WO2024185966A1 - Polyester film and manufacturing method therefor - Google Patents

Polyester film and manufacturing method therefor Download PDF

Info

Publication number
WO2024185966A1
WO2024185966A1 PCT/KR2023/019890 KR2023019890W WO2024185966A1 WO 2024185966 A1 WO2024185966 A1 WO 2024185966A1 KR 2023019890 W KR2023019890 W KR 2023019890W WO 2024185966 A1 WO2024185966 A1 WO 2024185966A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
machine direction
stretching
polyester film
tensile strength
Prior art date
Application number
PCT/KR2023/019890
Other languages
French (fr)
Korean (ko)
Inventor
허영민
임병재
김철규
송기윤
Original Assignee
에스케이마이크로웍스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이마이크로웍스 주식회사 filed Critical 에스케이마이크로웍스 주식회사
Publication of WO2024185966A1 publication Critical patent/WO2024185966A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the invention relates to a polyester film and a method for producing the same.
  • heating can be achieved by using the engine's waste heat in the form of a blower.
  • electric vehicles and other electric vehicles have difficulty using engine waste heat for heating, so the heating energy efficiency may be somewhat reduced, and there is a concern that the driving distance may be slightly reduced depending on the season.
  • the background technology described above is technical information that the inventor possessed for deriving the implementation example or acquired in the process of deriving the implementation example, and cannot necessarily be said to be publicly known technology disclosed to the general public prior to the application of the present invention.
  • the purpose of the embodiment is to provide a polyester film that has excellent formability and no significant difference in physical properties even after being exposed to harsh conditions of high temperature and high pressure for a long period of time, and is therefore suitable as a film for heat-resistant and heat-dissipating parts of electric vehicles.
  • Another object of the embodiment is to provide a method for manufacturing a polyester film in which the difference in physical properties under harsh conditions is not large through a low-temperature stretching process.
  • a polyester film according to an embodiment includes a polycyclohexylenedimethylene terephthalate resin.
  • the above polyester film may have a machine direction tensile strength of MDTS25 measured at a temperature of 25°C, a machine direction tensile strength of MDTS200 measured after leaving it in a container under temperature conditions of 200°C for 24 hours, and a machine direction tensile strength reduction rate expressed as ⁇ (MDTS25-MDTS200)/MDTS25 ⁇ 100% of 43.5% or less.
  • the polyester film may have a width-direction tensile strength of TDTS25 measured at a temperature of 25°C, a width-direction tensile strength of TDTS200 measured at a temperature condition of 200°C, and a width-direction tensile strength reduction rate expressed as ⁇ (TDTS25-TDTS200)/TDTS25 ⁇ 100% of 29% or less.
  • the polyester film may have a machine direction elongation of MDE25 measured at a temperature of 25° C., a machine direction elongation of MDE200 measured at a temperature condition of 200° C., and a change in machine direction elongation expressed as (
  • the polyester film may have a transverse elongation of TDE25 measured at a temperature of 25° C., a transverse elongation of TDE200 measured at a temperature condition of 200° C., and a transverse elongation change rate expressed as (
  • the polyester film may have a machine direction elongation of 35% or more measured under the temperature condition of 200° C., and a width direction elongation of 50% or more measured under the temperature condition of 200° C.
  • the polyester film can be applied as a heat-resistant component film of an electric vehicle.
  • the polycyclohexylenedimethylene terephthalate resin includes repeating units derived from a dicarboxylic acid compound and repeating units derived from a diol compound.
  • the repeating unit derived from the above dicarboxylic acid compound may include 80 mol% to 100 mol% of terephthalic acid residues and 0 mol% to 20 mol% of isophthalic acid residues.
  • the repeating unit derived from the above diol compound may contain 85 mol% to 100 mol% of cyclohexanedimethanol residues.
  • a method for manufacturing a polyester film includes a sheet forming step of melting and extruding a film manufacturing composition including a polycyclohexylenedimethylene terephthalate resin to form a sheet; a stretching step of stretching the sheet formed in the sheet forming step in the machine direction and the width direction and heat-setting to manufacture a polyester film.
  • the above stretching step may sequentially include an MD stretching step for stretching in the machine direction and a TD stretching step for stretching in the width direction.
  • the above MD stretching step may include a preheating process for preheating the sheet formed in the sheet forming step; and an MD stretching process for stretching the sheet on which the preheating process has been performed in the machine direction.
  • the temperature of the above preheating process may be 80°C to 86.5°C
  • the temperature of the above MD stretching process may be 80°C to 89°C
  • the widthwise stretching temperature of the above TD stretching step may be 100°C to 118°C.
  • the above polyester film may have a machine direction tensile strength of MDTS25 measured at 25°C, a machine direction tensile strength of MDTS200 measured after leaving it in a container under temperature conditions of 200°C for 24 hours, and a machine direction tensile strength reduction rate expressed as ⁇ (MDTS25-MDTS200)/MDTS25 ⁇ 100% of 43.5% or less.
  • the TD stretching step includes a first preheating process of first preheating the sheet stretched in the MD stretching step; a second preheating process of second preheating the sheet that has undergone the first preheating process; and a TD stretching process of stretching the sheet that has undergone the second preheating process in the width direction.
  • the temperature of the first preheating process may be 90°C to 103°C, and the temperature of the second preheating process may be 90°C to 108°C.
  • the above TD stretching step may be a step of stretching the sheet 2.5 to 3.5 times.
  • the above MD stretching step may be a step of stretching the sheet 3.3 to 4.5 times.
  • a polyester film according to an embodiment is manufactured through a unique low-temperature stretching process, and thus can have properties suitable for heat-resistant and heat-dissipating components of an electric vehicle.
  • Figure 1 is a graph showing the results of the 25°C machine direction tensile strength (MDTS25) and the machine direction tensile strength after a high temperature test at 200°C (MDTS200) of samples of Examples 1 and 2 (E1, E2) and Comparative Examples 1 to 3 (CE1 to CE3).
  • Figure 2 is a graph showing the results of the transverse tensile strength (TDTS25) at 25°C and the transverse tensile strength (TDTS200) after a high-temperature test at 200°C of samples of Examples 1 and 2 (E1, E2) and Comparative Examples 1 to 3 (CE1 to CE3).
  • Figure 3 is a graph showing the results of the machine direction elongation at 25°C (MDE25) and the machine direction elongation after a high temperature test at 200°C (MDE200) of the samples of Examples 1 and 2 (E1, E2) and Comparative Examples 1 to 3 (CE1 to CE3).
  • Figure 4 is a graph showing the results of transverse elongation at 25°C (TDE25) and transverse elongation after a high-temperature test at 200°C (TDE200) of samples of Examples 1 and 2 (E1, E2) and Comparative Examples 1 to 3 (CE1 to CE3).
  • Figure 5 is a graph showing the results of the machine direction tensile strength reduction rate (MDTS_R) and the transverse direction tensile strength reduction rate (TDTS_R) of the samples of Examples 1 and 2 (E1, E2) and Comparative Examples 1 to 3 (CE1 to CE3).
  • MDTS_R machine direction tensile strength reduction rate
  • TDTS_R transverse direction tensile strength reduction rate
  • Figure 6 is a graph showing the results of the machine direction elongation change rate (MDTS_R) and transverse direction elongation change rate (TDTS_R) of the samples of Examples 1 and 2 (E1, E2) and Comparative Examples 1 to 3 (CE1 to CE3).
  • MDTS_R machine direction elongation change rate
  • TDTS_R transverse direction elongation change rate
  • B being located on A means that B is located in direct contact with A or that B is located on A with another layer located in between, and is not limited to being interpreted as B being located in contact with the surface of A.
  • the term "combination of these" included in the expression in the Makushi format means one or more mixtures or combinations selected from the group consisting of the components described in the expression in the Makushi format, and means including one or more selected from the group consisting of said components.
  • a polyester film according to an embodiment includes a polycyclohexylenedimethylene terephthalate resin.
  • the machine direction tensile strength measured at a temperature of 25 °C is MDTS25.
  • MDTS200 is the machine direction tensile strength measured after leaving it in a container under temperature conditions of 200°C for 24 hours.
  • the machine direction tensile strength reduction rate MDTS_R is expressed as ⁇ (MDTS25-MDTS200)/MDTS25 ⁇ 100%.
  • the above polyester film may have the MDTS_R of 43.5% or less.
  • the polycyclohexylenedimethylene terephthalate (PCT) resin of the above polyester film may be a copolymer of a dicarboxylic acid compound and a diol compound, and may include residues and repeating units derived therefrom.
  • the above polycyclohexylenedimethylene terephthalate resin may contain 80 mol% or more, 90 mol% or more, and 100 mol% or less of terephthalic acid residues, and 20 mol% or less, 10 mol% or less, 0 mol% or more, 1 mol% or more, and 2 mol% or more of isophthalic acid residues, based on 100 mol% of the total repeating units derived from dicarboxylic acid compounds.
  • the above polycyclohexylenedimethylene terephthalate resin may contain 70 mol% or more, 80 mol% or more, 90 mol% or more, and 100 mol% or less of cyclohexanedimethanol residues, based on 100 mol% of the total repeating units derived from diol compounds.
  • the above dicarboxylic acid-derived repeating unit contains terephthalic acid residues and isophthalic acid residues in the above-mentioned contents, it can have relatively high melting point characteristics and low crystallization characteristics.
  • the above diol-derived repeating unit may include the following compound-derived repeating units other than the above cyclohexanedimethanol-derived repeating units.
  • it may include ethylene glycol, 1,3-propanediol, 1,2-octanediol, 1,3-octanediol, 2,3-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentylglycol), 2-butyl-2-ethyl-1,3-propanediol, 2,2-diethyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,1-dimethyl-1,5-pentanediol, and residue
  • the above polycyclohexylenedimethylene terephthalate resin may have a weight average molecular weight (Mw) of 30,000 g/mol to 50,000 g/mol, or may be 30,000 g/mol to 40,000 g/mol.
  • the above polycyclohexylenedimethylene terephthalate resin can apply a catalyst to improve the efficiency of the polymerization reaction.
  • the above catalyst may be included in an amount of 0.1 ppm to 500 ppm, or may be included in an amount of 0.5 ppm to 100 ppm, based on 100 parts by weight of polycyclohexylenedimethylene terephthalate.
  • the catalyst may be a titanium compound, an antimony compound, a germanium compound, an aluminum compound, or a mixture thereof.
  • the catalyst may be a titanium compound.
  • the titanium compound may include titanium tetraisopropoxide.
  • An antioxidant may be applied to the polymerization of the above polycyclohexylenedimethylene terephthalate resin.
  • the antioxidant may be applied as needed for the purpose of suppressing thermal oxidation at the temperature at which the esterification reaction is carried out. However, it is common to apply an appropriate amount of the antioxidant applied at this time. If an excessive amount of antioxidant is added during polymerization, there is a concern that the reaction may be delayed and the inherent viscosity of the manufactured resin may decrease.
  • An antioxidant that affects the polymerization of the resin is consumed during the polymerization process and can be distinguished from an antioxidant that is added during subsequent film production.
  • the above antioxidants may include phenol-based antioxidants, phosphorus-based antioxidants, and sulfur-based antioxidants.
  • the above antioxidant may be included in an amount of 0.01 to 1 part by weight based on 100 parts by weight of the polycyclohexylenedimethylene terephthalate.
  • An electrostatic agent can be applied when manufacturing a film using the above polycyclohexylenedimethylene terephthalate resin.
  • the electrostatic agent salts of alkali metals and salts of alkaline earth metals can be applied, and magnesium compounds and calcium compounds can be applied, and examples thereof include magnesium acetate and calcium acetate.
  • the metal or metal ion content of the electrostatic charging agent may be included to be 300 ppm to 1000 ppm based on 100 parts by weight of the polycyclohexylenedimethylene terephthalate resin.
  • the machine direction (MD) is a longitudinal direction parallel to the direction in which movement occurs during the film forming process
  • the transverse direction (TD) is a direction perpendicular to the machine direction
  • the above polyester film can have good physical property retention after the harsh conditions of the pressure vessel test and can have characteristics suitable for a heat-resistant and heat-dissipating film.
  • the machine direction tensile strength measured at a temperature of 25 °C is MDTS25, and the machine direction tensile strength measured at the temperature condition of 200 °C is MDTS200.
  • the above polyester film may have a machine direction tensile strength reduction rate MDTS_R expressed as ⁇ (MDTS25-MDTS200)/MDTS25 ⁇ 100% of 43.5% or less.
  • the machine direction tensile strength reduction rate may be 42.6% or less, 41.6% or less, or 30% or less.
  • the machine direction tensile strength reduction rate may be 10% or more.
  • the transverse tensile strength measured at a temperature of 25°C is TDTS25, and the transverse tensile strength measured at the temperature condition of 200°C is TDTS200.
  • the polyester film may have a widthwise tensile strength reduction rate TDTS_R, expressed as ⁇ (TDTS25-TDTS200)/TDTS25 ⁇ 100%, of 29% or less.
  • the widthwise tensile sensitivity reduction rate may be 27.7% or less, 21.4% or less, or 18% or less.
  • the widthwise tensile strength reduction rate may be 5% or more.
  • the above polyester film has such a reduction rate in machine direction and width direction tensile strength, so it can maintain good durability under harsh conditions and can be effective in maintaining the protective function of heat-resistant and heat-dissipating parts.
  • the above polyester film may have a MDTS25 of 12 kgf/mm 2 to 20 kgf/mm 2 , 14 kgf/mm 2 to 19 kgf/mm 2 , or 15 kgf/mm 2 to 18 kgf/mm 2 .
  • the polyester film may have a MDTS200 of 5 kgf/mm 2 to 15 kgf/mm 2 , 6 kgf/mm 2 to 14 kgf/mm 2 , or 8.6 kgf/mm 2 to 13 kgf/mm 2 .
  • the polyester film may have a TDTS25 of 12 kgf/mm 2 to 25 kgf/mm 2 , 15 kgf/mm 2 to 24 kgf/mm 2 , or 16 kgf/mm 2 to 23 kgf/mm 2 .
  • the polyester film may have a density of 8 kgf/mm 2 to 18 kgf/mm 2 , 9 kgf/mm 2 to 17 kgf/mm 2 , or 11 kgf/mm 2 to 16 kgf/mm 2 of the TDTS200.
  • polyester film has these MDTS25, MDTS200, TDTS25, and/or TDTS200 ranges, there is no drastic difference in properties between general room temperature and harsh conditions, so that it can maintain good durability and can be effective in maintaining the protective function of heat-resistant and heat-dissipating parts.
  • the machine direction elongation measured at a temperature of 25 °C is MDE25, and the machine direction elongation measured at the temperature condition of 200 °C is MDE200.
  • the above polyester film may have a machine direction elongation change ratio MDE_D, expressed as (
  • the machine direction elongation change ratio may be 40 % or less, 35.3 % or less, 20 % or less, or 2.4 % or less.
  • the machine direction elongation change ratio may be 0.1 % or more.
  • represents an absolute value symbol.
  • the transverse elongation measured at a temperature of 25°C is TDE25, and the transverse elongation measured at the temperature condition of 200°C is TDE200.
  • the polyester film may have a transverse elongation change TDE_D, expressed as (
  • the transverse elongation change may be 12 % or less, 9.4 % or less, or 7.2 % or less.
  • the transverse elongation change may be 0.1 % or more.
  • the above polyester film has such a machine direction, width direction elongation change rate, so it can maintain good durability under harsh conditions and can be effective in maintaining the protective function of heat-resistant and heat-dissipating parts.
  • the above polyester film may have an MDE25 of 40% to 110%, 45% to 105%, or 55% to 100%.
  • the above polyester film may have a MDE200 content of 25% to 90%, 35% to 85%, or 40% to 80%.
  • the above polyester film may have a TDE25 of 45% to 90%, 47% to 80%, or 50% to 75%.
  • the above polyester film may have a TDE200 of 45% to 90%, 47% to 80%, or 55% to 80%.
  • polyester film has these MDES25, MDE200, TDES25, and/or TDES200 ranges, there is no drastic difference in properties between general room temperature and harsh conditions, so that it can maintain good durability and can be effective in maintaining the protective function of heat-resistant and heat-dissipating parts.
  • elongation means the ratio of the length extended before rupture to the initial length of the film and can be calculated as follows.
  • Elongation ⁇ (elongated length - initial length) / initial length ⁇ X 100%
  • the above tensile strength and elongation related properties can be measured according to ASTM D882 and can be measured using Instron's Model 4206-0010 device as described in the experimental example below.
  • the thickness of the above polyester film may be from 1 ⁇ m to 1000 ⁇ m, or from 10 ⁇ m to 500 ⁇ m.
  • the above polyester film is manufactured through a unique low-temperature stretching process in the manufacturing method below, and can have properties suitable for heat-resistant and heat-dissipating parts of electric vehicles.
  • the heat radiation member for an electric vehicle may include the polyester film described above.
  • the above heat radiation member may include a carbon-based material, and examples thereof include graphite, carbon nanotubes, carbon fibers, graphene, diamond, fullerene, and the like.
  • a polyester manufacturing method includes a sheet forming step of melting and extruding a film manufacturing composition including a polycyclohexylenedimethylene terephthalate resin to form a sheet; a stretching step of stretching the sheet formed in the sheet forming step in the machine direction and the width direction and heat-setting to manufacture a polyester film.
  • the above stretching step may include an MD stretching step for stretching the sheet formed in the sheet forming step in the machine direction; a TD stretching step for stretching the sheet stretched in the MD stretching step in the width direction and heat-setting to produce a polyester film.
  • the above MD stretching step includes a preheating process for preheating the sheet formed in the sheet forming step; and an MD stretching process for stretching the sheet on which the preheating process has been performed in the machine direction.
  • the temperature of the above preheating process can be 80 °C to 86.5 °C.
  • the temperature of the above MD stretching process can be 80 °C to 89 °C.
  • the widthwise stretching temperature of the above TD stretching step can be 100°C to 118°C.
  • the machine direction tensile strength measured at 25 °C is MDTS25, and the machine direction tensile strength under pressure vessel test conditions is MDTS200.
  • the above pressure cooker test is conducted by leaving it in an oven under the conditions of 200°C temperature, 1.4 atm pressure, and 100% relative humidity for 24 hours.
  • the above polyester film has the characteristics, composition, etc. of the polyester film mentioned above.
  • the polyester film may have a machine direction tensile strength reduction rate MDTS_R expressed as ⁇ (MDTS25-MDTS200)/MDTS25 ⁇ 100% of 43.5% or less.
  • composition for manufacturing the above film may include polycyclohexylenedimethylene terephthalate resin, an antioxidant, an electrostatic agent, etc., and may be melt-extruded during film manufacturing.
  • the antioxidant and electrostatic agent are the same as those described above, so redundant descriptions are omitted.
  • composition for producing the above film can be dried before melting.
  • the drying may be performed at a temperature of 150° C. or lower. Alternatively, the drying may be performed at a temperature of 70 ° C. to 148° C.
  • the drying of the composition for manufacturing the above film may be carried out so that the moisture content relative to the total amount becomes 100 ppm or less, or 50 ppm or less. If the drying process is carried out at a temperature exceeding 150° C., there is a concern that an unintended color change may occur in the resin itself.
  • the composition for manufacturing the film may have a form such as a chip, pellet, plate, or plate, and may have a form that can be easily introduced into the film manufacturing process and effectively mixed.
  • the polycyclohexylenedimethylene terephthalate resin of the composition for manufacturing the above film can be manufactured by a conventional polymerization method, and for example, one polymerized under a metal-containing catalyst such as titanium or antimony can be applied.
  • the polycyclohexylenedimethylene terephthalate resin of the composition for manufacturing the above film may be a copolymer of a dicarboxylic acid compound and a diol compound as described above, and may include repeating units derived therefrom.
  • the extrusion in the above sheet forming step can be performed at a temperature of 230°C to 300°C, or at a temperature of 250°C to 290°C.
  • the preheating process of the above MD stretching step may heat treat the sheet at a temperature of 80° C. to 86.5° C. for 10 seconds to 1 minute.
  • the preheating process of the above MD stretching step may heat treat the sheet at a temperature of 83° C. to 86° C. for the same period of time as above.
  • the MD stretching process of the above MD stretching step can stretch the sheet on which the above preheating process has been performed by 2.5 to 3.5 times in the machine direction at a temperature of 80 to 89° C.
  • the MD stretching process can stretch the sheet on which the above preheating process has been performed by the same magnification in the machine direction at a temperature of 85 to 89° C., or at a temperature of 87 to 89° C.
  • the above MD stretching step may include a process of heating by providing an infrared heater at a position spaced 30 mm to 200 mm apart from the upper and/or lower portion of the preheated unstretched sheet.
  • the surface temperature of the infrared heater may be 500° C. to 800° C.
  • the above MD stretching step can ensure that the film manufactured through the preheating process and MD stretching process satisfies the intended elongation and strength characteristics under harsh conditions.
  • the above TD stretching step may include a first preheating process of first preheating the sheet stretched in the MD stretching step; a second preheating process of second preheating the sheet that has undergone the first preheating process; and a TD stretching process of stretching the sheet that has undergone the second preheating process in the width direction.
  • the above first preheating process can be heat treated at a temperature of 90° C. to 103° C. for 10 to 60 seconds.
  • the above first preheating process can be heat treated at a temperature of 95° C. to 103° C., or at a temperature of 98 ° C. to 102° C. for the same period of time as above.
  • the above second preheating process can be heat treated at a temperature of 90° C. to 108° C. for 10 to 60 seconds.
  • the above second preheating process can be heat treated at a temperature of 97° C. to 105° C., or at a temperature of 100° C. to 105° C. for the same period of time as above.
  • the above TD stretching process can stretch the sheet that has undergone the second preheating process by 3.3 to 4.5 times in the width direction at a temperature of 100 to 118° C.
  • the TD stretching process can stretch the sheet that has undergone the second preheating process by the same magnification in the width direction at a temperature of 105 to 115° C., or at a temperature of 107 to 113° C.
  • the heat setting of the above TD elongation step may be performed at a temperature of 200° C. to 250° C. for 5 to 600 seconds. Alternatively, the heat setting of the above TD elongation step may be performed for 10 to 200 seconds.
  • the above TD stretching step can ensure that the film manufactured through the preheating process and TD stretching process satisfies the intended elongation and strength characteristics under harsh conditions.
  • the film that has undergone the above TD stretching step may be subjected to a predetermined relaxation treatment in the longitudinal direction and/or the width direction.
  • the temperature during the relaxation may be 150° C. to 250° C.
  • the relaxation rate during the relaxation may be 1% to 10%, or 3% to 7%.
  • a monomer mixture of 100 mol% cyclohexanedimethanol (CHDM) as a diol compound and 96 mol% terephthalic acid (TPA) and 4 mol% isophthalic acid (IPA) as dicarboxylic acid compounds was introduced into a stirrer, and 1 ppm of a titanium catalyst was introduced based on 100 parts by weight of the mixture, and then an ester interchange reaction was performed at 275°C.
  • CHDM cyclohexanedimethanol
  • TPA terephthalic acid
  • IPA isophthalic acid
  • the ester exchange-reacted material was transferred to a separate reactor equipped with a vacuum facility and polymerized at 285°C for 160 minutes to obtain polycyclohexylenedimethylene terephthalate (PCT) resin.
  • PCT polycyclohexylenedimethylene terephthalate
  • the above PCT resin was processed into a master batch chip together with an antioxidant, an electrostatic agent, etc., and dried at a temperature of 140°C. Thereafter, the raw material was fed into an extruder, extruded into a sheet shape at a temperature of approximately 295°C, and cast onto a casting roll.
  • the above extruded sheet was preheated at 83°C for 30 seconds and then stretched 3 times in the machine direction (MD) at 85°C.
  • MD machine direction
  • a heating process was additionally performed at the top and bottom, 80 mm apart from the top and bottom of the film, using infrared heaters; the surface temperature of the top heater was 600°C, and the surface temperature of the bottom heater was 500°C.
  • a first preheating treatment was performed at 95°C for 10 seconds
  • a second preheating treatment was performed at 100°C for 30 seconds, and then stretched 3.5 times in the transverse direction (TD) at 110°C.
  • TD transverse direction
  • the stretched sheet was heat-set at 240°C for about 30 seconds and allowed to relax to produce a PCT film having a thickness of 50 ⁇ m.
  • the extruded sheet was preheated to a temperature of 85° C. and stretched 3.2 times in the machine direction to produce a PCT film.
  • Example 1 the preheating temperature before machine direction (MD) stretching was changed to 87°C, the temperature during machine direction stretching was changed to 90°C, the first preheating temperature before transverse direction (TD) stretching was changed to 105°C, the second preheating temperature was changed to 110°C, the temperature during transverse direction stretching was changed to 120°C, and the heat setting temperature was changed to 230°C, thereby manufacturing a PCT film.
  • Example 1 the preheating temperature before machine direction (MD) stretching was changed to 92°C, the temperature during machine direction stretching was changed to 95°C, the first preheating temperature before transverse direction (TD) stretching was changed to 115°C, the second preheating temperature was changed to 115°C, and the temperature during transverse direction stretching was changed to 120°C, and the surface temperature of the upper heater was applied to 600°C and the surface temperature of the lower heater was applied to 500°C, thereby manufacturing a PCT film.
  • MD machine direction
  • the second preheating temperature was changed to 115°C
  • the temperature during transverse direction stretching was changed to 120°C
  • the surface temperature of the upper heater was applied to 600°C and the surface temperature of the lower heater was applied to 500°C, thereby manufacturing a PCT film.
  • Each film of the above examples and comparative examples was cut to 100 mm x 15 mm and processed into samples, and tensile tests were performed 5 times in the machine direction (MD) and the transverse direction (TD) according to ASTM D882 at a speed of 50 mm/min at a room temperature of 25 °C using an Instron 4206-001 device, and the average values of the measured machine direction tensile strength (MDTS25), transverse direction tensile strength (TDTS25), machine direction elongation (MDE25), and transverse direction elongation (TDE25) were derived.
  • MDTS25 machine direction tensile strength
  • TDTS25 transverse direction tensile strength
  • MDE25 machine direction elongation
  • TDE25 transverse direction elongation
  • each film of the above examples and comparative examples was processed into a sample again in the same manner, and then left in an oven at a temperature of 200°C for 24 hours, and the tensile test was performed in the same manner to derive the machine direction tensile strength (MDTS200), transverse direction tensile strength (TDTS200), machine direction elongation (MDE200), and transverse direction elongation (TDE200) after the high temperature test.
  • MDTS200 machine direction tensile strength
  • TDTS200 transverse direction tensile strength
  • MDE200 machine direction elongation
  • TDE200 transverse direction elongation
  • E indicates an example
  • CE indicates a comparative example
  • MDTS_R indicates a machine direction tensile strength reduction rate
  • TDTS_R indicates a width direction tensile strength reduction rate
  • MDE_D indicates a machine direction elongation change rate
  • TDE_D indicates a width direction elongation change rate.
  • MDTS_R machine direction tensile strength reduction rate
  • TDTS_R width direction tensile strength reduction rate
  • MDE_D machine direction elongation change rate
  • TDE_D width direction elongation change rate
  • the film Since the amount of change in physical properties in a situation where the film was exposed to high temperature and high pressure for a long period of time was not large compared to the comparative examples, it is thought that the film is suitable as a heat-resistant and heat-dissipating film for electric vehicles, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

An embodiment provides a polyester film and a manufacturing method therefor, the film comprising a polycyclohexylenedimethylene terephthalate resin, and having a tensile strength of MDTS25 in the machine direction measured at a temperature of 25°C, and a tensile strength of MDTS200 in the machine direction measured after being left in a container at a temperature of 200°C for 24 hours, wherein the reduction rate of the tensile strength in the machine direction, represented by {(MDTS25-MDTS200)/MDTS25}X100%, is 43.5% or less.

Description

폴리에스테르 필름 및 이의 제조방법Polyester film and method for producing the same
구현예는 폴리에스테르 필름 및 이의 제조방법에 관한 것이다.The invention relates to a polyester film and a method for producing the same.
내연기관을 적용한 이동수단의 경우 송풍 방식으로 엔진의 폐열을 이용하여 난방을 실시할 수 있다. 그러나 전기자동차 등의 전기 이동수단은 난방 시 엔진 폐열을 이용하기 어려워, 난방 에너지 효율이 다소 저하될 수 있고, 계절에 따라 주행거리가 소폭 감소될 우려가 있다.In the case of vehicles using internal combustion engines, heating can be achieved by using the engine's waste heat in the form of a blower. However, electric vehicles and other electric vehicles have difficulty using engine waste heat for heating, so the heating energy efficiency may be somewhat reduced, and there is a concern that the driving distance may be slightly reduced depending on the season.
이러한 전기 이동수단의 난방 효율을 보완하기 위해 다양한 열복사 부품, 부재들이 내장되어 있고, 이를 보호하기 위한 필름이 부착된다. 연신율이 낮은 폴리에틸렌테레프탈레이트(PET), 폴리이미드(PI) 등은 열복사 부품의 곡면에 적용하기 위한 성형성 및 부착력이 양호하지 못해 효율적인 열전달 및 발열 성능을 유지하기 어려울 수 있다.In order to supplement the heating efficiency of these electric vehicles, various heat radiation components and parts are built in, and films are attached to protect them. Low elongation polyethylene terephthalate (PET) and polyimide (PI) do not have good formability and adhesiveness for application to the curved surface of heat radiation components, making it difficult to maintain efficient heat transfer and heat generation performance.
이에 성형성이 우수함과 동시에 전기 이동수단에 적용되기 위한 가혹 조건에서 우수한 신뢰성을 만족할 수 있는 개선된 필름에 대한 고안이 필요하다.Accordingly, there is a need to design an improved film that has excellent formability and can satisfy excellent reliability under harsh conditions for application to electric mobility.
전술한 배경기술은 발명자가 구현예의 도출을 위해 보유하고 있었거나, 도출 과정에서 습득한 기술 정보로서, 반드시 본 발명의 출원 전에 일반 공중에게 공개된 공지기술이라 할 수는 없다.The background technology described above is technical information that the inventor possessed for deriving the implementation example or acquired in the process of deriving the implementation example, and cannot necessarily be said to be publicly known technology disclosed to the general public prior to the application of the present invention.
관련 선행기술로, 한국 공개특허 10-2021-0088586에 개시된 "2축 배향 폴리에스테르 필름 및 그의 제조 방법" 및 한국 공개특허 10-2014-0113664에 개시된 "성형용 2축 배향 폴리에스테르 필름" 등이 있다.Related prior art technologies include “Biaxially oriented polyester film and its manufacturing method” disclosed in Korean Patent Publication No. 10-2021-0088586 and “Biaxially oriented polyester film for molding” disclosed in Korean Patent Publication No. 10-2014-0113664.
구현예의 목적은 고온 고압의 가혹조건에 장시간 방치된 이후에도 물성 차이가 크지 않고, 성형성이 우수하여 전기 이동수단 등의 내열, 방열부품 필름에 적합한 폴리에스테르 필름을 제공하는 데 있다.The purpose of the embodiment is to provide a polyester film that has excellent formability and no significant difference in physical properties even after being exposed to harsh conditions of high temperature and high pressure for a long period of time, and is therefore suitable as a film for heat-resistant and heat-dissipating parts of electric vehicles.
구현예의 다른 목적은 저온연신 공정을 통해 가혹조건에서 물성 차이가 크지 않도록 하는 폴리에스테르 필름 제조방법을 제공하는 데 있다.Another object of the embodiment is to provide a method for manufacturing a polyester film in which the difference in physical properties under harsh conditions is not large through a low-temperature stretching process.
상기의 목적을 달성하기 위하여, 구현예에 따른 폴리에스테르 필름은, 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지를 포함한다.To achieve the above purpose, a polyester film according to an embodiment includes a polycyclohexylenedimethylene terephthalate resin.
상기 폴리에스테르 필름은, 25 ℃의 온도에서 측정한 기계방향 인장강도가 MDTS25이고, 200 ℃의 온도 조건의 용기에서 24 시간 동안 방치하여 측정한 기계방향 인장강도가 MDTS200이고, {(MDTS25-MDTS200)/MDTS25}Х100%로 표기되는 기계방향 인장강도 감소율이 43.5 % 이하일 수 있다.The above polyester film may have a machine direction tensile strength of MDTS25 measured at a temperature of 25°C, a machine direction tensile strength of MDTS200 measured after leaving it in a container under temperature conditions of 200°C for 24 hours, and a machine direction tensile strength reduction rate expressed as {(MDTS25-MDTS200)/MDTS25}Х100% of 43.5% or less.
일 구현예에 있어서, 상기 폴리에스테르 필름은, 25 ℃의 온도에서 측정한 폭방향 인장강도가 TDTS25이고, 상기 200 ℃의 온도 조건에서 측정한 폭방향 인장강도가 TDTS200이고, {(TDTS25-TDTS200)/TDTS25}Х100%로 표기되는 폭방향 인장강도 감소율이 29 % 이하일 수 있다.In one embodiment, the polyester film may have a width-direction tensile strength of TDTS25 measured at a temperature of 25°C, a width-direction tensile strength of TDTS200 measured at a temperature condition of 200°C, and a width-direction tensile strength reduction rate expressed as {(TDTS25-TDTS200)/TDTS25}Х100% of 29% or less.
일 구현예에 있어서, 상기 폴리에스테르 필름은, 25 ℃의 온도에서 측정한 기계방향 신율이 MDE25이고, 상기 200 ℃의 온도 조건에서 측정한 기계방향 신율이 MDE200이고, (|MDE25-MDE200|/MDE25)Х100%로 표기되는 기계방향 신율 변화율이 50 % 이하일 수 있다.In one embodiment, the polyester film may have a machine direction elongation of MDE25 measured at a temperature of 25° C., a machine direction elongation of MDE200 measured at a temperature condition of 200° C., and a change in machine direction elongation expressed as (|MDE25-MDE200|/MDE25)Х100% of 50% or less.
일 구현예에 있어서, 상기 폴리에스테르 필름은, 25 ℃의 온도에서 측정한 폭방향 신율이 TDE25이고, 상기 200 ℃의 온도 조건에서 측정한 폭방향 신율이 TDE200이고, (|TDE25-TDE200|/TDE25)Х100%로 표기되는 폭방향 신율 변화율이 15 % 이하일 수 있다.In one embodiment, the polyester film may have a transverse elongation of TDE25 measured at a temperature of 25° C., a transverse elongation of TDE200 measured at a temperature condition of 200° C., and a transverse elongation change rate expressed as (|TDE25-TDE200|/TDE25)Х100% of 15% or less.
일 구현예에 있어서, 상기 폴리에스테르 필름은, 상기 200 ℃의 온도 조건에서 측정한 기계방향 신율이 35 % 이상이고, 상기 200 ℃의 온도 조건에서 측정한 폭방향 신율이 50% 이상일 수 있다.In one embodiment, the polyester film may have a machine direction elongation of 35% or more measured under the temperature condition of 200° C., and a width direction elongation of 50% or more measured under the temperature condition of 200° C.
일 구현예에 있어서, 상기 폴리에스테르 필름은, 전기 이동수단의 내열부품 필름으로 적용될 수 있다.In one embodiment, the polyester film can be applied as a heat-resistant component film of an electric vehicle.
일 구현예에 있어서, 상기 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지는 디카복실산계 화합물 유래 반복단위 및 디올계 화합물 유래 반복단위를 포함한다.In one embodiment, the polycyclohexylenedimethylene terephthalate resin includes repeating units derived from a dicarboxylic acid compound and repeating units derived from a diol compound.
상기 디카복실산계 화합물 유래 반복단위는 테레프탈산 잔기 80 몰% 내지 100 몰% 및 이소프탈산 잔기 0 몰% 내지 20 몰%을 포함할 수 있다.The repeating unit derived from the above dicarboxylic acid compound may include 80 mol% to 100 mol% of terephthalic acid residues and 0 mol% to 20 mol% of isophthalic acid residues.
상기 디올계 화합물 유래 반복단위는 시클로헥산디메탄올 잔기 85 몰% 내지 100 몰% 포함할 수 있다.The repeating unit derived from the above diol compound may contain 85 mol% to 100 mol% of cyclohexanedimethanol residues.
상기의 목적을 달성하기 위하여, 구현예에 따른 폴리에스테르 필름의 제조방법은, 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지를 포함하는 필름 제조용 조성물을 용융시키고, 압출하여 시트를 형성하는 시트형성단계; 상기 시트형성단계에서 형성된 시트를 기계방향으로 연신 및 폭방향으로 연신하고 열고정하여 폴리에스테르 필름을 제조하는 연신단계;를 포함한다.In order to achieve the above object, a method for manufacturing a polyester film according to an embodiment includes a sheet forming step of melting and extruding a film manufacturing composition including a polycyclohexylenedimethylene terephthalate resin to form a sheet; a stretching step of stretching the sheet formed in the sheet forming step in the machine direction and the width direction and heat-setting to manufacture a polyester film.
상기 연신단계는 기계방향으로 연신하는 MD연신단계, 및 폭방향으로 연신하는 TD연신단계를 순차로 포함할 수 있다.The above stretching step may sequentially include an MD stretching step for stretching in the machine direction and a TD stretching step for stretching in the width direction.
상기 MD연신단계는 상기 시트형성단계에서 형성된 시트를 예열하는 예열과정; 및 상기 예열과정이 진행된 시트를 기계방향으로 연신하는 MD연신과정;을 포함할 수 있다.The above MD stretching step may include a preheating process for preheating the sheet formed in the sheet forming step; and an MD stretching process for stretching the sheet on which the preheating process has been performed in the machine direction.
상기 예열과정의 온도는 80 ℃내지 86.5 ℃이고, 상기 MD연신과정의 온도는 80 ℃내지 89 ℃이고, 상기 TD연신단계의 폭방향 연신 온도는 100 ℃내지 118 ℃일 수 있다.The temperature of the above preheating process may be 80°C to 86.5°C, the temperature of the above MD stretching process may be 80°C to 89°C, and the widthwise stretching temperature of the above TD stretching step may be 100°C to 118°C.
상기 폴리에스테르 필름은, 25 ℃에서 측정한 기계방향 인장강도가 MDTS25이고, 200 ℃의 온도 조건의 용기에서 24 시간 동안 방치하여 측정한 기계방향 인장강도가 MDTS200이고, {(MDTS25-MDTS200)/MDTS25}Х100%로 표기되는 기계방향 인장강도 감소율이 43.5 % 이하일 수 있다.The above polyester film may have a machine direction tensile strength of MDTS25 measured at 25°C, a machine direction tensile strength of MDTS200 measured after leaving it in a container under temperature conditions of 200°C for 24 hours, and a machine direction tensile strength reduction rate expressed as {(MDTS25-MDTS200)/MDTS25}Х100% of 43.5% or less.
일 구현예에 있어서, 상기 TD연신단계는, 상기 MD연신단계에서 연신된 시트를 1차 예열하는 1차예열과정; 상기 1차예열과정이 진행된 시트를 2차 예열하는 2차예열과정; 및 상기 2차예열과정이 진행된 시트를 폭방향으로 연신하는 TD연신과정;을 포함한다.In one embodiment, the TD stretching step includes a first preheating process of first preheating the sheet stretched in the MD stretching step; a second preheating process of second preheating the sheet that has undergone the first preheating process; and a TD stretching process of stretching the sheet that has undergone the second preheating process in the width direction.
상기 1차예열과정의 온도는 90 ℃내지 103 ℃이고, 상기 2차예열과정의 온도는 90 ℃내지 108 ℃일 수 일 수 있다.The temperature of the first preheating process may be 90°C to 103°C, and the temperature of the second preheating process may be 90°C to 108°C.
상기 TD연신단계는 상기 시트를 2.5배 내지 3.5배 연신하는 단계일 수 있다.The above TD stretching step may be a step of stretching the sheet 2.5 to 3.5 times.
상기 MD연신단계는 상기 시트를 3.3배 내지 4.5배 연신하는 단계일 수 있다.The above MD stretching step may be a step of stretching the sheet 3.3 to 4.5 times.
구현예에 따른 폴리에스테르 필름은 특유의 저온 연신 공정을 통해 제조되어, 전기 이동수단의 내열, 방열 부품에 적합한 특성을 가질 수 있다.A polyester film according to an embodiment is manufactured through a unique low-temperature stretching process, and thus can have properties suitable for heat-resistant and heat-dissipating components of an electric vehicle.
도 1은 실시예 1, 2(E1, E2) 및 비교예 1 내지 3(CE1 내지 CE3)의 샘플의 25 ℃기계방향 인장강도(MDTS25) 및 200 ℃고온 테스트 이후 기계방향 인장강도(MDTS200) 결과를 나타낸 그래프.Figure 1 is a graph showing the results of the 25°C machine direction tensile strength (MDTS25) and the machine direction tensile strength after a high temperature test at 200°C (MDTS200) of samples of Examples 1 and 2 (E1, E2) and Comparative Examples 1 to 3 (CE1 to CE3).
도 2는 실시예 1, 2(E1, E2) 및 비교예 1 내지 3(CE1 내지 CE3)의 샘플의 25 ℃폭방향 인장강도(TDTS25) 및 200 ℃고온 테스트 이후 폭방향 인장강도(TDTS200) 결과를 나타낸 그래프.Figure 2 is a graph showing the results of the transverse tensile strength (TDTS25) at 25°C and the transverse tensile strength (TDTS200) after a high-temperature test at 200°C of samples of Examples 1 and 2 (E1, E2) and Comparative Examples 1 to 3 (CE1 to CE3).
도 3은 실시예 1, 2(E1, E2) 및 비교예 1 내지 3(CE1 내지 CE3)의 샘플의 25 ℃기계방향 신율(MDE25) 및 200 ℃고온 테스트 이후 기계방향 신율(MDE200) 결과를 나타낸 그래프.Figure 3 is a graph showing the results of the machine direction elongation at 25°C (MDE25) and the machine direction elongation after a high temperature test at 200°C (MDE200) of the samples of Examples 1 and 2 (E1, E2) and Comparative Examples 1 to 3 (CE1 to CE3).
도 4는 실시예 1, 2(E1, E2) 및 비교예 1 내지 3(CE1 내지 CE3)의 샘플의 25 ℃폭방향 신율(TDE25) 및 200 ℃고온 테스트 이후 폭방향 신율(TDE200) 결과를 나타낸 그래프.Figure 4 is a graph showing the results of transverse elongation at 25°C (TDE25) and transverse elongation after a high-temperature test at 200°C (TDE200) of samples of Examples 1 and 2 (E1, E2) and Comparative Examples 1 to 3 (CE1 to CE3).
도 5는 실시예 1, 2(E1, E2) 및 비교예 1 내지 3(CE1 내지 CE3)의 샘플의 기계방향 인장강도 감소율(MDTS_R) 및 폭방향 인장강도 감소율(TDTS_R) 결과를 나타낸 그래프.Figure 5 is a graph showing the results of the machine direction tensile strength reduction rate (MDTS_R) and the transverse direction tensile strength reduction rate (TDTS_R) of the samples of Examples 1 and 2 (E1, E2) and Comparative Examples 1 to 3 (CE1 to CE3).
도 6은 실시예 1, 2(E1, E2) 및 비교예 1 내지 3(CE1 내지 CE3)의 샘플의 기계방향 신율 변화율(MDTS_R) 및 폭방향 신율 변화율(TDTS_R) 결과를 나타낸 그래프.Figure 6 is a graph showing the results of the machine direction elongation change rate (MDTS_R) and transverse direction elongation change rate (TDTS_R) of the samples of Examples 1 and 2 (E1, E2) and Comparative Examples 1 to 3 (CE1 to CE3).
이하, 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 하나 이상의 구현예에 대하여 첨부한 도면을 참고로 하여 상세히 설명한다. 그러나 구현예들은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 명세서 전체를 통하여 유사한 부분에 대해서는 동일한 도면 부호를 붙였다.Hereinafter, one or more implementation examples will be described in detail with reference to the attached drawings so that those skilled in the art can easily practice the invention. However, the implementation examples may be implemented in various different forms and are not limited to the embodiments described herein. Similar parts are designated by the same drawing reference numerals throughout the specification.
본 명세서에서, 어떤 구성이 다른 구성을 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 그 외 다른 구성을 제외하는 것이 아니라 다른 구성들을 더 포함할 수도 있음을 의미한다.In this specification, when a configuration is said to "include" another configuration, this does not mean that it excludes other configurations, but rather that it may further include other configurations, unless otherwise specifically stated.
본 명세서에서, 어떤 구성이 다른 구성과 "연결"되어 있다고 할 때, 이는 '직접적으로 연결'되어 있는 경우만이 아니라, '그 중간에 다른 구성을 사이에 두고 연결'되어 있는 경우도 포함한다.In this specification, when it is said that a configuration is "connected" to another configuration, this includes not only the case where it is "directly connected" but also the case where it is "connected with another configuration in between."
본 명세서에서, A 상에 B가 위치한다는 의미는 A 상에 직접 맞닿게 B가 위치하거나 그 사이에 다른 층이 위치하면서 A 상에 B가 위치하는 것을 의미하며 A의 표면에 맞닿게 B가 위치하는 것으로 한정되어 해석되지 않는다.In this specification, the meaning of B being located on A means that B is located in direct contact with A or that B is located on A with another layer located in between, and is not limited to being interpreted as B being located in contact with the surface of A.
본 명세서에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.In this specification, the term "combination of these" included in the expression in the Makushi format means one or more mixtures or combinations selected from the group consisting of the components described in the expression in the Makushi format, and means including one or more selected from the group consisting of said components.
본 명세서에서, "A 및/또는 B"의 기재는, "A, B, 또는, A 및 B"를 의미한다.In this specification, the description of "A and/or B" means "A, B, or A and B."
본 명세서에서, "제1", "제2" 또는 "A", "B"와 같은 용어는 특별한 설명이 없는 한 동일한 용어를 서로 구별하기 위하여 사용된다.In this specification, terms such as “first”, “second” or “A”, “B” are used to distinguish the same terms from each other unless otherwise specified.
본 명세서에서 단수 표현은 특별한 설명이 없으면 문맥상 해석되는 단수 또는 복수를 포함하는 의미로 해석된다.In this specification, singular expressions are interpreted to include the singular or plural as interpreted by the context, unless otherwise specified.
폴리에스테르 필름Polyester film
상기의 목적을 달성하기 위하여, 구현예에 따른 폴리에스테르 필름은, 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지를 포함한다. To achieve the above purpose, a polyester film according to an embodiment includes a polycyclohexylenedimethylene terephthalate resin.
25 ℃의 온도에서 측정한 기계방향 인장강도는 MDTS25이다.The machine direction tensile strength measured at a temperature of 25 ℃ is MDTS25.
200 ℃의 온도 조건의 용기에서 24 시간 동안 방치하여 측정한 기계방향 인장강도가 MDTS200이다.MDTS200 is the machine direction tensile strength measured after leaving it in a container under temperature conditions of 200℃ for 24 hours.
기계방향 인장강도 감소율 MDTS_R은 {(MDTS25-MDTS200)/MDTS25}Х100%로 표기된다.The machine direction tensile strength reduction rate MDTS_R is expressed as {(MDTS25-MDTS200)/MDTS25}Х100%.
상기 폴리에스테르 필름은 상기 MDTS_R이 43.5 % 이하일 수 있다.The above polyester film may have the MDTS_R of 43.5% or less.
상기 폴리에스테르 필름의 폴리시클로헥실렌디메틸렌 테레프탈레이트(polycyclohexylenedimethylene terephthalate, PCT) 수지는 디카복실산계 화합물 및 디올계 화합물이 공중합된 것일 수 있고, 이의 유래 잔기, 반복단위를 포함할 수 있다.The polycyclohexylenedimethylene terephthalate (PCT) resin of the above polyester film may be a copolymer of a dicarboxylic acid compound and a diol compound, and may include residues and repeating units derived therefrom.
상기 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지는, 디카복실산계 화합물 유래 반복단위 전체 100 몰%을 기준으로, 테레프탈산 잔기 80 몰% 이상, 90 몰% 이상, 100 몰% 이하로 포함할 수 있고, 이소프탈산 잔기 20 몰% 이하, 10 몰% 이하, 0 몰% 이상, 1 몰% 이상, 2 몰% 이상으로 포함할 수 있다.The above polycyclohexylenedimethylene terephthalate resin may contain 80 mol% or more, 90 mol% or more, and 100 mol% or less of terephthalic acid residues, and 20 mol% or less, 10 mol% or less, 0 mol% or more, 1 mol% or more, and 2 mol% or more of isophthalic acid residues, based on 100 mol% of the total repeating units derived from dicarboxylic acid compounds.
상기 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지는, 디올계 화합물 유래 반복단위 전체 100 몰%을 기준으로, 시클로헥산디메탄올 잔기 70 몰% 이상, 80 몰% 이상, 90 몰% 이상, 100 몰% 이하로 포함할 수 있다.The above polycyclohexylenedimethylene terephthalate resin may contain 70 mol% or more, 80 mol% or more, 90 mol% or more, and 100 mol% or less of cyclohexanedimethanol residues, based on 100 mol% of the total repeating units derived from diol compounds.
상기 디카복실산계 유래 반복단위로 테레프탈산 잔기 및 이소프탈산 잔기가 위와 같은 함량으로 포함하는 경우, 상대적으로 높은 녹는점 특성과 낮은 결정화 특성을 가질 수 있다.When the above dicarboxylic acid-derived repeating unit contains terephthalic acid residues and isophthalic acid residues in the above-mentioned contents, it can have relatively high melting point characteristics and low crystallization characteristics.
상기 디올계 화합물 유래 반복단위는 상기 시클로헥산디메탄올 유래 반복단위 이외의 다음의 화합물 유래 반복단위를 포함할 수 있다. 예시적으로, 에틸렌글리콜, 1,3-프로판디올, 1,2- 옥탄디올, 1,3-옥탄디올, 2,3-부탄디올, 1,3-부탄디올, 1,4-부탄디올, 1,5-펜탄디 올, 2,2-디메틸-1,3-프로판디올(네오펜틸글리콜), 2-부틸-2-에틸-1,3-프로판디올, 2,2-디에틸-1,5-펜탄디올, 2,4-디에틸-1,5-펜탄디올, 3-메틸-1,5-펜탄디올, 1,1-디메틸-1,5-펜탄디올 및 이들의 유래 잔기 등을 포함할 수 있다.The above diol-derived repeating unit may include the following compound-derived repeating units other than the above cyclohexanedimethanol-derived repeating units. For example, it may include ethylene glycol, 1,3-propanediol, 1,2-octanediol, 1,3-octanediol, 2,3-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentylglycol), 2-butyl-2-ethyl-1,3-propanediol, 2,2-diethyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,1-dimethyl-1,5-pentanediol, and residues derived therefrom.
상기 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지는 중량평균분자량(Mw)이 30,000 g/mol 내지 50,000 g/mol일 수 있고, 30,000 g/mol 내지 40,000 g/mol일 수 있다.The above polycyclohexylenedimethylene terephthalate resin may have a weight average molecular weight (Mw) of 30,000 g/mol to 50,000 g/mol, or may be 30,000 g/mol to 40,000 g/mol.
상기 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지는 중합 반응의 효율성 향상을 위해 촉매를 적용할 수 있다.The above polycyclohexylenedimethylene terephthalate resin can apply a catalyst to improve the efficiency of the polymerization reaction.
상기 촉매는 폴리시클로헥실렌디메틸렌 테레프탈레이트 100 중량부를 기준으로, 0.1 ppm 내지 500 ppm 포함될 수 있고, 0.5 ppm 내지 100 ppm 포함될 수 있다.The above catalyst may be included in an amount of 0.1 ppm to 500 ppm, or may be included in an amount of 0.5 ppm to 100 ppm, based on 100 parts by weight of polycyclohexylenedimethylene terephthalate.
상기 촉매는 티타늄계 화합물, 안티몬계 화합물, 게르마늄계 화합물, 알루미늄계 화합물 또는 이들의 혼합물 등이 적용될 수 있다. 예시적으로, 상기 촉매는 티타늄계 화합물일 수 있다. 상기 티타늄계 화합물은 티타늄 테트라이소프로폭사이드(titanium tetraisopropoxide)를 포함할 수 있다.The catalyst may be a titanium compound, an antimony compound, a germanium compound, an aluminum compound, or a mixture thereof. For example, the catalyst may be a titanium compound. The titanium compound may include titanium tetraisopropoxide.
상기 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지의 중합에 산화방지제가 적용될 수 있다. 상기 산화방지제는 에스테르화 반응이 진행되는 온도에서 열산화를 억제하기 위한 목적으로 필요에 따라 적용될 수 있다. 다만, 이때 적용되는 산화방지제는 적정량을 적용하는 것이 일반적이다. 중합 시 산화방지제를 과량 투입하면 반응을 지체시킬 우려가 있고, 제조된 수지의 고유 점도 하락을 발생시킬 수도 있다. 수지 중합 시 영향을 미치는 산화방지제는 중합 과정에서 소모되고, 후속 필름 제조 시 첨가되는 산화방지제와는 구분될 수 있다.An antioxidant may be applied to the polymerization of the above polycyclohexylenedimethylene terephthalate resin. The antioxidant may be applied as needed for the purpose of suppressing thermal oxidation at the temperature at which the esterification reaction is carried out. However, it is common to apply an appropriate amount of the antioxidant applied at this time. If an excessive amount of antioxidant is added during polymerization, there is a concern that the reaction may be delayed and the inherent viscosity of the manufactured resin may decrease. An antioxidant that affects the polymerization of the resin is consumed during the polymerization process and can be distinguished from an antioxidant that is added during subsequent film production.
상기 산화방지제는 페놀계 산화방지제, 인계 산화방지제 및 황계 산화방지제 등을 포함할 수 있다.The above antioxidants may include phenol-based antioxidants, phosphorus-based antioxidants, and sulfur-based antioxidants.
상기 산화방지제는 상기 폴리시클로헥실렌디메틸렌 테레프탈레이트 100 중량부를 기준으로 0.01 중량부 내지 1 중량부 포함될 수 있다.The above antioxidant may be included in an amount of 0.01 to 1 part by weight based on 100 parts by weight of the polycyclohexylenedimethylene terephthalate.
상기 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지를 통해 필름 제조 시 정전 인가제가 적용될 수 있다. 상기 정전 인가제는 알칼리 금속의 염 및 알칼리 토금속의 염 등이 적용될 수 있고, 마그네슘계 화합물, 칼슘계 화합물이 적용될 수 있으며, 예시적으로 마그네슘 아세테이트, 칼슘 아세테이트 등이 적용될 수 있다.An electrostatic agent can be applied when manufacturing a film using the above polycyclohexylenedimethylene terephthalate resin. As the electrostatic agent, salts of alkali metals and salts of alkaline earth metals can be applied, and magnesium compounds and calcium compounds can be applied, and examples thereof include magnesium acetate and calcium acetate.
상기 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지 100 중량부를 기준으로 상기 정전 인가제의 금속 또는 금속이온 함량이 300 ppm 내지 1000 ppm이 되도록 포함될 수 있다.The metal or metal ion content of the electrostatic charging agent may be included to be 300 ppm to 1000 ppm based on 100 parts by weight of the polycyclohexylenedimethylene terephthalate resin.
상기 폴리에스테르 필름에서, 기계방향(Machine Direction, MD)은 필름 제막 공정시 이동이 진행되는 방향과 평행한 길이방향이고, 폭방향(Transverse Direction, TD)는 상기 기계방향과 수직한 방향이다.In the above polyester film, the machine direction (MD) is a longitudinal direction parallel to the direction in which movement occurs during the film forming process, and the transverse direction (TD) is a direction perpendicular to the machine direction.
상기 폴리에스테르 필름은 상기 압력용기 테스트 가혹조건 이후 물성 유지율이 양호하고, 내열, 방열 필름에 적합한 특성을 가질 수 있다.The above polyester film can have good physical property retention after the harsh conditions of the pressure vessel test and can have characteristics suitable for a heat-resistant and heat-dissipating film.
25 ℃의 온도에서 측정한 기계방향 인장강도가 MDTS25이고, 상기 200 ℃의 온도 조건에서 측정한 기계방향 인장강도가 MDTS200이다.The machine direction tensile strength measured at a temperature of 25 ℃ is MDTS25, and the machine direction tensile strength measured at the temperature condition of 200 ℃ is MDTS200.
상기 폴리에스테르 필름은, {(MDTS25-MDTS200)/MDTS25}Х100%로 표기되는 기계방향 인장강도 감소율 MDTS_R이 43.5 % 이하일 수 있다. 상기 기계방향 인장강도 감소율은 42.6% 이하, 41.6 % 이하, 또는 30 % 이하일 수 있다. 또, 상기 기계방향 인장강도 감소율은 10 % 이상일 수 있다.The above polyester film may have a machine direction tensile strength reduction rate MDTS_R expressed as {(MDTS25-MDTS200)/MDTS25}Х100% of 43.5% or less. The machine direction tensile strength reduction rate may be 42.6% or less, 41.6% or less, or 30% or less. In addition, the machine direction tensile strength reduction rate may be 10% or more.
25 ℃의 온도에서 측정한 폭방향 인장강도가 TDTS25이고, 상기 200 ℃의 온도 조건에서 측정한 폭방향 인장강도가 TDTS200이다.The transverse tensile strength measured at a temperature of 25°C is TDTS25, and the transverse tensile strength measured at the temperature condition of 200°C is TDTS200.
상기 폴리에스테르 필름은, {(TDTS25-TDTS200)/TDTS25}Х100%로 표기되는 폭방향 인장강도 감소율 TDTS_R이 29 % 이하일 수 있다. 상기 폭방향 인장감도 감소율은 27.7 % 이하, 21.4 % 이하, 또는 18 % 이하일 수 있다. 상기 폭방향 인장강도 감소율은 5 % 이상일 수 있다.The polyester film may have a widthwise tensile strength reduction rate TDTS_R, expressed as {(TDTS25-TDTS200)/TDTS25}Х100%, of 29% or less. The widthwise tensile sensitivity reduction rate may be 27.7% or less, 21.4% or less, or 18% or less. The widthwise tensile strength reduction rate may be 5% or more.
상기 폴리에스테르 필름은 이러한 기계방향, 폭방향 인장강도 감소율을 가짐으로, 가혹조건에 있어서 양호한 내구성을 유지할 수 있고, 내열 및 방열 부품의 보호 기능 유지에 효과적일 수 있다.The above polyester film has such a reduction rate in machine direction and width direction tensile strength, so it can maintain good durability under harsh conditions and can be effective in maintaining the protective function of heat-resistant and heat-dissipating parts.
상기 폴리에스테르 필름은 상기 MDTS25가 12 kgf/mm2 내지 20 kgf/mm2, 14 kgf/mm2 내지 19 kgf/mm2, 또는 15 kgf/mm2 내지 18 kgf/mm2일 수 있다.The above polyester film may have a MDTS25 of 12 kgf/mm 2 to 20 kgf/mm 2 , 14 kgf/mm 2 to 19 kgf/mm 2 , or 15 kgf/mm 2 to 18 kgf/mm 2 .
상기 폴리에스테르 필름은 상기 MDTS200이 5 kgf/mm2 내지 15 kgf/mm2, 6 kgf/mm2 내지 14 kgf/mm2, 또는 8.6 kgf/mm2 내지 13 kgf/mm2일 수 있다.The polyester film may have a MDTS200 of 5 kgf/mm 2 to 15 kgf/mm 2 , 6 kgf/mm 2 to 14 kgf/mm 2 , or 8.6 kgf/mm 2 to 13 kgf/mm 2 .
상기 폴리에스테르 필름은 상기 TDTS25가 12 kgf/mm2 내지 25 kgf/mm2, 15 kgf/mm2 내지 24 kgf/mm2, 또는 16 kgf/mm2 내지 23 kgf/mm2일 수 있다.The polyester film may have a TDTS25 of 12 kgf/mm 2 to 25 kgf/mm 2 , 15 kgf/mm 2 to 24 kgf/mm 2 , or 16 kgf/mm 2 to 23 kgf/mm 2 .
상기 폴리에스테르 필름은 상기 TDTS200이 8 kgf/mm2 내지 18 kgf/mm2, 9 kgf/mm2 내지 17 kgf/mm2, 또는 11 kgf/mm2 내지 16 kgf/mm2일 수 있다.The polyester film may have a density of 8 kgf/mm 2 to 18 kgf/mm 2 , 9 kgf/mm 2 to 17 kgf/mm 2 , or 11 kgf/mm 2 to 16 kgf/mm 2 of the TDTS200.
상기 폴리에스테르 필름은 이러한 MDTS25, MDTS200, TDTS25, 및/또는 TDTS200 범위를 가짐으로, 일반적이 상온과 가혹조건 간의 물성의 급격한 차이가 발생하지 않아, 양호한 내구성을 유지할 수 있고, 내열 및 방열 부품의 보호 기능 유지에 효과적일 수 있다.Since the above polyester film has these MDTS25, MDTS200, TDTS25, and/or TDTS200 ranges, there is no drastic difference in properties between general room temperature and harsh conditions, so that it can maintain good durability and can be effective in maintaining the protective function of heat-resistant and heat-dissipating parts.
25 ℃의 온도에서 측정한 기계방향 신율이 MDE25이고, 상기 200 ℃의 온도 조건에서 측정한 기계방향 신율이 MDE200이다.The machine direction elongation measured at a temperature of 25 ℃ is MDE25, and the machine direction elongation measured at the temperature condition of 200 ℃ is MDE200.
상기 폴리에스테르 필름은, (|MDE25-MDE200|/MDE25)Х100%로 표기되는 기계방향 신율 변화율 MDE_D이 50 % 이하일 수 있다. 상기 기계방향 신율 변화율은 40 % 이하, 35.3 % 이하, 20 % 이하, 또는 2.4 % 이하일 수 있다. 상기 기계방향 신율 변화율은, 0.1 % 이상일 수 있다. 상기 기계방향 신율 변화율 식 및 하기 식 등에서 ||는 절대값 기호를 의미한다.The above polyester film may have a machine direction elongation change ratio MDE_D, expressed as (|MDE25-MDE200|/MDE25)Х100%, of 50 % or less. The machine direction elongation change ratio may be 40 % or less, 35.3 % or less, 20 % or less, or 2.4 % or less. The machine direction elongation change ratio may be 0.1 % or more. In the machine direction elongation change ratio formula and the formulas below, || represents an absolute value symbol.
25 ℃의 온도에서 측정한 폭방향 신율이 TDE25이고, 상기 200 ℃의 온도 조건에서 측정한 폭방향 신율이 TDE200이다.The transverse elongation measured at a temperature of 25°C is TDE25, and the transverse elongation measured at the temperature condition of 200°C is TDE200.
상기 폴리에스테르 필름은, (|TDE25-TDE200|/TDE25)Х100%로 표기되는 폭방향 신율 변화율 TDE_D이 15 % 이하일 수 있다. 상기 폭방향 신율 변화율은 12 % 이하, 9.4 % 이하, 또는 7.2 % 이하일 수 있다. 상기 폭방향 신율 변화율은 0.1 % 이상일 수 있다.The polyester film may have a transverse elongation change TDE_D, expressed as (|TDE25-TDE200|/TDE25)Х100%, of 15 % or less. The transverse elongation change may be 12 % or less, 9.4 % or less, or 7.2 % or less. The transverse elongation change may be 0.1 % or more.
상기 폴리에스테르 필름은 이러한 기계방향, 폭방향 신율 변화율을 가짐으로, 가혹조건에 있어서 양호한 내구성을 유지할 수 있고, 내열 및 방열 부품의 보호 기능 유지에 효과적일 수 있다.The above polyester film has such a machine direction, width direction elongation change rate, so it can maintain good durability under harsh conditions and can be effective in maintaining the protective function of heat-resistant and heat-dissipating parts.
상기 폴리에스테르 필름은 상기 MDE25가 40 % 내지 110 %, 45 % 내지 105 %, 또는 55 % 내지 100 %일 수 있다.The above polyester film may have an MDE25 of 40% to 110%, 45% to 105%, or 55% to 100%.
상기 폴리에스테르 필름은 상기 MDE200이 25 % 내지 90 %, 35 % 내지 85 %, 또는 40 % 내지 80 %일 수 있다.The above polyester film may have a MDE200 content of 25% to 90%, 35% to 85%, or 40% to 80%.
상기 폴리에스테르 필름은 상기 TDE25가 45 % 내지 90 %, 47 % 내지 80 %, 또는 50 % 내지 75 %일 수 있다.The above polyester film may have a TDE25 of 45% to 90%, 47% to 80%, or 50% to 75%.
상기 폴리에스테르 필름은 상기 TDE200이 45 % 내지 90 %, 47 % 내지 80 %, 또는 55 % 내지 80 %일 수 있다.The above polyester film may have a TDE200 of 45% to 90%, 47% to 80%, or 55% to 80%.
상기 폴리에스테르 필름은 이러한 MDES25, MDE200, TDES25, 및/또는 TDES200 범위를 가짐으로, 일반적인 상온과 가혹조건 간의 물성의 급격한 차이가 발생하지 않아, 양호한 내구성을 유지할 수 있고, 내열 및 방열 부품의 보호 기능 유지에 효과적일 수 있다.Since the above polyester film has these MDES25, MDE200, TDES25, and/or TDES200 ranges, there is no drastic difference in properties between general room temperature and harsh conditions, so that it can maintain good durability and can be effective in maintaining the protective function of heat-resistant and heat-dissipating parts.
여기서 신율은 필름의 초기 길이 대비 파단되기 전까지 신장된 길이의 비율을 의미하고 아래와 같이 계산될 수 있다.Here, elongation means the ratio of the length extended before rupture to the initial length of the film and can be calculated as follows.
신율 = {(신장된 길이-초기 길이)/초기 길이}Х100%Elongation = {(elongated length - initial length) / initial length} X 100%
상기 인장강도, 신율 관련 물성은 ASTM D882에 의거하여 측정될 수 있고, 하기 실험예에 기재된 바와 같이 Instron 사의 Model 4206-0010 장치를 통해 측정될 수 있다.The above tensile strength and elongation related properties can be measured according to ASTM D882 and can be measured using Instron's Model 4206-0010 device as described in the experimental example below.
상기 폴리에스테르 필름의 두께는 1 ㎛ 내지 1000 ㎛, 또는 10 ㎛ 내지 500 ㎛일 수 있다.The thickness of the above polyester film may be from 1 ㎛ to 1000 ㎛, or from 10 ㎛ to 500 ㎛.
상기 폴리에스테르 필름은 하기 제조방법에서 특유의 저온 연신 공정을 통해 제조되어, 전기 이동수단의 내열, 방열 부품에 적합한 특성을 가질 수 있다.The above polyester film is manufactured through a unique low-temperature stretching process in the manufacturing method below, and can have properties suitable for heat-resistant and heat-dissipating parts of electric vehicles.
상기의 목적을 달성하기 위하여, 구현예에 따른 전기 이동수단용 열복사 부재는 위에서 설명한 폴리에스테르 필름을 포함할 수 있다.To achieve the above purpose, the heat radiation member for an electric vehicle according to an embodiment may include the polyester film described above.
상기 열복사 부재는 탄소계 물질을 포함할 수 있고, 예시적으로 흑연, 탄소나노튜브, 탄소섬유, 그래핀, 다이아몬드, 풀러렌 등을 포함할 수 있다.The above heat radiation member may include a carbon-based material, and examples thereof include graphite, carbon nanotubes, carbon fibers, graphene, diamond, fullerene, and the like.
폴리에스테르 필름의 제조방법Method for manufacturing polyester film
상기의 목적을 달성하기 위하여, 구현예에 따른 폴리에스테르 제조방법은, 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지를 포함하는 필름 제조용 조성물을 용융시키고, 압출하여 시트를 형성하는 시트형성단계; 상기 시트형성단계에서 형성된 시트를 기계방향으로 연신 및 폭방향으로 연신하고 열고정하여 폴리에스테르 필름을 제조하는 연신단계;를 포함한다.In order to achieve the above object, a polyester manufacturing method according to an embodiment includes a sheet forming step of melting and extruding a film manufacturing composition including a polycyclohexylenedimethylene terephthalate resin to form a sheet; a stretching step of stretching the sheet formed in the sheet forming step in the machine direction and the width direction and heat-setting to manufacture a polyester film.
상기 연신단계는 상기 시트형성단계에서 형성된 시트를 기계방향으로 연신하는 MD연신단계; 상기 MD연신단계에서 연신된 시트를 폭방향으로 연신하고 열고정하여 폴리에스테르 필름을 제조하는 TD연신단계;를 포함할 수 있다.The above stretching step may include an MD stretching step for stretching the sheet formed in the sheet forming step in the machine direction; a TD stretching step for stretching the sheet stretched in the MD stretching step in the width direction and heat-setting to produce a polyester film.
상기 MD연신단계는 상기 시트형성단계에서 형성된 시트를 예열하는 예열과정; 및 상기 예열과정이 진행된 시트를 기계방향으로 연신하는 MD연신과정;을 포함한다.The above MD stretching step includes a preheating process for preheating the sheet formed in the sheet forming step; and an MD stretching process for stretching the sheet on which the preheating process has been performed in the machine direction.
상기 예열과정의 온도는 80 ℃ 내지 86.5 ℃일 수 있다.The temperature of the above preheating process can be 80 ℃ to 86.5 ℃.
상기 MD연신과정의 온도는 80 ℃ 내지 89 ℃일 수 있다.The temperature of the above MD stretching process can be 80 ℃ to 89 ℃.
상기 TD연신단계의 폭방향 연신 온도는 100 ℃ 내지 118 ℃일 수 있다.The widthwise stretching temperature of the above TD stretching step can be 100°C to 118°C.
25 ℃에서 측정한 기계방향 인장강도가 MDTS25이고, 압력용기 테스트 조건에서 기계방향 인장강도가 MDTS200이다.The machine direction tensile strength measured at 25 ℃ is MDTS25, and the machine direction tensile strength under pressure vessel test conditions is MDTS200.
상기 압력용기 테스트(Pressure Cooker Test)는 200 ℃의 온도, 1.4 atm의 압력, 100 %의 상대습도 조건의 오븐에서 24 시간 동안 방치하여 시행된다.The above pressure cooker test is conducted by leaving it in an oven under the conditions of 200℃ temperature, 1.4 atm pressure, and 100% relative humidity for 24 hours.
상기 폴리에스테르 필름은, 위에서 언급한 폴리에스테르 필름의 특성, 구성 등을 갖는다. 예시적으로, 상기 폴리에스테르 필름은, {(MDTS25-MDTS200)/MDTS25}Х100%로 표기되는 기계방향 인장강도 감소율 MDTS_R이 43.5 % 이하일 수 있다.The above polyester film has the characteristics, composition, etc. of the polyester film mentioned above. For example, the polyester film may have a machine direction tensile strength reduction rate MDTS_R expressed as {(MDTS25-MDTS200)/MDTS25}Х100% of 43.5% or less.
상기 필름 제조용 조성물은 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지, 산화방지제, 정전 인가제 등을 포함하는 것일 수 있고, 필름 제조 시 용융 압출될 수 있다. 상기 산화방지제, 정전 인가제는 위에서 설명한 바와 동일하므로 중복된 설명은 생략한다.The composition for manufacturing the above film may include polycyclohexylenedimethylene terephthalate resin, an antioxidant, an electrostatic agent, etc., and may be melt-extruded during film manufacturing. The antioxidant and electrostatic agent are the same as those described above, so redundant descriptions are omitted.
상기 필름 제조용 조성물은 용융 전 건조 처리될 수 있다.The composition for producing the above film can be dried before melting.
상기 건조는 150 ℃이하의 온도에서 진행될 수 있다. 또는, 상기 건조는 70 내지 148 ℃의 온도에서 진행될 수 있다.The drying may be performed at a temperature of 150° C. or lower. Alternatively, the drying may be performed at a temperature of 70 ° C. to 148° C.
상기 필름 제조용 조성물의 건조는 전체 대비 수분 함량이 100 ppm 이하, 또는 50 ppm 이하가 되도록 진행될 수 있다. 상기 건조공정이 150 ℃ 초과의 온도에서 진행되는 경우, 수지 자체에 의도하지 않은 색 변화가 발생할 염려가 있다.The drying of the composition for manufacturing the above film may be carried out so that the moisture content relative to the total amount becomes 100 ppm or less, or 50 ppm or less. If the drying process is carried out at a temperature exceeding 150° C., there is a concern that an unintended color change may occur in the resin itself.
상기 필름 제조용 조성물은 칩, 펠릿, 플레이트, 플레이트 등의 형태를 가질 수 있고, 필름의 제조공정에 투입하기 용이하고 효과적으로 혼합될 수 있는 형태를 가질 수 있다.The composition for manufacturing the film may have a form such as a chip, pellet, plate, or plate, and may have a form that can be easily introduced into the film manufacturing process and effectively mixed.
상기 필름 제조용 조성물의 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지는 통상의 중합 방법으로 제조될 수 있고, 예시적으로 티타늄, 안티몬 등의 금속 함유 촉매 하에서 중합 반응된 것이 적용될 수 있다.The polycyclohexylenedimethylene terephthalate resin of the composition for manufacturing the above film can be manufactured by a conventional polymerization method, and for example, one polymerized under a metal-containing catalyst such as titanium or antimony can be applied.
상기 필름 제조용 조성물의 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지는 위에서 설명한 바와 같이 디카복실산계 화합물 및 디올계 화합물이 공중합된 것일 수 있고, 이의 유래 반복단위를 포함할 수 있다.The polycyclohexylenedimethylene terephthalate resin of the composition for manufacturing the above film may be a copolymer of a dicarboxylic acid compound and a diol compound as described above, and may include repeating units derived therefrom.
상기 시트형성단계의 압출은 230 ℃ 내지 300 ℃의 온도, 또는 250 ℃ 내지 290 ℃의 온도에서 진행될 수 있다.The extrusion in the above sheet forming step can be performed at a temperature of 230°C to 300°C, or at a temperature of 250°C to 290°C.
상기 MD연신단계의 예열과정은 상기 시트를 80 ℃ 내지 86.5 ℃의 온도로 10 초 내지 1 분 동안 열처리할 수 있다. 또는, 상기 MD연신단계의 예열과정은 상기 시트를 83 ℃ 내지 86 ℃의 온도로 상기와 같은 시간 동안 열처리할 수 있다.The preheating process of the above MD stretching step may heat treat the sheet at a temperature of 80° C. to 86.5° C. for 10 seconds to 1 minute. Alternatively, the preheating process of the above MD stretching step may heat treat the sheet at a temperature of 83° C. to 86° C. for the same period of time as above.
상기 MD연신단계의 MD연신과정은 상기 예열과정이 진행된 시트를 80 ℃ 내지 89 ℃의 온도로 기계방향으로 2.5 배 내지 3.5 배 연신 처리할 수 있다. 또는, 상기 MD연신과정은 상기 예열과정이 진행된 시트를 85 ℃ 내지 89 ℃의 온도, 또는 87 ℃ 내지 89 ℃의 온도로 상기와 같은 배율로 기계방향 연신 처리할 수 있다.The MD stretching process of the above MD stretching step can stretch the sheet on which the above preheating process has been performed by 2.5 to 3.5 times in the machine direction at a temperature of 80 to 89° C. Alternatively, the MD stretching process can stretch the sheet on which the above preheating process has been performed by the same magnification in the machine direction at a temperature of 85 to 89° C., or at a temperature of 87 to 89° C.
상기 MD연신단계는 예열된 미연신 시트 상부 또는/및 하부로부터 30 mm 내지 200 mm 이격된 위치에 적외선 히터를 구비하여 가열 처리하는 과정을 포함할 수 있다. 상기 적외선 히터의 표면 온도는 500 ℃ 내지 800 ℃일 수 있다.The above MD stretching step may include a process of heating by providing an infrared heater at a position spaced 30 mm to 200 mm apart from the upper and/or lower portion of the preheated unstretched sheet. The surface temperature of the infrared heater may be 500° C. to 800° C.
상기 MD연신단계는 이러한 예열과정 및 MD연신과정을 통해, 제조되는 필름이 가혹조건에서 목적으로 하는 신율 및 강도 특성을 만족하도록 할 수 있다.The above MD stretching step can ensure that the film manufactured through the preheating process and MD stretching process satisfies the intended elongation and strength characteristics under harsh conditions.
상기 TD연신단계는, 상기 MD연신단계에서 연신된 시트를 1차 예열하는 1차예열과정; 상기 1차예열과정이 진행된 시트를 2차 예열하는 2차예열과정; 및 상기 2차예열과정이 진행된 시트를 폭방향으로 연신하는 TD연신과정;을 포함할 수 있다.The above TD stretching step may include a first preheating process of first preheating the sheet stretched in the MD stretching step; a second preheating process of second preheating the sheet that has undergone the first preheating process; and a TD stretching process of stretching the sheet that has undergone the second preheating process in the width direction.
상기 1차예열과정은 90 ℃ 내지 103 ℃의 온도에서 10 초 내지 60 초 동안 열처리할 수 있다. 또는, 상기 1차예열과정은 95 ℃ 내지 103 ℃의 온도, 또는 98 내지 102 ℃의 온도에서 상기와 같은 시간 동안 열처리할 수 있다.The above first preheating process can be heat treated at a temperature of 90° C. to 103° C. for 10 to 60 seconds. Alternatively, the above first preheating process can be heat treated at a temperature of 95° C. to 103° C., or at a temperature of 98 ° C. to 102° C. for the same period of time as above.
상기 2차예열과정은 90 ℃ 내지 108 ℃의 온도에서 10 초 내지 60 초 동안 열처리할 수 있다. 또는, 상기 2차예열과정은, 97 ℃ 내지 105 ℃의 온도, 또는 100 ℃ 내지 105 ℃의 온도에서 상기와 같은 시간 동안 열처리할 수 있다.The above second preheating process can be heat treated at a temperature of 90° C. to 108° C. for 10 to 60 seconds. Alternatively, the above second preheating process can be heat treated at a temperature of 97° C. to 105° C., or at a temperature of 100° C. to 105° C. for the same period of time as above.
상기 TD연신과정은 상기 2차예열과정이 진행된 시트를 100 ℃ 내지 118 ℃의 온도에서 폭방향으로 3.3 배 내지 4.5배 연신 처리할 수 있다. 또는, 상기 TD연신과정은 상기 2차예열과정이 진행된 시트를 105 ℃ 내지 115 ℃의 온도, 또는 107 ℃ 내지 113 ℃의 온도로 상기와 같은 배율로 폭방향 연신 처리할 수 있다.The above TD stretching process can stretch the sheet that has undergone the second preheating process by 3.3 to 4.5 times in the width direction at a temperature of 100 to 118° C. Alternatively, the TD stretching process can stretch the sheet that has undergone the second preheating process by the same magnification in the width direction at a temperature of 105 to 115° C., or at a temperature of 107 to 113° C.
상기 TD연신단계의 열고정은 200 ℃ 내지 250 ℃의 온도에서 5 초 내지 600 초 동안 진행될 수 있다. 또는, 상기 TD연신단계의 열고정은 10 초 내지 200 초 동안 진행될 수 있다.The heat setting of the above TD elongation step may be performed at a temperature of 200° C. to 250° C. for 5 to 600 seconds. Alternatively, the heat setting of the above TD elongation step may be performed for 10 to 200 seconds.
상기 TD연신단계는 이러한 예열과정 및 TD연신과정을 통해, 제조되는 필름이 가혹조건에서 목적으로 하는 신율 및 강도 특성을 만족하도록 할 수 있다.The above TD stretching step can ensure that the film manufactured through the preheating process and TD stretching process satisfies the intended elongation and strength characteristics under harsh conditions.
상기 TD연신단계가 진행된 필름은 길이방향 및/또는 폭방향으로 소정 이완 처리될 수 있다. 상기 이완 시 온도는 150 ℃ 내지 250 ℃일 수 있다. 상기 이완 시 이완율은 1 % 내지 10 %, 또는 3 % 내지 7 %일 수 있다.The film that has undergone the above TD stretching step may be subjected to a predetermined relaxation treatment in the longitudinal direction and/or the width direction. The temperature during the relaxation may be 150° C. to 250° C. The relaxation rate during the relaxation may be 1% to 10%, or 3% to 7%.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described more specifically through specific examples. The following examples are merely examples to help understand the present invention, and the scope of the present invention is not limited thereto.
실시예 1 - 저온연신 PCT 필름의 제조 1Example 1 - Preparation of low temperature stretched PCT film 1
디올계 화합물로 시클로헥산디메탄올(cyclohexanedimethanol, CHDM) 100 몰% 및 디카복실산계 화합물로 테레프탈산(terephthalic acid, TPA) 96 몰% 및 이소프탈산(isophthalic acid, IPA) 4 몰%의 단량체 혼합물을 교반기에 투입하고, 티타늄 촉매를 상기 혼합물 100 중량부를 기준으로 1 ppm 투입한 후, 275 ℃에서 에스테르 교환반응을 진행하였다.A monomer mixture of 100 mol% cyclohexanedimethanol (CHDM) as a diol compound and 96 mol% terephthalic acid (TPA) and 4 mol% isophthalic acid (IPA) as dicarboxylic acid compounds was introduced into a stirrer, and 1 ppm of a titanium catalyst was introduced based on 100 parts by weight of the mixture, and then an ester interchange reaction was performed at 275°C.
에스테르 교환반응된 물질을 진공 설비가 구비된 별도의 반응기로 이송한 후, 285 ℃에서 160분 동안 중합하여 폴리시클로헥실렌디메틸렌 테레프탈레이트(PCT) 수지를 얻었다.The ester exchange-reacted material was transferred to a separate reactor equipped with a vacuum facility and polymerized at 285°C for 160 minutes to obtain polycyclohexylenedimethylene terephthalate (PCT) resin.
상기 PCT 수지를 산화방지제, 정전 인가제 등과 함께 마스터배치 칩으로 가공하고, 140 ℃의 온도에서 건조 처리하였다. 이후 원료를 압출기에 투입하였고, 약 295 ℃의 온도에서 시트 형태로 압출하였고, 캐스팅 롤에 캐스팅하였다.The above PCT resin was processed into a master batch chip together with an antioxidant, an electrostatic agent, etc., and dried at a temperature of 140°C. Thereafter, the raw material was fed into an extruder, extruded into a sheet shape at a temperature of approximately 295°C, and cast onto a casting roll.
상기 압출된 시트를 83 ℃의 온도로 30 초 동안 예열 처리 후, 85 ℃의 온도에서 기계방향(MD)으로 3 배 연신 처리하였다. 기계방향 연신 시 필름 상, 하부로부터 각각 80 mm 이격된 상단 및 하단에 적외선 히터를 통해 가열하는 과정을 추가하되, 상단 히터의 표면 온도는 600 ℃, 하단 히터의 표면 온도는 500 ℃로 적용하였다. 그 다음, 95 ℃의 온도에서 10 초 동안 1차 예열 처리하고, 100 ℃ 온도에서 30 초 동안 2차 예열 처리하고, 110 ℃의 온도에서 폭방향(TD)으로 3.5 배 연신하였다. 이후 연신된 시트를 약 30 초 동안 240 ℃의 온도에서 열고정하고 이완하여 50 ㎛ 두께의 PCT 필름을 제조하였다.The above extruded sheet was preheated at 83°C for 30 seconds and then stretched 3 times in the machine direction (MD) at 85°C. During stretching in the machine direction, a heating process was additionally performed at the top and bottom, 80 mm apart from the top and bottom of the film, using infrared heaters; the surface temperature of the top heater was 600°C, and the surface temperature of the bottom heater was 500°C. Next, a first preheating treatment was performed at 95°C for 10 seconds, a second preheating treatment was performed at 100°C for 30 seconds, and then stretched 3.5 times in the transverse direction (TD) at 110°C. Thereafter, the stretched sheet was heat-set at 240°C for about 30 seconds and allowed to relax to produce a PCT film having a thickness of 50 μm.
실시예 2 - 저온연신 PCT 필름의 제조 2Example 2 - Preparation of low temperature stretched PCT film 2
상기 실시예 1에서, 압출된 시트를 85 ℃의 온도로 예열하도록 하고, 기계방향으로 3.2 배 연신 처리되도록 변경하여 PCT 필름을 제조하였다.In the above Example 1, the extruded sheet was preheated to a temperature of 85° C. and stretched 3.2 times in the machine direction to produce a PCT film.
비교예 1 - PCT 필름의 제조 1Comparative Example 1 - Manufacturing of PCT Film 1
상기 실시예 1에서, 기계방향(MD) 연신 전 예열 온도를 87 ℃, 기계방향 연신 시 온도를 90 ℃, 폭방향(TD) 연신 전 1차예열 온도를 105 ℃, 2차예열 온도를 110 ℃, 폭방향 연신 시 온도를 120 ℃, 열고정 온도를 230 ℃로 변경하여, PCT 필름을 제조하였다.In the above Example 1, the preheating temperature before machine direction (MD) stretching was changed to 87°C, the temperature during machine direction stretching was changed to 90°C, the first preheating temperature before transverse direction (TD) stretching was changed to 105°C, the second preheating temperature was changed to 110°C, the temperature during transverse direction stretching was changed to 120°C, and the heat setting temperature was changed to 230°C, thereby manufacturing a PCT film.
비교예 2 - PCT 필름의 제조 2Comparative Example 2 - Manufacturing of PCT Film 2
상기 실시예 1에서, 기계방향(MD) 연신 전 예열 온도를 92 ℃, 기계방향 연신 시 온도를 95 ℃, 폭방향(TD) 연신 전 1차예열 온도를 115 ℃, 2차예열 온도를 115 ℃, 폭방향 연신 시 온도를 120 ℃로 변경하고, 상기 상단 히터의 표면 온도를 600 ℃, 하단 히터의 표면 온도를 500 ℃로 적용하여, PCT 필름을 제조하였다.In the above Example 1, the preheating temperature before machine direction (MD) stretching was changed to 92°C, the temperature during machine direction stretching was changed to 95°C, the first preheating temperature before transverse direction (TD) stretching was changed to 115°C, the second preheating temperature was changed to 115°C, and the temperature during transverse direction stretching was changed to 120°C, and the surface temperature of the upper heater was applied to 600°C and the surface temperature of the lower heater was applied to 500°C, thereby manufacturing a PCT film.
비교예 3 - PCT 필름의 제조 3Comparative Example 3 - Manufacturing of PCT Film 3
상기 비교예 2에서, 상기 적외선 히터를 통해 가열하는 과정을 생략하여 PCT 필름을 제조하였다.In the above Comparative Example 2, a PCT film was manufactured by omitting the heating process using the infrared heater.
상기 실시예들 및 비교예들을 하기 표 1 (온도 단위: ℃)에 정리하였다.The above examples and comparative examples are summarized in Table 1 below (temperature unit: ℃).
구분division MD연신 전 예열 온도, ℃Preheating temperature before MD extension, ℃ MD연신 온도, ℃MD extension temperature, ℃ 적외선히터 온도, ℃Infrared heater temperature, ℃ TD연신 전 1차예열 온도, ℃1st preheating temperature before TD extension, ℃ TD연신 전 2차예열 온도, ℃Secondary preheating temperature before TD extension, ℃ TD연신 온도, ℃TD extension temperature, ℃ 열고정 온도, ℃Heat fixation temperature, ℃ 연신비율Extension ratio
실시예 1Example 1 8383 8585 상단 600하단 500Top 600 Bottom 500 9595 100100 110110 240240 MD 3.0배TD 3.5배MD 3.0x TD 3.5x
실시예 2Example 2 8585 8787 상단 600하단 500Top 600 Bottom 500 9595 100100 110110 240240 MD 3.2배TD 3.5배MD 3.2x TD 3.5x
비교예 1Comparative Example 1 8787 9090 상단 600하단 500Top 600 Bottom 500 105105 110110 120120 230230 MD 3.2배TD 3.5배MD 3.2x TD 3.5x
비교예 2Comparative Example 2 9292 9595 상단 600하단 500Top 600 Bottom 500 115115 115115 120120 240240 MD 3.2배TD 3.5배MD 3.2x TD 3.5x
비교예 3Comparative Example 3 9292 9595 -- 115115 115115 120120 240240 MD 3.2배TD 3.5배MD 3.2x TD 3.5x
실험예 - 200 ℃ 고온 테스트 전 후의 인장강도 및 신율 측정Experimental Example - Tensile strength and elongation measurements before and after 200℃ high temperature test
상기 실시예 1, 2, 비교예 1 내지 3에서 제조된 PCT 필름의 인장강도 및 신율 측정을 다음과 같이 진행하였다.The tensile strength and elongation of the PCT films manufactured in Examples 1 and 2 and Comparative Examples 1 to 3 were measured as follows.
상기 실시예들 및 비교예들의 각 필름을 100 mm x 15 mm로 절단하여 샘플로 가공하고, Instron 사의 4206-001 장치를 통해 상온 25 ℃에서 50 mm/min의 속도로 ASTM D882에 따라 기계방향(MD), 폭방향(TD)의 인장시험을 각각 5회 실시하고 측정된 기계방향 인장강도(MDTS25), 폭방향 인장강도(TDTS25), 기계방향 신율(MDE25) 및 폭방향 신율(TDE25)의 평균값을 도출하였다.Each film of the above examples and comparative examples was cut to 100 mm x 15 mm and processed into samples, and tensile tests were performed 5 times in the machine direction (MD) and the transverse direction (TD) according to ASTM D882 at a speed of 50 mm/min at a room temperature of 25 ℃ using an Instron 4206-001 device, and the average values of the measured machine direction tensile strength (MDTS25), transverse direction tensile strength (TDTS25), machine direction elongation (MDE25), and transverse direction elongation (TDE25) were derived.
그리고, 상기 실시예들 및 비교예들의 각 필름을 같은 방법으로 다시 샘플로 가공하고, 이후 온도 200 ℃ 조건으로 24 시간 동안 오븐에 방치한 다음, 상기 인장시험을 같은 방법으로 실시하여 고온 테스트 이후의 기계방향 인장강도(MDTS200), 폭방향 인장강도(TDTS200), 기계방향 신율(MDE200) 및 폭방향 신율(TDE200)을 도출하였다.Then, each film of the above examples and comparative examples was processed into a sample again in the same manner, and then left in an oven at a temperature of 200°C for 24 hours, and the tensile test was performed in the same manner to derive the machine direction tensile strength (MDTS200), transverse direction tensile strength (TDTS200), machine direction elongation (MDE200), and transverse direction elongation (TDE200) after the high temperature test.
상기 고온 테스트 전후의 샘플의 인장강도, 신율, 감소율 및 변화율 결과를 표 2, 3 및 도 1 내지 5에 나타내었다. 도 1 내지 5에서, E는 실시예, CE는 비교예, MDTS_R은 기계방향 인장강도 감소율, TDTS_R은 폭방향 인장강도 감소율, MDE_D는 기계방향 신율 변화율, TDE_D는 폭방향 신율 변화율을 의미한다.The tensile strength, elongation, reduction rate, and change rate results of the samples before and after the high temperature test are shown in Tables 2 and 3 and FIGS. 1 to 5. In FIGS. 1 to 5, E indicates an example, CE indicates a comparative example, MDTS_R indicates a machine direction tensile strength reduction rate, TDTS_R indicates a width direction tensile strength reduction rate, MDE_D indicates a machine direction elongation change rate, and TDE_D indicates a width direction elongation change rate.
구분division MDTS25MDTS25 MDTS200MDTS200 TDTS25TDTS25 TDTS200TDTS200 MDE25MDE25 MDE200MDE200 TDE25TDE25 TDE200TDE200
실시예 1Example 1 1616 11.911.9 16.816.8 13.913.9 6161 6262 6464 7070
실시예 2Example 2 16.116.1 9.49.4 17.117.1 13.413.4 7474 4848 6161 6565
비교예 1Comparative Example 1 1717 8.48.4 19.619.6 13.513.5 8888 1212 6060 4141
비교예 2Comparative Example 2 16.316.3 9.09.0 19.819.8 13.113.1 9393 2424 5151 3434
비교예 3Comparative Example 3 15.115.1 7.57.5 20.120.1 13.913.9 7878 44 5151 3838
인장강도 단위: kgf/mm2, 신율 단위: %Tensile strength unit: kgf/mm 2 , elongation unit: %
구분division MDTS_R(%)MDTS_R(%) TDTS_R(%)TDTS_R(%) MDE_D(%)MDE_D(%) TDE_D(%)TDE_D(%)
실시예 1Example 1 25.925.9 17.517.5 2.42.4 9.49.4
실시예 2Example 2 41.641.6 21.421.4 35.335.3 7.27.2
비교예 1Comparative Example 1 50.350.3 31.031.0 86.786.7 32.232.2
비교예 2Comparative Example 2 45.045.0 33.933.9 74.374.3 34.034.0
비교예 3Comparative Example 3 50.650.6 30.830.8 94.894.8 26.326.3
표 2, 3 및 도 1 내지 4 등을 참고하면, 기계방향 및 폭방향에서 저온연신 공정이 진행된 실시예들의 경우, 그렇지 않은 비교예 대비 기계방향 인장강도 감소율(MDTS_R), 폭방향 인장강도 감소율(TDTS_R), 기계방향 신율 변화율(MDE_D), 폭방향 신율 변화율(TDE_D)이 양호한 것을 확인하였다. 고온고압에 장기간 노출된 상황에서 물성 변화량이 비교예 대비 크지 않아 전기 이동수단 등의 내열, 방열 필름으로 적합할 것으로 사료된다.Referring to Tables 2 and 3 and FIGS. 1 to 4, etc., in the examples in which the low-temperature stretching process was performed in the machine direction and the width direction, it was confirmed that the machine direction tensile strength reduction rate (MDTS_R), the width direction tensile strength reduction rate (TDTS_R), the machine direction elongation change rate (MDE_D), and the width direction elongation change rate (TDE_D) were better than in the comparative examples in which the low-temperature stretching process was performed. Since the amount of change in physical properties in a situation where the film was exposed to high temperature and high pressure for a long period of time was not large compared to the comparative examples, it is thought that the film is suitable as a heat-resistant and heat-dissipating film for electric vehicles, etc.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements made by those skilled in the art using the basic concept of the present invention defined in the following claims also fall within the scope of the present invention.

Claims (10)

  1. 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지를 포함하고,Containing polycyclohexylenedimethylene terephthalate resin,
    25 ℃의 온도에서 측정한 기계방향 인장강도가 MDTS25이고,The machine direction tensile strength measured at a temperature of 25 ℃ is MDTS25,
    200 ℃의 온도 조건의 용기에서 24 시간 동안 방치하여 측정한 기계방향 인장강도가 MDTS200이고,The machine direction tensile strength measured after leaving it in a container under temperature conditions of 200 ℃ for 24 hours is MDTS200.
    {(MDTS25-MDTS200)/MDTS25}Х100%로 표기되는 기계방향 인장강도 감소율이 43.5 % 이하인, 폴리에스테르 필름.A polyester film having a machine direction tensile strength reduction rate of 43.5% or less, expressed as {(MDTS25-MDTS200)/MDTS25}Х100%.
  2. 제1항에 있어서,In the first paragraph,
    폭방향은 상기 기계방향과 수직인 방향이고,The width direction is perpendicular to the machine direction,
    25 ℃의 온도에서 측정한 폭방향 인장강도가 TDTS25이고,The transverse tensile strength measured at a temperature of 25 ℃ is TDTS25.
    상기 200 ℃의 온도 조건에서 측정한 폭방향 인장강도가 TDTS200이고,The transverse tensile strength measured under the above temperature conditions of 200 ℃ is TDTS200,
    {(TDTS25-TDTS200)/TDTS25}Х100%로 표기되는 폭방향 인장강도 감소율이 29 % 이하인, 폴리에스테르 필름.A polyester film having a reduction in transverse tensile strength of 29% or less, expressed as {(TDTS25-TDTS200)/TDTS25}Х100%.
  3. 제1항에 있어서,In the first paragraph,
    25 ℃의 온도에서 측정한 기계방향 신율이 MDE25이고,The machine direction elongation measured at a temperature of 25 ℃ is MDE25,
    상기 200 ℃의 온도 조건에서 측정한 기계방향 신율이 MDE200이고,The machine direction elongation measured under the above temperature conditions of 200 ℃ is MDE200,
    (|MDE25-MDE200|/MDE25)Х100%로 표기되는 기계방향 신율 변화율이 50 % 이하인, 폴리에스테르 필름.(|MDE25-MDE200|/MDE25)Х100%, a polyester film having a change in machine direction elongation of 50% or less.
  4. 제1항에 있어서,In the first paragraph,
    폭방향은 상기 기계방향과 수직인 방향이고,The width direction is perpendicular to the machine direction,
    25 ℃의 온도에서 측정한 폭방향 신율이 TDE25이고,The transverse elongation measured at a temperature of 25 ℃ is TDE25,
    상기 200 ℃의 온도 조건에서 측정한 폭방향 신율이 TDE200이고,The transverse elongation measured under the above temperature conditions of 200 ℃ is TDE200,
    (|TDE25-TDE200|/TDE25)Х100%로 표기되는 폭방향 신율 변화율이 15 % 이하인, 폴리에스테르 필름.A polyester film having a transverse elongation change of 15% or less, expressed as (|TDE25-TDE200|/TDE25)Х100%.
  5. 제1항에 있어서,In the first paragraph,
    상기 200 ℃의 온도 조건에서 측정한 기계방향 신율이 35 % 이상이고,The machine direction elongation measured under the above temperature conditions of 200 ℃ is 35% or more,
    상기 200 ℃의 온도 조건에서 측정한 폭방향 신율이 50% 이상인, 폴리에스테르 필름.A polyester film having a transverse elongation of 50% or more as measured under the above temperature conditions of 200°C.
  6. 제1항에 있어서,In the first paragraph,
    전기 이동수단의 내열부품 필름으로 적용되는, 폴리에스테르 필름.Polyester film applied as a heat-resistant component film for electric vehicles.
  7. 제1항에 있어서,In the first paragraph,
    상기 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지는 디카복실산계 화합물 유래 반복단위 및 디올계 화합물 유래 반복단위를 포함하고,The above polycyclohexylenedimethylene terephthalate resin contains a repeating unit derived from a dicarboxylic acid compound and a repeating unit derived from a diol compound,
    상기 디카복실산계 화합물 유래 반복단위는 테레프탈산 잔기 80 몰% 내지 100 몰% 및 이소프탈산 잔기 0 몰% 내지 20 몰%을 포함하고,The repeating unit derived from the above dicarboxylic acid compound comprises 80 mol% to 100 mol% of terephthalic acid residues and 0 mol% to 20 mol% of isophthalic acid residues,
    상기 디올계 화합물 유래 반복단위는 시클로헥산디메탄올 잔기 85 몰% 내지 100 몰% 포함하는, 폴리에스테르 필름.A polyester film, wherein the repeating unit derived from the above diol compound comprises 85 mol% to 100 mol% of cyclohexanedimethanol residues.
  8. 폴리시클로헥실렌디메틸렌 테레프탈레이트 수지를 포함하는 필름 제조용 조성물을 용융시키고, 압출하여 시트를 형성하는 시트형성단계;A sheet forming step of melting a composition for producing a film including a polycyclohexylenedimethylene terephthalate resin and extruding it to form a sheet;
    상기 시트형성단계에서 형성된 시트를 기계방향으로 연신하는 MD연신단계;An MD stretching step for stretching the sheet formed in the above sheet forming step in the machine direction;
    상기 MD연신단계에서 연신된 시트를 폭방향으로 연신하고 열고정하여 폴리에스테르 필름을 제조하는 TD연신단계;를 포함하고,Including a TD stretching step for stretching the sheet stretched in the MD stretching step in the width direction and heat-fixing it to manufacture a polyester film;
    상기 MD연신단계는 상기 시트형성단계에서 형성된 시트를 예열하는 예열과정; 및 상기 예열과정이 진행된 시트를 기계방향으로 연신하는 MD연신과정;을 포함하고,The above MD stretching step includes a preheating process for preheating the sheet formed in the sheet forming step; and an MD stretching process for stretching the sheet on which the preheating process has been performed in the machine direction.
    상기 예열과정의 온도는 80 ℃ 내지 86.5 ℃이고,The temperature of the above preheating process is 80 ℃ to 86.5 ℃,
    상기 MD연신과정의 온도는 80 ℃ 내지 89 ℃이고,The temperature of the above MD stretching process is 80 ℃ to 89 ℃,
    상기 TD연신단계의 폭방향 연신 온도는 100 ℃ 내지 118 ℃이고,The width direction stretching temperature of the above TD stretching step is 100 ℃ to 118 ℃,
    상기 폴리에스테르 필름은,The above polyester film,
    25 ℃에서 측정한 기계방향 인장강도가 MDTS25이고,The machine direction tensile strength measured at 25 ℃ is MDTS25,
    200 ℃의 온도 조건의 용기에서 24 시간 동안 방치하여 측정한 기계방향 인장강도가 MDTS200이고,The machine direction tensile strength measured after leaving it in a container under temperature conditions of 200 ℃ for 24 hours is MDTS200.
    {(MDTS25-MDTS200)/MDTS25}Х100%로 표기되는 기계방향 인장강도 감소율이 43.5 % 이하인, 폴리에스테르 필름의 제조방법.A method for manufacturing a polyester film having a machine direction tensile strength reduction rate of 43.5% or less, expressed as {(MDTS25-MDTS200)/MDTS25}Х100%.
  9. 제8항에 있어서,In Article 8,
    상기 TD연신단계는,The above TD extension step is,
    상기 MD연신단계에서 연신된 시트를 1차 예열하는 1차예열과정;A first preheating process for first preheating the sheet stretched in the above MD stretching step;
    상기 1차예열과정이 진행된 시트를 2차 예열하는 2차예열과정; 및A second preheating process for preheating the sheet that has undergone the first preheating process; and
    상기 2차예열과정이 진행된 시트를 폭방향으로 연신하는 TD연신과정;을 포함하고,Including a TD stretching process for stretching the sheet in the width direction after the above second preheating process;
    상기 1차예열과정의 온도는 90 ℃ 내지 103 ℃이고,The temperature of the above first preheating process is 90 ℃ to 103 ℃,
    상기 2차예열과정의 온도는 90 ℃ 내지 108 ℃인, 폴리에스테르 필름의 제조방법.A method for manufacturing a polyester film, wherein the temperature of the above secondary preheating process is 90 ℃ to 108 ℃.
  10. 제8항에 있어서,In Article 8,
    상기 TD연신단계는 상기 시트를 2.5배 내지 3.5배 연신하고,The above TD elongation step elongates the sheet by 2.5 to 3.5 times,
    상기 MD연신단계는 상기 시트를 3.3배 내지 4.5배 연신하는, 폴리에스테르 필름의 제조방법.The above MD stretching step is a method for manufacturing a polyester film, wherein the sheet is stretched 3.3 to 4.5 times.
PCT/KR2023/019890 2023-03-03 2023-12-05 Polyester film and manufacturing method therefor WO2024185966A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2023-0028277 2023-03-03
KR1020230028277A KR20240135144A (en) 2023-03-03 2023-03-03 Polyester film and manufacturing method for the same

Publications (1)

Publication Number Publication Date
WO2024185966A1 true WO2024185966A1 (en) 2024-09-12

Family

ID=92674815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/019890 WO2024185966A1 (en) 2023-03-03 2023-12-05 Polyester film and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR20240135144A (en)
WO (1) WO2024185966A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10138331A (en) * 1996-11-07 1998-05-26 Toray Ind Inc Biaxially oriented polyester film and its production
KR20070086172A (en) * 2004-12-16 2007-08-27 이스트만 케미칼 컴파니 Biaxially oriented copolyester film and laminates thereof with copper
JP2011011351A (en) * 2009-06-30 2011-01-20 Sekisui Chem Co Ltd Method for manufacturing stretched thermoplastic polyester resin sheet
KR20140007379A (en) * 2011-02-15 2014-01-17 후지필름 가부시키가이샤 Biaxial oriented polyester film, method for producing same, solar cell back sheet, and solar cell module
KR20180004174A (en) * 2015-05-07 2018-01-10 듀폰 테이진 필름즈 유.에스. 리미티드 파트너쉽 Polyester film with electrical insulation and thermal conductivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10138331A (en) * 1996-11-07 1998-05-26 Toray Ind Inc Biaxially oriented polyester film and its production
KR20070086172A (en) * 2004-12-16 2007-08-27 이스트만 케미칼 컴파니 Biaxially oriented copolyester film and laminates thereof with copper
JP2011011351A (en) * 2009-06-30 2011-01-20 Sekisui Chem Co Ltd Method for manufacturing stretched thermoplastic polyester resin sheet
KR20140007379A (en) * 2011-02-15 2014-01-17 후지필름 가부시키가이샤 Biaxial oriented polyester film, method for producing same, solar cell back sheet, and solar cell module
KR20180004174A (en) * 2015-05-07 2018-01-10 듀폰 테이진 필름즈 유.에스. 리미티드 파트너쉽 Polyester film with electrical insulation and thermal conductivity

Also Published As

Publication number Publication date
KR20240135144A (en) 2024-09-10

Similar Documents

Publication Publication Date Title
WO2011132921A2 (en) Method for preparing microporous polyolefin film with improved productivity and easy control of physical properties
WO2017057827A1 (en) Interior and exterior materials for automobile comprising polyester resin foam layer and fiber layer
WO2021066390A2 (en) Film and laminate for electronic board, and electronic board comprising same
WO2018147618A1 (en) Method for preparing polyamide-imide film
WO2011122880A2 (en) Heat-shrinkable polyester-based single-layer film
WO2019083093A1 (en) Polyimide film for preparing roll type graphite sheet
WO2019160218A1 (en) Polyamic acid composition having improved storage stability, manufacturing method for polyimide film using same, and polyimide film manufactured by means of same
WO2024185966A1 (en) Polyester film and manufacturing method therefor
WO2019182224A1 (en) Polyimide film comprising omnidirectional polymer chain, method for manufacturing same, and graphite sheet manufactured using same
WO2021086082A1 (en) Polyester film, method for manufacturing same, and method for recycling polyethylene terephthalate container using same
WO2022164029A1 (en) Polyester-based film, manufacturing method therefor, and membrane electrode assembly comprising same
WO2021010591A1 (en) Polyester resin blend
WO2017116201A1 (en) Release film and method for manufacturing same
WO2019212241A1 (en) Polyester film and method for recycling polyester container using same
WO2023229188A1 (en) Polyester film and manufacturing method therefor
WO2020149469A1 (en) Polyester film and manufacturing method therefor
WO2021066363A2 (en) Film and laminate for electronic substrate, and electronic substrate including same
WO2021015363A1 (en) Graphite sheet and electronic device comprising same
JP3316900B2 (en) Polyester film molding method
WO2024214867A1 (en) Oriented polyester film and manufacturing method therefor
WO2024177224A1 (en) Polyester film for hydrogen fuel cell and membrane electrode assembly
WO2024219907A1 (en) Multilayer film, display device, and packaging material
WO2024181639A1 (en) Polyester film
WO2018004233A1 (en) Back sheet for solar module and manufacturing method therefor
WO2022169193A1 (en) High-thickness multilayer polyimide film and method for producing same