO, -N02, =N2, -N3I -S(0)20-, -S(O)2OH, -S(O)2R8, -0S(02)0-, -OS(O)2R8, -P(0)(0-)2, -P(O)(OR8)(O ), -OP(O)(OR8)(OR9), -C(O)R8, -C(S)R8, -C(O)OR8, - C(O)NR8R9, -0(0)0’, -C(S)OR8, -NR10C(O)NR8R9, vNR10C(S)NR8R9, -NR11C(NR10)NR8R9 and -C(NR10)NR8R9, where each X is independently a halogen.
"Substituted acyl" includes those groups recited in the definition of "substituted" herein, and particularly refers to the group -C(O)R where R selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amino, substituted amino, aryl, arylalkyl, cycloalkyl, substituted cycloalkyl, heterocycloalkyl, heteroalkyl, or heteroaryl as defined herein.
"Substituted amino" includes those groups recited in the definition of "substituted" herein, and particularly refers to the group -N(R)2 where each R is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, aryl, cycloalkyl, substituted cycloalkyl, and where both R groups are joined to form an alkylene group.
“Sulfonyl” refers to the group -SO2-. Sulfonyl includes, for example, methyl -SO2-, phenyl -SO2-, and alkylamino -SO2-.
“Sulfinyl” refers to the group -S(O)-.
"Thioalkoxy" refers to the group -S-alkyl.
"Thioaryloxy" refers to the group -S-aryl.
"Thioketo" refers to the group =S.
"Thiol" refers to the group -SH.
"Thio" refers to the group -S-. Thio includes, for example, thioalkoxy, thioaryloxy, thioketo and thiol.
As to any of the groups disclosed herein which contain one or more substituents, it is understood, of course, that such groups do not contain any substitution or substitution patterns which are sterically impractical and/or synthetically non-feasible. In addition, the subject compounds include all stereochemical isomers arising from the substitution of these compounds.
The term "pharmaceutically acceptable salt" means a salt which is acceptable for administration to a patient, such as a mammal (e.g., salts having acceptable mammalian safety for a given dosage regime). Such salts can be derived from pharmaceutically acceptable inorganic or organic bases and from pharmaceutically acceptable inorganic or organic acids. “Pharmaceutically acceptable salt” refers to pharmaceutically acceptable salts of a compound, which salts are derived from a variety of organic and inorganic counter ions well known in the art and include, by way of example only, sodium, potassium, calcium, magnesium, ammonium, tetraalkylammonium, and the like; and when the molecule contains
a basic functionality, salts of organic or inorganic acids, such as hydrochloride, hydrobromide, tartrate, mesylate, acetate, maleate, oxalate, and the like.
The term "salt thereof" means a compound formed when the hydrogen of an acid is replaced by a cation, such as a metal cation or an organic cation and the like. Where applicable, the salt is a pharmaceutically acceptable salt, although this is not required for salts of intermediate compounds that are not intended for administration to a patient.
“Solvate” refers to a complex formed by combination of solvent molecules with molecules or ions of the solute. The solvent can be an organic compound, an inorganic compound, or a mixture of both. Some examples of solvents include, but are not limited to, methanol, N,N-dimethylformamide, tetrahydrofuran, dimethylsulfoxide, and water. When the solvent is water, the solvate formed is a hydrate.
“Stereoisomer” and “stereoisomers” refer to compounds that have same atomic connectivity but different atomic arrangement in space. Stereoisomers include cis-trans isomers, E and Z isomers, enantiomers, and diastereoisomers.
“Tautomer” refers to alternate forms of a molecule that differ only in electronic bonding of atoms and/or in the position of a proton, such as enol-keto and imine-enamine tautomers, or the tautomeric forms of heteroaryl groups containing a -N=C(H)-NH- ring atom arrangement, such as pyrazoles, imidazoles, benzimidazoles, triazoles, and tetrazoles. A person of ordinary skill in the art would recognize that other tautomeric ring atom arrangements are possible.
DETAILED DESCRIPTION
Telomerase reverse transcriptase (TERT) expression enhancing isoxazole-3- carboxamide compounds, and methods for using the same, are provided. These compounds and methods find use in a variety of applications in which increased expression of telomerase reverse transcriptase is desired.
Before particular embodiments are described in greater detail, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, representative illustrative methods and materials are now described.
All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
It is noted that, as used herein and in the appended claims, the singular forms "a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
Each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
In further describing the various aspects of the invention, the function and structure of various embodiments of TERT expression enhancing compounds are described first in greater detail, followed by a description of methods and applications in which the compounds find use.
TERT EXPRESSION ENHANCING COMPOUNDS
As summarized above, aspects of the invention include TERT expression enhancing compounds. The TERT expression enhancing compounds are compounds that increase TERT expression in a cell upon contact with a cell or components thereof. In some instances, the types of cells in which the compounds of the invention exhibit activity are ones that include a TERT gene containing a Site C site in its promoter region, e.g., in the TERT gene minimal promoter. By increasing TERT expression is meant that the expression level of the TERT encoding mRNA is increased by 2-fold or more, such as by 5-fold or more and sometimes by 25-, 50-, or 100-fold or more and in certain embodiments 300-, 1000-, 3000- or 10,000-fold or more or higher, as compared to a control, i.e., expression in a comparable cell (such as a clone, cell from the same tissue, etc.) not contacted with the compound of interest (e.g., by using the assay described in Published United States Patent Application Publication No. US-2006-0199171 -A1 , the disclosure of which assay is herein incorporated by reference). Alternatively, in cases where expression of the TERT gene in a cell is so low that it is undetectable, the expression level of the TERT encoding mRNA is considered to be increased if expression is increased to a level that is easily detectable, e.g., by using the assay described in Published United States Patent Application Publication No. US-2006- 0199171 -A1 , the disclosure of which assay is herein incorporated by reference.
In certain embodiments, the target cell in which TERT expression is increased is a normal cell, e.g., a somatic cell. In some of these embodiments, the compounds of the invention are used to increase the proliferative capacity of a cell. The term “proliferative capacity” as used herein refers to the number of divisions that a cell can undergo, and in some instances to the ability of the target cell to continue to divide where the daughter cells of such divisions are not transformed, i.e., they maintain normal response to growth and cell cycle regulation. As such, the compounds of the invention may find use in the delay of the occurrence of cellular senescence, among other applications. The compounds of the invention may delay the onset of cellular senescence by a factor of 1 .2 or more, such as 2- fold or more, including 5-fold or more where in certain embodiments the delay is even
greater, e.g., 10-, 20-, 50-, 100-, 300-, 1000-fold or more or even higher, compared to a control.
In certain embodiments, the compounds of the invention modulate the interaction of a transcriptional repressor complex and a Site C site in the TERT promoter. By transcriptional repressor complex is meant a complex containing at least one factor (e.g., protein), wherein the complex binds specifically to a Site C site in the TERT promoter. For example, the transcriptional repressor complex can be a single protein that binds specifically to the Site C site in the TERT promoter (or minimal promoter). In contrast, the transcriptional repressor complex can contain a number of factors (e.g., proteins) that together bind specifically to the Site C site in the TERT promoter. In general, binding of the transcriptional repressor complex to a Site C site in the TERT promoter represses or reduces transcription of the TERT gene.
In certain embodiments, modulating the interaction of a transcriptional repressor complex and a Site C site means that the interaction is inhibited or reduced. In certain of these embodiments, the mechanism of activity of the compounds is by specific, direct interaction with the transcriptional repressor protein complex thereby preventing its binding to Site C in the TERT promoter. In certain embodiments, the binding of the compound to the transcriptional repressor complex competitively inhibits Site C DNA binding (meaning that the compound binds to the DNA-binding site of the transcriptional repressor complex) while in other embodiments the compound allosterically inhibits Site C DNA binding of the transcriptional repressor (meaning that it binds to a site other than to the DNA binding site of the transcriptional repressor). In certain embodiments, the compound binds to a member of the transcriptional repressor complex other than the DNA binding subunit to exert its inhibitory activity.
In certain embodiments, the compounds of the present invention reduce the repressive activity of a TERT transcriptional repressor complex of one or more factors (e.g., proteins), e.g., by inhibiting the binding of a transcriptional repressor to its cognate DNA binding site in the TERT minimal promoter. Of particular interest is the Site C DNA binding site within the -66 to -51 region of the TERT minimal promoter. This repressor site has been described in U.S. Patent No. 6,686,159, which is incorporated herein by reference. In certain embodiments, the Site C sequence is: GGCCCCGCCCTCTCCTCGCGGCGCGAGTTTCAGGCAGCGCT (SEQ ID NO:1 )
In certain embodiments, the target Site C sequence is a portion or subsequence of the above sequence, such as:
GGCGCGAGTTTCA (SEQ ID NO:2); CGCGAGTTTC (SEQ ID NO:3); or GGCGCGAGTTTCAGGCAGCGC (SEQ ID NO:4).
Site C-binding transcriptional repressor complexes of interest include those described in U.S. patent application 11/088,001 filed on March 22, 2005 entitled "Methods and Compositions for Modulating Telomerase Reverse Transcriptase (TERT) Expression", which is incorporated by reference herein in its entirety. As described therein, transcriptional repressor complexes that bind to Site C site include any known or later discovered members of LSF family including any homolog or any protein or polypeptide with at least 50%, at least 70%, or at least 90% of its amino acids identical to a member of LSF family, especially within its functional regions, e.g., its DNA binding domain or regions involved in protein-protein interaction. In general, LSF family is a family of proteins related to mammalian transcription factor LSF. Members of LSF family usually include LBP1 a, LBP1 b, LBP1 c, LBP1 d, LBP9, LBP32v1 , LBP32v2, SOMvl , SOMv2, SOMv3, and BOM. LBP1 d is a splice variant of LBP1 c while LBP1 a is a splice variant of LBP1 b. In addition, members the LSF family also include a splice variant of LBP1 c, called LBP1 c2, and a variant of BOM, called BOMv2, as well as any protein or polypeptide capable of binding to or interacting with one or more members related to LSF, e.g., YY1 , NF-E4, Fe65, APP-CT, NFPB, and SP1.
In certain embodiments, the compounds of the invention increase the amount of telomerase expression from a level that is so low as to be undetectable to a level that is easily detectable, as determined by a quantitative RT-PCR assay, e.g., by an assay that determines the number of hTERT mRNA transcripts present in a cell after treatment with a compound of the invention, by measuring the Cycle Threshold value (Ct , a measure of the number of PCR cycles that are required to amplify a target cDNA) and correlating it to the number of hTERT mRNA transcripts present. In certain embodiments, the compounds of the invention may increase the number of hTERT mRNA transcripts per cell to a detectable level of 250 or more, 300 or more, 400 or more, 500 or more, 600 or more, 700 or more, 800 or more, 900 or more, 1000 or more, 1200 or more, 1500 or more, 2000 or more, 4000 or more, 8000 or more, 10,000 or more, 20,000 or more, or even higher.
In certain embodiments, the compounds of the invention have no significant effect on the viability of a cell, as determined by a cell viability assay, e.g., as determined by administering a compound of the invention to a cell and determining the number of viable
cells in culture using a homogeneous method, such as the CellTiter-Glo® Luminescent Cell Viability Assay (Promega Corporation, Madison, Wl.). The compounds of the invention may exhibit a % cell viability, as compared to a control (e.g., a DMSO control), of 15% or more, such as 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, 100% or more, 120% or more, or even higher.
STRUCTURAL FEATURES
As summarized above, aspects of the invention include TERT expression enhancing isoxazole-3-carboxamide compounds. In certain embodiments, isoxazole-3-carboxamide compounds of the invention range in molecular weight from about 100 to about 700 daltons, including from about 125 to about 600 daltons such as from about 150 to about 450 daltons. In certain embodiments, azole compounds of the invention may contain from about 4 to about 50 carbon atoms, such as 7 to 25 carbon atoms, or 10 to 15 carbon atoms, and contain at least one other type of atom, including but not limited to nitrogen, oxygen, sulfur, bromine, fluorine, and/or chlorine atoms. The isoxazole-3-carboxamide compounds of the invention may include one or more aromatic or heteroaromatic rings. The non-carbon atoms can be present as part of an aromatic ring structure, a substituent of the aromatic ring group, as part of a non-aromatic ring structure, or as another structural element.
In certain embodiments, the compounds are substituted isoxazole-3-carboxamides e.g., substituted with one or more substituents. In certain embodiments, the compounds are isoxazole-3-carboxamides substituted with a cyclic substituent, e.g., an aryl or heteroaryl substituent, such as a phenyl or thiophenyl substituent. In some instances, the substituent is bonded to the 5- position of the isoxazole-3-carboxamide ring structure.
In certain embodiments, the heterocyclic substituent includes a five-membered aromatic heterocycle. The heterocyclic substituent includes at least one oxygen or sulfur atom. In some embodiments, the heterocyclic substituent includes a thiophene group. In some embodiments, bonds to the heterocyclic substituent are made to the 2-position of the heterocycle. In some embodiments, bonds to the heterocyclic substituent are made to the 3- position of the heterocycle. In certain embodiments, the substituent is a phenyl group.
In certain embodiments, a compound of the invention is not a polymeric molecule, e.g., a nucleic acid such as RNA, DNA or polynucleotide analog; a peptide, e.g., protein or fragment thereof, etc. In certain embodiments, a compound of the invention is not an hTERT expression regulatory RNA, e.g., an RNA with a base sequence complimentary to a target
gene or gene expression vector.
In certain embodiments, a substituent may contribute to optical isomerism and/or stereo isomerism of a compound. Salts, solvates, hydrates, and prodrug forms of a compound are also of interest. All such forms are embraced by the present invention. Thus the compounds described herein include salts, solvates, hydrates, prodrug and isomer forms thereof, including the pharmaceutically acceptable salts, solvates, hydrates, prodrugs and isomers thereof. In certain embodiments, a compound may be a metabolized into a pharmaceutically active derivative.
where n is 2, 3, 4, 5, 6, 7 or 8, such as 3 to 7, e.g., 3 to 6, such as 3, 4, 5 or 6;
R68 is hydrogen or an alkyl;
R51 is phenyl or thiophenyl; and
R52 is amino or guanadino (i.e., aminoamidine), optionally substituted with an aliphatic, an aryl or a heterocyclic group.
PHARMACEUTICAL PREPARATIONS
Also provided are pharmaceutical preparations. Pharmaceutical preparations are compositions that include a TERT expression enhancing compound (for example one or more TERT expression enhancing compounds, either alone or in the presence of one or more additional active agents) present in a pharmaceutically acceptable vehicle. "Pharmaceutically acceptable vehicles" may be vehicles approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in mammals, such as humans. The term "vehicle" refers to a diluent, adjuvant, excipient, or carrier with which a compound of the invention is formulated for administration to a mammal. Such pharmaceutical vehicles can be liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. The pharmaceutical vehicles can be saline, gum acacia, gelatin, starch paste, talc, keratin, colloidal silica, urea, and the like. In addition, auxiliary, stabilizing, thickening, lubricating and coloring agents may be used. When
administered to a mammal, the compounds and compositions of the invention and pharmaceutically acceptable vehicles, excipients, or diluents may be sterile. In some instances, an aqueous medium is employed as a vehicle when the compound of the invention is administered intravenously, such as water, saline solutions, and aqueous dextrose and glycerol solutions.
Pharmaceutical compositions can take the form of capsules, tablets, pills, pellets, lozenges, powders, granules, syrups, elixirs, solutions, suspensions, emulsions, suppositories, or sustained-release formulations thereof, or any other form suitable for administration to a mammal. In some instances, the pharmaceutical compositions are formulated for administration in accordance with routine procedures as a pharmaceutical composition adapted for oral or intravenous administration to humans. Examples of suitable pharmaceutical vehicles and methods for formulation thereof are described in Remington: The Science and Practice of Pharmacy, Alfonso R. Gennaro ed., Mack Publishing Co. Easton, Pa., 19th ed., 1995, Chapters 86, 87, 88, 91 , and 92, incorporated herein by reference.
The choice of excipient will be determined in part by the particular compound, as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of the pharmaceutical composition of the present invention.
Administration of TERT expression enhancing compounds of the invention may be systemic or local. In certain embodiments administration to a mammal will result in systemic release of a compound of the invention (for example, into the bloodstream). Methods of administration may include enteral routes, such as oral, buccal, sublingual, and rectal; topical administration, such as transdermal and intradermal; and parenteral administration. Suitable parenteral routes include injection via a hypodermic needle or catheter, for example, intravenous, intramuscular, subcutaneous, intradermal, intraperitoneal, intraarterial, intraventricular, intrathecal, and intracameral injection and non-injection routes, such as intravaginal rectal, or nasal administration. In particular embodiments, the compounds and compositions of the invention are administered orally. In particular embodiments, it may be desirable to administer one or more compounds of the invention locally to the area in need of treatment. This may be achieved, for example, by local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a
porous, non-porous, or gelatinous material, including membranes, such as sikalastic membranes, or fibers.
The TERT expression enhancing compounds can be formulated into preparations for injection by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending agents, emulsifying agents, stabilizers and preservatives.
In some embodiments, formulations suitable for oral administration can include (a) liquid solutions, such as an effective amount of the compound dissolved in diluents, such as water, or saline; (b) capsules, sachets or tablets, each containing a predetermined amount of the active ingredient, as solids or granules; (c) suspensions in an appropriate liquid; and (d) suitable emulsions. Tablet forms can include one or more of lactose, mannitol, corn starch, potato starch, microcrystalline cellulose, acacia, gelatin, colloidal silicon dioxide, croscarmellose sodium, talc, magnesium stearate, stearic acid, and other excipients, colorants, diluents, buffering agents, moistening agents, preservatives, flavoring agents, and pharmacologically compatible excipients. Lozenge forms can include the active ingredient in a flavor, usually sucrose and acacia or tragacanth, as well as pastilles including the active ingredient in an inert base, such as gelatin and glycerin, or sucrose and acacia, emulsions, gels, and the like containing, in addition to the active ingredient, such excipients as are described herein.
The subject formulations of the present invention can be made into aerosol formulations to be administered via inhalation. These aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like. They may also be formulated as pharmaceuticals for non-pressured preparations such as for use in a nebulizer or an atomizer.
In some embodiments, formulations suitable for parenteral administration include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. The formulations can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials, and can be stored in a freeze-dried (lyophilized) condition requiring only
the addition of the sterile liquid excipient, for example, water, for injections, immediately prior to use. Extemporaneous injection solutions and suspensions can be prepared from sterile powders, granules, and tablets of the kind previously described.
Formulations suitable for topical administration may be presented as creams, gels, pastes, or foams, containing, in addition to the active ingredient, such carriers as are appropriate. In some embodiments the topical formulation contains one or more components selected from a structuring agent, a thickener or gelling agent, and an emollient or lubricant. Frequently employed structuring agents include long chain alcohols, such as stearyl alcohol, and glyceryl ethers or esters and oligo(ethylene oxide) ethers or esters thereof. Thickeners and gelling agents include, for example, polymers of acrylic or methacrylic acid and esters thereof, polyacrylamides, and naturally occurring thickeners such as agar, carrageenan, gelatin, and guar gum. Examples of emollients include triglyceride esters, fatty acid esters and amides, waxes such as beeswax, spermaceti, or carnauba wax, phospholipids such as lecithin, and sterols and fatty acid esters thereof. The topical formulations may further include other components, e.g., astringents, fragrances, pigments, skin penetration enhancing agents, sunscreens (i.e., sunblocking agents), etc.
For use in wound healing or treatment of other acute or chronic conditions of the epidermis, a compound of the invention may be formulated for topical administration. The vehicle for topical application may be in one of various forms, e.g., a lotion, cream, gel, ointment, stick, spray, or paste. They may contain various types of carriers, including, but not limited to, solutions, aerosols, emulsions, gels, and liposomes. The carrier may be formulated, for example, as an emulsion, having an oil-in-water or water-in-oil base. Suitable hydrophobic (oily) components employed in emulsions include, for example, vegetable oils, animal fats and oils, synthetic hydrocarbons, and esters and alcohols thereof, including polyesters, as well as organopolysiloxane oils. Such emulsions also include an emulsifier and/or surfactant, e.g., a nonionic surfactant to disperse and suspend the discontinuous phase within the continuous phase.
Suppository formulations are also provided by mixing with a variety of bases such as emulsifying bases or water-soluble bases. Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams.
A compound of the invention may also be formulated as a dietary supplement or nutraceutical, e.g., for oral administration. For a nutraceutical formulation, or an oral pharmaceutical formulation, suitable excipients include pharmaceutical grades of carriers
such as mannitol, lactose, glucose, sucrose, starch, cellulose, gelatin, magnesium stearate, sodium saccharine, and/or magnesium carbonate. For use in oral liquid formulations, the composition may be prepared as a solution, suspension, emulsion, or syrup, being supplied either in solid or liquid form suitable for hydration in an aqueous carrier, such as, for example, aqueous saline, aqueous dextrose, glycerol, or ethanol, preferably water or normal saline. If desired, the composition may also contain minor amounts of non-toxic auxiliary substances such as wetting agents, emulsifying agents, or buffers. A compound of the invention may also be incorporated into existing nutraceutical formulations, such as are available conventionally, which may also include an herbal extract.
Unit dosage forms for oral or rectal administration such as syrups, elixirs, and suspensions may be provided wherein each dosage unit, for example, teaspoonful, tablespoonful, tablet or suppository, contains a predetermined amount of the composition containing one or more inhibitors. Similarly, unit dosage forms for injection or intravenous administration may include the inhibitor(s) in a composition as a solution in sterile water, normal saline or another pharmaceutically acceptable carrier.
The term “unit dosage form,” as used herein, refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of compounds of the present invention calculated in an amount sufficient to produce the desired effect in association with a pharmaceutically acceptable diluent, carrier or vehicle. The specifications for the novel unit dosage forms of the present invention depend on the particular compound employed and the effect to be achieved, and the pharmacodynamics associated with each compound in the host.
Dose levels can vary as a function of the specific compound, the nature of the delivery vehicle, and the like. Desired dosages for a given compound are readily determinable by a variety of means.
The dose administered to an animal, particularly a human, in the context of the present invention should be sufficient to effect a prophylactic or therapeutic response in the animal over a reasonable time frame, e.g., as described in greater detail below. Dosage will depend on a variety of factors including the strength of the particular compound employed, the condition of the animal, and the body weight of the animal, as well as the severity of the illness and the stage of the disease. The size of the dose will also be determined by the existence, nature, and extent of any adverse side-effects that might accompany the administration of a particular compound.
In pharmaceutical dosage forms, the TERT expression enhancing compounds may be administered in the form of a free base, their pharmaceutically acceptable salts, or they may also be used alone or in appropriate association, as well as in combination, with other pharmaceutically active compounds.
METHODS OF USE
Aspects of the invention further include methods of using TERT expression enhancing compounds, e.g., as described above, to enhance TERT expression in a target cell population. In practicing methods of the invention, the cells of interest are contacted with an effective amount of a TERT expression enhancing compound, e.g., as described above. By effective amount is meant an amount of the TERT expression enhancing compound that is sufficient to enhance TERT expression in the target cell population to a desired level. By enhancing TERT expression is meant that the expression level of the TERT coding sequence is increased by 2-fold or more, such as by 5-fold or more and including by 25-, 50-, 100-fold or more, such as by 300-, or 1000-fold or more, 3000-fold or more, 10,000-fold or more, as compared to a control, i.e. , expression from an expression system that is not subjected to the methods of the present invention. Alternatively, in cases where expression of the TERT gene is so low that it is undetectable, expression of the TERT gene is considered to be enhanced if expression is increased to a level that is easily detectable.
In practicing methods of the invention, the cells of interest may be contacted with the effective amount of the TERT expression enhancing compound in an in vitro or ex vivo culture system, or in vivo. For example, a TERT expression enhancing compound may be contacted to primary cells grown under standard tissue culture conditions or alternatively to cells that are part of a whole animal (e.g., administered to a subject). As such, the target cell or collection of cells may vary, where the collection of cells may be cultured cells, a whole animal or portion thereof, e.g., tissue, organ, etc. As such, the target cell(s) may be a host animal or portion thereof, or may be a therapeutic cell (or cells) which is to be introduced into a multi-cellular organism, e.g., a cell employed in gene therapy. In such methods, an effective amount of an active agent is administered to the target cell or cells, e.g., by contacting the cells with the agent, by administering the agent to the animal, etc. By effective amount is meant a dosage sufficient to modulate TERT expression in the target cell(s), as desired.
In the subject methods, the TERT expression enhancing compound may be contacted with the target cells using any convenient protocol that results in the desired enhancement of TERT expression. Thus, the TERT expression enhancing compound can be incorporated into a variety of pharmaceutical compositions for therapeutic administration, e.g., as described above. For example, the TERT expression enhancing compound can be formulated into pharmaceutical compositions by combination with appropriate, pharmaceutically acceptable carriers or diluents, and may be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments (e.g., skin creams), solutions, suppositories, injections, inhalants and aerosols, such as described above. As such, administration of the TERT expression enhancing compounds can be achieved in various ways, including oral, buccal, rectal, parenteral, intraperitoneal, intradermal, transdermal, intracheal, intrathecal, etc., administration.
The subject methods find use in the treatment of a variety of different conditions in which the enhancement of TERT expression in the host is desired. By treatment is meant that at least an amelioration of the symptoms associated with the condition afflicting the host is achieved, where amelioration is used in a broad sense to refer to at least a reduction in the magnitude of a parameter, e.g., symptom (such as inflammation), associated with the condition being treated. As such, treatment also includes situations where the pathological condition, or at least symptoms associated therewith, are completely inhibited, e.g., prevented from happening, or stopped, e.g. terminated, such that the host no longer suffers from the condition, or at least the symptoms that characterize the condition.
A variety of hosts are treatable according to the subject methods. Generally such hosts are "mammals" or "mammalian," where these terms are used broadly to describe organisms which are within the class mammalia, including the orders carnivore (e.g., dogs and cats), rodentia (e.g., mice, guinea pigs, and rats), ungulates (e.g., horses) and primates (e.g., humans, chimpanzees, and monkeys). In many embodiments, the hosts will be humans.
Also provided are methods of screening TERT expression enhancing compounds, e.g., as described above, for their ability to inhibit binding of a transcriptional repressor protein/protein complex to a TERT promoter that includes at least one of Site C binding site. Aspects of these screening methods may include determining whether a candidate TERT expression enhancing compound is capable of inhibiting binding of the transcriptional repressor protein/protein complex to the Site C binding site. Screening methods may include
screening for TERT expression enhancing activity in a cell containing a TERT expression system that includes at least one Site C binding site in its promoter. Such methods may include: (i) contacting the cell with an effective amount of a candidate TERT expression enhancing compound; and (ii) determining whether the candidate compound inhibits binding of a transcriptional repressor protein/protein complex to the Site C binding site.
The determining step may be carried out by any one or more of a variety a protocols for characterizing TERT expression and/or the inhibition of binding of the transcriptional repressor protein/protein complex to the Site C binding site of the TERT expression system. For example, screening may be a reconstitution assay, cell-based assay, enzyme assay, ELISA assay or other related biological assay for assessing TERT expression and/or the inhibition of binding of the transcriptional repressor protein/protein complex to the Site C binding site of the TERT expression system, and the determining or assessment step suitable for application in such assays are well known and involve routine protocols. Screening may also include in silico approaches, in which one or more physical and/or chemical attributes of a compound of interest are expressed in a computer-readable format and evaluated by any one or more of a variety molecular modeling and/or analysis programs and algorithms suitable for this purpose.
Thus the screening methods of the invention can be carried out in vitro or in vivo. For example, when the TERT promoter is in a cell, the cell may be in vitro or in vivo, and the determining of whether the compound is capable of inhibiting binding includes: (i) contacting the cell with an effective amount of the candidate TERT expression enhancing compound; and (ii) assessing whether the candidate compound inhibits binding of the transcriptional repressor protein/protein complex to the Site C binding site. In certain embodiments, inhibition of binding of the transcriptional repressor protein/protein complex to the Site C binding site increases the proliferative capacity of the cell. In some embodiments, inhibition of binding of the transcriptional repressor protein/protein complex to the Site C binding site delays the senescence of the cell. In yet additional embodiments, the TERT expression enhancing compound inhibits binding of the transcriptional repressor protein/protein complex to the Site C binding site. As such, determining whether a candidate TERT expression enhancing compound is capable of inhibiting binding of the transcriptional repressor protein/protein complex to the Site C binding site may be carried out by any number of methods, as well as combinations thereof.
In certain embodiments, the screening protocol is or includes part of an assay selected from a potency assay, a compound or product release assay, and combinations thereof. The potency assay characterizes one or more biological activities of a compound of interest, where biological activity is characterized in general by TERT expression levels and/or inhibiting binding of the transcriptional repressor protein/protein complex to the Site C binding site of a TERT expression system. Such a potency assay may also be exploited in the development and/or validation of assays, as well as for a compound release assay. The compound release assay involves assessment of one or more of sterility, safety, purity, identity and potency of a compound of interest.
Thus, in some embodiments, when the screening method employs a TERT expression enhancing compound that inhibits binding of the transcriptional repressor protein/protein complex to the Site C binding site, the TERT expression enhancing compound may be present as a pharmaceutical composition, e.g., as described above. In certain embodiments, the screening is a release assay for the pharmaceutical composition. In some embodiments, the screening is a potency assay for the pharmaceutical composition.
Accordingly, in certain embodiments, the screening methods of the invention are carried out for compound release, such as to demonstrate and/or confirm that a compound, such as a pharmaceutical composition including the compound, is one or more of safe, pure, potent, effective and stable. As such, the screening methods of the invention may include demonstration of manufacturing and product consistency, including characterization for product release involving assessment of one or more of sterility, safety, purity, identity and potency.
Of interest are screening methods of the invention that assess potency of a TERT expression enhancing compound of interest. By "potency" is intended the specific ability or capacity of a compound to effect a given result. Tests for potency may consist of either in vitro or in vivo tests, or both, which have been specifically adapted for each product so as to indicate its potency. Thus, potency assays indicate biological activity(s) specific/relevant to the product of interest. As noted above, the potency assays may include the generation of data regarding TERT expression and/or inhibition of binding of the transcriptional repressor protein/protein complex to the Site C binding site. Such data may include, but is not limited to, qualitative and/or quantitative results for compound activity, lot release, predefined acceptance and/or rejection criteria (demonstrate lot to lot consistency), include appropriate
reference material/controls, be validated for licensure, measure activity of one or more components that may be necessary for product activity, and/or indicate product stability.
Potency measurements can be direct (e.g., biological assay) or indirect (e.g., surrogate assay(s) correlated to biological activity that may include one of many assays that measure product quality). For example, potency can be measured by simple identity markers that exhibit minimal variability from assay to assay over time, including functional biomarkers that correlate with cellular differentiation and senescence. This includes measurement of one or more of cellular proliferation, cellular survival, and/or senescence, as well as biomarkers from analytic, genomic and/or proteomic-based techniques that correlate to the biological activity of interest. For instance, determining expression of TERT and/or inhibition of binding of the transcriptional repressor protein/protein complex to the Site C binding site can include various approaches for indirect potency measurements, including analytical assays such as a non-bioassay method correlated to a unique and/or specific activity of the compound (e.g., immunochemical procedures such as ELISA, ELISPOT, Q-flow cytometry, quantitative western blots; and molecular and biochemical procedures such as enzymatic assays, Q- PCR, RT-PCR, microarray/genomics, proteomics).
Thus potency measurement may be carried out in vivo in animal models or from clinical data (e.g., assessment of gene function, cell survival and so forth), and in vitro such as in cell and/or tissue culture (e.g., assessment of signaling pathways, proliferation, enzymatic activity, cell survival and so forth).
UTILITY
The TERT expression enhancing compounds, e.g., as described above, find use in a variety of applications. Applications of interest include, but are not limited to: therapeutic applications, research and manufacturing applications, and screening applications. Each of these different applications are now reviewed in greater details below.
Therapeutic Applications
TERT expression enhancing compounds of the invention find use in a variety of therapeutic applications. Therapeutic applications of interest include those applications in which reduced activity or expression of TERT (or shortened telomeres) is the cause or a compounding factor in disease progression. As such, the subject compounds find use in the treatment of a variety of different conditions in which the enhancement of TERT expression
in the host is desired. Examples of disease conditions which may be treated with compounds of the invention include, but are not limited to: cancer, progeria, atherosclerosis, cardiovascular diseases, osteoarthritis, osteoporosis, Alzheimer’s disease, macular degeneration, muscular dystrophy, dyskeratosis congenital, idiopathic pulmonary fibrosis, Cri du Chat syndrome, down’s syndrome, Fanconi’s Anemia, tuberous sclerosis, Werner’s syndrome, conditions related to cell and tissue transplants, liver cirrhosis, rheumatoid arthritis, immune senescence, skin rejuvenation, bone marrow disorders, anemia, leukemia, lymphoma, and AIDS.
One disease condition where compounds of the invention find use is Progeria. Progeria is a collection of syndromes all of which exhibit varying forms of premature aging. In many ways progeria parallels aging itself. The two most publicized forms of progeria are Hutchinson-Gilford syndrome, which strikes in early childhood, and Werner syndrome, which is an adult-onset disease. Children with Hutchinson-Gilford syndrome live an average of just under 13 years, dying primarily from atherosclerosis, usually cardiac or cardiovascular. People with Werner syndrome are usually diagnosed in their thirties and die in their forties. The progerias have been linked directly to premature telomere loss in a variety of cell types. Dyskeratosis congenita is rare progressive congenital disorder which results in premature aging as seen in progeria. It is thought to be primarily a disorder of poor telomere maintenance. The subject methods can be used in such conditions to further delay natural telomeric shortening and/or increase telomeric length, thereby treating these currently incurable syndromes. Administration of TERT enhancing compounds of the invention to subjects suffering from this condition in accordance with methods of the invention, e.g., as described above, results in treatment of the subject for this condition.
Another disease condition in which the subject compounds find use is Fanconi anemia (FA). FA is a genetic disease that affects children and adults from all ethnic backgrounds. FA is characterized by short stature, skeletal anomalies, increased incidence of solid tumors and leukemias, bone marrow failure (aplastic anemia), and cellular sensitivity to DNA damaging agents such as mitomycin C. FA is known to affect DNA repair and FA patients are more likely to develop bone marrow failure, myelodysplastic syndromes(MDS) and acute myeloid leukemia (AML). Administration of TERT enhancing compounds of the invention to subjects suffering from this condition in accordance with methods of the invention, e.g., as described above, results in treatment of the subject for this condition.
Another disease condition in which the subject compounds find use is in immune senescence. The effectiveness of the immune system decreases with age. Part of this decline is due to fewer T-lymphocytes in the system, a result of lost replicative capacity. Many of the remaining T-lymphocytes experience loss of function as their telomeres shorten and they approach senescence. The subject methods can be employed to inhibit immune senescence due to telomere loss. Because hosts with aging immune systems are at greater risk of developing pneumonia, cellulitis, influenza, and many other infections, the subject methods reduce morbidity and mortality due to infections. Administration of TERT enhancing compounds of the invention to subjects suffering from this condition in accordance with methods of the invention, e.g., as described above, results in treatment of the subject for this condition.
Another disease condition in which the subject compounds find use is AIDS. HIV, the virus that causes AIDS, invades white blood cells, particularly CD4 lymphocyte cells, and causes them to reproduce high numbers of the HIV virus, ultimately killing cells. In response to the loss of immune cells (typically about a billion per day), the body produces more CD8 cells to be able to suppress infection. This rapid cell division accelerates telomere shortening, ultimately hastening immune senescence of the CD8 cells. Anti-retroviral therapies have successfully restored the immune systems of AIDS patients, but survival depends upon the remaining fraction of the patient’s aged T-cells. Once shortened, telomere length has not been naturally restored within cells. The subject methods can be employed to restore this length and/or prevent further shortening. As such the subject methods can spare telomeres and is useful in conjunction with the anti-retroviral treatments currently available for HIV/AIDS. Administration of TERT enhancing compounds of the invention to subjects suffering from this condition in accordance with methods of the invention, e.g., as described above, results in treatment of the subject for this condition.
Yet another type of disease condition in which the invention finds use is cardiovascular disease. The compounds of the invention can be employed to extend telomere length and replicative capacity of endothelial cells lining blood vessel walls (DeBono, Heart 80:1 10-1 , 1998). Endothelial cells form the inner lining of blood vessels and divide and replace themselves in response to stress. Stresses include high blood pressure, excess cholesterol, inflammation, and flow stresses at forks in vessels. As endothelial cells age and can no longer divide sufficiently to replace lost cells, areas under the endothelial layer become exposed. Exposure of the underlying vessel wall increases inflammation, the
growth of smooth muscle cells, and the deposition of cholesterol. As a result, the vessel narrows and becomes scarred and irregular, which contributes to even more stress on the vessel (Cooper, Cooke and Dzau, J Gerontol Biol Sci 49: 191-6, 1994). Aging endothelial cells also produce altered amounts of trophic factors (hormones that affect the activity of neighboring cells). These too contribute to increased clotting, proliferation of smooth muscle cells, invasion by white blood cells, accumulation of cholesterol, and other changes, many of which lead to plaque formation and clinical cardiovascular disease (Ibid.). By extending endothelial cell telomeres, the subject methods can be employed to combat the stresses contributing to vessel disease. Many heart attacks may be prevented if endothelial cells were enabled to continue to divide normally and better maintain cardiac vessels. The occurrence of strokes caused by the aging of brain blood vessels may also be significantly reduced by employing the subject methods to help endothelial cells in the brain blood vessels to continue to divide and perform their intended function. Administration of TERT enhancing compounds of the invention to subjects suffering from this condition in accordance with methods of the invention, e.g., as described above, results in treatment of the subject for this condition.
Yet another disease condition in which the subject compounds find use is the treatment of osteoporosis. Two types of cells interplay in osteoporosis: osteoblasts make bone and osteoclasts destroy it. Normally, the two are in balance and maintain a constant turnover of highly structured bone. In youth, bones are resilient, harder to break, and heal quickly. In old age, bones are brittle, break easily, and heal slowly and often improperly. Bone loss has been postulated to occur because aged osteoblasts, having lost much of their replicative capacity, cannot continue to divide at the rate necessary to maintain balance (Hazzard et al. PRINCIPLES OF GERIATRIC MEDICINE AND GERONTOLOGY, 2d ed. McGraw-Hill, New York City, 1994). The subject compounds can be employed to lengthen telomeres of osteoblast and osteoclast stem cells, thereby encouraging bone replacement and proper remodeling and reinforcement. The resultant stronger bone improves the quality of life for the many sufferers of osteoporosis and provides savings from fewer fracture treatments. The subject compounds and methods are generally part of a comprehensive treatment regime that also includes calcium, estrogen, and exercise. Administration of TERT enhancing compounds of the invention to subjects suffering from this condition in accordance with methods of the invention, e.g., as described above, results in treatment of the subject for this condition.
Yet another disease condition in which the subject compounds find use in the treatment of bone marrow disorders. The target may be a cell or population of cells which are treated according to the subject methods and then introduced into a multi-cellular organism for therapeutic effect. For example, the subject methods may be employed in bone marrow transplants for the treatment of cancer and skin grafts for burn victims. In these cases, cells are isolated from a human donor and then cultured for transplantation back into human recipients. During the cell culturing, the cells normally age and senesce, decreasing their useful lifespans. Bone marrow cells, for instance, lose approximately 40% of their replicative capacity during culturing. This problem is aggravated when the cells are first genetically engineered (Decary, Mouly et al. Hum Gene Ther 7(1 1 ): 1347-50, 1996). In such cases, the therapeutic cells must be expanded from a single engineered cell. By the time there are sufficient cells for transplantation, the cells have undergone the equivalent of 50 years of aging (Decary, Mouly et al. Hum Gene Ther 8(12): 1429-38, 1997). Use of the subject methods spares the replicative capacity of bone marrow cells and skin cells during culturing and expansion and thus significantly improves the survival and effectiveness of bone marrow and skin cell transplants. Any transplantation technology requiring cell culturing can benefit from the subject methods, including ex vivo gene therapy applications in which cells are cultured outside of the animal and then administered to the animal, as described in U.S. Pat. Nos. 6,068,837; 6,027,488; 5,824,655; 5,821 ,235; 5,770,580; 5,756,283; 5,665,350; the disclosures of which are herein incorporated by reference.
The subject compounds further find use cell therapy treatment applications. Cell therapy involves the isolation of healthy human cells, the expansion of those cells ex vivo, and the reinfusion of the expanded cells into a patient. Cell therapy has application in the treatment of cancer and organ transplantation and many other disease states or conditions. For instance, bone marrow therapy takes advantage of the fact that bone marrow, the major organ of the immune system, is responsible for production of various cells in the blood from hematopoietic stem cells. Physicians treat hematological disorders such as anemia, leukemia, and lymphoma through bone marrow transplantation, in which bone marrow is removed from a donor (allogenic transplant) or a patient (autologous transplant) through general surgery, frozen and stored, and then transfused into the patient at a later date. Once transfused into the patient, the bone marrow cells gravitate to the bone marrow and engraft, eventually producing new blood cells either to increase the number of such cells in the
anemic patient or to reconstitute the bone marrow destroyed as a result of chemotherapy or radiation therapy.
Yet another disease condition in which the subject compounds find use is macular degeneration. Macular degeneration results in the gradual loss of central vision, ultimately leading to blindness. Some evidence points to the senescence of retinal pigment epithelial cells as the cause of macular degeneration. Applications of interest therefore include the treatment of macular degeneration by enhancing TERT expression in these cells. Similarly, the senescence of ocular keratocytes correlates with the development of cataracts and is another target for compounds of the invention. Administration of TERT enhancing compounds of the invention to subjects suffering from this condition in accordance with methods of the invention, e.g., as described above, results in treatment of the subject for this condition.
Yet another disease condition in which the subject compounds find use is hepatic cirrhosis. Hepatic cirrhosis causes many deaths each year and has no effective treatment. Liver cells normally turn over slowly and have excellent regenerative characteristics. In cirrhosis, however, regeneration is insufficient and abnormal leading ultimately to liver failure. Relengthening telomeres in liver cells with compounds of the invention delays or prevents loss of liver function and failure. Administration of TERT enhancing compounds of the invention to subjects suffering from this condition in accordance with methods of the invention, e.g., as described above, results in treatment of the subject for this condition.
Yet another disease condition in which the subject compounds find use is Alzheimer's disease. Most current research on this degenerative disease of the brain focuses on amyloid plaques and neurofibrillary tangles. Amyloid plaques are found outside the neurons, neurofibrillary plaques are found inside the neurons. Neuron cells do not divide at any significant rate so many people discount the role of telomere shortening in Alzheimer's disease and other dementias. However, neurons depend on glial and microglial cells for support, and these cells do divide continually. Relengthening of glial telomeres addresses the underlying cause of neuronal damage, and provides a treatment of Alzheimer's disease. Administration of TERT enhancing compounds of the invention to subjects suffering from this condition in accordance with methods of the invention, e.g., as described above, results in treatment of the subject for this condition.
Additional disease conditions in which the subject methods find use are described in WO 99/35243, the disclosures of which are herein incorporated by reference.
The subject compounds also find use in skin rejuvenation. The skin is the first line of defense of the immune system and shows the most visible signs of aging (West, Arch Dermatol 130(1 ):87-95, 1994). As skin ages, it thins, develops wrinkles, discolors, and heals poorly. Skin cells divide quickly in response to stress and trauma; but, over time, there are fewer and fewer actively dividing skin cells. Compounding the loss of replicative capacity in aging skin is a corresponding loss of support tissues. The number of blood vessels in the skin decreases with age, reducing the nutrients that reach the skin. Also, aged immune cells less effectively fight infection. Nerve cells have fewer branches, slowing the response to pain and increasing the chance of trauma. In aged skin, there are also fewer fat cells, increasing susceptibility to cold and temperature changes. Old skin cells respond more slowly and less accurately to external signals. They produce less vitamin D, collagen, and elastin, allowing the extracellular matrix to deteriorate. As skin thins and loses pigment with age, more ultraviolet light penetrates and damages skin. To repair the increasing ultraviolet damage, skin cells need to divide to replace damaged cells, but aged skin cells have shorter telomeres and are less capable of dividing (Fossel, RE ERSING HUMAN AGING. William Morrow & Company, New York City, 1996).
By practicing the subject methods, e.g., via administration of a compound of the invention topically, one can extend telomere length, and slow the downward spiral that skin experiences with age. Such a product not only helps protect a person against the impairments of aging skin; it also permits rejuvenated skin cells to restore youthful immune resistance and appearance. As such, compounds and methods of the invention may be employed to reduce the appearance of aging, e.g., by reducing the appearance of fine lines and wrinkles of the face and other locations of the body. The subject compounds and methods can be used for both medical and cosmetic skin rejuvenation applications.
The subject compounds also find use in treatment of wounds and acute or chronic skin conditions, by increasing telomerase activity, cell proliferation or migration at the treatment site, epithelialization of the surface, closure of a wound if present, or restoration of normal physiological function. The subject compounds also find use in increasing the density of epithelial cells at the treatment site as a result of the applied therapy. The subject compounds also find use increasing telomerase activity in cells surrounding a wound to enhance wound healing. The subject compounds and methods can be used for skin rejuvenation and wound treatment applications. A topical composition including a compound
may be used for treatment of acute or chronic conditions of the epidermis or for wound treatment and healing, e.g., such as a lotion, cream, gel, ointment, stick, spray, or paste.
Compounds of the invention may be used for treating decubitus ulcers, sepsis, hypothermic stress, and other conditions of poor wound healing. Compounds could also be valuable in the production and use of skin grafts for severe burns and other conditions of traumatic skin loss.
The subject compounds also find use in protecting cells against the harmful effects of exposure to UV and y-radiation. Telomere dysfunction is linked to impaired DNA repair and radiosensitivity, and as such activation of TERT may counter or protect against the harmful effects of radiation induced stress on skin cells. The subject compounds and methods can be used for skin protection applications. A topical composition including a compound may be used as a sunscreen e.g., a lotion, cream, gel, ointment, stick, spray, or past; and optionally include a UV absorbing compound, a moisturizer, and other common components of sunscreens.
The subject compounds also find use to induce the proliferation of hair follicles for growth of hair. Induction of TERT in skin epithelium causes a rapid transition from telogen, the resting phase of the hair follicle cycle, to anagen, the active phase, thereby facilitating robust hair growth. The subject compounds and methods can be used for hair rejuvenation applications. A topical or a nutraceutical composition including a compound may enhance hair growth, density or color, e.g., a shampoo, cream, hair gel, or hair spray.
In addition to the above-described uses, the subject compounds can also be used to extend the lifespan of a mammal. By extend the lifespan is meant to increase the time during which the animal is alive, where the increase is generally 1 % or more, such as 5% or more and including 10 % or more as compared to a control.
As indicated above, instead of a multicellular animal, the target may be a cell or population of cells which are treated according to the subject methods and then introduced into a multicellular organism for therapeutic effect. For example, the subject compounds may be employed in bone marrow transplants for the treatment of cancer and skin grafts for burn victims. In these cases, cells are isolated from a human donor and then cultured for transplantation back into human recipients. During the cell culturing, the cells normally age and senesce, decreasing their useful lifespans. Bone marrow cells, for instance, lose approximately 40 % of their replicative capacity during culturing. This problem is aggravated when the cells are first genetically engineered (Decary, Mouly et al. Hum Gene Ther 7(11 ):
1347-50, 1996). In such cases, the therapeutic cells must be expanded from a single engineered cell. By the time there are sufficient cells for transplantation, the cells have undergone the equivalent of 50 years of aging (Decary, Mouly et al. Hum Gene Ther 8(12): 1429-38, 1997). Use of the subject compounds spares the replicative capacity of bone marrow cells and skin cells during culturing and expansion and thus significantly improves the survival and effectiveness of bone marrow and skin cell transplants. Any transplantation technology requiring cell culturing can benefit from the subject methods, including ex vivo gene therapy applications in which cells are cultured outside of the animal and then administered to the animal, as described in U.S. Patent Nos. 6,068,837; 6,027,488;
5,824,655; 5,821 ,235; 5,770,580; 5,756,283; 5,665,350; the disclosures of which are herein incorporated by reference.
The subject compounds also find use in countering the harmful effects of oxidative stress induced in the cells of newborn infants during the first 4 months of age. Newborns, and especially those delivered preterm, are more prone to oxidative stress than individuals later in life. Factors such as oxidative stress are modulators of telomere length. Telomere length has also been implicated as a modulating factor of genetic damage in newborns. Telomere dysfunction is linked to impaired DNA repair. As such, the subject compounds and methods can be used to protect against the harmful effects of oxidative stress. A composition (e.g. a topical or nutraceutical composition) including a compound may be used for treatment of oxidative stress injuries, e.g. a nutritional supplement for use in baby food or vitamin products, or a lotion, cream, shampoo, etc.
The subject compounds also find use in countering the effects of abnormal or diminished levels of TERT activity in spermatogonia cells, their progenitors or descendants. The subject compounds and methods can be used in fertility applications, for example, by reversing abnormal or diminished levels of TERT activity in spermatogonia cells. A composition including a compound may be used for the treatment of infertility or disorders of reproduction.
Research and Manufacturing Applications
TERT expression enhancing compounds of the invention may find use in a variety addition applications, include research and manufacturing applications. For example, TERT expression enhancing compounds find use in applications for increasing the proliferative capacity of cells grown in vitro (e.g., immortalizing cells). As such, compounds of the
invention find use in expanding cells for a variety uses, including expanding cells for use in diagnostic assays, expanding cells for use in preparative protocols (e.g., expanding antibodyproducing cells or cells expressing a protein/factor of interest), expanding cells to facilitate studying the cells themselves (e.g., expanding rare stem cells harvested from a subject). The primary method of producing monoclonal antibodies requires the creation of immortalized antibody producing cells, called hybridomas, made by fusing B-lymphocytes (which secrete antibodies) with immortal (cancerous) myeloma cells to extend their life span. The fusion process can take from 8 to 12 months and represents approximately 25% of the cost of production. A compound of the invention could be used to extend the life span of B- lymphocytes directly, reducing the production startup time to, for example, 2 to 3 months.
In addition, the compounds of the invention can be used to expand cells that will themselves be administered to a subject for experimental or therapeutic purposes, for example in expanding cells for genetic alteration (e.g., gene therapeutic purposes). As such, the compounds and methods of the invention are useful in any application in which an increase in cellular proliferation or a reduction in cellular senescence is advantageous.
The subject compounds also find use in countering the effects of premature aging of cloned animals. A cloned animal inherits its age from its cell donor, thus being born old and die early. The length of the telomeres is related to the ageing problems of clones. Early embryonic telomere elongation is telomerase dependent, such that activation may lead to a rejuvenation of telomeres in cloned bovine embryos. The subject compounds also find use in cloning applications and may be used in a composition for use in agricultural cloning, such as in cloning of a cow or a sheep.
Screening Applications
The screening methods, e.g., as described above, find use in a variety of applications, including identifying and/or testing candidate TERT expression enhancing compounds use in a wide range of research and therapeutic applications, such as pharmaceutical development, manufacturing, and quality assurance/control, as well as immortalization of cell lines and treating conditions in a subject characterized by cellular senescence. Applications of interest include use of the screening methods of the invention for performing research, as well as for pharmaceutical compliance related to GLP ("Good Laboratory Practice") and GMP ("Good Manufacturing Practice" also referred to as "cGMP" or "current Good Manufacturing Practice")) and laboratory services. Thus the screening
methods of the invention find broad use in research and lead development, sample analysis, as well as assay development, validation, drug regulatory submissions and compliance for new drug substances and drug products, drug product release and compound auditing in general. By "compound auditing" is meant quality assurance and/or quality control of a compound.
Compound auditing in accordance with the subject screening methods may be exploited in multiple settings. One example is in assay development or simply to transfer an assay from one location to another, whether or not it requires GLP and/or GMP compliance. This aspect may include the use of the subject screening methods to ensure that a compound of interest performs consistently and provides continuity in an assay over time. Statistical data analysis and related relevant data analysis tools can be exploited to best match the compound and use of interest. For instance, the screening method can be performed under "research level" protocols to identify those parameters such as the limit of detection (LOD), the limit of quantitation (LOQ) and the linear range necessary for assay validation and/or transfer. As such, the screening methods find use in compiling and executing SOPs ("Standard Operating Procedure" or "Standard Operating Protocol") which can be used for compound auditing.
Additional uses of the screening methods of the invention include the generation and/or execution one or more GLP or GMP protocols that assess one or more of linearity, accuracy, precision, specificity, robustness, ruggedness and system suitability for one or more compounds of interest for a given end use. Generation of such protocols may include assays for identifying as well as testing of a compound of interest, including QA and/or QC, as well as generating controls that may be aliquoted under GLP or GMP compliance which may be used over several years depending upon the stability of the compound of interest.
The subject screening methods may be used in qualitative and/or quantitative potency assays for routine lot release, lot comparisons, sampling, and stability assessment of a compound of interest.
The screening methods may also be used in a multiple assay approach (i.e., assay matrix), such as when it is desirable to develop or use more than a single assay (e.g., an assay matrix often finds use when there is limited knowledge of product and mechanism of action, the product has multiple components with multiple biological activities, time is constrained due to limited product stability, biological assay is not quantitative and the like). Thus the subject screening methods may find use in a combination of assays where the
combined results constitute an acceptable product release and/or potency assay (e.g., a quantitative physical assay along with a qualitative bioassay).
COMBINATION THERAPY
Aspects of the invention further include combination therapies. By combination therapy is meant that a compound of the invention can be used in a combination with another therapeutic agent to treat a single disease or condition. In particular embodiments, a compound of the invention is administered concurrently with the administration of another therapeutic agent, which can be administered as a component of a composition including the compound of the invention or as a component of a different composition. In particular embodiments, a composition including a compound of the invention is administered prior or subsequent to administration of another therapeutic agent.
The compounds of the present invention can be administered in combination with other therapeutic agents in a variety of therapeutic applications. Therapeutic applications of interest for combination therapy include those applications in which reduced activity or expression of TERT (or shortened telomeres) is the cause or a compounding factor in disease progression. As such, the subject compounds find use in combination therapies in which the enhancement of TERT expression in the host is desired. Examples of disease conditions which may be treated by a combination therapy including a compound of the invention include, but are not limited to: cancer, progeria, atherosclerosis, cardiovascular diseases, osteoarthritis, osteoporosis, Alzheimer’s disease, macular degeneration, muscular dystrophy, dyskeratosis congenital, idiopathic pulmonary fibrosis, Cri du Chat syndrome, down’s syndrome, Fanconi’s Anemia, tuberous sclerosis, Werner’s syndrome, conditions related to cell and tissue transplants, liver cirrhosis, rheumatoid arthritis, immune senescence, skin rejuvenation, bone marrow disorders, anemia, leukemia, lymphoma, and AIDS. For example, combinations for anti-aging and AIDS therapy are discussed below.
Combinations for Anti-aging Therapy
The compounds of the present invention can be administered in combination with other therapeutic agents as an anti-aging therapy.
Over time, cell membranes may be damaged by reactive oxygen species and other free radicals, resulting, for example, in cross-linkage or cleavage of proteins and lipoproteins, and oxidation of membrane lipids and lipoproteins. Damage to the cell membrane can result
in myriad changes including loss of cell permeability, increased intercellular ionic concentration, and decreased cellular capacity to excrete or detoxify waste products. As the intercellular ionic concentration of potassium increases, colloid density increases and m-RNA and protein synthesis are hampered, resulting in decreased cellular repair. Some cells become so dehydrated they cannot function at all. In aging, the regularity of tissue structure is lost, and individual cells enlarge, but the total number of cells decreases approximately 30%.
To treat some effects of aging, for example as described above, compounds of the invention can be used in combination with an antioxidant. Examples of antioxidants include vitamin E, vitamin C, superoxide dismutase, glutathione, resveratrol, lipoic acid, carnosine, sulforaphane, and pioglitazone.
Other compounds that have anti-aging effects and can be used in combination with compounds of the invention include (-)deprenyl (selegeline), 6-furfurylamino purine (kinetin), and 6-benzylamino purine (BAP). (-)Deprenyl (selegeline) can increase the formation of natural anti-oxidant enzymes SuperOxide Dismutase (SOD) and catalase. Cytokinins, such as 6-furfurylamino purine (kinetin) and 6-benzylamino purine (BAP), are known to be growth stimulators. Kinetin promotes cell division.
In some instances, compounds of the invention are administered in conjunction with resveratrol, or an alalog thereof. 3,4',5-trihydroxystilbene commonly known as resveratrol is found in grapes. Resveratrol is found to exhibit antioxidative and antimutagenic properties. Resveratrol is also an inducer of phase II drug metabolizing enzymes. In humans, resveratrol consumption is found to inhibit peroxidation of plasma low density lipoprotein and this effect has been proposed to protect against the development of atherosclerosis. The above referenced bioprotective properties of resveratrol are attributed to the presence of phenolic groups in its structure. Also of interest are resveratrol analogs, such as those describe din U.S. Patent No. 7,026,518; the disclosure of which is herein incorporated by reference.
In some instances, the compounds are administered in combination with an agent that kills cells. In such instances, compounds of the invention may be employed counteract telomere shortening caused by subsequent cell division that occurs to replace the killed cells. For example, compounds of the invention may be administered in conjunction with a senolytic agent, where senolytic agents that may be administered in combination with compounds of the invention include, but are not limited to: Dasatinib, Quercetin, Fisetin, Luteolin, Curcumin, Curcumin Analog EF24, Navitoclax (ABT263), A1331852, A1155463,
Geldanamycin, Tanespimycin, Alvespimycin, Piperlongumine, FOXO4-related peptide, Nutlin3a, Cardiac glycosides, e.g., Ouabain, Proscillaridin A, Digoxin, etc.
Combinations for AIDS Therapy
The compounds of the present invention can be administered jointly with other therapeutics in order to enhance antiviral efficacy. The present compounds can be administered with antiviral agents, including (but not limited to) agents acting on any suitable target in the virus replication process, such as reverse transcriptase inhibitors, viral protease inhibitors and glycosylation inhibitors, etc.; antiviral agents acting on different targets all through the virus spreading process; antiviral agents acting on different sites of the same molecule; and antiviral agents capable of preventing or reducing the development of the drug resistance. The compounds may be used jointly with other therapeutics to treat human AIDS, as well as analogous conditions in other species, e.g., Feline AIDS, etc.
In certain embodiments, compounds of the invention can be administered jointly with retrovirus inhibitors, including (but not limited to) nucleoside analogs. The nucleoside derivatives, in the absence of any 3'-substituent that can be bound to other nucleosides, can suppress the synthesis of cDNA catalyzed by reverse transcriptase and thereby terminate the viral DNA replication. This is why they become anti-HIV therapeutic agents. For example, AZT and ddT, both of them can suppress HIV-1 replication in vivo and in vitro, had been approved as remedies for HIV infection and AIDS.
The present compounds can be administered jointly with nucleoside derivatives and non-nucleoside derivatives. The nucleoside derivatives include (but not limited to): 2', 3'- dideoxyadenosine (ddA); 2',3'-diseoxyguanosine (ddG); 2',3'-dideoxyinosine (ddl); 2', 3'- dideoxycytidine (ddC); 2',3'-dideoxythymidine (ddT); 2',3'-dideoxy-dideoxythymidine (d4T) and 3'-azide2',3'-dideoxycytidine (AZT). According to an embodiment of the present invention, the nucleoside derivatives are halonucleoside, preferably 2' 3'-dideoxy-2'- fluoronuceotides, including (but not limited to): 2',3'-dideoxy-2'-fluoroadenosine; 2',3'-dideoxy- 2'-fluoroinosine; 2',3'-dideoxy-2'-fluorothymidine; 2', 3'-dideoxy-2'-fluorocytidine; and 2', 3'- dideoxy-2',3'-didehydro-2'-fluoronuceotides, including (but not limited to): 2',3'-dideoxy-2',3'- didehydro-2'fluorothymidine (Fd4T).
The present compounds can also be administered jointly with inhibitors of uridine phosphorylating enzyme, including (but not limited to) acyclouridine compounds, including benzylacyclouridine (BALI); benzoxybenzylacyclouridine (BBAU); amethobenzylacyclouridine
(AMBAU); amethobenzoxybenzylacyclouridine (AMB-BAU); hydroxymethylbenzylacyclouridine (HMBAU); and hydroxymethylbenzoxybenzylacyclouridine (HMBBAU).
The present compounds can also be administered jointly with cytokines or cytokine inhibitors, including (but not limited to): rIFNa, rlFN|3, and rlFNy, TNFa inhibitors, MNX-160, human r interferon aA, human r interferon p, and human r interferony.
Protease inhibitors prevent the virus from maturing mainly during the viral assembly period or after the assembly period (namely during the viral budding). Protease inhibitors show an antiviral activity both in vivo and in vitro. After being administered protease inhibitors, the AIDS patient HIV-level exhibits an exponential decline and their CD4 lymphocytes rise in number (Deeks, et al., 1997, JAMA 277:145-53). Aspects of the present invention provide for administration of the present compounds together with a protease inhibitor, the latter including (but not limited to): Indinavir, Invirase, Norvir, Viracept, and Agenerase.
The present compounds can also be used jointly with anti-HIV drugs that disturb 5'- mRNA processing, such as virazole. The acting mechanism of virazole is unknown yet and presumed to be competing with guanine in forming the mRNA capping structure, and/or disturbing the methylation of these molecules.
In addition, the present compounds can be administered jointly with amphotericin B. Amphotericin B is a polyene antifungal antibiotic that can bind irreversibly with sterol. Amphotericin B and its formate have an inhibiting effect against many lipid envelop viruses including HIV.
The present compounds can also be administered jointly with the glycoprotein processing inhibitor castanospermine, which is a vegetable alkaloid capable of inhibiting glycol protein processing. HIV envelope contains two large glycoproteins gp120 and gp41 . The glycosylation of proteins plays an important role in the interactions between gp120 and CD4. The progeny virus synthesized in the presence of castanospermine has a weaker infectivity than the parental virus.
Drug combinations of interest include the present compounds, and at least one of other antiviral agents, such as reverse transcriptase inhibitors, protease inhibitors, mRNA processing inhibitors, protein glycosylation inhibitors, virus adsorbent, CD4 receptor inhibitors, chemokine co-receptor inhibitors, neutralizing antibody, integrase inhibitors, and other fusion inhibitors, including (but not limited to) nucleoside analogs or chain terminators;
chemokine co-receptor inhibitors AMD-3100 (Tremblay, C. L. et al., 2000, J. AIDS 1 :25(2)99- 10).
According to an embodiment of the present invention, therapeutic agents that can be used jointly with the present compounds include (but not limited to): 2-deoxy-D-glucose (2dG1 c), deoxynojirimycinacycloguanosine, virazole, rifadin, adamantanamine, rifabutine, ganciclover (DHPG), famciclove, buciclover (DHBG), fluoroiodoaracytosine, iodoxuridine, trifluorothymidine, ara-A, ara-AMP, bromovinyldeoxyuridine, BV-arau, 1 -b-D- glycoarabinofuranoside-E-5-[2-bromovinyl]uracil, adamantethylamine, hydroxyurea, phenylacetic heptanedione, diarylamidine, (S)-(p-nitrobenzyl)-6-thioinosine and phosphonoformate.
SYSTEMS AND KITS
Also provided are systems and kits that include compounds of the invention. Systems of the invention are collections of active agents brought together, e.g., by a health care practitioner, for administration to a subject, such as a patient. Such systems may include TERT expression enhancing compound of the invention and one or more additional active agents. Kits that include TERT expression enhancing compounds of the invention are also provided. Kits of the invention may include one or more dosages of a TERT expression enhancing compound, and optionally one or more dosages of one or more additional active agents. Conveniently, the formulations may be provided in a unit dosage format. In such kits, in addition to the containers containing the formulation(s), e.g. unit doses, is an informational package insert describing the use of the subject formulations in the methods of the invention, e.g., instructions for using the subject unit doses to treat cellular proliferative disease conditions.
These instructions may be present in the subject systems and kits in a variety of forms, one or more of which may be present in the kit. One form in which these instructions may be present is as printed information on a suitable medium or substrate, e.g., a piece or pieces of paper on which the information is printed, in the packaging of the kit, in a package insert, etc. Yet another means would be a computer readable medium, e.g., portable flash drive, diskette, CD, etc., on which the information has been recorded. Yet another means that may be present is a website address which may be used via the internet to access the information at a removed site. Any convenient means may be present in the kits.
The following examples are offered by way of illustration and not by way of limitation.
EXPERIMENTAL
Telomerase is a ribonucleoprotein complex composed of the catalytic protein subunit (human telomerase reverse transcriptase or hTERT) and the RNA template. hTERT expression level can be measured by PCR.
Quantitative Reverse Transcription PCR
Quantitative Reverse Transcription PCR can be run according to procedures outlined in Yajima et al. (Yajima, T. et al. Quantitative Reverse Transcription-PCR Assay of the RNA Component of Human Telomerase Using the TaqMan Fluorogenic Detection System Clinical Chemistry, 44:12, 2441-2445, 1998).
Real-Time PCR.
The principle of real-time PCR was first described by Heid et al. (Heid C. A., Stevens J., Livak K. J., Williams P. M. Real time quantitative PCR. Genome Res., 6: 986-994, 1996). Briefly, amplification of the target sequence is monitored per PCR cycle by detecting the fluorescence signal emitted by an internal probe that is degraded by the 5' nuclease activity of the Taq polymerase. The emission signal accumulates in each sample, and the Ct required to reach a given fluorescence threshold is determined (Ct stands for Cycle Threshold and is a measure of the number of PCR cycles that are required to amplify a target - thus, a lower Ct score means that there is more abundant hTERT mRNA). Thus, the Ct value of a sample inversely correlates to the quantity of the starting cDNA which correlates to the number of mRNA transcripts. Using the cDNAof known quantity, a standard curve can be generated and used to determine the starting amount of mRNA transcripts based on the Ct value of each sample.
Quantitative real-time PCR can be done on cDNA from test compound-treated and nontreated cells by use of a ABI Prism 7900 Sequence Detection System (PE Applied Biosystems, Foster City, CA) following the Assays-on-Demand protocol (PE Applied Biosystems, Foster City, CA). Quantitative data can be analyzed using the Sequence Detection System software version 2.1 (PE Applied Biosystems).
Cell Viability Assay
Cell viability is determined using a homogeneous method, such as CellTiter-Glo® Luminescent Cell Viability Assay (Promega Corporation, Madison, Wl.) to determine the number of viable cells in culture These assays are based on quantitation of the ATP present, which signals the presence of metabolically active cells. Luminescent values of compound treated cells are compared to that of cells treated with vehicle alone to determine the average cell viability as a percent of control.
The following compounds were tested in assays designed to identify compounds that enhance human TERT expression. The compounds turned on human TERT expression in these assays.
Notwithstanding the appended claims, the disclosure is also defined by the following clauses:
1 . A method for enhancing telomerase reverse transcriptase (TERT) expression in a cell, the method comprising: contacting the cell with a TERT expression enhancing effective amount of a compound, wherein the compound is an isoxazole-3-carboxamide.
2. The method of Clause 1 , wherein the compound has the structure of formula (I):
where n is 2, 3, 4, 5, 6, 7 or 8;
R68 is hydrogen or an alkyl;
R51 is phenyl or thiophenyl; and
R52 is amino or guanadino, optionally substituted with an aliphatic, an aryl or a heterocyclic group.
3. The method of Clause 2, wherein R51 is phenyl.
4. The method of Clause 2, wherein R51 is thiophenyl.
5. The method of any of Clauses 2 to 4, wherein n ranges from 3 to 7.
6. The method of Clause 5, wherein n ranges from 3 to 6.
7. The method of any of Clauses 2 to 6, wherein R52 is amino.
8. The method of any of Clauses 2 to 6, wherein R52 is guanidino.
9. The method of any of Clauses 2 to 6, wherein R52 is substituted guanidino.
11 . The method of any of the preceding clauses, wherein the proliferative capacity of the cell is increased.
12. The method of any of the preceding clauses, wherein senescence of the cell is delayed.
13. An isoxazole-3-carboxamide compound that enhances telomerase reverse transcriptase (TERT) expression in a cell. 14. The compound of Clause 13, wherein the compound has the structure of formula (I):
where n is 2, 3, 4, 5, 6, 7 or 8;
R68 is hydrogen or an alkyl;
R51 is phenyl or thiophenyl; and
R52 is amino or guanadino, optionally substituted with an aliphatic, an aryl or a heterocyclic group.
15. The compound of Clause 14, wherein R51 is phenyl.
16. The compound of Clause 14, wherein R51 is thiophenyl.
17. The compound of any of Clauses 14 to 16, wherein n ranges from 3 to 7.
18. The compound of Clause 17, wherein n ranges from 3 to 6.
19. The compound of any of Clauses 14 to 18, wherein R52 is amino.
20. The compound of any of Clauses 14 to 18, wherein R52 is guanidino.
21 . The compound of any of Clauses 14 to 18, wherein R52 is substituted guanidino.
23. A method for extending the lifespan of a mammal, the method comprising: administering to the mammal an effective amount of an isoxazole-3-carboxamide compound of any of Clauses 13 to 22.
24. The method according to Clause 23, wherein the mammal is a human.
25. A method for treating a mammal for ultraviolet damage, the method comprising: administering to the mammal an effective amount of an isoxazole-3-carboxamide compound of any of Clauses 13 to 22; to treat the mammal for ultraviolet damage.
26. The method according to Clause 25, wherein the mammal is a human.
27. The method according to Clause 25 or 26, wherein the method is a method of treating ultraviolet skin damage.
28. The method according to Clause 25 or 26, wherein the method is a method of preventing ultraviolet skin damage.
29. The method according to Clause 25 or 26, wherein the method is a method of repairing ultraviolet skin damage.
30. The method according to any of Clauses 25 to 29, wherein the method comprises topically applying the compound to the mammal.
31 . A method for reducing the appearance of aging in a mammal, the method comprising: administering to the mammal an effective amount of an isoxazole-3-carboxamide compound of any of Clauses 13 to 22; to reduce the appearance of aging in the mammal.
32. The method according to Clause 31 , wherein the mammal is a human.
33. The method according to Clause 31 or 32, wherein the method comprises topically applying the compound to the mammal.
34. A pharmaceutical composition comprising:
a TERT expression enhancing an isoxazole-3-carboxamide compound of any of Clauses 13 to 22; and a pharmaceutically acceptable carrier.
35. The composition according to Clause 34, wherein the composition is a topical composition.
36. The composition according to Clause 35, wherein the composition further comprises a sunblocking agent.
37. The composition according to Clause 34, wherein the composition is an oral composition.
38. The composition according to Clause 34, wherein the composition is an injectable composition.
Although the particular embodiments have been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
Accordingly, the preceding merely illustrates the principles of the invention. Various arrangements may be devised which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.
Claims
1 . An isoxazole-3-carboxamide compound that enhances telomerase reverse transcriptase (TERT) expression in a cell.
2. The compound of Claim 1 , wherein the compound has the structure of formula (I):
where n is 2, 3, 4, 5, 6, 7 or 8;
R68 is hydrogen or an alkyl;
R51 is phenyl or thiophenyl; and
R52 is amino or guanadino, optionally substituted with an aliphatic, an aryl or a heterocyclic group.
3. The compound of Claim 2, wherein R51 is phenyl.
4. The compound of Claim 2, wherein R51 is thiophenyl.
5. The compound of any of the preceding claims, wherein n ranges from 3 to 7.
6. The compound of Claim 5, wherein n ranges from 3 to 6.
7. The compound of any of the preceding claims, wherein R52 is amino.
8. The compound of any of Claims 1 to 6, wherein R52 is guanidino.
9. The compound of any of Claims 1 to 6, wherein R52 is substituted guanidino.
11. A method for enhancing telomerase reverse transcriptase (TERT) expression in a cell, the method comprising: contacting the cell with a TERT expression enhancing effective amount of a compound, wherein the compound is an isoxazole-3-carboxamide according to any of Claims 1 to 10.
12. A method for extending the lifespan of a mammal, the method comprising: administering to the mammal an effective amount of an isoxazole-3-carboxamide compound of any of Claims 1 to 10.
13. A method for reducing the appearance of aging in a mammal, the method comprising: administering to the mammal an effective amount of an isoxazole-3-carboxamide compound of any of Claims 1 to 10; to reduce the appearance of aging in the mammal.
14. The method according to Claims 12 or 13, wherein the mammal is a human.
15. A pharmaceutical composition comprising : a TERT expression enhancing an isoxazole-3-carboxamide compound of any of Claims 1 to 10; and a pharmaceutically acceptable carrier.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202363527132P | 2023-07-17 | 2023-07-17 | |
US63/527,132 | 2023-07-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2025019473A1 true WO2025019473A1 (en) | 2025-01-23 |
Family
ID=94282538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2024/038153 WO2025019473A1 (en) | 2023-07-17 | 2024-07-16 | Isoxazole-3-carboxyamide compounds for enhancing telomerase reverse transcriptase (tert) expression |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2025019473A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090036451A1 (en) * | 2006-10-13 | 2009-02-05 | The Board Of Regents Of The University Of Texas System | Chemical inducers of neurogenesis |
US20090143451A1 (en) * | 2007-11-14 | 2009-06-04 | Andrews William H | Compounds that increase telomerase reverse transcriptase (tert) expression and methods for using the same |
US20160052895A1 (en) * | 2014-08-22 | 2016-02-25 | Vanderbilt University | Small molecule mediated transcriptional induction of e-cadherin |
US20180127400A1 (en) * | 2014-03-13 | 2018-05-10 | Proteostasis Therapeutics, Inc. | Compounds, compositions, and methods for increasing cftr activity |
-
2024
- 2024-07-16 WO PCT/US2024/038153 patent/WO2025019473A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090036451A1 (en) * | 2006-10-13 | 2009-02-05 | The Board Of Regents Of The University Of Texas System | Chemical inducers of neurogenesis |
US20090143451A1 (en) * | 2007-11-14 | 2009-06-04 | Andrews William H | Compounds that increase telomerase reverse transcriptase (tert) expression and methods for using the same |
US20180127400A1 (en) * | 2014-03-13 | 2018-05-10 | Proteostasis Therapeutics, Inc. | Compounds, compositions, and methods for increasing cftr activity |
US20160052895A1 (en) * | 2014-08-22 | 2016-02-25 | Vanderbilt University | Small molecule mediated transcriptional induction of e-cadherin |
Non-Patent Citations (1)
Title |
---|
DATABASE PubChem Substance 23 February 2016 (2016-02-23), "SCHEMBL17079565", XP093269577, Database accession no. 311819749 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Suetomi et al. | Inflammation in nonischemic heart disease: initiation by cardiomyocyte CaMKII and NLRP3 inflammasome signaling | |
JP5836262B2 (en) | Compositions containing cyclic AMP enhancers and / or EP ligands and methods of preparing and using the same | |
JP7273954B2 (en) | Inhibition of SARM1 in combination with NAD+ or NAD+ precursors | |
TWI745271B (en) | Treatment of systemic lupus erythematosus | |
JP2022514526A (en) | Inhibitor of SARM1 in combination with neuroprotective agents | |
Tan et al. | Dual specificity phosphatase 1 attenuates inflammation-induced cardiomyopathy by improving mitophagy and mitochondrial metabolism | |
Liu et al. | Pterostilbene alleviates cerebral ischemia and reperfusion injury in rats by modulating microglial activation | |
US20090143451A1 (en) | Compounds that increase telomerase reverse transcriptase (tert) expression and methods for using the same | |
JP6890835B2 (en) | Pharmaceutical associations and their use for converting tumor cells to non-tumor cells | |
EP1231916A2 (en) | Use of indirubine derivatives for making medicines | |
CN101518524A (en) | Methods of inhibiting vascular permeability and apoptosis | |
US20250122209A1 (en) | Methods and compositions for drugs to treat ophthalmic diseases | |
JP2023027372A (en) | Pharmaceutical associations for converting neoplastic cells to non-neoplastic cells and uses thereof | |
CN102014922A (en) | Use of maslinic acid for the treatment of diseases and the symptoms thereof by means of COX-2 inhibition | |
Negrei et al. | Acitretin treatment in psoriasis may influence the cell membrane fluidity | |
PT2120919E (en) | New combination for use in the treatment of inflammatory disorders | |
Wu et al. | Targeting IRE1α improves insulin sensitivity and thermogenesis and suppresses metabolically active adipose tissue macrophages in male obese mice | |
JP2018537404A (en) | Pharmaceutical association and use thereof for converting tumor cells to non-tumor cells | |
WO2025019473A1 (en) | Isoxazole-3-carboxyamide compounds for enhancing telomerase reverse transcriptase (tert) expression | |
US12168019B1 (en) | 8-hydroxy quinoline derivatives for enhancing telomerase reverse transcriptase (TERT) expression | |
ES2395120T3 (en) | Combination of pemirolast and ramotrobán for use in the treatment of inflammatory disorders | |
US20250120956A1 (en) | Azole Compounds for Enhancing Telomerase Reverse Transcriptase (TERT) Expression | |
JP2018531925A (en) | Pharmaceutical association and use thereof for converting tumor cells to non-tumor cells | |
US20250179122A1 (en) | Telomerase Reverse Transcriptase (TERT) Expression Enhancing Compounds and Methods for Using the Same | |
WO2012100835A1 (en) | Methods and compositions for the treatment of aids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 24843845 Country of ref document: EP Kind code of ref document: A1 |